This talk deals with (generalized) holomorphic Cartan geometries on compact complex manifols. The concept of holomorphic Cartan geometry encapsulates many interesting geometric structures including holomorphic parallelisms, holomorphic Riemannian metrics, holomorphic affine connections or holomorphic projective connections. A more flexible notion is that of a generalized Cartan geometry which allows some degeneracy of the geometric structure. This encapsulates for example some interesting rational parallelisms. We discuss classification and uniformization results for compact complex manifolds bearing (generalized) holomorphic Cartan geometries.

- All seminars.
- Seminars for 2019

Last updated: 24 Jan 2020