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Recap I

We calculated the second variation of a functional.

Theorem (Second Variation)

Let f = f (t, u, ξ) ∈ C 3
(
[a, b]× RN × RN

)
, α, β ∈ RN ,

X =
{
u ∈ C 1

(
[a, b] ;RN

)
: u (a) = α, u (b) = β

}
.

(P) inf
u∈X

{
I (u) =

ˆ b

a

f (t, u (t) , u̇ (t)) dt

}
= m.

For any minimizer ū ∈ X ∩ C 2 for (P) , the integral

ˆ b

a

[〈
fuu
(
t, ū, ˙̄u

)
ψ,ψ

〉
+ 2

〈
fuξ
(
t, ū, ˙̄u

)
ψ, ψ̇

〉
+
〈
fξξ
(
t, ū, ˙̄u

)
ψ̇, ψ̇

〉]
dt

is nonnegative for any ψ ∈ C 1
c

(
[a, b];RN

)
.
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Recap II

We have also rewritten the integral as

ˆ b

a

[〈[
fuu
(
t, ū, ˙̄u

)
− d

dt
fuξ
(
t, ū, ˙̄u

)]
ψ,ψ

〉
+
〈
fξξ
(
t, ū, ˙̄u

)
ψ̇, ψ̇

〉]
dt

Now we want to show that for this expression to be nonnegative
for every ψ ∈ C 1

c

(
[a, b];RN

)
, fξξ must be nonnegative definite

everywhere.
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Dominant term in the second variation I

Lemma
If the following inequality

ˆ b

a

[〈[
fuu
(
t, ū, ˙̄u

)
− d

dt
fuξ
(
t, ū, ˙̄u

)]
ψ,ψ

〉
+
〈
fξξ
(
t, ū, ˙̄u

)
ψ̇, ψ̇

〉]
dt

≥ 0,

holds for every ψ ∈ C 1
c

(
[a, b];RN

)
, then the matrix fξξ

(
t, ū, ˙̄u

)
is

nonnegative definite for every t ∈ (a, b).

Proof. If fξξ < 0 for some t0 ∈ (a, b), this means there exist a
ζ ∈ RN and β > 0 such that〈

fξξ
(
t0, ū (t0) , ˙̄u (t0)

)
ζ, ζ
〉
< −β.

By continuity of fξξ, we can assume there exists α > 0 such that
a < t0 − α < t0 + α < b and we have〈

fξξ
(
t, ū (t) , ˙̄u (t)

)
ζ, ζ
〉
< −β for all t ∈ [t0 − α, t0 + α].
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t, ū (t) , ˙̄u (t)

)
ζ, ζ
〉
< −β for all t ∈ [t0 − α, t0 + α].



Introduction to the
Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem

Euler-Lagrange Equations

Hamiltonian formulation

First integrals

Symmetry and Noether’s
theorem

Hamilton-Jacobi equations

Second Variation

Examples

The End

Dominant term in the second variation I

Lemma
If the following inequality

ˆ b

a

[〈[
fuu
(
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t0, ū (t0) , ˙̄u (t0)

)
ζ, ζ
〉
< −β.

By continuity of fξξ, we can assume there exists α > 0 such that
a < t0 − α < t0 + α < b and we have〈

fξξ
(
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t, ū, ˙̄u

)
is

nonnegative definite for every t ∈ (a, b).

Proof. If fξξ < 0 for some t0 ∈ (a, b),

this means there exist a
ζ ∈ RN and β > 0 such that〈

fξξ
(
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t, ū (t) , ˙̄u (t)

)
ζ, ζ
〉
< −β for all t ∈ [t0 − α, t0 + α].



Introduction to the
Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem

Euler-Lagrange Equations

Hamiltonian formulation

First integrals

Symmetry and Noether’s
theorem

Hamilton-Jacobi equations

Second Variation

Examples

The End

Dominant term in the second variation I

Lemma
If the following inequality

ˆ b

a

[〈[
fuu
(
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t, ū, ˙̄u

)]
ψ,ψ

〉
+
〈
fξξ
(
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t0, ū (t0) , ˙̄u (t0)

)
ζ, ζ
〉
< −β.

By continuity of fξξ, we can assume there exists α > 0 such that
a < t0 − α < t0 + α < b and we have

〈
fξξ
(
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t0, ū (t0) , ˙̄u (t0)

)
ζ, ζ
〉
< −β.

By continuity of fξξ, we can assume there exists α > 0 such that
a < t0 − α < t0 + α < b and we have〈

fξξ
(
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)
− d

dt
fuξ
(
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t, ū (t) , ˙̄u (t)

)
ζ, ζ
〉
dt

+ α2

ˆ t0+α

t0−α
sin4

[
π (t − t0)

α

]〈[
fuu
(
t, ū, ˙̄u

)
− d

dt
fuξ
(
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But this means

β ≤ M

π2
α2,

which we can easily contradict by letting α→ 0. So we deduce〈
fξξ
(
t, ū (t) , ˙̄u (t)

)
ζ, ζ
〉
≥ 0 for all ζ ∈ RN , for all t ∈ (a, b).

This proves the lemma.

This condition is known as the Legendre condition. This is
implied by convexity of the map ξ 7→ f (t, u, ξ) . If n > 1, the
corresponding condition is called the Legendre-Hadamard
condition.

〈fξξ (x , ū (x) ,Dū (x)) a⊗ b, a⊗ b〉 ≥ 0

for all a ∈ Rn, b ∈ RN and for all x ∈ Ω. This is weaker than the
Legendre condition in that case ( convexity only along rank one
matrices ).
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〈fξξ (x , ū (x) ,Dū (x)) a⊗ b, a⊗ b〉 ≥ 0

for all a ∈ Rn, b ∈ RN and for all x ∈ Ω. This is weaker than the
Legendre condition in that case ( convexity only along rank one
matrices ).



Introduction to the
Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem

Euler-Lagrange Equations

Hamiltonian formulation

First integrals

Symmetry and Noether’s
theorem

Hamilton-Jacobi equations

Second Variation

Examples

The End

Dominant term in the second variation III

But this means

β ≤ M

π2
α2,

which we can easily contradict by letting α→ 0. So we deduce

〈
fξξ
(
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Towards a sufficient condition

Possible candidate for sufficiency

Can fξξ ≥ 0 be a sufficient condition? Clearly not!
Think of f (x) = x3. x = 0 is not a minima!
Can fξξ > 0, i.e. positive definite instead of nonnegative definite,
be a sufficient condition?
Somewhat surprisingly, the answer is still No!

Understanding the trouble

The reason is that the condition is purely local, whereas being a
minimizer is not really a local property. We go back to geodesics.
Think of the unit sphere in R3 centered at the origin and consider
the points A = (1, 0, 0), B = (0, 1, 0) and C = (− 1√

2
,− 1√

2
, 0). All

three points lie on the circle
{

(x , y , 0) : x2 + y2 = 1
}
, which

being a great circle is a geodesic on the sphere. Now, the part of
the circle going from A to B is a minimizing path and so is the
part of the circle going from B to C . However, clearly the part of
the circle going from A to C can not be minimizing, as the part of
the circle going from C to A is definitely shorter.
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Think of f (x) = x3. x = 0 is not a minima!
Can fξξ > 0, i.e. positive definite instead of nonnegative definite,
be a sufficient condition?
Somewhat surprisingly, the answer is still No!

Understanding the trouble

The reason is that the condition is purely local, whereas being a
minimizer is not really a local property. We go back to geodesics.
Think of the unit sphere in R3 centered at the origin and consider
the points A = (1, 0, 0), B = (0, 1, 0) and C = (− 1√

2
,− 1√

2
, 0). All

three points lie on the circle
{

(x , y , 0) : x2 + y2 = 1
}
,

which
being a great circle is a geodesic on the sphere. Now, the part of
the circle going from A to B is a minimizing path and so is the
part of the circle going from B to C . However, clearly the part of
the circle going from A to C can not be minimizing, as the part of
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Jacobi theory and Legendre method I

We now consider the second variation itself as an integral
functional

J [ψ] :=

ˆ b

a

[〈
Pψ̇, ψ̇

〉
+ 〈Qψ,ψ〉

]
dt, ψ ∈ C 1, ψ (a) = ψ (b) = 0.

Note that if

J [ψ] > c

ˆ b

a

∣∣∣ψ̇∣∣∣2 , for all ψ ∈ C 1, ψ 6≡ 0 with ψ (a) = ψ (b) = 0,

for some c > 0, then ū is a minimizer. (Check!)
J [ψ] > 0 is not enough!
P > 0 for all t ∈ (a, b) is not enough to obtain this. So what
other condition is needed to ensure this?

Legendre wanted to ‘complete the square’ by adding a null
Lagrangian.
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Jacobi theory and Legendre method II

Legendre method

Let W be an arbitrary differentiable symmetric matrix.

Then

0 =

ˆ b

a

d

dt
[〈Wψ,ψ〉] dt for all ψ with ψ (a) = ψ (b) = 0.

Thus
d

dt
[〈Wψ,ψ〉] is a null lagrangian for any W .

Hence adding such a term does not alter the value of J [ψ] . So we
get

J [ψ] = J [ψ] +

ˆ b

a

d

dt
[〈Wψ,ψ〉] dt

=

ˆ b

a

[〈
Pψ̇, ψ̇

〉
+ 2

〈
Wψ, ψ̇

〉
+
〈(

Q + Ẇ
)
ψ,ψ

〉]
dt

When can we make this a perfect square?
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=
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+
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Q + Ẇ
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ψ,ψ
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dt

When can we make this a perfect square?
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Riccati equation

Proposition

Suppose W is a solution of the following matrix Riccati equation,

Ẇ = −Q + WP−1W .

Then we have[〈
Pψ̇, ψ̇

〉
+ 2

〈
Wψ, ψ̇

〉
+
〈(

Q + Ẇ
)
ψ,ψ

〉]
=
∣∣∣P 1

2 ψ̇ + P−
1
2Wψ

∣∣∣2 .
Note that since P is symmetric and positive definite, P

1
2 is well

defined and is itself symmetric and positive definite.
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Solving the Riccati equation

To solve the Riccati equation

Ẇ = −Q + WP−1W ,

let us substitute
W = −PΨ̇Ψ−1.

Plugging it in the Riccati equation, we obtain

d

dt

(
PΨ̇
)

= QΨ.

Any solution Ψ of the above equation would furnish a solution W
of the Riccati equation if Ψ is invertible.

However, the equation above has another nice interpretation.
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Jacobi equation and Jacobi fields

We again consider the second variation itself as an integral
functional

J [ψ] :=

ˆ b

a

[〈
Pψ̇, ψ̇

〉
+ 〈Qψ,ψ〉

]
dt, ψ ∈ C 1, ψ (a) = ψ (b) = 0.

The Euler-Lagrange equation to this variational problem is

d

dt

(
Pψ̇
)

= Qψ.

This is called the Jacobi equation and its solutions ( for a given
u ) is called a Jacobi field along u. Before proceeding further, we
need the notion of conjugate points.
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Conjugate points

Definition
Let Ψ be the matrix of N solutions of the Jacobi equation,

i.e.

Ψ :=


ψ1

...

ψN

 .

where ψ1, . . . , ψN solves the Jacobi equation and satisfies

Ψ (a) = 0 and Ψ̇ (a) = IN .

A point ā ∈ (a, b] is called a conjugate to the point a or simply
a conjugate point of a if we have

detΨ (ā) = 0.

Hopefully, by now all of you can see the point. If there are no
interior conjugate points to a, then Ψ would be invertible and
would furnish a solution to the Riccati equation.
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
ψ1

...

ψN

 .

where ψ1, . . . , ψN solves the Jacobi equation and satisfies

Ψ (a) = 0 and Ψ̇ (a) = IN .

A point ā ∈ (a, b] is called a conjugate to the point a or simply
a conjugate point of a if we have

detΨ (ā) = 0.

Hopefully, by now all of you can see the point. If there are no
interior conjugate points to a, then Ψ would be invertible and
would furnish a solution to the Riccati equation.
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detΨ (ā) = 0.

Hopefully, by now all of you can see the point.

If there are no
interior conjugate points to a, then Ψ would be invertible and
would furnish a solution to the Riccati equation.



Introduction to the
Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem

Euler-Lagrange Equations

Hamiltonian formulation

First integrals

Symmetry and Noether’s
theorem

Hamilton-Jacobi equations

Second Variation

Examples

The End

Conjugate points

Definition
Let Ψ be the matrix of N solutions of the Jacobi equation, i.e.

Ψ :=


ψ1

...

ψN

 .

where ψ1, . . . , ψN solves the Jacobi equation and satisfies

Ψ (a) = 0 and Ψ̇ (a) = IN .
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Thank you
Questions?
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