MA 215: Introduction to Modular Forms

Credits: 3:0


Pre-requisites :

  1. MA 224 (Complex Analysis) or equivalent

The modular group and its subgroups, the fundamental domain. Modular forms, examples, Eisenstein series, cusp forms. Valence (dimension) formula, Petersson inner product. Hecke operators. L-functios: definition, analytic continution and functional equation.


Suggested books and references:

  1. Serre, J.P., A Course in Arithmetic, Graduate Texts in Mathematics no. 7, Springer-Verlag, 1996.
  2. Koblitz, N., Introdution to Modular Forms, Graduate Texts in Mathematics no. 97, Springer-Verlag, 1984.
  3. Iwaniec, H., Topics in Classical Automorphic Forms, Graduate Texts in Mathematics 17, AMS, 1997.
  4. Diamond, F. and Schurman, J., A First Course in Modular Forms, Graduate Texts in Mathematics no. 228, Springer-Verlag, 2005.

All Courses


Contact: +91 (80) 2293 2711, +91 (80) 2293 2265 ;     E-mail: chair.math[at]iisc[dot]ac[dot]in
Last updated: 17 Sep 2019