Miscellaneous examples

Math 120 Section 4

Stokes' theorem

Example 1. Let \vec{F} be any differentiable vector field defined in \mathbb{R}^{3}, and let S be the unit sphere $x^{2}+y^{2}+z^{2}=1$ oriented outward. Show that

$$
\iint_{S} \operatorname{curl} \vec{F} \cdot \vec{n} d S=0 .
$$

Solution. Divide up the sphere S into the upper hemisphere S_{1} and the lower hemisphere S_{2}, by the unit circle C that is the "equator". Note that each hemisphere has a boundary curve (the equator C).

Applying Stokes' theorem to the surface S_{1} gives:

$$
\begin{equation*}
\iint_{S_{1}} \operatorname{curl} \vec{F} \cdot \vec{n} d S_{1}=\int_{C_{c c w}} \vec{F} \cdot d \vec{r} \tag{1}
\end{equation*}
$$

where $C_{c c w}$ indicates that the curve C is oriented "counterclockwise" as seen from above. (Check that this is the positive orientation of the curve, since the normal vectors to S_{1} point outward.)

Stokes' theorem for the surface S_{1} gives:

$$
\begin{equation*}
\iint_{S_{2}} \operatorname{curl} \vec{F} \cdot \vec{n} d S_{2}=\int_{C_{c w}} \vec{F} \cdot d \vec{r} \tag{2}
\end{equation*}
$$

where this time the boundary C is oriented clockwise - that is the positive orientation when the normal vectors for S_{2} point "outward" (check with the Left Hand Rule!).

But we know that reversing orientation changes the sign of the line integral:

$$
\int_{C_{c w}} \vec{F} \cdot d \vec{r}=-\int_{C_{c c w}} \vec{F} \cdot d \vec{r}
$$

So on adding (1) and (2) we get:

$$
\iint_{S} \operatorname{curl} \vec{F} \cdot \vec{n} d S=\iint_{S_{1}} \operatorname{curl} \vec{F} \cdot \vec{n} d S_{1}+\iint_{S_{2}} \operatorname{curl} \vec{F} \cdot \vec{n} d S_{2}=\int_{C_{c c w}} \vec{F} \cdot d \vec{r}+\int_{C_{c w}} \vec{F} \cdot d \vec{r}=0 .
$$

Note. This argument in fact works for any closed surface, by dividing the surface into two using any closed curve C. In fact, we shall see another solution to this in class, using the Divergence Theorem.

Example 2 (Exercise 5 in Section 16.8). The surface S consists of the top and four sides (but not the bottom) of the cube with vertices $(\pm 1, \pm 1, \pm 1)$, oriented outward. Evaluate

$$
\iint_{S} \operatorname{curl} \vec{F} \cdot \vec{n} d S
$$

where $\vec{F}(x, y, z)=\left\langle x y z, x y, x^{2} y z\right\rangle$.
Solution. Here the curl of the vector field is:

$$
\operatorname{curl} \vec{F}=\left\langle x^{2} z, x y-2 x y z, y-x z\right\rangle
$$

Here it is probably tedious to compute the flux of this vector field over S directly, because one has to do it separately on each of the five faces of the cube. But whenever the question asks to compute the flux of the curl of a vector field, one should think of Stokes' theorem, and that helps here.

Stokes theorem gives you two ways to avoid computing the flux of the curl over S :

One is to compute a line integral instead:

$$
\iint_{S} \operatorname{curl} \vec{F} \cdot \vec{n} d S=\int_{C} \vec{F} \cdot d \vec{r}
$$

Here, C is the boundary of S which is a "square" on the $z=-1$ plane (check what the orientation should be, given that S is oriented outward!).

The other way (which we use here) is to replace S with a simpler surface S_{2} that has the same boundary curve:

$$
\iint_{S} \operatorname{curl} \vec{F} \cdot \vec{n} d S=\iint_{S_{2}} \operatorname{curl} \vec{F} \cdot \vec{n} d S_{2}
$$

Here, we can take S_{2} to be the "missing face" of the cube, which is the part of the plane $z=-1$ enclosed by the square C, with the normal vector pointing

"downward".
Computing the flux of the curl over S_{2} is easy! Treat S_{2} as the graph of the function $z=-1$ over the domain D which is the square $-1 \leq x \leq 1,-1 \leq y \leq 1$ on the $x y$-plane. The normal vectors are $-\vec{k}$ everywhere (S_{2} is flat!).

So we have:

$$
\iint_{S_{2}} \operatorname{curl} \vec{F} \cdot \vec{n} d S_{2}=\iint_{D}\left\langle x^{2}(-1), x y-2 x y(-1), y-x(-1)\right\rangle \cdot\langle 0,0,-1\rangle d A
$$

where we have plugged in $z=-1$ in the expression for $\operatorname{curl} \vec{F}$ since we are looking along the graph of $z=-1$.

This now becomes:

$$
\iint_{D}(-x-y) d A=\int_{-1}^{1} \int_{-1}^{1}(-x-y) d x d y=0
$$

and that's the answer!

Triple integrals

Example 3 (From the Final Exam, Spring '11). Convert the triple integral

$$
\int_{-\frac{\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2}} \int_{-\sqrt{\frac{3}{4}-x^{2}}}^{\sqrt{\frac{3}{4}-x^{2}}} \int_{\frac{1}{2}}^{\sqrt{1-x^{2}-y^{2}}}\left(x^{2}+y^{2}+z^{2}\right) d z d y d x
$$

into cylindrical coordinates. Do not evaluate the integral.
Solution. Looking at the limits for the variables x and y and z, we first figure out that the solid region is the one between the graphs $z=\frac{1}{2}$ and $z=\sqrt{1-x^{2}-y^{2}}$ over a disk D of radius $\frac{\sqrt{3}}{2}$ on the $x y$-plane centered at $(0,0)$. (See the figure!)

Figure 1: The plane $z=\frac{1}{2}$ intersects the sphere $x^{2}+y^{2}+z^{2}=1$ in a circle of radius $\frac{\sqrt{3}}{2}$. Our solid region is the one between the plane and the sphere, and its "shadow" is a disk of radius $\frac{\sqrt{3}}{2}$ on the $x y$-plane.

We start with inside the integral, where we convert the function into cylindrical coordinates, and replace the $d z d y d x$ by the volume element $r d z d r d \theta$. We now need to set up the limits.

Cylindrical coordinates essentially means one uses polar coordinates on the $x y$ plane: the limits for r and θ should give you the disk D (the "shadow" of the solid region). The graphs $z=1 / 2$ and $z=\sqrt{1-x^{2}-y^{2}}$ when converted to cylindrical coordinates become $z=1 / 2$ and $z=\sqrt{1-r^{2}}$ respectively.

So the answer is:

$$
\int_{0}^{2 \pi} \int_{0}^{\frac{\sqrt{3}}{2}} \int_{\frac{1}{2}}^{\sqrt{1-r^{2}}}\left(r^{2}+z^{2}\right) r d z d r d \theta
$$

Example 4 (Done in class, except the calculation). Chop up the unit ball $x^{2}+y^{2}+z^{2} \leq 1$ by the plane $z=\frac{1}{\sqrt{2}}$. What is the volume of the top portion E ?

Solution. The picture is similar to the one for the previous example, except that the plane is at a different height.

In class, we figured out that we can set up the triple integral in spherical coordinates as follows:

$$
\iiint_{E} d V=\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{4}} \int_{\frac{1}{\sqrt{2} \cos \theta}}^{1} \rho^{2} \sin \phi d \rho d \phi d \theta
$$

We do the calculation here:

$$
\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{4}} \int_{\frac{1}{\sqrt{2} \cos \theta}}^{1} \rho^{2} \sin \phi d \rho d \phi d \theta=\left.\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{4}} \frac{\rho^{3}}{3} \sin \phi\right|_{\frac{1}{\sqrt{2} \cos \theta}} ^{1} d \rho d \phi d \theta=\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{4}}\left(\frac{\sin \phi}{3}-\frac{1}{6 \sqrt{2}} \cdot \frac{1}{\cos ^{3} \phi} \sin \phi\right) d \phi d \theta
$$

Doing the integral of the two terms separately (the second term by the substitution $u=\cos \phi$), we get:

$$
\begin{gathered}
=\int_{0}^{2 \pi}\left(\left.\frac{-\cos \phi}{3}\right|_{0} ^{\frac{\pi}{4}}+\left.\frac{1}{6 \sqrt{2}} \cdot \frac{1}{2 \cos ^{2} \phi}\right|_{0} ^{\frac{\pi}{4}}\right) d \theta=\int_{0}^{2 \pi}\left(-\frac{1}{3 \sqrt{2}}+\frac{1}{3}\right)+\left(\frac{1}{6 \sqrt{2}}-\frac{1}{12 \sqrt{2}}\right) d \theta \\
=2 \pi\left(-\frac{1}{3 \sqrt{2}}+\frac{1}{3}+\frac{1}{12 \sqrt{2}}\right)=\frac{2 \pi}{3}-\frac{\pi}{2 \sqrt{2}}
\end{gathered}
$$

That's the answer I promised in class!

