MA 330: Topology - II

Credits: 3:0

Prerequisite courses: MA 231


Point Set Topology: Continuous functions, metric topology, connectedness, path connectedness, compactness, countability axioms, separation axioms, complete metric spaces,  function  spaces, quotient  topology, topological groups, orbit

The fundamental group:  Homotopy  of  maps, multiplication of paths, the fundamental group, induced homomorphisms, the  fundamental group of the circle,  covering spaces, lifting theorems, the universal covering space, Seifert-Van Kampen theorem, applications.

Suggested books and references:

  1. Armstrong, M. A., Basic Topology ,Springer (India), 2004.
  2. Hatcher, A., Algebraic Topology ,Cambridge Univ. Press,  2002.
  3. Janich, K., Topology ,Springer-Verlag (UTM), 1984.
  4. Kosniowski, C., A First Course in Algebraic Topology ,Cambridge Univ. Press, 1980.
  5. Munkres,  K. R., Topology ,Pearson Education, 2005.

All Courses

Contact: +91 (80) 2293 2711, +91 (80) 2293 2265
E-mail: chairman.math[at]iisc[dot]ac[dot]in