Introduction to the Calculus of Variations: Lecture 6

Classical Methods

Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations
Second Variation
Examples
The End

Swarnendu Sil
Department of Mathematics
Indian Institute of Science

Spring Semester 2021

Outline

Classical Methods

Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations
Second Variation
Examples

Symmetry and Noether's theorem
Hamilton-Jacobi equations
Second Variation
Examples
The End

Recap I

We calculated the second variation of a functional.
Theorem (Second Variation)

$$
\begin{aligned}
& \text { Let } f=f(t, u, \xi) \in C^{3}\left([a, b] \times \mathbb{R}^{N} \times \mathbb{R}^{N}\right), \alpha, \beta \in \mathbb{R}^{N}, \\
& X=\left\{u \in C^{1}\left([a, b] ; \mathbb{R}^{N}\right): u(a)=\alpha, u(b)=\beta\right\} .
\end{aligned}
$$

Classical Methods

Classical Problem
Euler-Lagrange Equations Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations

> Second Variation

> Examples

$$
\text { (P) } \quad \inf _{u \in X}\left\{I(u)=\int_{a}^{b} f(t, u(t), \dot{u}(t)) \mathrm{d} t\right\}=m
$$

For any minimizer $\bar{u} \in X \cap C^{2}$ for (P), the integral

$$
\int_{a}^{b}\left[\left\langle f_{u u}(t, \bar{u}, \dot{\bar{u}}) \psi, \psi\right\rangle+2\left\langle f_{u \xi}(t, \bar{u}, \dot{\bar{u}}) \psi, \dot{\psi}\right\rangle+\left\langle f_{\xi \xi}(t, \bar{u}, \dot{\bar{u}}) \dot{\psi}, \dot{\psi}\right\rangle\right] \mathrm{d} t
$$

is nonnegative for any $\psi \in C_{c}^{1}\left([a, b] ; \mathbb{R}^{N}\right)$.

Recap II

We have also rewritten the integral as

Classical Methods

Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations

Second Variation

$\int_{a}^{b}\left[\left\langle\left[f_{u u}(t, \bar{u}, \dot{\bar{u}})-\frac{d}{d t} f_{u \xi}(t, \bar{u}, \dot{\bar{u}})\right] \psi, \psi\right\rangle+\left\langle f_{\xi \xi}(t, \bar{u}, \dot{\bar{u}}) \dot{\psi}, \dot{\psi}\right\rangle\right] \mathrm{d} t$
Now we want to show that for this expression to be nonnegative for every $\psi \in C_{c}^{1}\left([a, b] ; \mathbb{R}^{N}\right)$, $f_{\xi \xi}$ must be nonnegative definite everywhere.

Dominant term in the second variation I

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods
Classical Problem
Euler-Lagrange Equations Hamiltonian formulation First integrals
Symmetry and Noether's theorem

Hamilton-Jacobi equations
Second Variation
Examples
The End

Dominant term in the second variation I

Introduction to the Calculus of Variations

Swarnendu Sil
Lemma

Classical Problem
Euler-Lagrange Equations Hamiltonian formulation First integrals
Symmetry and Noether's theorem

Hamilton-Jacobi equations
Second Variation
Examples
The End

Dominant term in the second variation I

Swarnendu Sil
Lemma
If the following inequality

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem

Hamilton-Jacobi equations
Second Variation
Examples
The End

Dominant term in the second variation I

Lemma

If the following inequality

$$
\begin{array}{r}
\int_{a}^{b}\left[\left\langle\left[f_{u u}(t, \bar{u}, \dot{\bar{u}})-\frac{d}{d t} f_{u \xi}(t, \bar{u}, \dot{\bar{u}})\right] \psi, \psi\right\rangle+\left\langle f_{\xi \xi}(t, \bar{u}, \dot{\bar{u}}) \dot{\psi}, \dot{\psi}\right\rangle\right] \\
\geq 0,
\end{array}
$$

Classical Methods

Classical Problem
Euler-Lagrange Equations Hamiltonian formulation
First integrals

Second Variation
Examples
The End

Dominant term in the second variation I

Lemma
If the following inequality

$$
\begin{array}{r}
\int_{a}^{b}\left[\left\langle\left[f_{u u}(t, \bar{u}, \dot{\bar{u}})-\frac{d}{d t} f_{u \xi}(t, \bar{u}, \dot{\bar{u}})\right] \psi, \psi\right\rangle+\left\langle f_{\xi \xi}(t, \bar{u}, \dot{\bar{u}}) \dot{\psi}, \dot{\psi}\right\rangle\right] \\
\geq 0,
\end{array}
$$

Classical Methods

Classical Problem
Euler-Lagrange Equations Hamiltonian formulation
First integrals $\mathrm{d} t$

Second Variation
Examples
The End
holds for every $\psi \in C_{c}^{1}\left([a, b] ; \mathbb{R}^{N}\right)$,

Dominant term in the second variation I

Lemma
If the following inequality

$$
\begin{array}{r}
\int_{a}^{b}\left[\left\langle\left[f_{u u}(t, \bar{u}, \dot{\bar{u}})-\frac{d}{d t} f_{u \xi}(t, \bar{u}, \dot{\bar{u}})\right] \psi, \psi\right\rangle+\left\langle f_{\xi \xi}(t, \bar{u}, \dot{\bar{u}}) \dot{\psi}, \dot{\psi}\right\rangle\right] \\
\geq 0,
\end{array}
$$

Classical Methods

Classical Problem
Euler-Lagrange Equations Hamiltonian formulation
First integrals $\mathrm{d} t$

Second Variation
Examples
The End
holds for every $\psi \in C_{c}^{1}\left([a, b] ; \mathbb{R}^{N}\right)$, then the matrix $f_{\xi \xi}(t, \bar{u}, \dot{\bar{u}})$

Dominant term in the second variation I

Lemma

If the following inequality

$$
\begin{array}{r}
\int_{a}^{b}\left[\left\langle\left[f_{u u}(t, \bar{u}, \dot{\bar{u}})-\frac{d}{d t} f_{u \xi}(t, \bar{u}, \dot{\bar{u}})\right] \psi, \psi\right\rangle+\left\langle f_{\xi \xi}(t, \bar{u}, \dot{\bar{u}}) \dot{\psi}, \dot{\psi}\right\rangle\right] \\
\geq 0,
\end{array}
$$

holds for every $\psi \in C_{c}^{1}\left([a, b] ; \mathbb{R}^{N}\right)$, then the matrix $f_{\xi \xi}(t, \bar{u}, \dot{\bar{u}})$ is nonnegative definite

Classical Methods

Classical Problem
Euler-Lagrange Equations Hamiltonian formulation
First integrals

Second Variation
Examples
The End

Dominant term in the second variation I

Lemma

If the following inequality

$$
\begin{array}{r}
\int_{a}^{b}\left[\left\langle\left[f_{u u}(t, \bar{u}, \dot{\bar{u}})-\frac{d}{d t} f_{u \xi}(t, \bar{u}, \dot{\bar{u}})\right] \psi, \psi\right\rangle+\left\langle f_{\xi \xi}(t, \bar{u}, \dot{\bar{u}}) \dot{\psi}, \dot{\psi}\right\rangle\right] \\
\geq 0,
\end{array}
$$

holds for every $\psi \in C_{c}^{1}\left([a, b] ; \mathbb{R}^{N}\right)$, then the matrix $f_{\xi \xi}(t, \bar{u}, \dot{\bar{u}})$ is nonnegative definite for every $t \in(a, b)$.

Dominant term in the second variation I

Lemma

If the following inequality

$$
\begin{array}{r}
\int_{a}^{b}\left[\left\langle\left[f_{u u}(t, \bar{u}, \dot{\bar{u}})-\frac{d}{d t} f_{u \xi}(t, \bar{u}, \dot{\bar{u}})\right] \psi, \psi\right\rangle+\left\langle f_{\xi \xi}(t, \bar{u}, \dot{\bar{u}}) \dot{\psi}, \dot{\psi}\right\rangle\right] \\
\geq 0,
\end{array}
$$

holds for every $\psi \in C_{c}^{1}\left([a, b] ; \mathbb{R}^{N}\right)$, then the matrix $f_{\xi \xi}(t, \bar{u}, \dot{\bar{u}})$ is nonnegative definite for every $t \in(a, b)$.

Proof. If $f_{\xi \xi}<0$ for some $t_{0} \in(a, b)$,

Classical Methods

Classical Problem
Euler-Lagrange Equations Hamiltonian formulation
First integrals

Second Variation
Examples
The End

Dominant term in the second variation I

Lemma

If the following inequality

$$
\begin{array}{r}
\int_{a}^{b}\left[\left\langle\left[f_{u u}(t, \bar{u}, \dot{\bar{u}})-\frac{d}{d t} f_{u \xi}(t, \bar{u}, \dot{\bar{u}})\right] \psi, \psi\right\rangle+\left\langle f_{\xi \xi}(t, \bar{u}, \dot{\bar{u}}) \dot{\psi}, \dot{\psi}\right\rangle\right] \\
\geq 0,
\end{array}
$$

holds for every $\psi \in C_{c}^{1}\left([a, b] ; \mathbb{R}^{N}\right)$, then the matrix $f_{\xi \xi}(t, \bar{u}, \dot{\bar{u}})$ is nonnegative definite for every $t \in(a, b)$.

Proof. If $f_{\xi \xi}<0$ for some $t_{0} \in(a, b)$, this means there exist a $\zeta \in \mathbb{R}^{N}$

Classical Methods

Classical Problem
Euler-Lagrange Equations Hamiltonian formulation
First integrals

$\mathrm{d} t$

Second Variation
Examples
The End

Dominant term in the second variation I

Lemma

If the following inequality

$$
\begin{array}{r}
\int_{a}^{b}\left[\left\langle\left[f_{u u}(t, \bar{u}, \dot{\bar{u}})-\frac{d}{d t} f_{u \xi}(t, \bar{u}, \dot{\bar{u}})\right] \psi, \psi\right\rangle+\left\langle f_{\xi \xi}(t, \bar{u}, \dot{\bar{u}}) \dot{\psi}, \dot{\psi}\right\rangle\right] \\
\geq 0,
\end{array}
$$

holds for every $\psi \in C_{c}^{1}\left([a, b] ; \mathbb{R}^{N}\right)$, then the matrix $f_{\xi \xi}(t, \bar{u}, \dot{\bar{u}})$ is nonnegative definite for every $t \in(a, b)$.

Proof. If $f_{\xi \xi}<0$ for some $t_{0} \in(a, b)$, this means there exist a $\zeta \in \mathbb{R}^{N}$ and $\beta>0$

Dominant term in the second variation I

Lemma

If the following inequality

$$
\begin{array}{r}
\int_{a}^{b}\left[\left\langle\left[f_{u u}(t, \bar{u}, \dot{\bar{u}})-\frac{d}{d t} f_{u \xi}(t, \bar{u}, \dot{\bar{u}})\right] \psi, \psi\right\rangle+\left\langle f_{\xi \xi}(t, \bar{u}, \dot{\bar{u}}) \dot{\psi}, \dot{\psi}\right\rangle\right] \\
\geq 0,
\end{array}
$$

holds for every $\psi \in C_{c}^{1}\left([a, b] ; \mathbb{R}^{N}\right)$, then the matrix $f_{\xi \xi}(t, \bar{u}, \dot{\bar{u}})$ is nonnegative definite for every $t \in(a, b)$.

Proof. If $f_{\xi \xi}<0$ for some $t_{0} \in(a, b)$, this means there exist a $\zeta \in \mathbb{R}^{N}$ and $\beta>0$ such that

Classical Methods

Classical Problem
Euler-Lagrange Equations Hamiltonian formulation
First integrals

Second Variation
Examples
The End

Dominant term in the second variation I

Lemma

If the following inequality

$$
\begin{array}{r}
\int_{a}^{b}\left[\left\langle\left[f_{u u}(t, \bar{u}, \dot{\bar{u}})-\frac{d}{d t} f_{u \xi}(t, \bar{u}, \dot{\bar{u}})\right] \psi, \psi\right\rangle+\left\langle f_{\xi \xi}(t, \bar{u}, \dot{\bar{u}}) \dot{\psi}, \dot{\psi}\right\rangle\right] \\
\geq 0,
\end{array}
$$

holds for every $\psi \in C_{c}^{1}\left([a, b] ; \mathbb{R}^{N}\right)$, then the matrix $f_{\xi \xi}(t, \bar{u}, \dot{\bar{u}})$ is nonnegative definite for every $t \in(a, b)$.

Proof. If $f_{\xi \xi}<0$ for some $t_{0} \in(a, b)$, this means there exist a $\zeta \in \mathbb{R}^{N}$ and $\beta>0$ such that

$$
\left\langle f_{\xi \xi}\left(t_{0}, \bar{u}\left(t_{0}\right), \dot{\bar{u}}\left(t_{0}\right)\right) \zeta, \zeta\right\rangle<-\beta .
$$

Dominant term in the second variation I

Lemma

If the following inequality

$$
\begin{array}{r}
\int_{a}^{b}\left[\left\langle\left[f_{u u}(t, \bar{u}, \dot{\bar{u}})-\frac{d}{d t} f_{u \xi}(t, \bar{u}, \dot{\bar{u}})\right] \psi, \psi\right\rangle+\left\langle f_{\xi \xi}(t, \bar{u}, \dot{\bar{u}}) \dot{\psi}, \dot{\psi}\right\rangle\right] \\
\geq 0,
\end{array}
$$

holds for every $\psi \in C_{c}^{1}\left([a, b] ; \mathbb{R}^{N}\right)$, then the matrix $f_{\xi \xi}(t, \bar{u}, \dot{\bar{u}})$ is nonnegative definite for every $t \in(a, b)$.

Proof. If $f_{\xi \xi}<0$ for some $t_{0} \in(a, b)$, this means there exist a $\zeta \in \mathbb{R}^{N}$ and $\beta>0$ such that

$$
\left\langle f_{\xi \xi}\left(t_{0}, \bar{u}\left(t_{0}\right), \dot{\bar{u}}\left(t_{0}\right)\right) \zeta, \zeta\right\rangle<-\beta .
$$

By continuity of $f_{\xi \xi}$,

Classical Methods

Classical Problem
Euler-Lagrange Equations Hamiltonian formulation
First integrals

$\mathrm{d} t$

Second Variation
Examples
The End

Dominant term in the second variation I

Lemma

If the following inequality

$$
\begin{array}{r}
\int_{a}^{b}\left[\left\langle\left[f_{u u}(t, \bar{u}, \dot{\bar{u}})-\frac{d}{d t} f_{u \xi}(t, \bar{u}, \dot{\bar{u}})\right] \psi, \psi\right\rangle+\left\langle f_{\xi \xi}(t, \bar{u}, \dot{\bar{u}}) \dot{\psi}, \dot{\psi}\right\rangle\right] \\
\geq 0,
\end{array}
$$

holds for every $\psi \in C_{c}^{1}\left([a, b] ; \mathbb{R}^{N}\right)$, then the matrix $f_{\xi \xi}(t, \bar{u}, \dot{\bar{u}})$ is nonnegative definite for every $t \in(a, b)$.

Proof. If $f_{\xi \xi}<0$ for some $t_{0} \in(a, b)$, this means there exist a $\zeta \in \mathbb{R}^{N}$ and $\beta>0$ such that

$$
\left\langle f_{\xi \xi}\left(t_{0}, \bar{u}\left(t_{0}\right), \dot{\bar{u}}\left(t_{0}\right)\right) \zeta, \zeta\right\rangle<-\beta .
$$

By continuity of $f_{\xi \xi}$, we can assume there exists $\alpha>0$

Dominant term in the second variation I

Lemma

If the following inequality

$$
\begin{array}{r}
\int_{a}^{b}\left[\left\langle\left[f_{u u}(t, \bar{u}, \dot{\bar{u}})-\frac{d}{d t} f_{u \xi}(t, \bar{u}, \dot{\bar{u}})\right] \psi, \psi\right\rangle+\left\langle f_{\xi \xi}(t, \bar{u}, \dot{\bar{u}}) \dot{\psi}, \dot{\psi}\right\rangle\right] \\
\geq 0,
\end{array}
$$

holds for every $\psi \in C_{c}^{1}\left([a, b] ; \mathbb{R}^{N}\right)$, then the matrix $f_{\xi \xi}(t, \bar{u}, \dot{\bar{u}})$ is nonnegative definite for every $t \in(a, b)$.

Proof. If $f_{\xi \xi}<0$ for some $t_{0} \in(a, b)$, this means there exist a $\zeta \in \mathbb{R}^{N}$ and $\beta>0$ such that

$$
\left\langle f_{\xi \xi}\left(t_{0}, \bar{u}\left(t_{0}\right), \dot{\bar{u}}\left(t_{0}\right)\right) \zeta, \zeta\right\rangle<-\beta .
$$

By continuity of $f_{\xi \xi}$, we can assume there exists $\alpha>0$ such that $a<t_{0}-\alpha<t_{0}+\alpha<b$ and we have

Dominant term in the second variation I

Lemma

If the following inequality

$$
\begin{array}{r}
\int_{a}^{b}\left[\left\langle\left[f_{u u}(t, \bar{u}, \dot{\bar{u}})-\frac{d}{d t} f_{u \xi}(t, \bar{u}, \dot{\bar{u}})\right] \psi, \psi\right\rangle+\left\langle f_{\xi \xi}(t, \bar{u}, \dot{\bar{u}}) \dot{\psi}, \dot{\psi}\right\rangle\right] \\
\geq 0,
\end{array}
$$

holds for every $\psi \in C_{c}^{1}\left([a, b] ; \mathbb{R}^{N}\right)$, then the matrix $f_{\xi \xi}(t, \bar{u}, \dot{\bar{u}})$ is nonnegative definite for every $t \in(a, b)$.

Proof. If $f_{\xi \xi}<0$ for some $t_{0} \in(a, b)$, this means there exist a $\zeta \in \mathbb{R}^{N}$ and $\beta>0$ such that

$$
\left\langle f_{\xi \xi}\left(t_{0}, \bar{u}\left(t_{0}\right), \dot{\bar{u}}\left(t_{0}\right)\right) \zeta, \zeta\right\rangle<-\beta .
$$

By continuity of $f_{\xi \xi}$, we can assume there exists $\alpha>0$ such that $a<t_{0}-\alpha<t_{0}+\alpha<b$ and we have

$$
\left\langle f_{\xi \xi}(t, \bar{u}(t), \dot{\bar{u}}(t)) \zeta, \zeta\right\rangle<-\beta \quad \text { for all } t \in\left[t_{0}-\alpha, t_{0}+\alpha\right] .
$$

Dominant term in the second variation II

Choose

Classical Methods
Classical Problem
Euler-Lagrange Equations Hamiltonian formulation First integrals
Symmetry and Noether's theorem

Hamilton-Jacobi equations
Second Variation
Examples
The End

Dominant term in the second variation II

Choose

$$
\psi(t)= \begin{cases}\alpha \sin ^{2}\left[\frac{\pi\left(t-t_{0}\right)}{\alpha}\right] \zeta & \text { if } t \in\left[t_{0}-\alpha, t_{0}+\alpha\right] \\ 0 & \text { otherwise }\end{cases}
$$

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem

Hamilton-Jacobi equations

Second Variation

Examples
The End

Dominant term in the second variation II

Choose

$$
\psi(t)= \begin{cases}\alpha \sin ^{2}\left[\frac{\pi\left(t-t_{0}\right)}{\alpha}\right] \zeta & \text { if } t \in\left[t_{0}-\alpha, t_{0}+\alpha\right] \\ 0 & \text { otherwise }\end{cases}
$$

Clearly $\psi \in C_{c}^{1}\left([a, b] ; \mathbb{R}^{N}\right)$

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem

Hamilton-Jacobi equations

Second Variation

Examples

Dominant term in the second variation II

Choose

$$
\psi(t)= \begin{cases}\alpha \sin ^{2}\left[\frac{\pi\left(t-t_{0}\right)}{\alpha}\right] \zeta & \text { if } t \in\left[t_{0}-\alpha, t_{0}+\alpha\right] \\ 0 & \text { otherwise }\end{cases}
$$

Clearly $\psi \in C_{c}^{1}\left([a, b] ; \mathbb{R}^{N}\right)$ and plugging it, we obtain

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations

Second Variation

Examples

Dominant term in the second variation II

Choose

$$
\psi(t)= \begin{cases}\alpha \sin ^{2}\left[\frac{\pi\left(t-t_{0}\right)}{\alpha}\right] \zeta & \text { if } t \in\left[t_{0}-\alpha, t_{0}+\alpha\right] \\ 0 & \text { otherwise }\end{cases}
$$

Clearly $\psi \in C_{c}^{1}\left([a, b] ; \mathbb{R}^{N}\right)$ and plugging it, we obtain
$\pi^{2} \int_{t_{0}-\alpha}^{t_{0}+\alpha} \sin ^{2}\left[\frac{2 \pi\left(t-t_{0}\right)}{\alpha}\right]\left\langle f_{\xi \xi}(t, \bar{u}(t), \dot{\bar{u}}(t)) \zeta, \zeta\right\rangle \mathrm{d} t$

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations

Second Variation

Examples
The End

Dominant term in the second variation II

Choose

$$
\psi(t)= \begin{cases}\alpha \sin ^{2}\left[\frac{\pi\left(t-t_{0}\right)}{\alpha}\right] \zeta & \text { if } t \in\left[t_{0}-\alpha, t_{0}+\alpha\right] \\ 0 & \text { otherwise }\end{cases}
$$

Clearly $\psi \in C_{c}^{1}\left([a, b] ; \mathbb{R}^{N}\right)$ and plugging it, we obtain

$$
\begin{aligned}
& \pi^{2} \int_{t_{0}-\alpha}^{t_{0}+\alpha} \sin ^{2}\left[\frac{2 \pi\left(t-t_{0}\right)}{\alpha}\right]\left\langle f_{\xi \xi}(t, \bar{u}(t), \dot{\bar{u}}(t)) \zeta, \zeta\right\rangle \mathrm{d} t \\
& \quad+\alpha^{2} \int_{t_{0}-\alpha}^{t_{0}+\alpha} \sin ^{4}\left[\frac{\pi\left(t-t_{0}\right)}{\alpha}\right]\left\langle\left[f_{u u}(t, \bar{u}, \dot{\bar{u}})-\frac{d}{d t} f_{u \xi}(t, \bar{u}, \dot{\bar{u}})\right] \zeta, \zeta\right\rangle \mathrm{d} t \geq 0
\end{aligned}
$$

Dominant term in the second variation II

Choose

$$
\psi(t)= \begin{cases}\alpha \sin ^{2}\left[\frac{\pi\left(t-t_{0}\right)}{\alpha}\right] \zeta & \text { if } t \in\left[t_{0}-\alpha, t_{0}+\alpha\right] \\ 0 & \text { otherwise }\end{cases}
$$

Clearly $\psi \in C_{c}^{1}\left([a, b] ; \mathbb{R}^{N}\right)$ and plugging it, we obtain

$$
\begin{aligned}
& \pi^{2} \int_{t_{0}-\alpha}^{t_{0}+\alpha} \sin ^{2}\left[\frac{2 \pi\left(t-t_{0}\right)}{\alpha}\right]\left\langle f_{\xi \xi}(t, \bar{u}(t), \dot{\bar{u}}(t)) \zeta, \zeta\right\rangle \mathrm{d} t \\
& \quad+\alpha^{2} \int_{t_{0}-\alpha}^{t_{0}+\alpha} \sin ^{4}\left[\frac{\pi\left(t-t_{0}\right)}{\alpha}\right]\left\langle\left[f_{u u}(t, \bar{u}, \dot{\bar{u}})-\frac{d}{d t} f_{u \xi}(t, \bar{u}, \dot{\bar{u}})\right] \zeta, \zeta\right\rangle \mathrm{d} t \geq 0
\end{aligned}
$$

But this implies

Dominant term in the second variation II

Choose

$$
\psi(t)= \begin{cases}\alpha \sin ^{2}\left[\frac{\pi\left(t-t_{0}\right)}{\alpha}\right] \zeta & \text { if } t \in\left[t_{0}-\alpha, t_{0}+\alpha\right] \\ 0 & \text { otherwise }\end{cases}
$$

Clearly $\psi \in C_{c}^{1}\left([a, b] ; \mathbb{R}^{N}\right)$ and plugging it, we obtain

$$
\begin{aligned}
& \pi^{2} \int_{t_{0}-\alpha}^{t_{0}+\alpha} \sin ^{2}\left[\frac{2 \pi\left(t-t_{0}\right)}{\alpha}\right]\left\langle f_{\xi \xi}(t, \bar{u}(t), \dot{\bar{u}}(t)) \zeta, \zeta\right\rangle \mathrm{d} t \\
& \quad+\alpha^{2} \int_{t_{0}-\alpha}^{t_{0}+\alpha} \sin ^{4}\left[\frac{\pi\left(t-t_{0}\right)}{\alpha}\right]\left\langle\left[f_{u u}(t, \bar{u}, \dot{\bar{u}})-\frac{d}{d t} f_{u \xi}(t, \bar{u}, \dot{\bar{u}})\right] \zeta, \zeta\right\rangle \mathrm{d} t \geq 0
\end{aligned}
$$

But this implies

$$
2 M \alpha^{3}-2 \beta \pi^{2} \alpha \geq 0
$$

Dominant term in the second variation II

Choose

$$
\psi(t)= \begin{cases}\alpha \sin ^{2}\left[\frac{\pi\left(t-t_{0}\right)}{\alpha}\right] \zeta & \text { if } t \in\left[t_{0}-\alpha, t_{0}+\alpha\right] \\ 0 & \text { otherwise }\end{cases}
$$

Clearly $\psi \in C_{c}^{1}\left([a, b] ; \mathbb{R}^{N}\right)$ and plugging it, we obtain

$$
\begin{aligned}
& \pi^{2} \int_{t_{0}-\alpha}^{t_{0}+\alpha} \sin ^{2}\left[\frac{2 \pi\left(t-t_{0}\right)}{\alpha}\right]\left\langle f_{\xi \xi}(t, \bar{u}(t), \dot{\bar{u}}(t)) \zeta, \zeta\right\rangle \mathrm{d} t \\
& \quad+\alpha^{2} \int_{t_{0}-\alpha}^{t_{0}+\alpha} \sin ^{4}\left[\frac{\pi\left(t-t_{0}\right)}{\alpha}\right]\left\langle\left[f_{u u}(t, \bar{u}, \dot{\bar{u}})-\frac{d}{d t} f_{u \xi}(t, \bar{u}, \dot{\bar{u}})\right] \zeta, \zeta\right\rangle \mathrm{d} t \geq 0
\end{aligned}
$$

But this implies

$$
2 M \alpha^{3}-2 \beta \pi^{2} \alpha \geq 0
$$

where

$$
M=\max _{t \in\left[t_{0}-\alpha, t_{0}+\alpha\right]}\left|\left\langle\left[f_{u u}(t, \bar{u}, \dot{\bar{u}})-\frac{d}{d t} f_{u \xi}(t, \bar{u}, \dot{\bar{u}})\right] \zeta, \zeta\right\rangle\right| .
$$

Classical Methods

Classical Problem
Euler-Lagrange Equations Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations

> Second Variation

> Examples

The End

Dominant term in the second variation III

But this means

Dominant term in the second variation III

But this means

$$
\beta \leq \frac{M}{\pi^{2}} \alpha^{2}
$$

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations
Second Variation
Examples
The End

Dominant term in the second variation III

But this means

$$
\beta \leq \frac{M}{\pi^{2}} \alpha^{2},
$$

which we can easily contradict by letting $\alpha \rightarrow 0$. So we deduce

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations

Second Variation

Examples
The End

Dominant term in the second variation III

But this means

$$
\beta \leq \frac{M}{\pi^{2}} \alpha^{2}
$$

which we can easily contradict by letting $\alpha \rightarrow 0$. So we deduce

$$
\left\langle f_{\xi \xi}(t, \bar{u}(t), \dot{\bar{u}}(t)) \zeta, \zeta\right\rangle \geq 0 \quad \text { for all } \zeta \in \mathbb{R}^{N}, \text { for all } t \in(a, b) \text {. }
$$

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations

Second Variation

Examples
The End

Dominant term in the second variation III

But this means

$$
\beta \leq \frac{M}{\pi^{2}} \alpha^{2}
$$

which we can easily contradict by letting $\alpha \rightarrow 0$. So we deduce

$$
\left\langle f_{\xi \xi}(t, \bar{u}(t), \dot{\bar{u}}(t)) \zeta, \zeta\right\rangle \geq 0 \quad \text { for all } \zeta \in \mathbb{R}^{N}, \text { for all } t \in(a, b) \text {. }
$$

This proves the lemma.

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations

Second Variation

Examples
The End

Dominant term in the second variation III

But this means

$$
\beta \leq \frac{M}{\pi^{2}} \alpha^{2}
$$

which we can easily contradict by letting $\alpha \rightarrow 0$. So we deduce
$\left\langle f_{\xi \xi}(t, \bar{u}(t), \dot{\bar{u}}(t)) \zeta, \zeta\right\rangle \geq 0 \quad$ for all $\zeta \in \mathbb{R}^{N}$, for all $t \in(a, b)$.
This proves the lemma.

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations

Second Variation

This condition is known as the

Dominant term in the second variation III

But this means

$$
\beta \leq \frac{M}{\pi^{2}} \alpha^{2}
$$

which we can easily contradict by letting $\alpha \rightarrow 0$. So we deduce
$\left\langle f_{\xi \xi}(t, \bar{u}(t), \dot{\bar{u}}(t)) \zeta, \zeta\right\rangle \geq 0 \quad$ for all $\zeta \in \mathbb{R}^{N}$, for all $t \in(a, b)$.
This proves the lemma.

This condition is known as the Legendre condition.

Dominant term in the second variation III

But this means

$$
\beta \leq \frac{M}{\pi^{2}} \alpha^{2}
$$

which we can easily contradict by letting $\alpha \rightarrow 0$. So we deduce

$$
\left\langle f_{\xi \xi}(t, \bar{u}(t), \dot{\bar{u}}(t)) \zeta, \zeta\right\rangle \geq 0 \quad \text { for all } \zeta \in \mathbb{R}^{N}, \text { for all } t \in(a, b) \text {. }
$$

This proves the lemma.

This condition is known as the Legendre condition. This is implied by

Dominant term in the second variation III

But this means

$$
\beta \leq \frac{M}{\pi^{2}} \alpha^{2}
$$

which we can easily contradict by letting $\alpha \rightarrow 0$. So we deduce

$$
\left\langle f_{\xi \xi}(t, \bar{u}(t), \dot{\bar{u}}(t)) \zeta, \zeta\right\rangle \geq 0 \quad \text { for all } \zeta \in \mathbb{R}^{N}, \text { for all } t \in(a, b) \text {. }
$$

This proves the lemma.

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations
Second Variation
Examples

This condition is known as the Legendre condition. This is implied by convexity of the map $\xi \mapsto f(t, u, \xi)$.

Dominant term in the second variation III

But this means

$$
\beta \leq \frac{M}{\pi^{2}} \alpha^{2}
$$

which we can easily contradict by letting $\alpha \rightarrow 0$. So we deduce

$$
\left\langle f_{\xi \xi}(t, \bar{u}(t), \dot{\bar{u}}(t)) \zeta, \zeta\right\rangle \geq 0 \quad \text { for all } \zeta \in \mathbb{R}^{N}, \text { for all } t \in(a, b) \text {. }
$$

This proves the lemma.

This condition is known as the Legendre condition. This is implied by convexity of the map $\xi \mapsto f(t, u, \xi)$. If $n>1$,

Dominant term in the second variation III

But this means

$$
\beta \leq \frac{M}{\pi^{2}} \alpha^{2}
$$

which we can easily contradict by letting $\alpha \rightarrow 0$. So we deduce

$$
\left\langle f_{\xi \xi}(t, \bar{u}(t), \dot{\bar{u}}(t)) \zeta, \zeta\right\rangle \geq 0 \quad \text { for all } \zeta \in \mathbb{R}^{N}, \text { for all } t \in(a, b) \text {. }
$$

This proves the lemma.

This condition is known as the Legendre condition. This is implied by convexity of the map $\xi \mapsto f(t, u, \xi)$. If $n>1$, the corresponding condition is called the

Dominant term in the second variation III

But this means

$$
\beta \leq \frac{M}{\pi^{2}} \alpha^{2}
$$

which we can easily contradict by letting $\alpha \rightarrow 0$. So we deduce

$$
\left\langle f_{\xi \xi}(t, \bar{u}(t), \dot{\bar{u}}(t)) \zeta, \zeta\right\rangle \geq 0 \quad \text { for all } \zeta \in \mathbb{R}^{N}, \text { for all } t \in(a, b) \text {. }
$$

This proves the lemma.

This condition is known as the Legendre condition. This is implied by convexity of the map $\xi \mapsto f(t, u, \xi)$. If $n>1$, the corresponding condition is called the Legendre-Hadamard condition.

Dominant term in the second variation III

But this means

$$
\beta \leq \frac{M}{\pi^{2}} \alpha^{2}
$$

which we can easily contradict by letting $\alpha \rightarrow 0$. So we deduce

$$
\left\langle f_{\xi \xi}(t, \bar{u}(t), \dot{\bar{u}}(t)) \zeta, \zeta\right\rangle \geq 0 \quad \text { for all } \zeta \in \mathbb{R}^{N}, \text { for all } t \in(a, b) \text {. }
$$

This proves the lemma.

This condition is known as the Legendre condition. This is implied by convexity of the map $\xi \mapsto f(t, u, \xi)$. If $n>1$, the corresponding condition is called the Legendre-Hadamard condition.

$$
\left\langle f_{\xi \xi}(x, \bar{u}(x), D \bar{u}(x)) a \otimes b, a \otimes b\right\rangle \geq 0
$$

Dominant term in the second variation III

But this means

$$
\beta \leq \frac{M}{\pi^{2}} \alpha^{2}
$$

which we can easily contradict by letting $\alpha \rightarrow 0$. So we deduce

$$
\left\langle f_{\xi \xi}(t, \bar{u}(t), \dot{\bar{u}}(t)) \zeta, \zeta\right\rangle \geq 0 \quad \text { for all } \zeta \in \mathbb{R}^{N}, \text { for all } t \in(a, b) \text {. }
$$

This proves the lemma.

Classical Methods
Classical Problem
Euler-Lagrange Equations Hamiltonian formulation First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations

Second Variation

This condition is known as the Legendre condition. This is implied by convexity of the map $\xi \mapsto f(t, u, \xi)$. If $n>1$, the corresponding condition is called the Legendre-Hadamard condition.

$$
\left\langle f_{\xi \xi}(x, \bar{u}(x), D \bar{u}(x)) a \otimes b, a \otimes b\right\rangle \geq 0
$$

for all $a \in \mathbb{R}^{n}, b \in \mathbb{R}^{N}$ and for all $x \in \Omega$.

Dominant term in the second variation III

But this means

$$
\beta \leq \frac{M}{\pi^{2}} \alpha^{2}
$$

which we can easily contradict by letting $\alpha \rightarrow 0$. So we deduce

$$
\left\langle f_{\xi \xi}(t, \bar{u}(t), \dot{\bar{u}}(t)) \zeta, \zeta\right\rangle \geq 0 \quad \text { for all } \zeta \in \mathbb{R}^{N}, \text { for all } t \in(a, b) \text {. }
$$

This proves the lemma.

This condition is known as the Legendre condition. This is implied by convexity of the map $\xi \mapsto f(t, u, \xi)$. If $n>1$, the corresponding condition is called the Legendre-Hadamard condition.

$$
\left\langle f_{\xi \xi}(x, \bar{u}(x), D \bar{u}(x)) a \otimes b, a \otimes b\right\rangle \geq 0
$$

for all $a \in \mathbb{R}^{n}, b \in \mathbb{R}^{N}$ and for all $x \in \Omega$. This is weaker than the Legendre condition in that case

Dominant term in the second variation III

But this means

$$
\beta \leq \frac{M}{\pi^{2}} \alpha^{2}
$$

which we can easily contradict by letting $\alpha \rightarrow 0$. So we deduce

$$
\left\langle f_{\xi \xi}(t, \bar{u}(t), \dot{\bar{u}}(t)) \zeta, \zeta\right\rangle \geq 0 \quad \text { for all } \zeta \in \mathbb{R}^{N}, \text { for all } t \in(a, b) \text {. }
$$

This proves the lemma.

This condition is known as the Legendre condition. This is implied by convexity of the map $\xi \mapsto f(t, u, \xi)$. If $n>1$, the corresponding condition is called the Legendre-Hadamard condition.

$$
\left\langle f_{\xi \xi}(x, \bar{u}(x), D \bar{u}(x)) a \otimes b, a \otimes b\right\rangle \geq 0
$$

for all $a \in \mathbb{R}^{n}, b \in \mathbb{R}^{N}$ and for all $x \in \Omega$. This is weaker than the Legendre condition in that case (convexity only along rank one matrices).

Towards a sufficient condition

Introduction to the Calculus of Variations

Possible candidate for sufficiency

Classical Methods

Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem

Hamilton-Jacobi equations
Second Variation
Examples
The End

Towards a sufficient condition

Possible candidate for sufficiency

Can $f_{\xi \xi} \geq 0$ be a sufficient condition?

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations
Second Variation
Examples
The End

Towards a sufficient condition

Possible candidate for sufficiency

Can $f_{\xi \xi} \geq 0$ be a sufficient condition? Clearly not!

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations
Second Variation
Examples
The End

Towards a sufficient condition

Possible candidate for sufficiency

Can $f_{\xi \xi} \geq 0$ be a sufficient condition? Clearly not! Think of $f(x)=x^{3}$.

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations

Second Variation

Examples
The End

Towards a sufficient condition

Possible candidate for sufficiency

Can $f_{\xi \xi} \geq 0$ be a sufficient condition? Clearly not! Think of $f(x)=x^{3} . x=0$ is not a minima!

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations

Second Variation

Examples
The End

Towards a sufficient condition

Possible candidate for sufficiency

Can $f_{\xi \xi} \geq 0$ be a sufficient condition? Clearly not! Think of $f(x)=x^{3} . x=0$ is not a minima!
Can $f_{\xi \xi}>0$,

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations

Second Variation

Examples
The End

Towards a sufficient condition

Possible candidate for sufficiency

Can $f_{\xi \xi} \geq 0$ be a sufficient condition? Clearly not! Think of $f(x)=x^{3} . x=0$ is not a minima!
Can $f_{\xi \xi}>0$, i.e. positive definite instead of nonnegative definite,

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations

Second Variation

Examples
The End

Towards a sufficient condition

Possible candidate for sufficiency

Can $f_{\xi \xi} \geq 0$ be a sufficient condition? Clearly not! Think of $f(x)=x^{3} . x=0$ is not a minima!
Can $f_{\xi \xi}>0$, i.e. positive definite instead of nonnegative definite, be a sufficient condition?

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations

Second Variation

Examples

Towards a sufficient condition

Possible candidate for sufficiency

Can $f_{\xi \xi} \geq 0$ be a sufficient condition? Clearly not! Think of $f(x)=x^{3} \cdot x=0$ is not a minima!
Can $f_{\xi \xi}>0$, i.e. positive definite instead of nonnegative definite, be a sufficient condition?
Somewhat surprisingly, the answer is still No!

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations

> Second Variation

Examples

Towards a sufficient condition

Possible candidate for sufficiency

Can $f_{\xi \xi} \geq 0$ be a sufficient condition? Clearly not! Think of $f(x)=x^{3} . x=0$ is not a minima!
Can $f_{\xi \xi}>0$, i.e. positive definite instead of nonnegative definite, be a sufficient condition?
Somewhat surprisingly, the answer is still No!

Understanding the trouble

The reason is that the condition is purely local,

Towards a sufficient condition

Possible candidate for sufficiency

Can $f_{\xi \xi} \geq 0$ be a sufficient condition? Clearly not! Think of $f(x)=x^{3} . x=0$ is not a minima!
Can $f_{\xi \xi}>0$, i.e. positive definite instead of nonnegative definite, be a sufficient condition?
Somewhat surprisingly, the answer is still No!

Understanding the trouble

The reason is that the condition is purely local, whereas being a minimizer is not really a local property.

Towards a sufficient condition

Possible candidate for sufficiency

Can $f_{\xi \xi} \geq 0$ be a sufficient condition? Clearly not! Think of $f(x)=x^{3} . x=0$ is not a minima!
Can $f_{\xi \xi}>0$, i.e. positive definite instead of nonnegative definite, be a sufficient condition? Somewhat surprisingly, the answer is still No!

Understanding the trouble

The reason is that the condition is purely local, whereas being a minimizer is not really a local property. We go back to geodesics.

Towards a sufficient condition

Possible candidate for sufficiency

Can $f_{\xi \xi} \geq 0$ be a sufficient condition? Clearly not!
Think of $f(x)=x^{3} . x=0$ is not a minima!
Can $f_{\xi \xi}>0$, i.e. positive definite instead of nonnegative definite, be a sufficient condition?
Somewhat surprisingly, the answer is still No!

Understanding the trouble

The reason is that the condition is purely local, whereas being a minimizer is not really a local property. We go back to geodesics. Think of the unit sphere in \mathbb{R}^{3} centered at the origin

Towards a sufficient condition

Possible candidate for sufficiency

Can $f_{\xi \xi} \geq 0$ be a sufficient condition? Clearly not!
Think of $f(x)=x^{3} . x=0$ is not a minima!
Can $f_{\xi \xi}>0$, i.e. positive definite instead of nonnegative definite, be a sufficient condition?
Somewhat surprisingly, the answer is still No!

Understanding the trouble

The reason is that the condition is purely local, whereas being a minimizer is not really a local property. We go back to geodesics. Think of the unit sphere in \mathbb{R}^{3} centered at the origin and consider the points $A=(1,0,0), B=(0,1,0)$ and $C=\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0\right)$.

Classical Methods

Classical Problem
Euler-Lagrange Equations Hamiltonian formulation

Symmetry and Noether's theorem
Hamilton-Jacobi equations

Second Variation

Examples

Towards a sufficient condition

Possible candidate for sufficiency

Can $f_{\xi \xi} \geq 0$ be a sufficient condition? Clearly not!
Think of $f(x)=x^{3} . x=0$ is not a minima!
Can $f_{\xi \xi}>0$, i.e. positive definite instead of nonnegative definite, be a sufficient condition?
Somewhat surprisingly, the answer is still No!

Understanding the trouble

The reason is that the condition is purely local, whereas being a minimizer is not really a local property. We go back to geodesics. Think of the unit sphere in \mathbb{R}^{3} centered at the origin and consider the points $A=(1,0,0), B=(0,1,0)$ and $C=\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0\right)$. All three points lie on the circle

Classical Methods

Classical Problem
Euler-Lagrange Equations Hamiltonian formulation

Symmetry and Noether's theorem

Hamilton-Jacobi equations

Second Variation

Examples
The End

Towards a sufficient condition

Possible candidate for sufficiency

Can $f_{\xi \xi} \geq 0$ be a sufficient condition? Clearly not!
Think of $f(x)=x^{3} . x=0$ is not a minima!
Can $f_{\xi \xi}>0$, i.e. positive definite instead of nonnegative definite, be a sufficient condition?
Somewhat surprisingly, the answer is still No!

Understanding the trouble

The reason is that the condition is purely local, whereas being a minimizer is not really a local property. We go back to geodesics. Think of the unit sphere in \mathbb{R}^{3} centered at the origin and consider the points $A=(1,0,0), B=(0,1,0)$ and $C=\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0\right)$. All three points lie on the circle $\left\{(x, y, 0): x^{2}+y^{2}=1\right\}$,

Classical Methods

Classical Problem
Euler-Lagrange Equations Hamiltonian formulation

Symmetry and Noether's theorem
Hamilton-Jacobi equations

Second Variation

Examples
The End

Towards a sufficient condition

Possible candidate for sufficiency

Can $f_{\xi \xi} \geq 0$ be a sufficient condition? Clearly not!
Think of $f(x)=x^{3} . x=0$ is not a minima!
Can $f_{\xi \xi}>0$, i.e. positive definite instead of nonnegative definite, be a sufficient condition?
Somewhat surprisingly, the answer is still No!

Understanding the trouble

The reason is that the condition is purely local, whereas being a minimizer is not really a local property. We go back to geodesics. Think of the unit sphere in \mathbb{R}^{3} centered at the origin and consider the points $A=(1,0,0), B=(0,1,0)$ and $C=\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0\right)$. All three points lie on the circle $\left\{(x, y, 0): x^{2}+y^{2}=1\right\}$, which being a great circle

Classical Methods

Classical Problem
Euler-Lagrange Equations Hamiltonian formulation

Symmetry and Noether's theorem
Hamilton-Jacobi equations

Second Variation

Examples
The End

Towards a sufficient condition

Possible candidate for sufficiency

Can $f_{\xi \xi} \geq 0$ be a sufficient condition? Clearly not!
Think of $f(x)=x^{3} . x=0$ is not a minima!
Can $f_{\xi \xi}>0$, i.e. positive definite instead of nonnegative definite, be a sufficient condition?
Somewhat surprisingly, the answer is still No!

Understanding the trouble

The reason is that the condition is purely local, whereas being a minimizer is not really a local property. We go back to geodesics. Think of the unit sphere in \mathbb{R}^{3} centered at the origin and consider the points $A=(1,0,0), B=(0,1,0)$ and $C=\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0\right)$. All three points lie on the circle $\left\{(x, y, 0): x^{2}+y^{2}=1\right\}$, which being a great circle is a geodesic on the sphere.

Classical Methods

Classical Problem
Euler-Lagrange Equations Hamiltonian formulation

Symmetry and Noether's theorem
Hamilton-Jacobi equations

Second Variation

Examples
The End

Towards a sufficient condition

Possible candidate for sufficiency

Can $f_{\xi \xi} \geq 0$ be a sufficient condition? Clearly not!
Think of $f(x)=x^{3} . x=0$ is not a minima!
Can $f_{\xi \xi}>0$, i.e. positive definite instead of nonnegative definite, be a sufficient condition?
Somewhat surprisingly, the answer is still No!

Understanding the trouble

The reason is that the condition is purely local, whereas being a minimizer is not really a local property. We go back to geodesics. Think of the unit sphere in \mathbb{R}^{3} centered at the origin and consider the points $A=(1,0,0), B=(0,1,0)$ and $C=\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0\right)$. All three points lie on the circle $\left\{(x, y, 0): x^{2}+y^{2}=1\right\}$, which being a great circle is a geodesic on the sphere. Now, the part of the circle going from A to B is a minimizing path

Towards a sufficient condition

Possible candidate for sufficiency

Can $f_{\xi \xi} \geq 0$ be a sufficient condition? Clearly not!
Think of $f(x)=x^{3} . x=0$ is not a minima!
Can $f_{\xi \xi}>0$, i.e. positive definite instead of nonnegative definite, be a sufficient condition?
Somewhat surprisingly, the answer is still No!

Understanding the trouble

The reason is that the condition is purely local, whereas being a minimizer is not really a local property. We go back to geodesics. Think of the unit sphere in \mathbb{R}^{3} centered at the origin and consider the points $A=(1,0,0), B=(0,1,0)$ and $C=\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0\right)$. All three points lie on the circle $\left\{(x, y, 0): x^{2}+y^{2}=1\right\}$, which being a great circle is a geodesic on the sphere. Now, the part of the circle going from A to B is a minimizing path and so is the part of the circle going from B to C.

Towards a sufficient condition

Possible candidate for sufficiency

Can $f_{\xi \xi} \geq 0$ be a sufficient condition? Clearly not!
Think of $f(x)=x^{3} . x=0$ is not a minima!
Can $f_{\xi \xi}>0$, i.e. positive definite instead of nonnegative definite, be a sufficient condition?
Somewhat surprisingly, the answer is still No!

Understanding the trouble

The reason is that the condition is purely local, whereas being a minimizer is not really a local property. We go back to geodesics. Think of the unit sphere in \mathbb{R}^{3} centered at the origin and consider the points $A=(1,0,0), B=(0,1,0)$ and $C=\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0\right)$. All three points lie on the circle $\left\{(x, y, 0): x^{2}+y^{2}=1\right\}$, which being a great circle is a geodesic on the sphere. Now, the part of the circle going from A to B is a minimizing path and so is the part of the circle going from B to C. However, clearly the part of the circle going from A to C can not be minimizing,

Towards a sufficient condition

Possible candidate for sufficiency

Can $f_{\xi \xi} \geq 0$ be a sufficient condition? Clearly not!
Think of $f(x)=x^{3} . x=0$ is not a minima!
Can $f_{\xi \xi}>0$, i.e. positive definite instead of nonnegative definite, be a sufficient condition?
Somewhat surprisingly, the answer is still No!

Understanding the trouble

The reason is that the condition is purely local, whereas being a minimizer is not really a local property. We go back to geodesics. Think of the unit sphere in \mathbb{R}^{3} centered at the origin and consider the points $A=(1,0,0), B=(0,1,0)$ and $C=\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0\right)$. All three points lie on the circle $\left\{(x, y, 0): x^{2}+y^{2}=1\right\}$, which being a great circle is a geodesic on the sphere. Now, the part of the circle going from A to B is a minimizing path and so is the part of the circle going from B to C. However, clearly the part of the circle going from A to C can not be minimizing, as the part of the circle going from C to A is definitely shorter.

Jacobi theory and Legendre method I

We now consider the second variation itself as an integral functional

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations
Second Variation
Examples
The End

Jacobi theory and Legendre method I

We now consider the second variation itself as an integral functional

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation

$$
J[\psi]:=\int_{a}^{b}[\langle P \psi, \dot{\psi}\rangle+\langle Q \psi, \psi\rangle] \mathrm{d} t, \quad \psi \in C^{1}, \psi(a)=\psi(b)=0
$$

Jacobi theory and Legendre method I

We now consider the second variation itself as an integral functional

Note that if

$$
\text { for all } \psi \in C^{1}, \psi \not \equiv 0 \text { with } \psi(a)=\psi(b)=0 \text {, }
$$

Jacobi theory and Legendre method I

We now consider the second variation itself as an integral functional

Note that if

$$
J[\psi]>c \int_{a}^{b}|\dot{\psi}|^{2}, \quad \text { for all } \psi \in C^{1}, \psi \not \equiv 0 \text { with } \psi(a)=\psi(b)=0,
$$

for some $c>0$, then \bar{u} is a minimizer. (Check!)

Jacobi theory and Legendre method I

We now consider the second variation itself as an integral functional

Note that if

$$
J[\psi]>c \int_{a}^{b}|\dot{\psi}|^{2}, \quad \text { for all } \psi \in C^{1}, \psi \not \equiv 0 \text { with } \psi(a)=\psi(b)=0,
$$

for some $c>0$, then \bar{u} is a minimizer. (Check!) $J[\psi]>0$ is not enough!

Jacobi theory and Legendre method I

We now consider the second variation itself as an integral functional

Note that if
$J[\psi]>c \int_{a}^{b}|\dot{\psi}|^{2}, \quad$ for all $\psi \in C^{1}, \psi \not \equiv 0$ with $\psi(a)=\psi(b)=0$,
for some $c>0$, then \bar{u} is a minimizer. (Check!)
$J[\psi]>0$ is not enough!
$P>0$ for all $t \in(a, b)$

Jacobi theory and Legendre method I

We now consider the second variation itself as an integral functional

$$
J[\psi]:=\int_{a}^{b}[\langle P \psi, \psi\rangle+\langle Q \psi, \psi\rangle] \mathrm{d} t, \quad \psi \in C^{1}, \psi(a)=\psi(b)=0
$$

Note that if
$J[\psi]>c \int_{a}^{b}|\dot{\psi}|^{2}, \quad$ for all $\psi \in C^{1}, \psi \not \equiv 0$ with $\psi(a)=\psi(b)=0$,
for some $c>0$, then \bar{u} is a minimizer. (Check!)
$J[\psi]>0$ is not enough!
$P>0$ for all $t \in(a, b)$ is not enough to obtain this.

Jacobi theory and Legendre method I

We now consider the second variation itself as an integral functional

$$
J[\psi]:=\int_{a}^{b}[\langle P \psi, \dot{\psi}\rangle+\langle Q \psi, \psi\rangle] \mathrm{d} t, \quad \psi \in C^{1}, \psi(a)=\psi(b)=0
$$

Note that if
$J[\psi]>c \int_{a}^{b}|\psi|^{2}$, for all $\psi \in C^{1}, \psi \not \equiv 0$ with $\psi(a)=\psi(b)=0$,
for some $c>0$, then \bar{u} is a minimizer. (Check!)
$J[\psi]>0$ is not enough!
$P>0$ for all $t \in(a, b)$ is not enough to obtain this. So what other condition is needed to ensure this?

Jacobi theory and Legendre method I

We now consider the second variation itself as an integral functional

$$
J[\psi]:=\int_{a}^{b}[\langle P \psi, \dot{\psi}\rangle+\langle Q \psi, \psi\rangle] \mathrm{d} t, \quad \psi \in C^{1}, \psi(a)=\psi(b)=0
$$

Note that if

$$
J[\psi]>c \int_{a}^{b}|\dot{\psi}|^{2}, \quad \text { for all } \psi \in C^{1}, \psi \not \equiv 0 \text { with } \psi(a)=\psi(b)=0,
$$

for some $c>0$, then \bar{u} is a minimizer. (Check!)
$J[\psi]>0$ is not enough!
$P>0$ for all $t \in(a, b)$ is not enough to obtain this. So what other condition is needed to ensure this?

Legendre wanted to 'complete the square'

Jacobi theory and Legendre method I

We now consider the second variation itself as an integral functional

$$
J[\psi]:=\int_{a}^{b}[\langle P \psi, \dot{\psi}\rangle+\langle Q \psi, \psi\rangle] \mathrm{d} t, \quad \psi \in C^{1}, \psi(a)=\psi(b)=0
$$

Note that if

$$
J[\psi]>c \int_{a}^{b}|\dot{\psi}|^{2}, \quad \text { for all } \psi \in C^{1}, \psi \not \equiv 0 \text { with } \psi(a)=\psi(b)=0,
$$

for some $c>0$, then \bar{u} is a minimizer. (Check!)
$J[\psi]>0$ is not enough!
$P>0$ for all $t \in(a, b)$ is not enough to obtain this. So what other condition is needed to ensure this?

Legendre wanted to 'complete the square' by adding a null Lagrangian.

Jacobi theory and Legendre method II

Legendre method

Let W be an arbitrary differentiable symmetric matrix.

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations
Second Variation
Examples
The End

Jacobi theory and Legendre method II

Legendre method

Let W be an arbitrary differentiable symmetric matrix. Then

$$
0=\int_{a}^{b} \frac{d}{d t}[\langle W \psi, \psi\rangle] \mathrm{d} t \quad \text { for all } \psi \text { with } \psi(a)=\psi(b)=0
$$

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations

Second Variation

Examples
The End

Jacobi theory and Legendre method II

Legendre method

Let W be an arbitrary differentiable symmetric matrix. Then

$$
0=\int_{a}^{b} \frac{d}{d t}[\langle W \psi, \psi\rangle] \mathrm{d} t \quad \text { for all } \psi \text { with } \psi(a)=\psi(b)=0
$$

Thus

$$
\frac{d}{d t}[\langle W \psi, \psi\rangle] \text { is a null lagrangian for any } W \text {. }
$$

Jacobi theory and Legendre method II

Legendre method

Let W be an arbitrary differentiable symmetric matrix. Then

$$
0=\int_{a}^{b} \frac{d}{d t}[\langle W \psi, \psi\rangle] \mathrm{d} t \quad \text { for all } \psi \text { with } \psi(a)=\psi(b)=0
$$

Thus

$$
\frac{d}{d t}[\langle W \psi, \psi\rangle] \text { is a null lagrangian for any } W \text {. }
$$

Hence adding such a term does not alter the value of $J[\psi]$.

Jacobi theory and Legendre method II

Legendre method

Let W be an arbitrary differentiable symmetric matrix. Then

$$
0=\int_{a}^{b} \frac{d}{d t}[\langle W \psi, \psi\rangle] \mathrm{d} t \quad \text { for all } \psi \text { with } \psi(a)=\psi(b)=0
$$

Thus

$$
\frac{d}{d t}[\langle W \psi, \psi\rangle] \text { is a null lagrangian for any } W \text {. }
$$

Hence adding such a term does not alter the value of $J[\psi]$. So we get

Jacobi theory and Legendre method II

Legendre method

Let W be an arbitrary differentiable symmetric matrix. Then

$$
0=\int_{a}^{b} \frac{d}{d t}[\langle W \psi, \psi\rangle] \mathrm{d} t \quad \text { for all } \psi \text { with } \psi(a)=\psi(b)=0
$$

Thus

$$
\frac{d}{d t}[\langle W \psi, \psi\rangle] \text { is a null lagrangian for any } W \text {. }
$$

Hence adding such a term does not alter the value of $J[\psi]$. So we get

$$
J[\psi]=J[\psi]+\int_{a}^{b} \frac{d}{d t}[\langle W \psi, \psi\rangle] \mathrm{d} t
$$

Jacobi theory and Legendre method II

Legendre method

Let W be an arbitrary differentiable symmetric matrix. Then

$$
0=\int_{a}^{b} \frac{d}{d t}[\langle W \psi, \psi\rangle] \mathrm{d} t \quad \text { for all } \psi \text { with } \psi(a)=\psi(b)=0
$$

Thus

$$
\frac{d}{d t}[\langle W \psi, \psi\rangle] \text { is a null lagrangian for any } W \text {. }
$$

Hence adding such a term does not alter the value of $J[\psi]$. So we get

$$
\begin{aligned}
J[\psi] & =J[\psi]+\int_{a}^{b} \frac{d}{d t}[\langle W \psi, \psi\rangle] \mathrm{d} t \\
& =\int_{a}^{b}[\langle P \dot{\psi}, \dot{\psi}\rangle+2\langle W \psi, \dot{\psi}\rangle+\langle(Q+\dot{W}) \psi, \psi\rangle] \mathrm{d} t
\end{aligned}
$$

Jacobi theory and Legendre method II

Legendre method

Let W be an arbitrary differentiable symmetric matrix. Then

$$
0=\int_{a}^{b} \frac{d}{d t}[\langle W \psi, \psi\rangle] \mathrm{d} t \quad \text { for all } \psi \text { with } \psi(a)=\psi(b)=0
$$

Thus

$$
\frac{d}{d t}[\langle W \psi, \psi\rangle] \text { is a null lagrangian for any } W \text {. }
$$

Hence adding such a term does not alter the value of $J[\psi]$. So we get

$$
\begin{aligned}
J[\psi] & =J[\psi]+\int_{a}^{b} \frac{d}{d t}[\langle W \psi, \psi\rangle] \mathrm{d} t \\
& =\int_{a}^{b}[\langle P \dot{\psi}, \dot{\psi}\rangle+2\langle W \psi, \dot{\psi}\rangle+\langle(Q+\dot{W}) \psi, \psi\rangle] \mathrm{d} t
\end{aligned}
$$

When can we make this a perfect square?

Jacobi theory and Legendre method III

Riccati equation

Proposition

Suppose W is a solution of the following matrix Riccati equation,

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations

Second Variation

Examples
The End

Jacobi theory and Legendre method III

Riccati equation

Proposition

Suppose W is a solution of the following matrix Riccati equation,

$$
\dot{W}=-Q+W P^{-1} W .
$$

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations

Second Variation

Examples
The End

Jacobi theory and Legendre method III

Riccati equation

Proposition

Suppose W is a solution of the following matrix Riccati equation,

$$
\dot{W}=-Q+W P^{-1} W .
$$

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations

Second Variation

Examples
The End

Then we have

Jacobi theory and Legendre method III

Riccati equation

Proposition

Suppose W is a solution of the following matrix Riccati equation,

$$
\dot{W}=-Q+W P^{-1} W .
$$

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations

Second Variation

Examples
The End

Then we have

$$
\begin{aligned}
{[\langle P \dot{\psi}, \dot{\psi}\rangle+2\langle W \psi, \dot{\psi}\rangle+\langle(Q+\dot{W})} & \psi, \psi\rangle] \\
& =\left|P^{\frac{1}{2}} \dot{\psi}+P^{-\frac{1}{2}} W \psi\right|^{2}
\end{aligned}
$$

Jacobi theory and Legendre method III

Riccati equation

Proposition

Suppose W is a solution of the following matrix Riccati equation,

$$
\dot{W}=-Q+W P^{-1} W .
$$

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations
Second Variation
Examples
The End

Then we have

$$
\begin{aligned}
{[\langle P \dot{\psi}, \dot{\psi}\rangle+2\langle W \psi, \dot{\psi}\rangle+\langle(Q+\dot{W})} & \psi, \psi\rangle] \\
& =\left|P^{\frac{1}{2}} \dot{\psi}+P^{-\frac{1}{2}} W \psi\right|^{2}
\end{aligned}
$$

Note that since P is symmetric and positive definite,

Jacobi theory and Legendre method III

Riccati equation

Proposition

Suppose W is a solution of the following matrix Riccati equation,

$$
\dot{W}=-Q+W P^{-1} W .
$$

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations
Second Variation
Examples
The End

Then we have

$$
\begin{aligned}
{[\langle P \dot{\psi}, \dot{\psi}\rangle+2\langle W \psi, \dot{\psi}\rangle+\langle(Q+\dot{W})} & \psi, \psi\rangle] \\
& =\left|P^{\frac{1}{2}} \dot{\psi}+P^{-\frac{1}{2}} W \psi\right|^{2}
\end{aligned}
$$

Note that since P is symmetric and positive definite, $P^{\frac{1}{2}}$ is well defined

Jacobi theory and Legendre method III

Riccati equation

Proposition

Suppose W is a solution of the following matrix Riccati equation,

$$
\dot{W}=-Q+W P^{-1} W .
$$

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations
Second Variation
Examples
The End

Then we have

$$
\begin{aligned}
{[\langle P \dot{\psi}, \dot{\psi}\rangle+2\langle W \psi, \dot{\psi}\rangle+\langle(Q+\dot{W})} & \psi, \psi\rangle] \\
& =\left|P^{\frac{1}{2}} \dot{\psi}+P^{-\frac{1}{2}} W \psi\right|^{2}
\end{aligned}
$$

Note that since P is symmetric and positive definite, $P^{\frac{1}{2}}$ is well defined and is itself symmetric

Jacobi theory and Legendre method III

Riccati equation

Proposition

Suppose W is a solution of the following matrix Riccati equation,

$$
\dot{W}=-Q+W P^{-1} W .
$$

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations
Second Variation
Examples
The End

Then we have

$$
\begin{aligned}
{[\langle P \dot{\psi}, \dot{\psi}\rangle+2\langle W \psi, \dot{\psi}\rangle+\langle(Q+\dot{W})} & \psi, \psi\rangle] \\
& =\left|P^{\frac{1}{2}} \dot{\psi}+P^{-\frac{1}{2}} W \psi\right|^{2}
\end{aligned}
$$

Note that since P is symmetric and positive definite, $P^{\frac{1}{2}}$ is well defined and is itself symmetric and positive definite.

Solving the Riccati equation

Introduction to the Calculus of Variations

Swarnendu Sil

To solve the Riccati equation
Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem

Hamilton-Jacobi equations
Second Variation
Examples

Solving the Riccati equation

 Calculus of VariationsTo solve the Riccati equation

$$
\dot{W}=-Q+W P^{-1} W,
$$

Classical Methods

Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem

Hamilton-Jacobi equations

Second Variation

Examples
The End

Solving the Riccati equation

To solve the Riccati equation

$$
\dot{W}=-Q+W P^{-1} W,
$$

let us substitute

Solving the Riccati equation

To solve the Riccati equation

$$
\dot{W}=-Q+W P^{-1} W,
$$

let us substitute

$$
W=-P \dot{\Psi} \Psi^{-1} .
$$

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations

Second Variation

Examples
The End

Solving the Riccati equation

To solve the Riccati equation

$$
\dot{W}=-Q+W P^{-1} W,
$$

let us substitute

$$
W=-P \dot{\Psi} \Psi^{-1}
$$

Plugging it in the Riccati equation, we obtain

Solving the Riccati equation

To solve the Riccati equation

$$
\dot{W}=-Q+W P^{-1} W,
$$

let us substitute

$$
W=-P \dot{\Psi} \Psi^{-1} .
$$

Plugging it in the Riccati equation, we obtain

$$
\frac{d}{d t}(P \dot{\Psi})=Q \Psi
$$

Solving the Riccati equation

To solve the Riccati equation

$$
\dot{W}=-Q+W P^{-1} W,
$$

let us substitute

$$
W=-P \dot{\Psi} \Psi^{-1} .
$$

Plugging it in the Riccati equation, we obtain

$$
\frac{d}{d t}(P \dot{\Psi})=Q \Psi
$$

Any solution Ψ of the above equation

Solving the Riccati equation

To solve the Riccati equation

$$
\dot{W}=-Q+W P^{-1} W
$$

let us substitute

$$
W=-P \dot{\Psi} \Psi^{-1} .
$$

Plugging it in the Riccati equation, we obtain

$$
\frac{d}{d t}(P \dot{\Psi})=Q \Psi
$$

Any solution Ψ of the above equation would furnish a solution W of the Riccati equation

Solving the Riccati equation

To solve the Riccati equation

$$
\dot{W}=-Q+W P^{-1} W
$$

let us substitute

$$
W=-P \dot{\Psi} \Psi^{-1}
$$

Plugging it in the Riccati equation, we obtain

$$
\frac{d}{d t}(P \dot{\Psi})=Q \Psi
$$

Any solution Ψ of the above equation would furnish a solution W of the Riccati equation if Ψ is invertible.

Solving the Riccati equation

To solve the Riccati equation

$$
\dot{W}=-Q+W P^{-1} W,
$$

let us substitute

$$
W=-P \dot{\Psi} \Psi^{-1} .
$$

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations
Second Variation
Examples

Plugging it in the Riccati equation, we obtain

$$
\frac{d}{d t}(P \dot{\Psi})=Q \Psi
$$

Any solution Ψ of the above equation would furnish a solution W of the Riccati equation if Ψ is invertible.

However, the equation above has another nice interpretation.

Solving the Riccati equation

To solve the Riccati equation

$$
\dot{W}=-Q+W P^{-1} W,
$$

let us substitute

$$
W=-P \dot{\Psi} \Psi^{-1} .
$$

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations
Second Variation
Examples

Plugging it in the Riccati equation, we obtain

$$
\frac{d}{d t}(P \dot{\Psi})=Q \Psi
$$

Any solution Ψ of the above equation would furnish a solution W of the Riccati equation if Ψ is invertible.

However, the equation above has another nice interpretation.

Jacobi equation and Jacobi fields

We again consider the second variation itself as an integral functional

Hamiltonian formulation

Symmetry and Noether's theorem
Hamilton-Jacobi equations

Second Variation

Examples
The End

Jacobi equation and Jacobi fields

We again consider the second variation itself as an integral
Euler-Lagrange Equations functional

Hamitonian formulation
First integrals
Symmetry and Noether's theorem
$J[\psi]:=\int_{a}^{b}[\langle P \dot{\psi}, \dot{\psi}\rangle+\langle Q \psi, \psi\rangle] \mathrm{d} t, \quad \psi \in C^{1}, \psi(a)=\psi(b)=\substack{\begin{subarray}{c}{\text { semplon varition } \\ \text { The End }} }} \\{\hline} \end{subarray}$

Jacobi equation and Jacobi fields

We again consider the second variation itself as an integral
Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
$\left.J[\psi]:=\int_{a}^{b}[\langle P \psi, \psi\rangle\rangle+\langle Q \psi, \psi\rangle\right] \mathrm{d} t, \quad \psi \in C^{1}, \psi(a)=\psi(b)=0$ ond
The Euler-Lagrange equation to this variational problem is

Jacobi equation and Jacobi fields

We again consider the second variation itself as an integral
Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
$J[\psi]:=\int_{a}^{b}[\langle P \psi, \psi\rangle+\langle Q \psi, \psi\rangle] \mathrm{d} t, \quad \psi \in C^{1}, \psi(a)=\psi(b)=0$.
The Euler-Lagrange equation to this variational problem is

$$
\frac{d}{d t}(P \dot{\psi})=Q \psi .
$$

Jacobi equation and Jacobi fields

We again consider the second variation itself as an integral

$$
J[\psi]:=\int_{a}^{b}[\langle P \psi, \psi\rangle+\langle Q \psi, \psi\rangle] \mathrm{d} t, \quad \psi \in C^{1}, \psi(a)=\psi(b)=0 \text { s. }
$$

The Euler-Lagrange equation to this variational problem is

$$
\frac{d}{d t}(P \dot{\psi})=Q \psi
$$

This is called the Jacobi equation

Jacobi equation and Jacobi fields

We again consider the second variation itself as an integral

The Euler-Lagrange equation to this variational problem is

$$
\frac{d}{d t}(P \dot{\psi})=Q \psi
$$

This is called the Jacobi equation and its solutions (for a given u) is called

Jacobi equation and Jacobi fields

We again consider the second variation itself as an integral

$$
J[\psi]:=\int_{a}^{b}[\langle P \psi, \psi\rangle+\langle Q \psi, \psi\rangle] \mathrm{d} t, \quad \psi \in C^{1}, \psi(a)=\psi(b)=0
$$

The Euler-Lagrange equation to this variational problem is

$$
\frac{d}{d t}(P \dot{\psi})=Q \psi
$$

This is called the Jacobi equation and its solutions (for a given u) is called a Jacobi field along u.

Jacobi equation and Jacobi fields

We again consider the second variation itself as an integral functional

$$
J[\psi]:=\int_{a}^{b}[\langle P \psi, \psi\rangle+\langle Q \psi, \psi\rangle] \mathrm{d} t, \quad \psi \in C^{1}, \psi(a)=\psi(b)=0 .
$$

The Euler-Lagrange equation to this variational problem is

$$
\frac{d}{d t}(P \dot{\psi})=Q \psi
$$

This is called the Jacobi equation and its solutions (for a given u) is called a Jacobi field along u. Before proceeding further, we need the notion of conjugate points.

Conjugate points

Definition

Let Ψ be the matrix of N solutions of the Jacobi equation,

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations

Second Variation

Examples
The End

Conjugate points

Definition

Let Ψ be the matrix of N solutions of the Jacobi equation, i.e.

$$
\Psi:=\left(\begin{array}{l}
\psi_{1} \\
\vdots \\
\psi_{N}
\end{array}\right)
$$

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem

Hamilton-Jacobi equations

Second Variation

Examples
The End

Conjugate points

Definition

Let Ψ be the matrix of N solutions of the Jacobi equation, i.e.

$$
\Psi:=\left(\begin{array}{l}
\psi_{1} \\
\vdots \\
\psi_{N}
\end{array}\right) .
$$

Classical Methods
Classical Problem
Euler-Lagrange Equations Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations

Second Variation

Examples
The End
where $\psi_{1}, \ldots, \psi_{N}$

Conjugate points

Definition

Let Ψ be the matrix of N solutions of the Jacobi equation, i.e.

$$
\Psi:=\left(\begin{array}{l}
\psi_{1} \\
\vdots \\
\psi_{N}
\end{array}\right) .
$$

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations

Second Variation

Examples
The End
where $\psi_{1}, \ldots, \psi_{N}$ solves the Jacobi equation and satisfies

Conjugate points

Definition

Let Ψ be the matrix of N solutions of the Jacobi equation, i.e.

$$
\Psi:=\left(\begin{array}{l}
\psi_{1} \\
\vdots \\
\psi_{N}
\end{array}\right) .
$$

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations

Second Variation

Examples
The End
where $\psi_{1}, \ldots, \psi_{N}$ solves the Jacobi equation and satisfies

$$
\Psi(a)=0 \quad \text { and } \quad \dot{\Psi}(a)=\mathbb{I}_{N} .
$$

Conjugate points

Definition

Let Ψ be the matrix of N solutions of the Jacobi equation, i.e.

$$
\Psi:=\left(\begin{array}{l}
\psi_{1} \\
\vdots \\
\psi_{N}
\end{array}\right) .
$$

Classical Methods
Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
First integrals
Symmetry and Noether's theorem
Hamilton-Jacobi equations

Second Variation

Examples
The End
where $\psi_{1}, \ldots, \psi_{N}$ solves the Jacobi equation and satisfies

$$
\Psi(a)=0 \quad \text { and } \quad \dot{\Psi}(a)=\mathbb{I}_{N} .
$$

A point $\bar{a} \in(a, b]$

Conjugate points

Definition

Let Ψ be the matrix of N solutions of the Jacobi equation, i.e.

$$
\Psi:=\left(\begin{array}{l}
\psi_{1} \\
\vdots \\
\psi_{N}
\end{array}\right) .
$$

where $\psi_{1}, \ldots, \psi_{N}$ solves the Jacobi equation and satisfies

$$
\Psi(a)=0 \quad \text { and } \quad \dot{\Psi}(a)=\mathbb{I}_{N} .
$$

A point $\bar{a} \in(a, b]$ is called a conjugate to the point a or simply a conjugate point of a

Conjugate points

Definition

Let Ψ be the matrix of N solutions of the Jacobi equation, i.e.

$$
\Psi:=\left(\begin{array}{l}
\psi_{1} \\
\vdots \\
\psi_{N}
\end{array}\right) .
$$

where $\psi_{1}, \ldots, \psi_{N}$ solves the Jacobi equation and satisfies

$$
\Psi(a)=0 \quad \text { and } \quad \dot{\Psi}(a)=\mathbb{I}_{N} .
$$

A point $\bar{a} \in(a, b]$ is called a conjugate to the point a or simply a conjugate point of a if we have

$$
\operatorname{det} \Psi(\bar{a})=0 .
$$

Conjugate points

Definition

Let Ψ be the matrix of N solutions of the Jacobi equation, i.e.

$$
\Psi:=\left(\begin{array}{l}
\psi_{1} \\
\vdots \\
\psi_{N}
\end{array}\right) .
$$

where $\psi_{1}, \ldots, \psi_{N}$ solves the Jacobi equation and satisfies

$$
\Psi(a)=0 \quad \text { and } \quad \dot{\Psi}(a)=\mathbb{I}_{N} .
$$

A point $\bar{a} \in(a, b]$ is called a conjugate to the point a or simply a conjugate point of a if we have

$$
\operatorname{det} \Psi(\bar{a})=0 .
$$

Hopefully, by now all of you can see the point.

Conjugate points

Definition

Let Ψ be the matrix of N solutions of the Jacobi equation, i.e.

$$
\Psi:=\left(\begin{array}{l}
\psi_{1} \\
\vdots \\
\psi_{N}
\end{array}\right) .
$$

where $\psi_{1}, \ldots, \psi_{N}$ solves the Jacobi equation and satisfies

$$
\Psi(a)=0 \quad \text { and } \quad \dot{\Psi}(a)=\mathbb{I}_{N} .
$$

A point $\bar{a} \in(a, b]$ is called a conjugate to the point a or simply a conjugate point of a if we have

$$
\operatorname{det} \Psi(\bar{a})=0 .
$$

Hopefully, by now all of you can see the point. If there are no interior conjugate points to a,

Classical Methods

Euler-Lagrange Equations Hamiltonian formulation

Conjugate points

Definition

Let Ψ be the matrix of N solutions of the Jacobi equation, i.e.

$$
\Psi:=\left(\begin{array}{l}
\psi_{1} \\
\vdots \\
\psi_{N}
\end{array}\right) .
$$

where $\psi_{1}, \ldots, \psi_{N}$ solves the Jacobi equation and satisfies

$$
\Psi(a)=0 \quad \text { and } \quad \dot{\Psi}(a)=\mathbb{I}_{N} .
$$

A point $\bar{a} \in(a, b]$ is called a conjugate to the point a or simply a conjugate point of a if we have

$$
\operatorname{det} \Psi(\bar{a})=0 .
$$

Hopefully, by now all of you can see the point. If there are no interior conjugate points to a, then Ψ would be invertible

Conjugate points

Definition

Let Ψ be the matrix of N solutions of the Jacobi equation, i.e.

$$
\Psi:=\left(\begin{array}{l}
\psi_{1} \\
\vdots \\
\psi_{N}
\end{array}\right) .
$$

where $\psi_{1}, \ldots, \psi_{N}$ solves the Jacobi equation and satisfies

$$
\Psi(a)=0 \quad \text { and } \quad \dot{\Psi}(a)=\mathbb{I}_{N} .
$$

A point $\bar{a} \in(a, b]$ is called a conjugate to the point a or simply a conjugate point of a if we have

$$
\operatorname{det} \Psi(\bar{a})=0 .
$$

Hopefully, by now all of you can see the point. If there are no interior conjugate points to a, then Ψ would be invertible and would furnish a solution to the Riccati equation.

Thank you Questions?

Classical Methods

Classical Problem
Euler-Lagrange Equations Hamiltonian formulation
First integrals
Symmetry and Noether's theorem

Hamilton-Jacobi equations
Second Variation
Examples
The End

