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Recap I

Second variation
So far we have seen that for a C 2 critical point ū to be a
minimizer of a functional I with C 3 Lagrangian density f , a
necessary condition is that the second variation of I at ū along ψ,
which is explicitly given by the integral

ˆ b

a

[〈
fuu
(
t, ū, ˙̄u

)
ψ,ψ

〉
+ 2

〈
fuξ
(
t, ū, ˙̄u

)
ψ, ψ̇

〉
+
〈
fξξ
(
t, ū, ˙̄u

)
ψ̇, ψ̇

〉]
dt,

must be nonnegative for any ψ ∈ C 1
c

(
[a, b];RN

)
.

We deduced that this forces the Legendre condition

fξξ
(
t, ū, ˙̄u

)
is nonnegative definite for every t ∈ (a, b).

We also saw that the second variation above being positive for
any ψ ∈ C 1

c

(
[a, b];RN

)
with ψ 6≡ 0 is a sufficient condition. To

obtain more easily checkable necessary and sufficient conditions,
we wrote the second variation as an integral functional.
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Recap II

We have rewritten the second variation as

J [ψ] :=

ˆ b

a

[〈
Pψ̇, ψ̇

〉
+ 〈Qψ,ψ〉

]
dt,

where P is symmetric and assumed to be positive definite.
This can be made into a ‘perfect square’ by adding a null
Lagrangian. More precisely, we showed that we have

J [ψ] = J [ψ] +

ˆ b

a

d

dt
[〈Wψ,ψ〉] dt

=

ˆ b

a

[〈
Pψ̇, ψ̇

〉
+ 2

〈
Wψ, ψ̇

〉
+
〈(

Q + Ẇ
)
ψ,ψ

〉]
dt

=

ˆ b

a

∣∣∣P 1
2 ψ̇ + P−

1
2Wψ

∣∣∣2 dt,

if W is a solution of the following matrix Riccati equation,

Ẇ = −Q + WP−1W .
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Recap III

Jacobi equation

We have introduced the Jacobi equation and the notion of
conjugate points.

d

dt

(
Pψ̇
)

= Qψ.

Definition (Conjugate points)

Let Ψ be the matrix of N solutions of the Jacobi equation and
satisfies

Ψ (a) = 0 and Ψ̇ (a) = IN .

A point ā ∈ (a, b] is called a conjugate to the point a or simply
a conjugate point of a if we have

detΨ (ā) = 0.
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Recap IV

Jacobi theory

We have also seen that if there exists no point conjugate to a in
(a, b], then Ψ is invertible and

W = −PΨ̇Ψ−1

solves the matrix Ricatti equation.

Now our goal is to show that this is a sufficient condition for ū to
be a minimizer.
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Sufficient condition for a minimizer

Theorem
Let f = f (t, u, ξ) ∈ C 3

(
[a, b]× RN × RN

)
, α, β ∈ RN ,

X =
{
u ∈ C 1

(
[a, b] ;RN

)
: u (a) = α, u (b) = β

}
.

(P) inf
u∈X

{
I (u) =

ˆ b

a

f (t, u (t) , u̇ (t)) dt

}
= m.

Let ū ∈ X ∩ C 2
(
[a, b] ;RN

)
be a critical point of I such that

I fξξ
(
t, ū (t) , ˙̄u (t)

)
is positive definite for every t ∈ [a, b],

I there exists no point in (a, b] which is conjugate to a.

Then ū is a minimizer of I .
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Proof of sufficiency

Proof We need to show that

there exists c > 0 such that

J [ψ] > c

ˆ b

a

∣∣∣ψ̇∣∣∣2 (1)

for all ψ ∈ C 1 ([a, b]) , ψ 6≡ 0 with ψ(a) = 0 = ψ(b), as this is
sufficient for ū to be a minimizer.

We set

Jc [ψ] := J [ψ]− c

ˆ b

a

∣∣∣ψ̇∣∣∣2 .
This has the same form as J [ψ] with P replaced by

Pc := P − cIN .

So the corresponding Jacobi equation is

d

dt

[
(P − cIN) ψ̇

]
= Qψ.
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sufficient for ū to be a minimizer.

We set

Jc [ψ] := J [ψ]− c

ˆ b

a

∣∣∣ψ̇∣∣∣2 .
This has the same form as J [ψ] with P replaced by

Pc := P − cIN .

So the corresponding Jacobi equation is

d

dt

[
(P − cIN) ψ̇

]
= Qψ.



Introduction to the
Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem

Euler-Lagrange Equations

Hamiltonian formulation

First integrals

Symmetry and Noether’s
theorem

Hamilton-Jacobi equations

Second Variation

Examples

The End

Proof of sufficiency

Now by continuous dependence of solutions to ODEs on
parameters, the above Jacobi equation also does not have a point
conjugate to a for small enough c > 0,

as there is none for the
equation

d

dt

(
Pψ̇
)

= Qψ.

Also, since fξξ = P is positive definite, for small enough c > 0, Pc

must be positive definite as well.

Thus for small enough c > 0, Jc has no point conjugate to a in
(a, b] and Pc is positive definite everywhere. We choose and fix
such a c > 0 for the rest of the proof.

So we can write

Jc [ψ] =

ˆ b

a

∣∣∣P 1
2
c ψ̇ + P

− 1
2

c Wψ
∣∣∣2 dt,

where W is a solution of the corresponding Matrix Riccati
equation as before.
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Proof of sufficiency

Hence if Jc [ψ] ≯ 0, then we must have

P
1
2
c ψ̇ + P

− 1
2

c Wψ = 0 for all t ∈ (a, b)

for some ψ ∈ C 1 ([a, b]) with ψ(a) = 0 = ψ(b). But the above is
the first order ODE

ψ̇ = −
(
P−1c W

)
ψ.

Since ψ satisfies the initial condition ψ(a) = 0, by uniqueness of
solutions of ODE, we must have ψ ≡ 0.

So Jc [ψ] > 0 for all ψ ∈ C 1 ([a, b]) , ψ 6≡ 0 with ψ(a) = 0 = ψ(b).

Thus, for our choice of c > 0, we have

J [ψ] > c

ˆ b

a

∣∣∣ψ̇∣∣∣2
for all ψ ∈ C 1 ([a, b]) , ψ 6≡ 0 with ψ(a) = 0 = ψ(b). This
completes the proof.



Introduction to the
Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem

Euler-Lagrange Equations

Hamiltonian formulation

First integrals

Symmetry and Noether’s
theorem

Hamilton-Jacobi equations

Second Variation

Examples

The End

Proof of sufficiency

Hence if Jc [ψ] ≯ 0, then we must have

P
1
2
c ψ̇ + P

− 1
2

c Wψ = 0 for all t ∈ (a, b)

for some ψ ∈ C 1 ([a, b]) with ψ(a) = 0 = ψ(b). But the above is
the first order ODE

ψ̇ = −
(
P−1c W

)
ψ.

Since ψ satisfies the initial condition ψ(a) = 0,

by uniqueness of
solutions of ODE, we must have ψ ≡ 0.

So Jc [ψ] > 0 for all ψ ∈ C 1 ([a, b]) , ψ 6≡ 0 with ψ(a) = 0 = ψ(b).

Thus, for our choice of c > 0, we have

J [ψ] > c

ˆ b

a

∣∣∣ψ̇∣∣∣2
for all ψ ∈ C 1 ([a, b]) , ψ 6≡ 0 with ψ(a) = 0 = ψ(b). This
completes the proof.



Introduction to the
Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem

Euler-Lagrange Equations

Hamiltonian formulation

First integrals

Symmetry and Noether’s
theorem

Hamilton-Jacobi equations

Second Variation

Examples

The End

Proof of sufficiency

Hence if Jc [ψ] ≯ 0, then we must have

P
1
2
c ψ̇ + P

− 1
2

c Wψ = 0 for all t ∈ (a, b)

for some ψ ∈ C 1 ([a, b]) with ψ(a) = 0 = ψ(b). But the above is
the first order ODE

ψ̇ = −
(
P−1c W

)
ψ.

Since ψ satisfies the initial condition ψ(a) = 0, by uniqueness of
solutions of ODE, we must have ψ ≡ 0.

So Jc [ψ] > 0 for all ψ ∈ C 1 ([a, b]) , ψ 6≡ 0 with ψ(a) = 0 = ψ(b).

Thus, for our choice of c > 0, we have

J [ψ] > c

ˆ b

a

∣∣∣ψ̇∣∣∣2
for all ψ ∈ C 1 ([a, b]) , ψ 6≡ 0 with ψ(a) = 0 = ψ(b). This
completes the proof.



Introduction to the
Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem

Euler-Lagrange Equations

Hamiltonian formulation

First integrals

Symmetry and Noether’s
theorem

Hamilton-Jacobi equations

Second Variation

Examples

The End

Proof of sufficiency

Hence if Jc [ψ] ≯ 0, then we must have

P
1
2
c ψ̇ + P

− 1
2

c Wψ = 0 for all t ∈ (a, b)

for some ψ ∈ C 1 ([a, b]) with ψ(a) = 0 = ψ(b). But the above is
the first order ODE

ψ̇ = −
(
P−1c W

)
ψ.

Since ψ satisfies the initial condition ψ(a) = 0, by uniqueness of
solutions of ODE, we must have ψ ≡ 0.

So Jc [ψ] > 0 for all ψ ∈ C 1 ([a, b]) , ψ 6≡ 0 with ψ(a) = 0 = ψ(b).

Thus, for our choice of c > 0, we have

J [ψ] > c

ˆ b

a

∣∣∣ψ̇∣∣∣2
for all ψ ∈ C 1 ([a, b]) , ψ 6≡ 0 with ψ(a) = 0 = ψ(b). This
completes the proof.



Introduction to the
Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem

Euler-Lagrange Equations

Hamiltonian formulation

First integrals

Symmetry and Noether’s
theorem

Hamilton-Jacobi equations

Second Variation

Examples

The End

Proof of sufficiency

Hence if Jc [ψ] ≯ 0, then we must have

P
1
2
c ψ̇ + P

− 1
2

c Wψ = 0 for all t ∈ (a, b)

for some ψ ∈ C 1 ([a, b]) with ψ(a) = 0 = ψ(b). But the above is
the first order ODE

ψ̇ = −
(
P−1c W

)
ψ.

Since ψ satisfies the initial condition ψ(a) = 0, by uniqueness of
solutions of ODE, we must have ψ ≡ 0.

So Jc [ψ] > 0 for all ψ ∈ C 1 ([a, b]) , ψ 6≡ 0 with ψ(a) = 0 = ψ(b).

Thus, for our choice of c > 0, we have

J [ψ] > c

ˆ b

a

∣∣∣ψ̇∣∣∣2
for all ψ ∈ C 1 ([a, b]) , ψ 6≡ 0 with ψ(a) = 0 = ψ(b). This
completes the proof.



Introduction to the
Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem

Euler-Lagrange Equations

Hamiltonian formulation

First integrals

Symmetry and Noether’s
theorem

Hamilton-Jacobi equations

Second Variation

Examples

The End

Jacobi’s necessary condition

Now we want to show that the absence of interior conjugate
points is almost necessary for the existence of a minimizer.

Theorem
Let f = f (t, u, ξ) ∈ C 3

(
[a, b]× RN × RN

)
, α, β ∈ RN ,

X =
{
u ∈ C 1

piece

(
[a, b] ;RN

)
: u (a) = α, u (b) = β

}
.

(P) inf
u∈X

{
I (u) =

ˆ b

a

f (t, u (t) , u̇ (t)) dt

}
= m.

Let ū ∈ X ∩ C 2
(
[a, b] ;RN

)
be a minimizer of I such that

fξξ
(
t, ū (t) , ˙̄u (t)

)
is positive definite for every t ∈ [a, b]. Then

there exists no point in (a, b) which is conjugate to a.

Question: Did we obtain a necessary and sufficient condition?
NO!
I fξξ is positive definite for every t ∈ [a, b] is an explicit

assumption! Not a necessary condition. Only fξξ
nonnegative definite everywhere in [a, b] is necessary.

I b not being conjugate to a is needed for sufficiency, but is not
necessary.
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Jacobi fields and conjugate points

Before proving, we need to show the relation between conjugate
points and zeros of Jacobi fields.

Proposition

Let a∗ be a conjugate point of a. Then there exists a Jacobi field
η ∈ C 1

(
[a, a∗],RN

)
, η 6≡ 0, on [a, a∗] such that η(a) = 0 = η(a∗).

Proof.
Since a∗ is a conjugate point, detΨ(a∗) = 0. Thus, the rows of Ψ
are linearly dependent at a∗. Hence, there exists a linear
combination of rows of Ψ

η(t) =
N∑
i=1

µiψi (t)

which is not identically zero and satisfies

η(a) = 0 = η(a∗).

Since each ψi solves the Jacobi equation, so does η.
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Vanishing of Jacobi fields and the quadratic forms

Now we show that the existence of a Jacobi field which vanishes
at an interior point has an important consequence.

Proposition

If η ∈ C 1
(
[a, a∗],RN

)
, η 6≡ 0, is a Jacobi field on [a, a∗] such that

η(a) = 0 = η(a∗), then we have

ˆ a∗

a

[〈P η̇, η̇〉+ 〈Qη, η〉] dt = 0.

Proof.
Since η(a) = 0 = η(a∗), we can integrate by parts to obtain

ˆ a∗

a

[〈P η̇, η̇〉+ 〈Qη, η〉] dt =

ˆ a∗

a

〈[
− d

dt
(P η̇) + Qη

]
, η

〉
dt.

But the expression in the bracket vanishes as η is a Jacobi
field.
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Since η(a) = 0 = η(a∗), we can integrate by parts to obtain

ˆ a∗

a

[〈P η̇, η̇〉+ 〈Qη, η〉] dt =

ˆ a∗

a

〈[
− d

dt
(P η̇) + Qη

]
, η

〉
dt.

But the expression in the bracket vanishes as η is a Jacobi
field.
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Proof of Jacobi’s necessary condition

Now we are ready to prove Jacobi’s necessary condition theorem.

Proof: This boils down to proving that if P is positive definite
and

J [ψ] =

ˆ b

a

[〈
Pψ̇, ψ̇

〉
+ 〈Qψ,ψ〉

]
dt ≥ 0

for every ψ ∈ C 1
piece ([a, b]) with ψ(a) = 0 = ψ(b), then exists no

point in (a, b) which is conjugate to a.

Suppose, if possible, that a∗ ∈ (a, b) is a conjugate point of a.
Then as we have just shown, this implies that there exists a Jacobi
field η ∈ C 1

(
[a, a∗],RN

)
, η 6≡ 0, on [a, a∗] such that

η(a) = 0 = η(a∗). Now we set

η∗ =

{
η if t ∈ [a, a∗]

0 if t ∈ [a∗, b]
.

Clearly η∗ is piecewise C 1. We shall prove that this actually is C 2.
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Now since J [η∗] = 0

and J [ψ] ≥ 0 for every ψ ∈ C 1
piece ([a, b])

with ψ(a) = 0 = ψ(b), η∗ is a minimizer for J. Since P is positive
definite, we shall soon see that this implies η∗ ∈ C 2. Thus, η̇∗ is
continuous across a∗ and thus

η̇∗ (a∗) = 0.

But η∗ satisfies the Jacobi equation, which is a second order
ODE and we have η∗(a∗) = 0 and η̇∗ (a∗) = 0. By uniqueness of
solutions of ODE, this implies η∗ ≡ 0, which is a
contradiction.

Now we want to show some examples first.
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But η∗ satisfies the Jacobi equation, which is a second order
ODE and we have η∗(a∗) = 0 and η̇∗ (a∗) = 0. By uniqueness of
solutions of ODE, this implies η∗ ≡ 0, which is a
contradiction.

Now we want to show some examples first.
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Examples I

We now consider several particular cases and examples that are
arranged in order of increasing difficulty.

Case 1: Lagrangian depends only on the derivative

f (t, u, ξ) = f (ξ) .

This is the simplest case. The Euler-Lagrange equation is

d

dt
[f ′ (u̇)] = 0, i.e. f ′ (u̇) = constant.

Note that

ū (t) =
β − α
b − a

(t − a) + α (2)

is a solution of the equation and also satisfies the boundary
conditions ū (a) = α, ū (b) = β.

It is therefore a stationary point of I .

It is not, however, always a minimizer of (P) as we shall see.
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Example II

1. f is convex.

If f is convex, the above ū is indeed a minimizer. From Jensen
inequality, it follows that for any u ∈ C 1 ([a, b]) with
u (a) = α, u (b) = β

1

b − a

ˆ b

a

f (u̇ (t)) dt ≥ f

(
1

b − a

ˆ b

a

u̇ (t) dt

)

= f

(
u (b)− u (a)

b − a

)
= f

(
β − α
b − a

)
= f

(
˙̄u (t)

)
=

1

b − a

ˆ b

a

f
(

˙̄u (t)
)
dt

which is the claim. If f is not strictly convex, then, in general,
there are other minimizers.
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Example III

2. f is non-convex.

If f is non-convex, then (P) has, in general, no solution and
therefore the above ū is not necessarily a minimizer (in the
particular example below it is a maximizer of the integral).

Consider

f (ξ) = e−ξ
2

.

and

(P) inf
u∈X

{
I (u) =

ˆ 1

0

f (u̇ (t))dt

}
= m

where
X =

{
u ∈ C 1 ([0, 1]) : u (0) = u (1) = 0

}
.

We have from (2) that ū ≡ 0 and it is clearly a maximizer of I in
the class of admissible functions X .

However (P) has no minimizer, as we now show.
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Example IV

Let us show that m = 0. Let ν ∈ N and define

uν (x) = ν

(
x − 1

2

)2

− ν

4

then uν ∈ X and

I (uν) =

ˆ 1

0

e−4ν
2(x−1/2)2 dx =

1

2ν

ˆ ν

−ν
e−y

2

dy → 0 as ν →∞.

Thus m = 0, as claimed. But clearly, no function u ∈ X can satisfy

ˆ 1

0

e−(u̇(t))
2

dt = 0

and hence (P) has no solution.
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Example V

Minimizer in C 1
piece are not necessarily C 1

Now we give an example to show that minimizers in the class
C 1

piece might not even be C 1, thus we can not in general expect
a gain of regularity.

Consider

f (ξ) =
(
ξ2 − 1

)2
.

(Ppiece) inf
u∈Xpiec

{
I (u) =

ˆ 1

0

f (u̇ (t)) dt

}
= mpiece

where

Xpiece =
{
u ∈ C 1

piec ([0, 1]) : u (0) = u (1) = 0
}
.
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Example VI

We can easily check that the tent function

v1 (t) =

{
t if t ∈ [0, 1/2]

1− t if t ∈ (1/2, 1]

is a minimizer since v is piecewise C 1 and satisfies
v1 (0) = v1 (1) = 0 and I (v1) = 0. Thus mpiece = 0.

Note that (Ppiece) has a plethora of minimizers, not just one.
Indeed, there are uncountably infinitely many minimizers. For
example, the one-sided double tent

v2 (t) =



t if t ∈ [0, 1/4]

1

2
− t if t ∈ [1/4, 1/2]

t − 1

2
if t ∈ [1/2, 3/4]

1− t if t ∈ [3/4, 1]

is also a minimizer.
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Example VII

The two-sided double tent

v3 (t) =


t if t ∈ [0, 1/4]

1

2
− t if x ∈ [1/4, 3/4]

t − 1 if t ∈ [3/4, 1]

is another one. One can easily construct functions with multiple
number of tents, one or two-sided or a combination of those. Any
piecewise affine functions with slopes +1 or −1 which respects the
boundary values is a minimizer. All of them are Lipschitz and of
course C 1

piece, in fact C∞piece, but none of them are C 1!

Indeed, the minimization problem in C 1, i.e.

(P) inf
u∈X

{
I (u) =

ˆ 1

0

f (u̇ (t)) dt

}
= m

where
X =

{
u ∈ C 1 ([0, 1]) : u (0) = u (1) = 0

}
,

admits no solution.
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Example VIII

Let us first show that m = 0.

Consider the following sequence, which are just smoothed out
versions of v1 above,

uν (t) =


t if t ∈

[
0, 12 −

1
ν

]
−2ν2

(
t − 1

2

)3 − 4ν
(
t − 1

2

)2 − t + 1 if t ∈
(
1
2 −

1
ν ,

1
2

]
1− t if x ∈

(
1
2 , 1
]
.

Note that uν ∈ X and

I (uν) =

ˆ 1

0

f (u̇ν (t)) dt =

ˆ 1
2

1
2−

1
ν

f (u̇ν (t)) dt ≤ 4

ν
→ 0.

This implies that indeed m = 0. But I (u) = 0 implies that |u̇| = 1
almost everywhere.

But no function u ∈ X can satisfy |u̇| = 1, since by continuity of
the derivative we should have either u̇ = 1 everywhere or u̇ = −1
everywhere, which is clearly incompatible with the boundary data.
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Example IX

Also note that the Euler-Lagrange equation is

d

dt

[
u̇
(
u̇2 − 1

)]
= 0.

It has ū ≡ 0 as a solution. However, since m = 0, it is not a
minimizer as I (0) = 1.

Case 2: Lagrangian depends on time and derivative

f (t, u, ξ) = f (t, ξ) .

The Euler-Lagrange equation is

d

dt
[fξ (t, u̇)] = 0, i.e. fξ (t, u̇) = constant.

The equation is already harder to solve than the preceding one
and, in general, it does not have a solution as simple as the last
case.
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Example X

Weierstrass example

Let
f (t, ξ) = tξ2.

Note that ξ 7→ f (t, ξ) is convex for every t ∈ [0, 1] and even
strictly convex if t ∈ (0, 1] . So things would have been very nice
without the t-dependence. This example due to Weierstrass is
among the first to point out that even t dependence can mess
things up.

Consider the problem

(P) inf
u∈X

{
I (u) =

ˆ 1

0

f (t, u̇ (t)) dt

}
= m

where
X =

{
u ∈ C 1 ([0, 1]) : u (0) = 1, u (1) = 0

}
.

We will show that (P) has no C 1 or piecewise C 1 solution (not
even in any Sobolev space).
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Example XI

Weierstrass example

The Euler-Lagrange equation is

d

dt
(tu̇) = 0 ⇒ u̇ =

c

t
⇒ u (t) = c log t + d , t ∈ (0, 1)

where c and d are constants. Observe first that such a u cannot
satisfy simultaneously u (0) = 1 and u (1) = 0.
Let us also consider the following problem

(Ppiece) inf
u∈Xpiece

{
I (u) =

ˆ 1

0

f (t, u̇ (t)) dt

}
= mpiece

where

Xpiece =
{
u ∈ C 1

piece ([0, 1]) : u (0) = 1, u (1) = 0
}
.

We now prove that neither (P) nor (Ppiece) have a minimizer.

For both cases it is sufficient to establish that mpiece = m = 0.
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Example XII

Weierstrass example

Indeed if there exists a piecewise C 1 function v satisfying
I (v) = 0, this would imply that v ′ = 0 a.e. in (0, 1) .

Since the function v ∈ Xpiece, it should be continuous and v (1)
should be equal to 0. But then this means v ≡ 0, which does not
verify the other boundary condition, namely v (0) = 1. Hence,
neither (P) nor (Ppiece) have a minimizer.

Now let ν ∈ N and consider the sequence

uν (t) =

{
1 if t ∈

[
0, 1

ν

]
− log t
log ν if t ∈

(
1
ν , 1
]
.

Note that uν is piecewise C 1, uν (0) = 1, uν (1) = 0 and

I (uν) =
1

log ν
→ 0 as ν →∞,

hence mpiec = 0.
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Example XIII

Weierstrass example

We finally prove that m = 0.

Consider the following sequence

uν (t) =

{
−ν2

log ν t
2 + ν

log ν t + 1 if t ∈
[
0, 1

ν

]
− log t
log ν if t ∈

(
1
ν , 1
]
.

We easily have uν ∈ X and since

u̇ν (t) =

{
ν

log ν (1− 2νt) if t ∈
[
0, 1

ν

]
−1

t log ν if t ∈
(
1
ν , 1
]

we deduce that

0 ≤ I (uν) =
ν2

log2 ν

ˆ 1/ν

0

t (1− 2νt)2 dt+
1

log2 ν

ˆ 1

1/ν

dt

t
→ 0, as ν →∞.

This indeed shows that m = 0.
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Example XIX

Minimizer in C 1 are not necessarily C 2

Our last example shows that even minimizers in the class C 1

need not automatically have higher regularity, in particular,
might not be C 2.

Consider f which depends on all the variables t, u and ξ, given as

f (t, u, ξ) = u2(2t − ξ)2.

(P) inf
u∈X

{
I (u) =

ˆ 1

−1
f (t, u (t) , u̇ (t)) dt

}
= m

where X =
{
u ∈ C 1 ([0, 1]) : u (−1) = 0, u (1) = 1

}
.

One can easily check that the function

v(t) :=

{
0 if t ∈ [−1, 0]

t2 if t ∈ [0, 1],

is a minimizer for (P) which is not C 2.
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Need for Direct methods

Need for weaker settings and Direct methods

Already in these rather simple examples, we saw that the regularity
hypotheses we assumed throughout the chapter are often too
strong.

Indeed, this is another reason why we need to consider weaker
spaces for proving existence of a minimizer and then trying to
show that the minimizers, in some cases, enjoys better regularity.

Next day, we would show an illustration using still one dimensional
problems (i.e. n = 1).
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Thank you
Questions?
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