In wireless networks, where each node transmits independently of other nodes in the network (the ALOHA protocol), the expected delay experienced by a packet until it is successfully received at any other node is known to be infinite for signal-to-interference-plus-noise-ratio (SINR) model with node locations distributed according to a Poisson point process. Consequently, the information velocity, defined as the limit of the ratio of the distance to the destination and the time taken for a packet to successfully reach the destination over multiple hops, is zero, as the distance tends to infinity. A nearest neighbor distance based power control policy is proposed to show that the expected delay required for a packet to be successfully received at the nearest neighbor can be made finite. Moreover, the information velocity is also shown to be non-zero with the proposed power control policy. The condition under which these results hold does not depend on the intensity of the underlying Poisson point process.

- All seminars.
- Seminars for 2015

Last updated: 22 Feb 2019