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We calculated the second variation of a functional.
Theorem (Second Variation)

Let f =f(t,u,&) € C([a,b] x RV xRY) , o, B € RV,
X={ueC ([a,b];R"):u(a) =a, u(b)=p}.

b
(P) inf {I(u)—/ f(t,u(t),u(t)) dt} =m.

ueX

For any minimizer i € X N C? for (P), the integral

| / b [(Fuu (£,8,8) 0, 0) + 2 (g (£,8,8) 0,0) + (fee (£,8,8) 9,9 )| at

is nonnegative for any ¢ € C} ([a, b]; R") .
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We have also rewritten the integral as Hamiton-Jacobi equatons

/a K {fuu (t0.8) — —fue (2,0 D)} v-,v> + <fss (t,0,1)

Now we want to show that for this expression to be nonnegative
for every ¢ € C! ([a, b; RY) , fze must be nonnegative definite
everywhere.
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holds for every 1 € C} ([a, b]; RY) , then the matrix fee (t,d, ) is
nonnegative definite for every t € (a, b).
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If the following inequality

/ab ([ (t.0.0) = e (0.0.0)| 0.0) + (e (0.0.8) 0.5

holds for every 1 € C} ([a, b]; RY) , then the matrix fee (t,d, ) is
nonnegative definite for every t € (a, b).

Proof. If f;c < 0 for some ty € (a, b), this means there exist a
¢ € RN and B > 0 such that

{fee (to, G (to), U (t0)) ¢, C) < —B.
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Lemma
If the following inequality

b ) d )
/a [< [fuu (t,a,u) — = fue (t,a,u

holds for every 1 € C} ([a, b]; RY) , then the matrix fee (t,d, ) is
nonnegative definite for every t € (a, b).

Proof. If f;c < 0 for some ty € (a, b), this means there exist a
¢ € RN and B > 0 such that

{fee (to, G (to), U (t0)) ¢, C) < —B.

By continuity of fe¢, we can assume there exists o > 0 such that
a<ty—a<ty+a< band we have

(fee (t,a(t),u(t)) ¢, ¢) < —B forall t € [ty — a, tg + a].
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Clearly v € C} ([a7 b];IRN) and plugging it, we obtain

2 /:M sin? [2”“‘“)} (e (£:3(8),5() €,¢) de
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Classical Problem

Y (t) = avsin’ [W(ta_t())] ¢ ifteft—ato+a]

0 otherwise.

Clearly v € C} ([a7 b];IRN) and plugging it, we obtain Examples

2 [ [P (0. 00) .0 ar

—Q

+ a2 /t0_+a Sin4 |:71—(t.a_lb):| <|:fuu (1-'7 177 D) — %fuf (t’7 U, D):| C7<> dt > 0

But this implies
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Choose
o [m(t— to)] .
asin® | ———= ¢ iftefto—a,tp+ ]
P (t) = [ «
0 otherwise.
Clearly v € CZ ([a, b]; R") and plugging it, we obtain
to+o 2 - .
ﬂz/ in? {W(tafo)} (fee (t.a(1),5(1)) C.C) dt
th—o
to+a - - -
+ O}/ sin® [W(fto)] <[f (¢,a,0) — ifug (t,, a)} g7<> dt >0
to—« « dt

But this implies
2Ma? — 287120 > 0,
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Choose
Lo [m(t— to)] , o
asin® | ———=| ¢ iftefto—a,tg+a] Ham
¥ (t) = { o Fs
0 otherwise.
Clearly v € C} ([a7 b; RN) and plugging it, we obtain -
to+a 2 _ .
772/ sin? {W(tato)} (fee (t,a(t),0(t)) ¢, ¢) dt
th—o
to+a _ . .
+ a2/ sin* [W(tt")] <[f (t,a,u) — ifuf (t,a, u)} §7<> dt >0
ty—or @ dt

But this implies
2Ma? — 287120 > 0,

where

M = max
te[to—a,to+a]
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which we can easily contradict by letting « — 0. So we deduce

(fee (t,a(t),1(t))¢,¢) >0

for all ¢ € RV, for all t € (a, b).
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This condition is known as the Legendre condition.
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This condition is known as the Legendre condition. This is
implied by
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This condition is known as the Legendre condition. This is
implied by convexity of the map & — f (t, u,¢).
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This condition is known as the Legendre condition. This is
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(fee (t,0(), (1)) ¢.C) >0

for all ¢ € RV, for all t € (a, b).

This proves the lemma.

O

This condition is known as the Legendre condition. This is
implied by convexity of the map & — f (t,u,&). If n> 1, the
corresponding condition is called the Legendre-Hadamard
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But this means

M
B S ;Oﬂa

which we can easily contradict by letting « — 0. So we deduce B

(fee (t,a(t),u(t)) ¢, ¢) >0 forall ¢ € RN, for all t € (a,b). |  seonsvoisn

Examples

This proves the lemma. O

This condition is known as the Legendre condition. This is
implied by convexity of the map & — f (t,u,&). If n> 1, the
corresponding condition is called the Legendre-Hadamard
condition.

| (fee (%, (x), Dii(x)) a® b,a® b) > 0

for all a € R", b € RN and for all x € Q. This is weaker than the
Legendre condition in that case ( convexity only along rank one
matrices ).
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Think of f(x) = x3. x = 0 is not a minimal

Can fee > 0, i.e. positive definite instead of nonnegative definite,
be a sufficient condition?

Somewhat surprisingly, the answer is still No!

Understanding the trouble
The reason is that the condition is purely local, whereas being a
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Possible candidate for sufficiency

Can f¢¢ > 0 be a sufficient condition? Clearly not!

Think of f(x) = x3. x = 0 is not a minimal

Can fee > 0, i.e. positive definite instead of nonnegative definite,
be a sufficient condition? S
Somewhat surprisingly, the answer is still No! e

Understanding the trouble

The reason is that the condition is purely local, whereas being a
minimizer is not really a local property. We go back to geodesics.
Think of the unit sphere in R3 centered at the origin and consider
the points A = (1,0,0), B =(0,1,0) and C = (—%, —%,0).
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be a sufficient condition? o
Somewhat surprisingly, the answer is still No! e

Understanding the trouble

The reason is that the condition is purely local, whereas being a
minimizer is not really a local property. We go back to geodesics.
Think of the unit sphere in R3 centered at the origin and consider
the points A = (1,0,0), B =(0,1,0) and C = (—%,—\%,0). All
three points lie on the circle {(x,y,0) : x> + y* = 1}, which
being a great circle
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Possible candidate for sufficiency

Can f¢¢ > 0 be a sufficient condition? Clearly not!

Think of f(x) = x3. x = 0 is not a minimal

Can fee > 0, i.e. positive definite instead of nonnegative definite,
be a sufficient condition? o
Somewhat surprisingly, the answer is still No! e

Understanding the trouble

The reason is that the condition is purely local, whereas being a
minimizer is not really a local property. We go back to geodesics.
Think of the unit sphere in R3 centered at the origin and consider
the points A = (1,0,0), B =(0,1,0) and C = (—%,—\%,0). All
three points lie on the circle {(x,y,0) : x> + y* = 1}, which
being a great circle is a geodesic on the sphere.
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Can f¢¢ > 0 be a sufficient condition? Clearly not!

Think of f(x) = x3. x = 0 is not a minimal

Can fee > 0, i.e. positive definite instead of nonnegative definite,

Hamilton-Jacobi equations

be a sufficient condition? Second Variation

Examples

Somewhat surprisingly, the answer is still No!

Understanding the trouble

The reason is that the condition is purely local, whereas being a
minimizer is not really a local property. We go back to geodesics.
Think of the unit sphere in R3 centered at the origin and consider
the points A = (1,0,0), B =(0,1,0) and C = (—%,—\%,0). All
three points lie on the circle {(x,y,0) : x> + y* = 1}, which
being a great circle is a geodesic on the sphere. Now, the part of
the circle going from A to B is a minimizing path
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Somewhat surprisingly, the answer is still No!

Understanding the trouble

The reason is that the condition is purely local, whereas being a
minimizer is not really a local property. We go back to geodesics.
Think of the unit sphere in R3 centered at the origin and consider
the points A = (1,0,0), B =(0,1,0) and C = (—%, —\%2,0). All
three points lie on the circle {(x,y,0) : x> + y* = 1}, which
being a great circle is a geodesic on the sphere. Now, the part of
the circle going from A to B is a minimizing path and so is the
part of the circle going from B to C.
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Somewhat surprisingly, the answer is still No!

Understanding the trouble

The reason is that the condition is purely local, whereas being a
minimizer is not really a local property. We go back to geodesics.
Think of the unit sphere in R3 centered at the origin and consider
the points A = (1,0,0), B =(0,1,0) and C = (—%, —\%2,0). All
three points lie on the circle {(x,y,0) : x> + y* = 1}, which
being a great circle is a geodesic on the sphere. Now, the part of
the circle going from A to B is a minimizing path and so is the
part of the circle going from B to C. However, clearly the part of
the circle going from A to C can not be minimizing,
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Possible candidate for sufficiency

Can f¢¢ > 0 be a sufficient condition? Clearly not!

Think of f(x) = x3. x = 0 is not a minimal!

Can fee > 0, i.e. positive definite instead of nonnegative definite,
be a sufficient condition?

Somewhat surprisingly, the answer is still No!

Understanding the trouble

The reason is that the condition is purely local, whereas being a
minimizer is not really a local property. We go back to geodesics.
Think of the unit sphere in R3 centered at the origin and consider
the points A = (1,0,0), B =(0,1,0) and C = (—%, —\%2,0). All
three points lie on the circle {(x,y,0) : x> + y* = 1}, which
being a great circle is a geodesic on the sphere. Now, the part of
the circle going from A to B is a minimizing path and so is the
part of the circle going from B to C. However, clearly the part of
the circle going from A to C can not be minimizing, as the part of
the circle going from C to A is definitely shorter.
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J[¥] > 0 is not enough!
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P > 0 for all t € (a, b) is not enough to obtain this.
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J[¥] > 0 is not enough!

P >0 for all t € (a, b) is not enough to obtain this. So what
other condition is needed to ensure this?
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other condition is needed to ensure this?
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We now consider the second variation itself as an integral
functional

swi= [ [(pé

Note that if

Secgnd Variation

TMples

b2
JW] > ¢ / ”L“)‘ , for all ¢ € CY, 4 # 0 with ¢ (a) = (b) =0,
Ja

for some ¢ > 0, then & is a minimizer. (Check!)

J[¢] > 0 is not enough!

P >0 for all t € (a, b) is not enough to obtain this. So what
other condition is needed to ensure this?

Legendre wanted to ‘complete the square’ by adding a null
Lagrangian.
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Let W be an arbitrary differentiable symmetric matrix. Then
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0:/3 % (Wy, )] dt for all ¢ with 4 (a) = 1 (b) = 0.
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% (W1, 1)] is a null lagrangian for any W.
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Thus

% (W1, 1)] is a null lagrangian for any W.

Hence adding such a term does not alter the value of J[¢].
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Let W be an arbitrary differentiable symmetric matrix. Then

b
0:/3 % (Wy, )] dt for all ¢ with 4 (a) = 1 (b) = 0.

Thus

% (W1, 1)] is a null lagrangian for any W.

Hence adding such a term does not alter the value of J[¢]. So we
get

Il = I+ [ S lwe ) e
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Legendre method
Let W be an arbitrary differentiable symmetric matrix. Then

b
0:/3 % (Wy, )] dt for all ¢ with 4 (a) = 1 (b) = 0.

Thus

% (W1, 1)] is a null lagrangian for any W.

Hence adding such a term does not alter the value of J[¢]. So we
get

Il = I+ [ S lwe ) e

_ /ab [(Ph.i) +2(wy, )+ {(Q+ W) w,u)] at

When can we make this a perfect square?
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Riccati equation

Proposition
Suppose W is a solution of the following matrix Riccati equation,

W=-Q+WrPw.

(P 2(wed) (@4 ) )

1 - 1 2
- ’Pw+ P*zww‘ .

Note that since P is symmetric and positive definite,
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Suppose W is a solution of the following matrix Riccati equation,

W=-Q+WwWpPw.
Then we have
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Note that since P is symmetric and positive definite, P2 is well
defined
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Riccati equation

Proposition
Suppose W is a solution of the following matrix Riccati equation,

W=-Q+WP'w.
Then we have
(i) +2(Wai) + ((Q+ W) v
- ’P%@/}+P*%W¢‘2.

Note that since P is symmetric and positive definite, P2 is well
defined and is itself symmetric
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Riccati equation

Proposition
Suppose W is a solution of the following matrix Riccati equation,

W=-Q+WP'w.
Then we have
(i) +2(Wai) + ((Q+ W) v
- ’P%@/}+P*%W¢‘2.

Note that since P is symmetric and positive definite, P2 is well
defined and is itself symmetric and positive definite.
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To solve the Riccati equation

W=-Q+WP'w,

Second Variation

let us substitute _ e
W= —Pyw1

Plugging it in the Riccati equation, we obtain
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To solve the Riccati equation
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Second Variation

let us substitute _ e
W= —Pyw1

Plugging it in the Riccati equation, we obtain

% (Pw') — Qu.
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To solve the Riccati equation

W=-Q+WP'w,
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let us substitute _ e
W=—pow1
Plugging it in the Riccati equation, we obtain
d .
a PlI/) - Qu.
5 (P7) =@

Any solution ¥ of the above equation
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To solve the Riccati equation
W=-Q+WP'w,
let us substitute
W= —Pyyt,
Plugging it in the Riccati equation, we obtain
d .
= (P#) = qu.

Any solution ¥ of the above equation would furnish a solution W
of the Riccati equation
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To solve the Riccati equation

W=-Q+WP'w,

Hamilton-Jacobi equation:

Second Variation

let us substitute _ e
W=—pow1

Plugging it in the Riccati equation, we obtain

d ]

= (P¥) = qw.

a (P7) =@

Any solution ¥ of the above equation would furnish a solution W
of the Riccati equation if ¥ is invertible.
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To solve the Riccati equation
W=—-Q+WP'w,

let us substitute _
W=—pow1
Plugging it in the Riccati equation, we obtain

% (Pw') — Qu.

Any solution ¥ of the above equation would furnish a solution W
of the Riccati equation if ¥ is invertible.

However, the equation above has another nice interpretation.
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To solve the Riccati equation
W=—-Q+WP'w,

let us substitute _
W=—pow1
Plugging it in the Riccati equation, we obtain

% (Pw') — Qu.

Any solution ¥ of the above equation would furnish a solution W
of the Riccati equation if ¥ is invertible.

However, the equation above has another nice interpretation.
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We again consider the second variation itself as an integral
functional

Introduction to the
Calculus of Variations

Swarnendu Sil

Symmetry and Noether's

theorem

> + (@1, L’ﬁ dt, NS Cl, Y (a)
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The Euler-Lagrange equation to this variational problem is
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We again consider the second variation itself as an integral

functional
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theorem

J[W] = ./a.b K'DL/ j

> +(Q, L’ﬁ dt,
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Jacobi equations

Secgnd Variation

Qe

The Euler-Lagrange equation to this variational problem is

qa
dt

(P) = Qu.
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We again consider the second variation itself as an integral
functional

Secgnd Variation

I = /b KP@ L> + <Qw,w>} dt, e CL(a) =1 (b) = Of

The Euler-Lagrange equation to this variational problem is

% <Pz> = Q.

This is called the Jacobi equation
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We again consider the second variation itself as an integral
functional

I = /b [(Pd

The Euler-Lagrange equation to this variational problem is

% <Pz> = Q.

ton-Jacobi equations
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This is called the Jacobi equation and its solutions ( for a given
u ) is called
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We again consider the second variation itself as an integral
functional

I = /b [(Pd

The Euler-Lagrange equation to this variational problem is

Secgnd Variation

+ (Q, uﬁ dt, e CLy (a) = ¢ (b) = O

This is called the Jacobi equation and its solutions ( for a given
u ) is called a Jacobi field along wv.
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We again consider the second variation itself as an integral
functional

J[¢] = /b (X

The Euler-Lagrange equation to this variational problem is

% <P4§x> = Q.

Jacobi equations

Secgnd Variation

QU )] dt, v Chy(a) = w(b) = 0

This is called the Jacobi equation and its solutions ( for a given
u ) is called a Jacobi field along u. Before proceeding further, we
need the notion of conjugate points.
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Definition
Let ¥ be the matrix of N solutions of the Jacobi equation, i.e. B
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Examples

where ¥1,..., 9N
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where 11, ..., ¥ solves the Jacobi equation and satisfies
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