Review session problems - 1

Math 120 Section 4

- Surface integrals
- Triple Integrals
- Stokes' and Divergence theorems

1. (Spring '11) Find the surface area of the part of the paraboloid $z=x^{2}+y^{2}$ that lies inside the sphere $x^{2}+y^{2}+z^{2}=6$.
2. Compute $\iint_{S}(x+y+z) d S$ where S is the surface $x^{2}+y^{2}=2,0 \leq z \leq 2$.
3. Find the surface area of

$$
\vec{r}(u, v)=\langle(2+\cos v) \cos u,(2+\cos v) \sin u, \sin v\rangle
$$

where $0 \leq u, v \leq 2 \pi$.
4. Let E be the solid region inside the cone $z=\sqrt{x^{2}+y^{2}}$ and between the planes $z=1$ and $z=2$. Evaluate the following triple integral:

$$
\iiint_{E}\left(x^{2}+2 z\right) d V
$$

5. (Practice Exam) Find the volume of the region lying outside the sphere $x^{2}+y^{2}+z^{2}=1$ and inside the sphere $x^{2}+y^{2}+(z-1)^{2}=1$.
6. (Past final) Express

$$
\int_{0}^{\sqrt{3} / 2} \int_{0}^{\sqrt{3-4 x^{2}} / 2} \int_{1-\sqrt{1-x^{2}-y^{2}}}^{\sqrt{1-x^{2}-y^{2}}}(x+y+z) d z d y d x
$$

in spherical coordinates.
7. (Spring '11) Let $\vec{F}(x, y, z)=\left\langle 2 x-y \sin z, y, e^{x y}\right\rangle$. Evaluate

$$
\iint_{S} \operatorname{curl} \vec{F} \cdot d \vec{S}
$$

where S is the upper hemisphere $x^{2}+y^{2}+z^{2}=1$ with $z \geq 0$, oriented upward.
8. Let $\vec{F}(x, y, z)=\left\langle x^{2} y z, y z^{2}, z^{3} e^{x y}\right\rangle$. Evaluate

$$
\iint_{S} \operatorname{curl} \vec{F} \cdot d \vec{S}
$$

where S is the part of the sphere $x^{2}+y^{2}+z^{2}=5$ that lies above the plane $z=1$, oriented upward.
9. (Spring '10) Let P be the parallelogram with vertices $A=(0,0,0), B=(1,2,3), C=(3,2,1)$ and $D=(4,4,4)$ oriented clockwise when viewed from above. Evaluate

$$
\int_{C}-2010 z d x+2011 x d y+2012 y d z
$$

10. Evaluate $\iint_{S} \vec{F} \cdot d \vec{S}$ where S is part of the paraboloid $z=x^{2}+y^{2}, 0 \leq z \leq 1$, oriented in the positive z direction, and $\vec{F}(x, y, z)=\left\langle x y, x y, x^{2}\right\rangle$.
11. (Spring '10) Evaluate $\iint_{S} \vec{F} \cdot d \vec{S}$ where S is the surface bounded by the cylinder $x^{2}+y^{2}=1$ and the planes $z=-2$ and $z=0$, with outward pointing normals, and $\vec{F}(x, y, z)=\left\langle x y^{2}, y z^{2}, z x^{2}\right\rangle$.
12. (Spring '11) Let $\vec{F}(x, y, z)=\langle x z, x y, x y z\rangle$, and let E be the region bounded by the surfaces $y=1-x^{2}, y=x^{2}-1$ and the planes $z=0$ and $z=4$. Find the outward flux $\iint_{\partial E} \vec{F} \cdot d \vec{S}$ across the boundary ∂E.
13. Let $\vec{F}(x, y, z)=\left\langle x^{3} z, y^{3} z, e^{x^{2}+y^{2}}\right\rangle$, and let E be the solid region bounded by the cylinder $x^{2}+y^{2}=1$ and the planes $z=0$ and $x+z=2$, with the boundary surface ∂E oriented outward.
(a) Find the flux of \vec{F} across the bottom face of ∂E, which is the disk $x^{2}+y^{2}=1, z=0$.
(b) Use the Divergence theorem to find the total flux

$$
\iint_{S} \vec{F} \cdot d \vec{S}
$$

14. (Spring '10) Evaluate $\iint_{S} \vec{F} \cdot d \vec{S}$ where the surface S consists of the disk $x^{2}+y^{2} \leq 4, z=-7$ with downward pointing normal, and cylinder $x^{2}+y^{2}=4,-7 \leq z \leq 0$ with outward pointing normal, where

$$
\vec{F}=\left\langle z e^{y^{2}+1} \cos y, z+\sin x^{3}, x^{2} y^{2}\right\rangle
$$

