MA 231: Topology

Credits: 3:1


Prerequisite courses for Undegraduates: UM 204

Point-set topology: Open and closed sets,  continuous functions, Metric topology, Product topology, Connectedness and path-connectedness, Compactness, Countability axioms, Separation axioms, Complete metric spaces, Quotient topology, Topological groups, Orbit spaces.

The fundamental group: Homotopic maps, Construction of the fundamental group, Fundamental group of the circle, Homotopy type, Brouwer’s fixed-point theorem, Separation of the plane.  


Suggested books and references:

  1. Armstrong, M. A., Basic Topology, Springer (India), 2004., Functional Anaysis (2nd Ed.), McGraw-Hill, 2006.
  2. Munkres, K. R., Topology,Pearson Education, 2005, Functional Anaysis (4th Edition), Narosa, 1974.
  3. Viro, O.Ya., Ivanov, O.A., Netsvetaev, N., and Kharlamov, V.M., Elementary Topology: Problem Textbook, AMS, 2008.

All Courses


Contact: +91 (80) 2293 2711, +91 (80) 2293 2265 ;     E-mail: chair.math[at]iisc[dot]ac[dot]in
Last updated: 17 Sep 2019