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Direct methods in a classical problem

Now we intend to give a brief illustration of direct methods in a
classical problem.

We intend to study a problem that we have
referred to a few times already, the problem of finding geodesics,
i.e. curves of ‘shortest’ length between two given points on a
manifold.

However, we are going to solve the problem using the direct
methods. Although the setting is decidedly simpler here, but we
would already see a remarkable number of features that would
remain with us in different guises and would keep us busy till the
end of the course. Roughly, these are the following.

I Sobolev spaces ( we would see a baby version here and this
would stay with us from chapter 3 onwards)

I direct methods for existence ( this will return and stay with
us from chapter 4 onwards )

I noncompactness due to group action and a possible way to
overcome it ( this would return when we study the area
functional in the last chapter)

I regularity questions ( we shall take it up again the chapter 5)
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Geodesic: setting of the problem

The variational problem for geodesics

Let M be an N-dimensional smooth embedded submanifold of Rd .

Let c ∈ C 1 ([0,T ];M) be a C 1 curve on M. Let p1, p2 ∈ M be two
distinct points on M. We suppose that the curve begins at p1 and
ends at p2, which translates to

c(0) = p1 and c(T ) = p2.

The length of the curve is

L (c) :=

ˆ T

0

|ċ (t)| dt.

Our aim is to find a curve connecting p1 and p2 which has the
shortest length.

So our first try for the variational problem is

inf
{
L (c) : c ∈ C 1

(
[0,T ];Rd

)
, c(0) = p1, c(T ) = p2.

}
= m.
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|ċ (t)| dt.

Our aim is to find a curve connecting p1 and p2 which has the
shortest length.

So our first try for the variational problem is

inf
{
L (c) : c ∈ C 1

(
[0,T ];Rd

)
, c(0) = p1, c(T ) = p2.

}
= m.



Introduction to the
Calculus of Variations

Swarnendu Sil

Prelude to Direct
Methods

Geodesics: the problem

Absolute continuity: first
encounter with Sobolev
spaces

Existence of geodesics

Regularity questions

The End

Geodesic: setting of the problem

The variational problem for geodesics

Let M be an N-dimensional smooth embedded submanifold of Rd .
Let c ∈ C 1 ([0,T ];M) be a C 1 curve on M. Let p1, p2 ∈ M be two
distinct points on M. We suppose that the curve begins at p1 and
ends at p2, which translates to

c(0) = p1 and c(T ) = p2.

The length of the curve is

L (c) :=

ˆ T

0
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But clearly this can not be the variational problem.

It has no
reference to M whatsoever! In fact, we already know the solution
to the above variational problem ( though it is quite tricky proving
it this way! ). The straight line in Rd joining the points p1 and p2

is the unique path of shortest length. This path has no reason to
lie in M. ( Think of M as the N-sphere SN in RN+1. )

Now there are two ways we can bring M into the picture. One is if
M is given by some equations

M =
{
x ∈ Rd : Gα (x) = 0 for all α ∈ I

}
,

then we can treat this as a variational problem with additional
constraints

Gα (c(t)) = 0 for all α ∈ I.

However, here we shall not take this path and instead introduce
local charts in M.
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Local charts
Let p ∈ M.

A local chart around p is a map
f : U ⊂ RN → V ⊂ Rd such that

I U,V are open sets in the respective Euclidean spaces,

I f (U) = M ∩ V ,

I p ∈ f (U) and

I f is a smooth diffeomorphism onto its image.

Now since f is a diffeomorphism, for any curve c (t) which is
contained inside a single chart, i.e. c ([0,T ]) ⊂ f (U) , there exists
a curve γ in U such that

c (t) = f (γ (t)) for every t ∈ [0,T ].

γ is also C 1 if c is and by the chain rule, we have

ċ (t) = Df (γ (t)) γ̇ (t) .
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ċ (t) = Df (γ (t)) γ̇ (t) .



Introduction to the
Calculus of Variations

Swarnendu Sil

Prelude to Direct
Methods

Geodesics: the problem

Absolute continuity: first
encounter with Sobolev
spaces

Existence of geodesics

Regularity questions

The End

Geodesic: setting of the problem

Length and the Metric tensor

˙cα (t) =
∂f α

∂z i
(γ (t)) γ̇ i (t) for every 1 ≤ α ≤ d .

Here we used the Einstein summation convention ( i.e. repeated
index, here i , is to be summed over, here from 1 to N ). Thus

L (c) =

ˆ T

0

(
∂f α

∂z i
(γ (t)) γ̇ i (t)

∂f α

∂z j
(γ (t)) γ̇j (t)

) 1
2

dt

=

ˆ T

0

(
gij (γ (t)) γ̇ i (t) γ̇j (t)

) 1
2

dt,

where g = (gij) is a positive definite symmetric matrix

gij (z) =
∂f α

∂z i
(z)

∂f α

∂z j
(z),

the metric tensor of M with respect to the chart f : U → V .
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We shall always work with the simplifying assumption that the
curve is contained in a single chart just for clarity.

In general, a
manifold would be covered by a collection of charts {(fβ ,Uβ)}β
(called an atlas). Given a curve c on M, we can always find a
partition

0 = t0 < t1 < . . . < tr < T

such that c ([tk , tk+1]) is contained in a single chart and then we
would write the length functional as sum of the integrals. It might
appear that the length of a curve depends on the chart chosen.
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f −1
2 ◦ f1 : f −1

1 (f1 (U1) ∩ f2 (U2))→ f −1
2 (f1 (U1) ∩ f2 (U2))

is called a transition map.
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The variational problem

Now our variational problem is

inf
γ∈X

{ˆ T

0

(
gij (γ (t)) γ̇ i (t) γ̇j (t)

) 1
2

dt

}
= m.

where

X =
{

: γ ∈ C 1 ([0,T ];U) : γ (0) = f −1 (p1) , γ (T ) = f −1 (p2)
}
.

Now we attempt to solve it via direct methods.

But it is a quite difficult one and we need to slowly move towards
it.
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Difficulties

To understand at least some of the difficulties of the problem, we
first try to solve the simpler problem

inf
{
L (c) : c ∈ C 1

(
[0,T ];Rd

)
, c(0) = p1, c(T ) = p2.

}
= m.

This is just the first problem we wrote down today.

Now, as we did in the case of finding a minima, if {cν} is a
minimizing sequence, i.e.

L (cν) =

ˆ T

0

|ċν (t)| dt → m,

we deduce

‖ċν‖L1([0,T ]) :=

ˆ T

0

|ċν (t)| dt ≤ m + 1.

Now we see one of the first difficulties. We obtained an uniform
bound for the L1 norm of the derivatives and not the C 0 norm of
the derivatives.
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‖ċν‖L1([0,T ]) :=

ˆ T

0
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|ċν (t)| dt ≤ m + 1.

Now we see one of the first difficulties. We obtained an uniform
bound for the L1 norm of the derivatives and not the C 0 norm of
the derivatives.



Introduction to the
Calculus of Variations

Swarnendu Sil

Prelude to Direct
Methods

Geodesics: the problem

Absolute continuity: first
encounter with Sobolev
spaces

Existence of geodesics

Regularity questions

The End

Difficulties

To understand at least some of the difficulties of the problem, we
first try to solve the simpler problem

inf
{
L (c) : c ∈ C 1

(
[0,T ];Rd

)
, c(0) = p1, c(T ) = p2.

}
= m.

This is just the first problem we wrote down today.

Now, as we did in the case of finding a minima,

if {cν} is a
minimizing sequence, i.e.

L (cν) =

ˆ T

0
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|ċν (t)| dt ≤ m + 1.

Now we see one of the first difficulties.

We obtained an uniform
bound for the L1 norm of the derivatives and not the C 0 norm of
the derivatives.



Introduction to the
Calculus of Variations

Swarnendu Sil

Prelude to Direct
Methods

Geodesics: the problem

Absolute continuity: first
encounter with Sobolev
spaces

Existence of geodesics

Regularity questions

The End

Difficulties

To understand at least some of the difficulties of the problem, we
first try to solve the simpler problem

inf
{
L (c) : c ∈ C 1

(
[0,T ];Rd

)
, c(0) = p1, c(T ) = p2.

}
= m.

This is just the first problem we wrote down today.

Now, as we did in the case of finding a minima, if {cν} is a
minimizing sequence, i.e.

L (cν) =

ˆ T

0
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So we realize that

C 1 is a terrible class from the point of view of
direct methods. From integral functionals, uniform bounds for
some integral norms of the derivatives are the best we can hope
for. So, minimizing sequences would never be uniformly bounded
in the C 1 norm!

However, we push ahead a bit more. Using the fundamental
theorem of calculus, we obtain

|cν(t)| ≤ |cν (0)|+
∣∣∣∣ˆ t

0

ċν(t) dt

∣∣∣∣ ≤ |p1|+ ‖ċν‖L1([0,T ]) ≤ |p1|+ m + 1,

and

|cν(t)− cν(s)| =

∣∣∣∣ˆ t

s

ċν(t) dt

∣∣∣∣ ≤ ˆ t

s

|ċν(t)| dt.

So at least the C 0 norm of the minimizing sequences are uniformly
bounded. However, this is not good enough for extracting a
convergent sequence. ( Thus showing C 0 is an equally bad space
as C 1 ).
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ċν(t) dt
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But we were very close.

By virtue of the Ascoli-Arzela theorem, all
we needed for compactness is equicontinuity, i.e.

|cν(t)− cν(s)| → 0 uniformly in ν as t − s → 0.

From the second inequality, this would be the case if we can
conclude

ˆ t

s

|ċν(t)| dt → 0 uniformly in ν as t − s → 0.

This property is called equiintegrability. Unfortunately, a
sequence which is uniformly bounded in L1 need not be
equiintegrable, showing L1 is not a particularly nice space either.
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An easier problem

Let us now make our life a bit easier and try to solve the
variational problem

inf
c∈X

{
E (c) =

ˆ T

0

|ċ (t)|2 dt

}
= m,

where

X =
{
c ∈ C 1

(
[0,T ];Rd

)
: c(0) = p1, c(T ) = p2

}
.

Arguing as before, for a minimizing sequence {cν} , we now have

E (cν) = ‖ċν‖2
L2([0,T ]) ≤ m + 1.

But this time we have a control of the L2 norm of the derivatives
instead of the L1 norm.
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Compactness in C 0

Using the fundamental theorem of calculus once again,

this time
we obtain

|cν(t)| ≤ |cν (0)|+
∣∣∣∣ˆ t

0

ċν(t) dt

∣∣∣∣
Hölder
≤ |p1|+

√
t ‖ċν‖L2([0,T ])

≤ |p1|+
√
t
√
m + 1.

Thus {cν} is uniformly bounded in C 0. Now we have,

|cν(t)− cν(s)| =

∣∣∣∣ˆ t

s

ċν(t) dt

∣∣∣∣ Hölder
≤

√
(t − s)

(ˆ t

s

|ċν(t)|2 dt

) 1
2

≤
√

(t − s) ‖ċν‖L2([0,T ])

≤
√

(t − s)
√
m + 1.

Thus,

|cν(t)− cν(s)| → 0 uniformly in ν as t − s → 0.
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Hölder
≤ |p1|+

√
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ċν(t) dt

∣∣∣∣ Hölder
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Hölder
≤ |p1|+

√
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≤

√
(t − s)

(ˆ t

s
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Hence by Ascoli-Arzela theorem,

we deduce that up to the
extraction of a subsequence which is not relabelled, we obtain

cν → c in C 0,

for some c ∈ C 0
(
[0,T ];Rd

)
. Unfortunately, this tells us nothing

about the derivatives of c .

c might not even be differentiable, let alone being C 1.

However, since {ċν} is uniformly bounded in L2, which unlike L1,
is a reflexive space, we deduce, by Banach-Alaoglu theorem

ċν ⇀ v in L2, (1)

for some v ∈ L2
(
[0,T ];Rd

)
. Is there a relation between v and c?

In particular, is v = ċ?

Note that (1) implies for any ψ ∈ C∞c
(
[0,T ];Rd

)
, we have

ˆ T

0

〈ċν , ψ〉 →
ˆ T

0

〈v , ψ〉 . (2)
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But integrating by parts, we obtain

ˆ T

0

〈ċν , ψ〉 = −
ˆ T

0

〈
cν , ψ̇

〉
. (3)

By convergence of cν to c in C 0, the RHS above converges to

−
ˆ T

0

〈
cν , ψ̇

〉
→ −

ˆ T

0

〈
c,ψ̇
〉
.

So, using this and (1) and (2) and (3), we deduce

ˆ T

0

〈v , ψ〉 = −
ˆ T

0

〈
c,ψ̇
〉

for any ψ ∈ C∞c
(
[0,T ];Rd

)
.

v certainly looks way too much like ċ!! Indeed, if we knew c is
C 1, the above formula would indeed tell us v = ċ using integration
by parts and the fundamental lemma of calculus of variations.
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Unfortunately, we have no way of knowing at this point that c is
C 1.

As we said, for all we know, c need not even be differentiable.
However, since v ∈ L2, the above formula suggests that probably
instead of C 1 curves,we should look for ‘curves’ with L2

‘derivatives’.

But how can a function which might not be differentiable have a
‘derivative’??

The last bit of inspired idea that we need is that we need to
outrageously bold and simply call v as a ‘derivative’ of c!! This
seemingly insane idea is the beginning of modern theory of PDEs
and Calculus of Variations.

Definition (weak derivatives)

Let u ∈ L1
(
[0,T ];Rd

)
. We say u has a weak derivative if there

exists a function v ∈ L1
(
[0,T ];Rd

)
such that

ˆ T

0

〈v , ψ〉 = −
ˆ T

0

〈
u, ψ̇

〉
for any ψ ∈ C∞c

(
[0,T ];Rd

)
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outrageously bold and simply call v as a ‘derivative’ of c!! This
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ˆ T
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