
Math 120: Examples

Green’s theorem

Example 1. Consider the integral∫
C

−y
x2 + y2

dx+
x

x2 + y2
dy

Evaluate it when
(a) C is the circle x2 + y2 = 1.

(b) C is the ellipse x2 + y2

4 = 1.

Solution. (a) We did this in class. Note that

P =
−y

x2 + y2
, Q =

x

x2 + y2

and so P and Q are not differentiable at (0, 0), so not differentiable everywhere
inside the region enclosed by C. So we can’t apply Green’s theorem directly to
the C and the disk enclosed by it. (whenever you apply Green’s theorem, re-
member to check that P and Q are differentiable everywhere inside the region!).

But away from (0, 0), P and Q are differentiable, and one can check that

∂Q

∂x
− ∂P

∂y
= 0 (1)

However, because of the “x2 + y2” terms floating around in the integrand, it is
not too hard to compute the line integral over the circle directly:
Parametrize C as (cos t, sin t) where 0 ≤ t ≤ 2π.
Then∫
C

−y
x2 + y2

dx+
x

x2 + y2
dy =

2π∫
0

− sin t(− sin tdt) + cos t(cos tdt) =

2π∫
0

1 ·dt = 2π.

(b) Notice that the ellipse x2+ y2

4 = 1 lies outside the circle of radius 1 which we
looked at in part (a). Inbetween, the two curves bound some region D. Notice
that on D, our P and Q are differentiable (the only “problem point” was the
origin which D avoids), so we can apply Green’s theorem to this region D (with
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a hole) and its boundary C ′:∫
C′

Pdx+Qdy =

∫∫
D

(∂Q
∂x
− ∂P

∂y

)
dA =

∫∫
D

(0)dA = 0 (2)

where the integrand became 0 because on D, equation (1) holds.

Now C ′ is composed of two curves: C1 (our ellipse on the outside), going counter-
clockwise, and C2 (the circle in the inside), going clockwise. So∫

C′

Pdx+Qdy =

∫
C1

(
Pdx+Qdy

)
+

∫
C2

(
Pdx+Qdy

)
But the integral over C2 is just the integral we calculated in part (a), but with
a negative sign since C2 goes clockwise instead of counter-clockwise. Sot:∫

C′

Pdx+Qdy =

∫
C1

Pdx+Qdy − 2π

But we just saw from equation (2) that∫
C′

Pdx+Qdy = 0

So we have ∫
C1

Pdx+Qdy = 2π.

which is exactly the integral over the ellipse that we wanted.

(Note. This argument actually shows that in this example the line integral over
any closed curve about the origin would be 2π!)
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Example 2. Use Green’s theorem to evaluate the line integral∫
C

(1 + xy2)dx− x2ydy

where C consists of the arc of the parabola y = x2 from (−1, 1) to (1, 1).

(The terms in the integrand differs slightly from the one I wrote down in class.)

Solution. Note: This line integral is simple enough to be done directly, by first
parametrizing C as 〈t, t2〉 where −1 ≤ t ≤ 1. However, we’ll use Green’s theo-
rem here to illustrate the method of doing such problems.

C is not closed. To use Green’s theorem, we need a closed curve, so we close
up the curve C by following C with the horizontal line segment C ′ from (1, 1)
to (−1, 1).

The closed curve C ∪ C ′ now bounds a region D (shaded yellow).

We have:
P = 1 + xy2, Q = −x2y

and we can calculate the partial derivatives:

∂Q

∂x
= −2xy,

∂P

∂y
= 2xy

Applying Green’s theorem to this region D, we get:

∫
C∪C′

(1+xy2)dx−x2ydy =

∫∫
D

(−2xy−2xy)dA =

∫∫
D

−4xydA =

1∫
−1

1∫
x2

−4xydydx = 0.

(The last step involves the actual calculation using iterated integrals.)
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Now parametrizing C ′ as 〈t, 1〉 where t goes from 1 to −1, we have:

∫
C′

(1 + xy2)dx− x2ydy =

−1∫
1

(1 + t · 12)dt =

(
t+

t2

2

) ∣∣∣−1
1

= −2

and so: ∫
C

xy2dx− x2ydy =

∫
C∪C′

−
∫
C′

= 0− (−2) = 2.

Example 2. Use Green’s theorem to evaluate∫
C

√
1 + x3dx+ 2xydy

where C is the triangle with vertices (0, 0), (1, 0) and (1, 3) oriented clockwise.

Solution. We first (as always!) draw a figure.

The curve C can thought of the union of the three line segments, which can be
parametrized easily, but doing the line integral directly would be hard/impossible
(nasty terms like

√
1 + t3dt cannot be integrated).

But, Green’s theorem converts the line integral to a double integral over the
region D enclosed by the triangle, which is easier:
Let

P =
√

1 + x3, Q = 2xy

We can calculate:
∂Q

∂x
= 2y,

∂P

∂y
= 0
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Then using Green’s theorem our line integral becomes∫
C

Pdx+Qdy =

∫∫
D

(∂Q
∂x
− ∂P

∂y

)
dA =

∫∫
D

2ydA

We now need to figure out how to parametrize the region D so that we can set
up the limits in the double integral (it’s a nice right-angled triangle, so it can’t
be that hard):

Think of traversing the whole region D this way: let x vary from 0 to 1. For
each x, we let y vary from 0 to wherever it hits the slanting side (roof!) of the
triangle. Now that side is given by the equation y = 3x (as you can calculate
since it passes through (0, 0) and (1, 3)), so the maximum y-height you need to
go when you are at x, is 3x. So with the limits, the integral becomes:

1∫
0

3x∫
0

2ydydx

Notice that dx is on the outside since we are varying x “first” (and for each x,
we then vary y). We can evaluate this integral easily:

1∫
0

3x∫
0

2ydydx =

1∫
0

y2
∣∣∣3x
0
dx =

1∫
0

(9x2 − 0)dx = (3x3)
∣∣∣1
0

= 3.

So that’s the answer: ∫
C

√
1 + x3dx+ 2xydy = 3.

Example 3. Use Green’s theorem to find:∫
C

x2ydx− xy2dy

where C is the circle x2 + y2 = 4 going counter-clockwise.

Solution. I’ll skip drawing the curve C: we can imagine it in our minds (just
a circle of radius 2 centered at the origin, going counter clockwise). It encloses
a disk of radius 2, which we call D.

To use Green’s theorem, let’s figure out what our P and Q are, and compute
it’s partial derivatives:

P = x2y,Q = −xy2

We can calculate:
∂Q

∂x
= −y2, ∂P

∂y
= x2
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Then using Green’s theorem our line integral becomes∫
C

Pdx+Qdy =

∫∫
D

(∂Q
∂x
− ∂P

∂y

)
dA =

∫∫
D

−y2 − x2dA = −
∫∫
D

(x2 + y2)dA

Now D being a disk, and the integrand being the way it is, the integral is begging
to be done in polar coordinates:

−
∫∫
D

(x2 + y2)dA = −
2π∫
0

2∫
0

r2 · rdrdθ

Notice that the upper limit for the inner integral is 2 because r varies till 2
(D is a disk of radius 2). Also don’t forget that the area element dA in polar
coordinates is rdrdθ!

Let’s finish the calculation:

−
2π∫
0

2∫
0

r2 · rdrdθ = −
2π∫
0

r4/4
∣∣∣2
0
dθ = −

2π∫
0

4dθ = −8π.

That’s the answer: ∫
C

x2ydx− xy2dy = −8π.
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