Math 120: Practice for the final

Setting up integrals

Q1. Set up the surface integral

$$
\iint_{S} d S
$$

for the following surfaces, by treating each either as a graph or a parametric surface:
(1) S is part of the cone $z=\sqrt{x^{2}+y^{2}}$ which lies between the planes $z=0$ and $z=4$.
(2) S is part of the paraboloid $z=x^{2}+y^{2}$ that lies inside the cylinder $x^{2}+y^{2}=3$.
(3) S is the planar triangular region that is bounded by the three line segments from $(0,0,3)$ to $(2,0,0)$, from $(2,0,0)$ to $(0,1,0)$ and from $(0,1,0)$ to $(0,0,3)$
(4) S is the region on the plane $x+z=2$ that lies inside the cylinder $x^{2}+y^{2}=1$.
(5) S is the region on the plane $x+z=2$ that lies inside the cylinder $x^{2}+y^{2}=2 x$.
(6) S is part of the sphere $x^{2}+y^{2}+z^{2}=1$ that lies above the plane $z=1 / \sqrt{2}$.

Q2. Set up the triple integral

$$
\iiint_{E} d V
$$

for the following solid regions:
(1) E is the region bounded by the cylinder $x^{2}+y^{2}=1$ and the planes $y=0, z=0$ and $z=5$.
(2) E is the region bounded by the parabolic cylinder $y=1-x^{2}$, and the planes $y=0, z=0$ and $z=4$.
(3) E is the region bounded by the coordinate planes and the plane $2 x+y+$ $z=1$.
(4) E is the region inside the surface given by the equation $x^{2}+y^{2}+z^{2}=2 z$ and above the cone given by $\phi=\pi / 3$ in spherical coordinates.
(5) E is the region bounded by the parabolic cylinder $y=x^{2}-1$ and the planes $x-y+1=0, z=0$ and $z=4$.
(6) E is the region below the cone $z=\sqrt{x^{2}+y^{2}}$ that lies inside the cylinder $x^{2}+y^{2}=1$.
(7) E is the region below the plane $x+z=2$ that lies inside the cylinder $x^{2}+y^{2}=2 x$.

Solutions:

Note: I haven't included accompanying pictures - please try and sketch them on your own.

Q1.
(1) Treat S as a graph. Its "shadow" D on the $x y$-plane is the disk of radius 4. While converting from $d S$ to $d A$, you need to calculate:

$$
\sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}}=\sqrt{1+\frac{x^{2}}{x^{2}+y^{2}}+\frac{y^{2}}{x^{2}+y^{2}}}=\sqrt{2}
$$

and so the surface integral is:

$$
\iint_{S} d S=\iint_{D} \sqrt{2} d A=\int_{0}^{2 \pi} \int_{0}^{4} \sqrt{2} r d r d \theta
$$

since an integral over a disk centered at the origin is best done in polar coordinates.
(2) Treat S as a graph. Solving the equations $z=x^{2}+y^{2}$ and $x^{2}+y^{2}=3$ we easily see that the intersection of the paraboloid and the cylinder is at $z=3$, so the radius of the "shadow" D of S on the $x y$-plane is a disk of radius $\sqrt{3}$. We calculate:

$$
\sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}}=\sqrt{1+(2 x)^{2}+(2 y)^{2}}=\sqrt{1+4 x^{2}+4 y^{2}}
$$

and so the surface integral is:

$$
\iint_{S} d S=\iint_{D} \sqrt{1+4 x^{2}+4 y^{2}} d A=\int_{0}^{2 \pi} \int_{0}^{\sqrt{3}} \sqrt{1+4 r^{2}} r d r d \theta
$$

(3) Since S is part of a plane, the first step is to find the equation of the plane and then treat S as a graph.
The plane has equation $a x+b y+c z=d$ and it is easy to figure out that $3 x+6 y+2 z=6$ passes through the points $(0,0,3),(2,0,0)$ and $(0,1,0)$.
Expressing z as a function of x and y we see that S is the graph $z=3-\frac{3}{2} x-3 y$. Its "shadow" D is a triangle on the $x y$-plane, bounded by the x and y axes and the line segment from $(2,0,0)$ to $(0,1,0)$, which has equation $y=-x / 2+1$. We calculate:

$$
\sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}}=\sqrt{1+\left(-\frac{3}{2}\right)^{2}+(-3)^{2}}=\frac{7}{2}
$$

and so the surface integral is:

$$
\iint_{S} d S=\iint_{D} \frac{7}{2} d A=\int_{0}^{2} \int_{0}^{-x / 2+1} \frac{7}{2} d y d x
$$

(4) Treat S as the graph $z=2-x$. Since we are only concerned with the portion inside the cylinder, we see that its "shadow" D is the disk $x^{2}+y^{2} \leq 1$ on the $x y$-plane. We calculate:

$$
\sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}}=\sqrt{1+(-1)^{2}+(0)^{2}}=\sqrt{2}
$$

and so the surface integral is:

$$
\iint_{S} d S=\iint_{D} \sqrt{2} d A=\int_{0}^{2 \pi} \int_{0}^{1} \sqrt{2} r d r d \theta
$$

(5) The equation $x^{2}+y^{2}=2 x$ can be rewritten as $(x-1)^{2}+y^{2}=1$ and is hence the cylinder of radius 1 around the line parallel to the z-axis through $(1,0)$. One can treat the surface as the graph of $z=2-x$ over this "shadow" D (see the previous problem also!).
The double integral is

$$
\iint_{S} d S=\int_{0}^{\pi} \int_{0}^{2 \cos \theta} \sqrt{2} r d r d \theta
$$

(6) S is part of a sphere, so it is best treated as a parametric surface $\mathbf{r}(\phi, \theta)=$ $\langle\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi\rangle$ where $0 \leq \theta \leq 2 \pi$ and $0 \leq \phi \leq \pi / 4$. We get the range of ϕ by drawing the cross section of the picture, and some trigonometry, or by using $z=1 / \sqrt{2}$ is $\rho \cos \phi=1 / \sqrt{2}$ in spherical coordinates and $x^{2}+y^{2}+z^{2}=1$ is $\rho=1$.
The double integral is

$$
\iint_{S} d S=\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \sin \phi d \phi d \theta
$$

where recall that the surface area element on a sphere of radius a is $\left|\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}\right|=$ $a^{2} \sin \phi$.

Q2.
(1) This is best done in cylindrical coordinates. The shadow of E on the $x y$ plane (where we shall use polar coordinates) is a half disk.
The triple integral becomes

$$
\iiint_{E} d V=\int_{0}^{\pi} \int_{0}^{1} \int_{0}^{5} r d z d r d \theta
$$

(2) Treat E as a "Type-1" region (between the planes $z=0$ and $z=5$), so you again need to figure out what the shadow D is on the $x y$-plane. The triple integral becomes

$$
\iiint_{E} d V=\iint_{D} \int_{0}^{4} d z d A=\int_{-1}^{1} \int_{0}^{1-x^{2}} \int_{0}^{4} d z d y d x
$$

(3) Treat E as a "Type- 1 " region between the planes $z=0$ and $z=1-2 x-y$ with shadow a triangle on the $x y$-plane. The triple integral becomes

$$
\iiint_{E} d V=\int_{0}^{1 / 2} \int_{0}^{1-2 x} \int_{0}^{1-2 x-y} d z d y d x
$$

(4) Notice that the surface is the sphere $x^{2}+y^{2}+(z-1)^{2}=1$ (take the $2 z$ across and complete the square). In spherical coordinates, the surface becomes $\rho=2 \cos \phi$ (remember $x^{2}+y^{2}+z^{2}=\rho^{2}$ and $z=\rho \cos \phi$).
The triple integral is best set up in spherical coordinates:

$$
\iiint_{E} d V=\int_{0}^{2 \pi} \int_{0}^{\pi / 3} \int_{0}^{2 \cos \phi} \rho^{2} \sin \phi d \rho d \phi d \theta
$$

(5) Treat E as a "Type-1" region (between the planes $z=0$ and $z=4$), so you need to figure out what the shadow D is on the $x y$-plane
The region D is bounded between the parabola $y=x^{2}-1$ and the line $y=x+1$ so we see that they intersect at $x=-1$ and $x=2$. The triple integral becomes

$$
\iiint_{E} d V=\iint_{D} \int_{0}^{4} d z d A=\int_{-1}^{2} \int_{x^{2}-1}^{x+1} \int_{0}^{4} d z d y d x
$$

(6) This is best done in cylindrical coordinates, the answer is:

$$
\iiint_{E} d V=\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{r} r d z d r d \theta
$$

since remember in cylindrical coordinates the cone $z=\sqrt{x^{2}+y^{2}}$ is $z=r$.
(7) See Q1 (5) also. The triple integral is set up in cylindrical coordinates. Note that the shadow D is a disk of radius 1 with center $(1,0)$, which is $r \leq$ $2 \cos \theta$ in polar coordinates.

$$
\iiint_{E} d V=\int_{0}^{\pi} \int_{0}^{2 \cos \theta} \int_{0}^{2-r \cos \theta} r d z d r d \theta
$$

