Math 120: Examples

Green's theorem

Example 1. Consider the integral

$$\int\limits_C \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy$$

Evaluate it when

(a) C is the circle $x^2 + y^2 = 1$. (b) C is the ellipse $x^2 + \frac{y^2}{4} = 1$.

Solution. (a) We did this in class. Note that

$$P = \frac{-y}{x^2 + y^2}, Q = \frac{x}{x^2 + y^2}$$

and so P and Q are *not* differentiable at (0, 0), so not differentiable everywhere inside the region enclosed by C. So we *can't* apply Green's theorem directly to the C and the disk enclosed by it. (whenever you apply Green's theorem, remember to check that P and Q are differentiable everywhere inside the region!).

But away from (0,0), P and Q are differentiable, and one can check that

$$\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 0 \tag{1}$$

However, because of the " $x^2 + y^2$ " terms floating around in the integrand, it is not too hard to compute the line integral over the circle directly: Parametrize C as $(\cos t, \sin t)$ where $0 \le t \le 2\pi$. Then

$$\int_{C} \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy = \int_{0}^{2\pi} -\sin t(-\sin t dt) + \cos t(\cos t dt) = \int_{0}^{2\pi} 1 \cdot dt = 2\pi$$

(b) Notice that the ellipse $x^2 + \frac{y^2}{4} = 1$ lies *outside* the circle of radius 1 which we looked at in part (a). Inbetween, the two curves bound some region D. Notice that on D, our P and Q are differentiable (the only "problem point" was the origin which D avoids), so we *can* apply Green's theorem to this region D (with

a hole) and its boundary C':

$$\int_{C'} Pdx + Qdy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dA = \iint_{D} (0) dA = 0$$
(2)

where the integrand became 0 because on D, equation (1) holds.

Now C' is composed of *two* curves: C_1 (our ellipse on the outside), going counterclockwise, and C_2 (the circle in the inside), going *clockwise*. So

$$\int_{C'} Pdx + Qdy = \int_{C_1} \left(Pdx + Qdy \right) + \int_{C_2} \left(Pdx + Qdy \right)$$

But the integral over C_2 is just the integral we calculated in part (a), but with a negative sign since C_2 goes *clockwise* instead of *counter-clockwise*. Sot:

$$\int_{C'} Pdx + Qdy = \int_{C_1} Pdx + Qdy - 2\pi$$

But we just saw from equation (2) that

$$\int\limits_{C'} P dx + Q dy = 0$$

So we have

$$\int_{C_1} Pdx + Qdy = 2\pi.$$

which is exactly the integral over the ellipse that we wanted.

(*Note.* This argument actually shows that in this example the line integral over any closed curve about the origin would be 2π !)

Example 2. Use Green's theorem to evaluate the line integral

$$\int_C (1+xy^2)dx - x^2ydy$$

where C consists of the arc of the parabola $y = x^2$ from (-1, 1) to (1, 1).

(The terms in the integrand differs slightly from the one I wrote down in class.)

Solution. Note: This line integral is simple enough to be done directly, by first parametrizing C as $\langle t, t^2 \rangle$ where $-1 \leq t \leq 1$. However, we'll use Green's theorem here to illustrate the method of doing such problems.

C is not closed. To use Green's theorem, we need a closed curve, so we *close* up the curve C by following C with the horizontal line segment C' from (1,1) to (-1,1).

The closed curve $C \cup C'$ now bounds a region D (shaded yellow).

We have:

$$P = 1 + xy^2, Q = -x^2y$$

and we can calculate the partial derivatives:

$$\frac{\partial Q}{\partial x}=-2xy, \frac{\partial P}{\partial y}=2xy$$

Applying Green's theorem to this region D, we get:

$$\int_{C \cup C'} (1+xy^2) dx - x^2 y dy = \iint_D (-2xy - 2xy) dA = \iint_D (-4xy dA) = \int_{-1}^1 \int_{x^2}^1 (-4xy dy dx) = 0$$

(The last step involves the actual calculation using iterated integrals.)

Now parametrizing C' as $\langle t, 1 \rangle$ where t goes from 1 to -1, we have:

$$\int_{C'} (1+xy^2) dx - x^2 y dy = \int_{1}^{-1} (1+t\cdot 1^2) dt = \left(t+\frac{t^2}{2}\right)\Big|_{1}^{-1} = -2$$

and so:

$$\int_{C} xy^{2} dx - x^{2} y dy = \int_{C \cup C'} -\int_{C'} = 0 - (-2) = 2.$$

Example 2. Use Green's theorem to evaluate

$$\int\limits_C \sqrt{1+x^3}dx + 2xydy$$

where C is the triangle with vertices (0,0), (1,0) and (1,3) oriented clockwise.

Solution. We first (as always!) draw a figure.

The curve C can thought of the union of the three line segments, which can be parametrized easily, but doing the line integral directly would be hard/impossible (nasty terms like $\sqrt{1+t^3}dt$ cannot be integrated).

But, Green's theorem converts the line integral to a double integral over the region D enclosed by the triangle, which is easier:

Let

$$P = \sqrt{1 + x^3}, Q = 2xy$$

We can calculate:

$$\frac{\partial Q}{\partial x} = 2y, \frac{\partial P}{\partial y} = 0$$

Then using Green's theorem our line integral becomes

$$\int_{C} Pdx + Qdy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dA = \iint_{D} 2y dA$$

We now need to figure out how to parametrize the region D so that we can set up the limits in the double integral (it's a nice right-angled triangle, so it can't be that hard):

Think of traversing the whole region D this way: let x vary from 0 to 1. For each x, we let y vary from 0 to wherever it hits the slanting side (roof!) of the triangle. Now that side is given by the equation y = 3x (as you can calculate since it passes through (0,0) and (1,3)), so the maximum y-height you need to go when you are at x, is 3x. So with the limits, the integral becomes:

$$\int_{0}^{1} \int_{0}^{3x} 2y dy dx$$

Notice that dx is on the *outside* since we are varying x "first" (and for each x, we then vary y). We can evaluate this integral easily:

$$\int_{0}^{1} \int_{0}^{3x} 2y dy dx = \int_{0}^{1} y^{2} \Big|_{0}^{3x} dx = \int_{0}^{1} (9x^{2} - 0) dx = (3x^{3}) \Big|_{0}^{1} = 3$$

So that's the answer:

$$\int\limits_C \sqrt{1+x^3}dx + 2xydy = 3.$$

Example 3. Use Green's theorem to find:

$$\int\limits_C x^2 y dx - xy^2 dy$$

where C is the circle $x^2 + y^2 = 4$ going counter-clockwise.

Solution. I'll skip drawing the curve C: we can imagine it in our minds (just a circle of radius 2 centered at the origin, going counter clockwise). It encloses a *disk* of radius 2, which we call D.

To use Green's theorem, let's figure out what our P and Q are, and compute it's partial derivatives:

$$P = x^2 y, Q = -xy^2$$

We can calculate:

$$\frac{\partial Q}{\partial x} = -y^2, \frac{\partial P}{\partial y} = x^2$$

Then using Green's theorem our line integral becomes

$$\int_{C} Pdx + Qdy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dA = \iint_{D} -y^2 - x^2 dA = -\iint_{D} (x^2 + y^2) dA$$

Now D being a disk, and the integrand being the way it is, the integral is begging to be done in polar coordinates:

$$-\iint_{D} (x^2 + y^2) dA = -\iint_{0}^{2\pi} \int_{0}^{2} r^2 \cdot r dr d\theta$$

Notice that the upper limit for the inner integral is 2 because r varies till 2 (D is a disk of radius 2). Also don't forget that the area element dA in polar coordinates is $rdrd\theta$!

Let's finish the calculation:

$$-\int_{0}^{2\pi}\int_{0}^{2}r^{2} \cdot rdrd\theta = -\int_{0}^{2\pi}r^{4}/4\Big|_{0}^{2}d\theta = -\int_{0}^{2\pi}4d\theta = -8\pi.$$

That's the answer:

$$\int\limits_C x^2 y dx - x y^2 dy = -8\pi.$$