Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's theorem Hamilton-Jacobi equations Second Variation Examples

The End

Introduction to the Calculus of Variations: Lecture 6

Swarnendu Sil

Department of Mathematics Indian Institute of Science

Spring Semester 2021

Outline

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's theorem Hamilton-Jacobi equations Second Variation Examples

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's theorem Hamilton-Jacobi equations Second Variation Examples

Recap I

We calculated the second variation of a functional.

Theorem (Second Variation)

Let
$$f = f(t, u, \xi) \in \mathbb{C}^3([a, b] \times \mathbb{R}^N \times \mathbb{R}^N), \alpha, \beta \in \mathbb{R}^N,$$

 $X = \{u \in \mathbb{C}^1([a, b]; \mathbb{R}^N) : u(a) = \alpha, u(b) = \beta\}.$

$$(P) \quad \inf_{u \in X} \left\{ I(u) = \int_a^b f(t, u(t), \dot{u}(t)) \, \mathrm{d}t \right\} = m.$$

For any minimizer $\bar{u} \in X \cap C^2$ for (P), the integral

$$\int_{a}^{b} \left[\left\langle f_{uu}\left(t,\bar{u},\dot{\bar{u}}\right)\psi,\psi\right\rangle + 2\left\langle f_{u\xi}\left(t,\bar{u},\dot{\bar{u}}\right)\psi,\dot{\psi}\right\rangle + \left\langle f_{\xi\xi}\left(t,\bar{u},\dot{\bar{u}}\right)\dot{\psi},\dot{\psi}\right\rangle \right] \,\mathrm{d}t$$

is nonnegative for any $\psi \in C_c^1\left([a,b];\mathbb{R}^N\right)$.

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's theorem

Hamilton-Jacobi equations

Second Variation

Examples

L - . -

Introduction to the Calculus of Variations

We have also rewritten the integral as

$$\int_{a}^{b} \left[\left\langle \left[f_{uu}\left(t,\bar{u},\dot{\bar{u}}\right) - \frac{d}{dt} f_{u\xi}\left(t,\bar{u},\dot{\bar{u}}\right) \right] \psi,\psi \right\rangle + \left\langle f_{\xi\xi}\left(t,\bar{u},\dot{\bar{u}}\right) \dot{\psi},\dot{\psi} \right\rangle \right] \, \mathrm{d}t$$

Now we want to show that for this expression to be nonnegative for every $\psi \in C^1_c\left([a,b];\mathbb{R}^N
ight), f_{\xi\xi}$ must be nonnegative definite everywhere.

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations

First integrals

Symmetry and Noether's theorem

lamilton-Jacobi equations

Second Variation

Examples

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations

First integrals

Symmetry and Noether's theorem

lamilton-Jacobi equations

Second Variation

Examples

Lemma

If the following inequality

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations

First integrals

Symmetry and Noether's theorem

lamilton-Jacobi equations

Second Variation

Examples

If the following inequality

$$\int_{a}^{b} \left[\left\langle \left[f_{uu}\left(t,\bar{u},\dot{\bar{u}}\right) - \frac{d}{dt} f_{u\xi}\left(t,\bar{u},\dot{\bar{u}}\right) \right] \psi,\psi \right\rangle + \left\langle f_{\xi\xi}\left(t,\bar{u},\dot{\bar{u}}\right) \dot{\psi},\dot{\psi} \right\rangle \\ \ge 0,$$

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's CHT Hamilton-Jacobi equation Second Variation

Examples

If the following inequality

$$\int_{a}^{b} \left[\left\langle \left[f_{uu}\left(t,\bar{u},\dot{\bar{u}}\right) - \frac{d}{dt} f_{u\xi}\left(t,\bar{u},\dot{\bar{u}}\right) \right] \psi,\psi \right\rangle + \left\langle f_{\xi\xi}\left(t,\bar{u},\dot{\bar{u}}\right) \dot{\psi},\dot{\psi} \right\rangle \\ \ge 0,$$

holds for every $\psi \in C_c^1([a, b]; \mathbb{R}^N)$,

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's Hamilton-Jacobi equation: Second Variation

Examples

If the following inequality

$$\int_{a}^{b} \left[\left\langle \left[f_{uu}\left(t,\bar{u},\dot{\bar{u}}\right) - \frac{d}{dt} f_{u\xi}\left(t,\bar{u},\dot{\bar{u}}\right) \right] \psi,\psi \right\rangle + \left\langle f_{\xi\xi}\left(t,\bar{u},\dot{\bar{u}}\right) \dot{\psi},\dot{\psi} \right\rangle \right. \\ \ge 0,$$

holds for every $\psi \in C_c^1\left([a,b];\mathbb{R}^N\right)$, then the matrix $f_{\xi\xi}\left(t,\bar{u},\dot{\bar{u}}\right)$

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's Hamilton-Jacobi equations Second Variation

If the following inequality

$$\int_{a}^{b} \left[\left\langle \left[f_{uu}\left(t,\bar{u},\dot{\bar{u}}\right) - \frac{d}{dt} f_{u\xi}\left(t,\bar{u},\dot{\bar{u}}\right) \right] \psi,\psi \right\rangle + \left\langle f_{\xi\xi}\left(t,\bar{u},\dot{\bar{u}}\right) \dot{\psi},\dot{\psi} \right\rangle \right] \\ \geq 0,$$

holds for every $\psi \in C_c^1([a, b]; \mathbb{R}^N)$, then the matrix $f_{\xi\xi}(t, \bar{u}, \dot{\bar{u}})$ is nonnegative definite

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's Hamilton-Jacobi equations Second Variation

If the following inequality

$$\int_{a}^{b} \left[\left\langle \left[f_{uu}\left(t,\bar{u},\dot{\bar{u}}\right) - \frac{d}{dt} f_{u\xi}\left(t,\bar{u},\dot{\bar{u}}\right) \right] \psi,\psi \right\rangle + \left\langle f_{\xi\xi}\left(t,\bar{u},\dot{\bar{u}}\right) \dot{\psi},\dot{\psi} \right\rangle \right] \\ \geq 0,$$

holds for every $\psi \in C_c^1([a,b]; \mathbb{R}^N)$, then the matrix $f_{\xi\xi}(t, \bar{u}, \dot{\bar{u}})$ is nonnegative definite for every $t \in (a, b)$.

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's Hamilton-Jacobi equations Second Variation

If the following inequality

$$\int_{a}^{b} \left[\left\langle \left[f_{uu}\left(t,\bar{u},\dot{\bar{u}}\right) - \frac{d}{dt} f_{u\xi}\left(t,\bar{u},\dot{\bar{u}}\right) \right] \psi,\psi \right\rangle + \left\langle f_{\xi\xi}\left(t,\bar{u},\dot{\bar{u}}\right) \dot{\psi},\dot{\psi} \right\rangle \right] \\ \geq 0,$$

holds for every $\psi \in C_c^1([a,b]; \mathbb{R}^N)$, then the matrix $f_{\xi\xi}(t, \bar{u}, \dot{\bar{u}})$ is nonnegative definite for every $t \in (a, b)$.

Proof. If $f_{\xi\xi} < 0$ for some $t_0 \in (a, b)$,

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's Term Hamilton-Jacobi equations Second Variation Framples

If the following inequality

$$\int_{a}^{b} \left[\left\langle \left[f_{uu}\left(t,\bar{u},\dot{\bar{u}}\right) - \frac{d}{dt} f_{u\xi}\left(t,\bar{u},\dot{\bar{u}}\right) \right] \psi,\psi \right\rangle + \left\langle f_{\xi\xi}\left(t,\bar{u},\dot{\bar{u}}\right) \dot{\psi},\dot{\psi} \right\rangle \right] \\ \geq 0,$$

holds for every $\psi \in C_c^1([a,b]; \mathbb{R}^N)$, then the matrix $f_{\xi\xi}(t, \bar{u}, \dot{\bar{u}})$ is nonnegative definite for every $t \in (a, b)$.

Proof. If $f_{\xi\xi} < 0$ for some $t_0 \in (a, b)$, this means there exist a $\zeta \in \mathbb{R}^N$

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's Term Hamilton-Jacobi equations Second Variation Examples

If the following inequality

$$\int_{a}^{b} \left[\left\langle \left[f_{uu}\left(t,\bar{u},\dot{\bar{u}}\right) - \frac{d}{dt} f_{u\xi}\left(t,\bar{u},\dot{\bar{u}}\right) \right] \psi,\psi \right\rangle + \left\langle f_{\xi\xi}\left(t,\bar{u},\dot{\bar{u}}\right) \dot{\psi},\dot{\psi} \right\rangle \\ \geq 0,$$

holds for every $\psi \in C_c^1([a,b]; \mathbb{R}^N)$, then the matrix $f_{\xi\xi}(t, \bar{u}, \dot{\bar{u}})$ is nonnegative definite for every $t \in (a, b)$.

Proof. If $f_{\xi\xi} < 0$ for some $t_0 \in (a, b)$, this means there exist a $\zeta \in \mathbb{R}^N$ and $\beta > 0$

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's Term Hamilton-Jacobi equations Second Variation Examples

If the following inequality

$$\int_{a}^{b} \left[\left\langle \left[f_{uu}\left(t,\bar{u},\dot{\bar{u}}\right) - \frac{d}{dt} f_{u\xi}\left(t,\bar{u},\dot{\bar{u}}\right) \right] \psi,\psi \right\rangle + \left\langle f_{\xi\xi}\left(t,\bar{u},\dot{\bar{u}}\right) \dot{\psi},\dot{\psi} \right\rangle \\ \geq 0,$$

holds for every $\psi \in C_c^1([a,b]; \mathbb{R}^N)$, then the matrix $f_{\xi\xi}(t, \bar{u}, \dot{\bar{u}})$ is nonnegative definite for every $t \in (a, b)$.

Proof. If $f_{\xi\xi} < 0$ for some $t_0 \in (a, b)$, this means there exist a $\zeta \in \mathbb{R}^N$ and $\beta > 0$ such that

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's Term Hamilton-Jacobi equations Second Variation Examples

If the following inequality

$$\int_{a}^{b} \left[\left\langle \left[f_{uu}\left(t,\bar{u},\dot{\bar{u}}\right) - \frac{d}{dt} f_{u\xi}\left(t,\bar{u},\dot{\bar{u}}\right) \right] \psi,\psi \right\rangle + \left\langle f_{\xi\xi}\left(t,\bar{u},\dot{\bar{u}}\right) \dot{\psi},\dot{\psi} \right\rangle \\ \geq 0,$$

holds for every $\psi \in C_c^1([a,b]; \mathbb{R}^N)$, then the matrix $f_{\xi\xi}(t, \bar{u}, \dot{\bar{u}})$ is nonnegative definite for every $t \in (a, b)$.

Proof. If $f_{\xi\xi} < 0$ for some $t_0 \in (a, b)$, this means there exist a $\zeta \in \mathbb{R}^N$ and $\beta > 0$ such that

$$\left\langle f_{\xi\xi}\left(t_{0},\bar{u}\left(t_{0}\right),\dot{\bar{u}}\left(t_{0}\right)\right)\zeta,\zeta\right\rangle <-eta.$$

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's Trem Hamilton-Jacobi equations Second Variation Examples

If the following inequality

$$\int_{a}^{b} \left[\left\langle \left[f_{uu}\left(t,\bar{u},\dot{\bar{u}}\right) - \frac{d}{dt} f_{u\xi}\left(t,\bar{u},\dot{\bar{u}}\right) \right] \psi,\psi \right\rangle + \left\langle f_{\xi\xi}\left(t,\bar{u},\dot{\bar{u}}\right) \dot{\psi},\dot{\psi} \right\rangle \\ \geq 0,$$

holds for every $\psi \in C_c^1([a,b]; \mathbb{R}^N)$, then the matrix $f_{\xi\xi}(t, \bar{u}, \dot{\bar{u}})$ is nonnegative definite for every $t \in (a, b)$.

Proof. If $f_{\xi\xi} < 0$ for some $t_0 \in (a, b)$, this means there exist a $\zeta \in \mathbb{R}^N$ and $\beta > 0$ such that

$$\left\langle f_{\xi\xi}\left(t_{0},\bar{u}\left(t_{0}\right),\dot{\bar{u}}\left(t_{0}\right)\right)\zeta,\zeta\right\rangle <-eta.$$

By continuity of $f_{\xi\xi}$,

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's Trem Hamilton-Jacobi equation: Second Variation Examples

If the following inequality

$$\int_{a}^{b} \left[\left\langle \left[f_{uu}\left(t,\bar{u},\dot{\bar{u}}\right) - \frac{d}{dt} f_{u\xi}\left(t,\bar{u},\dot{\bar{u}}\right) \right] \psi,\psi \right\rangle + \left\langle f_{\xi\xi}\left(t,\bar{u},\dot{\bar{u}}\right) \dot{\psi},\dot{\psi} \right\rangle \\ \geq 0,$$

holds for every $\psi \in C_c^1([a,b]; \mathbb{R}^N)$, then the matrix $f_{\xi\xi}(t, \bar{u}, \dot{\bar{u}})$ is nonnegative definite for every $t \in (a, b)$.

Proof. If $f_{\xi\xi} < 0$ for some $t_0 \in (a, b)$, this means there exist a $\zeta \in \mathbb{R}^N$ and $\beta > 0$ such that

$$\left\langle f_{\xi\xi}\left(t_{0},\bar{u}\left(t_{0}\right),\dot{\bar{u}}\left(t_{0}\right)\right)\zeta,\zeta\right\rangle <-eta.$$

By continuity of $f_{\xi\xi}$, we can assume there exists $\alpha > 0$

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's Frem Hamilton-Jacobi equation: Second Variation Examples

If the following inequality

$$\int_{a}^{b} \left[\left\langle \left[f_{uu}\left(t,\bar{u},\dot{\bar{u}}\right) - \frac{d}{dt} f_{u\xi}\left(t,\bar{u},\dot{\bar{u}}\right) \right] \psi,\psi \right\rangle + \left\langle f_{\xi\xi}\left(t,\bar{u},\dot{\bar{u}}\right) \dot{\psi},\dot{\psi} \right\rangle \\ \geq 0,$$

holds for every $\psi \in C_c^1([a,b]; \mathbb{R}^N)$, then the matrix $f_{\xi\xi}(t, \bar{u}, \dot{\bar{u}})$ is nonnegative definite for every $t \in (a, b)$.

Proof. If $f_{\xi\xi} < 0$ for some $t_0 \in (a, b)$, this means there exist a $\zeta \in \mathbb{R}^N$ and $\beta > 0$ such that

$$\left\langle f_{\xi\xi}\left(t_{0},\bar{u}\left(t_{0}\right),\dot{\bar{u}}\left(t_{0}\right)\right)\zeta,\zeta\right\rangle <-eta.$$

By continuity of $f_{\xi\xi}$, we can assume there exists $\alpha > 0$ such that $a < t_0 - \alpha < t_0 + \alpha < b$ and we have

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's Trem Hamilton-Jacobi equation: Second Variation Examples

If the following inequality

$$\int_{a}^{b} \left[\left\langle \left[f_{uu}\left(t,\bar{u},\dot{\bar{u}}\right) - \frac{d}{dt} f_{u\xi}\left(t,\bar{u},\dot{\bar{u}}\right) \right] \psi,\psi \right\rangle + \left\langle f_{\xi\xi}\left(t,\bar{u},\dot{\bar{u}}\right) \dot{\psi},\dot{\psi} \right\rangle \\ \geq 0,$$

holds for every $\psi \in C_c^1([a,b]; \mathbb{R}^N)$, then the matrix $f_{\xi\xi}(t, \bar{u}, \dot{\bar{u}})$ is nonnegative definite for every $t \in (a, b)$.

Proof. If $f_{\xi\xi} < 0$ for some $t_0 \in (a, b)$, this means there exist a $\zeta \in \mathbb{R}^N$ and $\beta > 0$ such that

$$\left\langle f_{\xi\xi}\left(t_{0},\bar{u}\left(t_{0}\right),\dot{\bar{u}}\left(t_{0}\right)\right)\zeta,\zeta\right\rangle <-eta.$$

By continuity of $f_{\xi\xi}$, we can assume there exists $\alpha > 0$ such that $a < t_0 - \alpha < t_0 + \alpha < b$ and we have

 $\left\langle f_{\xi\xi}\left(t,ar{u}\left(t
ight),\dot{ar{u}}\left(t
ight)
ight)\zeta,\zeta
ight
angle <-eta$ for all $t\in[t_{0}-lpha,t_{0}+lpha].$

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's Term Hamilton-Jacobi equation Second Variation Examples

Choose

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations

First integrals

Symmetry and Noether's theorem

lamilton-Jacobi equations

Second Variation

Examples

Choose

$$\psi(t) = \begin{cases} \alpha \sin^2 \left[\frac{\pi (t - t_0)}{\alpha} \right] \zeta & \text{if } t \in [t_0 - \alpha, t_0 + \alpha] \\ 0 & \text{otherwise.} \end{cases}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals

Symmetry and Noether's theorem

lamilton-Jacobi equations

Second Variation

Examples

Choose

$$\psi(t) = \begin{cases} \alpha \sin^2 \left[\frac{\pi (t - t_0)}{\alpha} \right] \zeta & \text{if } t \in [t_0 - \alpha, t_0 + \alpha] \\ 0 & \text{otherwise.} \end{cases}$$

Clearly $\psi \in C_c^1([a, b]; \mathbb{R}^N)$

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals

Symmetry and Noether's theorem

Hamilton-Jacobi equations

Second Variation

Examples

Choose

$$\psi(t) = \begin{cases} \alpha \sin^2 \left[\frac{\pi (t - t_0)}{\alpha} \right] \zeta & \text{if } t \in [t_0 - \alpha, t_0 + \alpha] \\ 0 & \text{otherwise.} \end{cases}$$

Clearly $\psi \in C_c^1([a, b]; \mathbb{R}^N)$ and plugging it, we obtain

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's

lamilton-Jacobi equations

Second Variation

Examples

Choose

$$\psi(t) = \begin{cases} \alpha \sin^2 \left[\frac{\pi (t - t_0)}{\alpha} \right] \zeta & \text{if } t \in [t_0 - \alpha, t_0 + \alpha] \\ 0 & \text{otherwise.} \end{cases}$$

Clearly $\psi \in C^1_c\left([a,b];\mathbb{R}^N
ight)$ and plugging it, we obtain

$$\pi^{2} \int_{t_{0}-\alpha}^{t_{0}+\alpha} \sin^{2}\left[\frac{2\pi\left(t-t_{0}\right)}{\alpha}\right] \left\langle f_{\xi\xi}\left(t,\bar{u}\left(t\right),\dot{\bar{u}}\left(t\right)\right)\zeta,\zeta\right\rangle \, \mathrm{d}t$$

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's theorem

Second Variation

Examples

Choose

4 1 m.

-

$$\psi(t) = \begin{cases} \alpha \sin^2 \left[\frac{\pi (t - t_0)}{\alpha} \right] \zeta & \text{if } t \in [t_0 - \alpha, t_0 + \alpha] \\ 0 & \text{otherwise.} \end{cases}$$

Clearly $\psi \in C_c^1([a, b]; \mathbb{R}^N)$ and plugging it, we obtain · -

Introduction to the Calculus of Variations

Swarnendu Sil

Second Variation

$$\pi^{2} \int_{t_{0}-\alpha}^{t_{0}+\alpha} \sin^{2} \left[\frac{2\pi \left(t - t_{0} \right)}{\alpha} \right] \left\langle f_{\xi\xi} \left(t, \bar{u} \left(t \right), \dot{\bar{u}} \left(t \right) \right) \zeta, \zeta \right\rangle \, \mathrm{d}t \\ + \alpha^{2} \int_{t_{0}-\alpha}^{t_{0}+\alpha} \sin^{4} \left[\frac{\pi \left(t - t_{0} \right)}{\alpha} \right] \left\langle \left[f_{uu} \left(t, \bar{u}, \dot{\bar{u}} \right) - \frac{d}{dt} f_{u\xi} \left(t, \bar{u}, \dot{\bar{u}} \right) \right] \zeta, \zeta \right\rangle \, \mathrm{d}t \geq 0$$

Choose

$$\psi(t) = \begin{cases} \alpha \sin^2 \left[\frac{\pi (t - t_0)}{\alpha} \right] \zeta & \text{if } t \in [t_0 - \alpha, t_0 + \alpha] \\ 0 & \text{otherwise.} \end{cases}$$

Clearly $\psi \in C^1_c\left([a,b];\mathbb{R}^N
ight)$ and plugging it, we obtain

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's theorem Hamilton-Jacobi equations

Second Variation

Examples

The End

$$\pi^{2} \int_{t_{0}-\alpha}^{t_{0}+\alpha} \sin^{2} \left[\frac{2\pi \left(t - t_{0} \right)}{\alpha} \right] \left\langle f_{\xi\xi} \left(t, \bar{u} \left(t \right), \dot{\bar{u}} \left(t \right) \right) \zeta, \zeta \right\rangle \, \mathrm{d}t \\ + \alpha^{2} \int_{t_{0}-\alpha}^{t_{0}+\alpha} \sin^{4} \left[\frac{\pi \left(t - t_{0} \right)}{\alpha} \right] \left\langle \left[f_{uu} \left(t, \bar{u}, \dot{\bar{u}} \right) - \frac{d}{dt} f_{u\xi} \left(t, \bar{u}, \dot{\bar{u}} \right) \right] \zeta, \zeta \right\rangle \, \mathrm{d}t \geq 0$$

But this implies

Choose

$$\psi(t) = \begin{cases} \alpha \sin^2 \left[\frac{\pi (t - t_0)}{\alpha} \right] \zeta & \text{if } t \in [t_0 - \alpha, t_0 + \alpha] \\ 0 & \text{otherwise.} \end{cases}$$

Clearly $\psi \in C^1_c\left([a,b];\mathbb{R}^N
ight)$ and plugging it, we obtain

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's theorem Hamilton-Jacobi equations

Second Variation

Examples

The End

$$\pi^{2} \int_{t_{0}-\alpha}^{t_{0}+\alpha} \sin^{2} \left[\frac{2\pi \left(t - t_{0} \right)}{\alpha} \right] \left\langle f_{\xi\xi} \left(t, \bar{u} \left(t \right), \dot{\bar{u}} \left(t \right) \right) \zeta, \zeta \right\rangle \, \mathrm{d}t \\ + \alpha^{2} \int_{t_{0}-\alpha}^{t_{0}+\alpha} \sin^{4} \left[\frac{\pi \left(t - t_{0} \right)}{\alpha} \right] \left\langle \left[f_{uu} \left(t, \bar{u}, \dot{\bar{u}} \right) - \frac{d}{dt} f_{u\xi} \left(t, \bar{u}, \dot{\bar{u}} \right) \right] \zeta, \zeta \right\rangle \, \mathrm{d}t \geq 0$$

But this implies

$$2M\alpha^3 - 2\beta\pi^2\alpha \ge 0,$$

Choose

$$\psi(t) = \begin{cases} \alpha \sin^2 \left[\frac{\pi (t - t_0)}{\alpha} \right] \zeta & \text{if } t \in [t_0 - \alpha, t_0 + \alpha] \\ 0 & \text{otherwise.} \end{cases}$$

Clearly $\psi \in \mathit{C}^{1}_{c}\left([a,b];\mathbb{R}^{N}
ight)$ and plugging it, we obtain

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's theorem Hamilton, Jacobi equations

Second Variation

Examples

The End

$$\pi^{2} \int_{t_{0}-\alpha}^{t_{0}+\alpha} \sin^{2} \left[\frac{2\pi \left(t - t_{0} \right)}{\alpha} \right] \left\langle f_{\xi\xi} \left(t, \bar{u} \left(t \right), \dot{\bar{u}} \left(t \right) \right) \zeta, \zeta \right\rangle \, \mathrm{d}t \\ + \alpha^{2} \int_{t_{0}-\alpha}^{t_{0}+\alpha} \sin^{4} \left[\frac{\pi \left(t - t_{0} \right)}{\alpha} \right] \left\langle \left[f_{uu} \left(t, \bar{u}, \dot{\bar{u}} \right) - \frac{d}{dt} f_{u\xi} \left(t, \bar{u}, \dot{\bar{u}} \right) \right] \zeta, \zeta \right\rangle \, \mathrm{d}t \geq 0$$

But this implies

$$2M\alpha^3 - 2\beta\pi^2\alpha \ge 0,$$

where

$$M = \max_{t \in [t_0 - \alpha, t_0 + \alpha]} \left| \left\langle \left[f_{uu} \left(t, \bar{u}, \dot{\bar{u}} \right) - \frac{d}{dt} f_{u\xi} \left(t, \bar{u}, \dot{\bar{u}} \right) \right] \zeta, \zeta \right\rangle \right|.$$

But this means

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations

First integrals

Symmetry and Noether's theorem

lamilton-Jacobi equations

Second Variation

Examples

But this means

$$\beta \le \frac{M}{\pi^2} \alpha^2,$$

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations

First integrals

Symmetry and Noether's theorem

Hamilton-Jacobi equations

Second Variation

Examples

But this means

$$\beta \leq \frac{M}{\pi^2} \alpha^2,$$

which we can easily contradict by letting $\alpha \rightarrow 0$. So we deduce

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation

First integrals

Symmetry and Noether's theorem

lamilton-Jacobi equations

Second Variation

Examples

But this means

$$\beta \le \frac{M}{\pi^2} \alpha^2,$$

which we can easily contradict by letting $\alpha \rightarrow 0$. So we deduce

 $\left\langle f_{\xi\xi}\left(t,ar{u}\left(t
ight),ar{u}\left(t
ight)
ight)\zeta,\zeta
ight
ight
angle\geq0$ for all $\zeta\in\mathbb{R}^{N},$ for all $t\in(a,b).$

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals

symmetry and Noether's heorem

lamilton-Jacobi equations

Second Variation

Examples

But this means

$$\beta \le \frac{M}{\pi^2} \alpha^2,$$

which we can easily contradict by letting $\alpha \rightarrow$ 0. So we deduce

 $\left\langle f_{\xi\xi}\left(t,ar{u}\left(t
ight),ar{u}\left(t
ight)
ight)\zeta,\zeta
ight
ight
angle\geq0$ for all $\zeta\in\mathbb{R}^{N},$ for all $t\in(a,b).$

This proves the lemma.

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals

eorem

amilton-Jacobi equations

Second Variation

Examples

But this means

$$\beta \le \frac{M}{\pi^2} \alpha^2,$$

which we can easily contradict by letting $\alpha \rightarrow$ 0. So we deduce

 $\left\langle f_{\xi\xi}\left(t,ar{u}\left(t
ight),ar{u}\left(t
ight)
ight)\zeta,\zeta
ight
ight
angle\geq0$ for all $\zeta\in\mathbb{R}^{N},$ for all $t\in(a,b).$

This proves the lemma.

This condition is known as the

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's

leorem

amilton-Jacobi equation

Second Variation

Examples

But this means

$$\beta \le \frac{M}{\pi^2} \alpha^2,$$

which we can easily contradict by letting $\alpha \rightarrow 0$. So we deduce

 $\left\langle f_{\xi\xi}\left(t,ar{u}\left(t
ight),ar{u}\left(t
ight)
ight)\zeta,\zeta
ight
ight
angle\geq0$ for all $\zeta\in\mathbb{R}^{N},$ for all $t\in(a,b).$

This proves the lemma.

This condition is known as the **Legendre condition**.

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's theorem

amilton-Jacobi equations

Second Variation

Examples

But this means

$$\beta \le \frac{M}{\pi^2} \alpha^2,$$

which we can easily contradict by letting $\alpha \rightarrow$ 0. So we deduce

 $\left\langle f_{\xi\xi}\left(t,ar{u}\left(t
ight),ar{u}\left(t
ight)
ight)\zeta,\zeta
ight
ight
angle\geq0$ for all $\zeta\in\mathbb{R}^{N},$ for all $t\in(a,b).$

This proves the lemma.

This condition is known as the **Legendre condition**. This is implied by

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's theorem

amilton-Jacobi equation

Second Variation

Examples

But this means

$$\beta \le \frac{M}{\pi^2} \alpha^2,$$

which we can easily contradict by letting $\alpha \rightarrow 0$. So we deduce

 $\left\langle f_{\xi\xi}\left(t,ar{u}\left(t
ight),ar{u}\left(t
ight)
ight)\zeta,\zeta
ight
ight
angle\geq0$ for all $\zeta\in\mathbb{R}^{N},$ for all $t\in(a,b).$

This proves the lemma.

This condition is known as the **Legendre condition**. This is implied by **convexity** of the map $\xi \mapsto f(t, u, \xi)$.

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's theorem

amilton-Jacobi equat

Second Variation

Examples

But this means

$$\beta \le \frac{M}{\pi^2} \alpha^2,$$

which we can easily contradict by letting $\alpha \rightarrow 0$. So we deduce

 $\left\langle f_{\xi\xi}\left(t,ar{u}\left(t
ight),ar{u}\left(t
ight)
ight)\zeta,\zeta
ight
ight
angle\geq0$ for all $\zeta\in\mathbb{R}^{N},$ for all $t\in(a,b).$

This proves the lemma.

This condition is known as the **Legendre condition**. This is implied by **convexity** of the map $\xi \mapsto f(t, u, \xi)$. If n > 1,

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's theorem

Second Variation

Examples

But this means

$$\beta \le \frac{M}{\pi^2} \alpha^2,$$

which we can easily contradict by letting $\alpha \rightarrow$ 0. So we deduce

 $\left\langle f_{\xi\xi}\left(t,ar{u}\left(t
ight),ar{u}\left(t
ight)
ight)\zeta,\zeta
ight
ight
angle\geq0$ for all $\zeta\in\mathbb{R}^{N},$ for all $t\in(a,b).$

This proves the lemma.

This condition is known as the **Legendre condition**. This is implied by **convexity** of the map $\xi \mapsto f(t, u, \xi)$. If n > 1, the corresponding condition is called the

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's theorem Hamilton- Jacobi equations

Second Variation

Examples

But this means

$$\beta \le \frac{M}{\pi^2} \alpha^2,$$

which we can easily contradict by letting $\alpha \rightarrow$ 0. So we deduce

 $\left\langle f_{\xi\xi}\left(t,ar{u}\left(t
ight),ar{u}\left(t
ight)
ight)\zeta,\zeta
ight
ight
angle\geq0$ for all $\zeta\in\mathbb{R}^{N},$ for all $t\in(a,b).$

This proves the lemma.

This condition is known as the **Legendre condition**. This is implied by **convexity** of the map $\xi \mapsto f(t, u, \xi)$. If n > 1, the corresponding condition is called the **Legendre-Hadamard condition**.

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's theorem Hamilton, Jacobi equation

Second Variation

Examples

But this means

$$\beta \le \frac{M}{\pi^2} \alpha^2,$$

which we can easily contradict by letting $\alpha \rightarrow$ 0. So we deduce

 $\left\langle f_{\xi\xi}\left(t,ar{u}\left(t
ight),ar{u}\left(t
ight)
ight)\zeta,\zeta
ight
ight
angle\geq0$ for all $\zeta\in\mathbb{R}^{N},$ for all $t\in(a,b).$

This proves the lemma.

This condition is known as the **Legendre condition**. This is implied by **convexity** of the map $\xi \mapsto f(t, u, \xi)$. If n > 1, the corresponding condition is called the **Legendre-Hadamard condition**.

 $\langle f_{\xi\xi}\left(x, \bar{u}\left(x
ight), D\bar{u}\left(x
ight)
ight) a \otimes b, a \otimes b
angle \geq 0$

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's theorem Hamilton-Jacobi equations

Second Variation

Examples

But this means

$$\beta \le \frac{M}{\pi^2} \alpha^2,$$

which we can easily contradict by letting $\alpha \rightarrow$ 0. So we deduce

 $\left\langle f_{\xi\xi}\left(t,ar{u}\left(t
ight),ar{u}\left(t
ight)
ight)\zeta,\zeta
ight
ight
angle\geq0$ for all $\zeta\in\mathbb{R}^{N},$ for all $t\in(a,b).$

This proves the lemma.

This condition is known as the **Legendre condition**. This is implied by **convexity** of the map $\xi \mapsto f(t, u, \xi)$. If n > 1, the corresponding condition is called the **Legendre-Hadamard condition**.

 $\langle f_{\xi\xi}\left(x, \bar{u}\left(x\right), D\bar{u}\left(x\right)
ight) a \otimes b, a \otimes b \rangle \geq 0$

for all $a \in \mathbb{R}^n$, $b \in \mathbb{R}^N$ and for all $x \in \Omega$.

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's theorem Hamilton-Jacobi equations

Second Variation

Examples

But this means

$$\beta \le \frac{M}{\pi^2} \alpha^2,$$

which we can easily contradict by letting $\alpha \rightarrow$ 0. So we deduce

 $\left\langle f_{\xi\xi}\left(t,ar{u}\left(t
ight),ar{u}\left(t
ight)
ight)\zeta,\zeta
ight
ight
angle\geq0$ for all $\zeta\in\mathbb{R}^{N},$ for all $t\in(a,b).$

This proves the lemma.

This condition is known as the **Legendre condition**. This is implied by **convexity** of the map $\xi \mapsto f(t, u, \xi)$. If n > 1, the corresponding condition is called the **Legendre-Hadamard condition**.

 $\langle f_{\xi\xi}(x, \bar{u}(x), D\bar{u}(x)) a \otimes b, a \otimes b \rangle \geq 0$

for all $a \in \mathbb{R}^n$, $b \in \mathbb{R}^N$ and for all $x \in \Omega$. This is weaker than the Legendre condition in that case

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's theorem Hamilton-Jacobi equations

Second Variation

Examples

But this means

$$\beta \le \frac{M}{\pi^2} \alpha^2,$$

which we can easily contradict by letting $\alpha \rightarrow$ 0. So we deduce

 $\left\langle f_{\xi\xi}\left(t,ar{u}\left(t
ight),ar{u}\left(t
ight)
ight)\zeta,\zeta
ight
ight
angle\geq0$ for all $\zeta\in\mathbb{R}^{N},$ for all $t\in(a,b).$

This proves the lemma.

This condition is known as the **Legendre condition**. This is implied by **convexity** of the map $\xi \mapsto f(t, u, \xi)$. If n > 1, the corresponding condition is called the **Legendre-Hadamard condition**.

 $\langle f_{\xi\xi}(x, \bar{u}(x), D\bar{u}(x)) a \otimes b, a \otimes b \rangle \geq 0$

for all $a \in \mathbb{R}^n$, $b \in \mathbb{R}^N$ and for all $x \in \Omega$. This is weaker than the Legendre condition in that case (convexity only along rank one matrices).

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's theorem Hamilton-Jacobi equations

Second Variation

Examples

Towards a sufficient condition

Possible candidate for sufficiency

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations

First integrals

Symmetry and Noether's theorem

lamilton-Jacobi equations

Second Variation

Examples

Towards a sufficient condition

Possible candidate for sufficiency Can $f_{\xi\xi} \ge 0$ be a sufficient condition? Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation

First integrals

Symmetry and Noether's theorem

lamilton-Jacobi equations

Second Variation

Examples

Can $f_{\xi\xi} \ge 0$ be a sufficient condition? Clearly not!

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations

First integrals

Symmetry and Noether's theorem

lamilton-Jacobi equations

Second Variation

Examples

Can $f_{\xi\xi} \ge 0$ be a sufficient condition? Clearly not! Think of $f(x) = x^3$. Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations

First integrals

Symmetry and Noether's heorem

Hamilton-Jacobi equations

Second Variation

Examples

Can $f_{\xi\xi} \ge 0$ be a sufficient condition? Clearly not! Think of $f(x) = x^3$. x = 0 is not a minima! Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations

First integrals

Symmetry and Noether's theorem

Hamilton-Jacobi equations

Second Variation

Examples

Can $f_{\xi\xi} \ge 0$ be a sufficient condition? Clearly not! Think of $f(x) = x^3$. x = 0 is not a minima! Can $f_{\xi\xi} > 0$, Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations

First integrals

Symmetry and Noether's theorem

Hamilton-Jacobi equations

Second Variation

Examples

Can $f_{\xi\xi} \ge 0$ be a sufficient condition? Clearly not! Think of $f(x) = x^3$. x = 0 is not a minima! Can $f_{\xi\xi} > 0$, i.e. positive definite instead of nonnegative definite,

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals

Symmetry and Noether's theorem

lamilton-Jacobi equations

Second Variation

Examples

Can $f_{\xi\xi} \ge 0$ be a sufficient condition? Clearly not! Think of $f(x) = x^3$. x = 0 is not a minima! Can $f_{\xi\xi} > 0$, i.e. positive definite instead of nonnegative definite, be a sufficient condition?

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals

ymmetry and Noether's heorem

lamilton-Jacobi equations

Second Variation

Examples

Can $f_{\xi\xi} \ge 0$ be a sufficient condition? Clearly not! Think of $f(x) = x^3$. x = 0 is not a minima! Can $f_{\xi\xi} > 0$, i.e. positive definite instead of nonnegative definite, be a sufficient condition?

Somewhat surprisingly, the answer is still No!

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals

ymmetry and Noether's heorem

lamilton-Jacobi equations

Second Variation

Examples

Can $f_{\xi\xi} \ge 0$ be a sufficient condition? Clearly not! Think of $f(x) = x^3$. x = 0 is not a minima! Can $f_{\xi\xi} > 0$, i.e. positive definite instead of nonnegative definite, be a sufficient condition? Somewhat surprisingly, the answer is still No!

Understanding the trouble

The reason is that the condition is purely local,

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's

amilton- lacobi equations

Second Variation

Examples

Can $f_{\xi\xi} \ge 0$ be a sufficient condition? Clearly not! Think of $f(x) = x^3$. x = 0 is not a minima! Can $f_{\xi\xi} > 0$, i.e. positive definite instead of nonnegative definite, be a sufficient condition? Somewhat surprisingly, the answer is still No!

Understanding the trouble

The reason is that the condition is purely local, whereas being a minimizer is not really a local property.

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's theorem

amilton-Jacobi equation

Second Variation

Examples

Can $f_{\xi\xi} \ge 0$ be a sufficient condition? Clearly not! Think of $f(x) = x^3$. x = 0 is not a minima! Can $f_{\xi\xi} > 0$, i.e. positive definite instead of nonnegative definite, be a sufficient condition? Somewhat surprisingly, the answer is still No!

Understanding the trouble

The reason is that the condition is purely local, whereas being a minimizer is not really a local property. We go back to geodesics.

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's theorem

Second Variation

Examples

Can $f_{\xi\xi} \ge 0$ be a sufficient condition? Clearly not! Think of $f(x) = x^3$. x = 0 is not a minima! Can $f_{\xi\xi} > 0$, i.e. positive definite instead of nonnegative definite, be a sufficient condition? Somewhat surprisingly, the answer is still No!

Understanding the trouble

The reason is that the condition is purely local, whereas being a minimizer is not really a local property. We go back to geodesics. Think of the unit sphere in \mathbb{R}^3 centered at the origin

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's theorem

Second Variation

Examples

Can $f_{\xi\xi} \ge 0$ be a sufficient condition? Clearly not! Think of $f(x) = x^3$. x = 0 is not a minima! Can $f_{\xi\xi} > 0$, i.e. positive definite instead of nonnegative definite, be a sufficient condition? Somewhat surprisingly, the answer is still No!

Understanding the trouble

The reason is that the condition is purely local, whereas being a minimizer is not really a local property. We go back to geodesics. Think of the unit sphere in \mathbb{R}^3 centered at the origin and consider the points A = (1,0,0), B = (0,1,0) and $C = (-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0)$.

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noother's theorem Hamilton-Jacobi equations

Second Variation

Examples

Can $f_{\xi\xi} \ge 0$ be a sufficient condition? Clearly not! Think of $f(x) = x^3$. x = 0 is not a minima! Can $f_{\xi\xi} > 0$, i.e. positive definite instead of nonnegative definite, be a sufficient condition? Somewhat surprisingly, the answer is still No!

Understanding the trouble

The reason is that the condition is purely local, whereas being a minimizer is not really a local property. We go back to geodesics. Think of the unit sphere in \mathbb{R}^3 centered at the origin and consider the points A = (1, 0, 0), B = (0, 1, 0) and $C = (-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0)$. All three points lie on the circle

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noother's theorem Hamilton-Jacobi equations

Second Variation

Examples

Can $f_{\xi\xi} \ge 0$ be a sufficient condition? Clearly not! Think of $f(x) = x^3$. x = 0 is not a minima! Can $f_{\xi\xi} > 0$, i.e. positive definite instead of nonnegative definite, be a sufficient condition? Somewhat surprisingly, the answer is still No!

Understanding the trouble

The reason is that the condition is purely local, whereas being a minimizer is not really a local property. We go back to geodesics. Think of the unit sphere in \mathbb{R}^3 centered at the origin and consider the points A = (1, 0, 0), B = (0, 1, 0) and $C = (-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0)$. All three points lie on the circle $\{(x, y, 0) : x^2 + y^2 = 1\}$,

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noother's theorem Hamilton-Jacobi equations

Second Variation

Examples

Can $f_{\xi\xi} \ge 0$ be a sufficient condition? Clearly not! Think of $f(x) = x^3$. x = 0 is not a minima! Can $f_{\xi\xi} > 0$, i.e. positive definite instead of nonnegative definite, be a sufficient condition? Somewhat surprisingly, the answer is still No!

Understanding the trouble

The reason is that the condition is purely local, whereas being a minimizer is not really a local property. We go back to geodesics. Think of the unit sphere in \mathbb{R}^3 centered at the origin and consider the points A = (1,0,0), B = (0,1,0) and $C = (-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0)$. All three points lie on the circle $\{(x, y, 0) : x^2 + y^2 = 1\}$, which being a great circle

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noother's theorem Hamilton-Jacobi equations

Second Variation

Examples

Can $f_{\xi\xi} \ge 0$ be a sufficient condition? Clearly not! Think of $f(x) = x^3$. x = 0 is not a minima! Can $f_{\xi\xi} > 0$, i.e. positive definite instead of nonnegative definite, be a sufficient condition? Somewhat surprisingly, the answer is still No!

Understanding the trouble

The reason is that the condition is purely local, whereas being a minimizer is not really a local property. We go back to geodesics. Think of the unit sphere in \mathbb{R}^3 centered at the origin and consider the points A = (1,0,0), B = (0,1,0) and $C = (-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0)$. All three points lie on the circle $\{(x, y, 0) : x^2 + y^2 = 1\}$, which being a great circle is a geodesic on the sphere.

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noother's theorem Hamilton-Jacobi equations

Second Variation

Examples

Can $f_{\xi\xi} \ge 0$ be a sufficient condition? Clearly not! Think of $f(x) = x^3$. x = 0 is not a minima! Can $f_{\xi\xi} > 0$, i.e. positive definite instead of nonnegative definite, be a sufficient condition?

Somewhat surprisingly, the answer is still No!

Understanding the trouble

The reason is that the condition is purely local, whereas being a minimizer is not really a local property. We go back to geodesics. Think of the unit sphere in \mathbb{R}^3 centered at the origin and consider the points A = (1,0,0), B = (0,1,0) and $C = (-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0)$. All three points lie on the circle $\{(x, y, 0) : x^2 + y^2 = 1\}$, which being a great circle is a geodesic on the sphere. Now, the part of the circle going from A to B is a minimizing path

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noother's theorem Hamilton-Jacobi equations

Second Variation

Examples

Can $f_{\xi\xi} \ge 0$ be a sufficient condition? Clearly not! Think of $f(x) = x^3$. x = 0 is not a minima! Can $f_{\xi\xi} > 0$, i.e. positive definite instead of nonnegative definite, be a sufficient condition? Somewhat surprisingly, the answer is still No!

Understanding the trouble

The reason is that the condition is purely local, whereas being a minimizer is not really a local property. We go back to geodesics. Think of the unit sphere in \mathbb{R}^3 centered at the origin and consider the points A = (1,0,0), B = (0,1,0) and $C = (-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0)$. All three points lie on the circle $\{(x, y, 0) : x^2 + y^2 = 1\}$, which being a great circle is a geodesic on the sphere. Now, the part of the circle going from A to B is a minimizing path and so is the part of the circle going from B to C.

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's theorem Hamilton-Jacobi equations

Second Variation

Examples

Can $f_{\xi\xi} \ge 0$ be a sufficient condition? Clearly not! Think of $f(x) = x^3$. x = 0 is not a minima! Can $f_{\xi\xi} > 0$, i.e. positive definite instead of nonnegative definite, be a sufficient condition?

Somewhat surprisingly, the answer is still No!

Understanding the trouble

The reason is that the condition is purely local, whereas being a minimizer is not really a local property. We go back to geodesics. Think of the unit sphere in \mathbb{R}^3 centered at the origin and consider the points A = (1, 0, 0), B = (0, 1, 0) and $C = (-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0)$. All three points lie on the circle $\{(x, y, 0) : x^2 + y^2 = 1\}$, which being a great circle is a geodesic on the sphere. Now, the part of the circle going from A to B is a minimizing path and so is the part of the circle going from B to C. However, clearly the part of the circle going from A to C can not be minimizing,

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's theorem Hamilton-Jacobi equations

Second Variation

Examples

Can $f_{\xi\xi} \ge 0$ be a sufficient condition? Clearly not! Think of $f(x) = x^3$. x = 0 is not a minima! Can $f_{\xi\xi} > 0$, i.e. positive definite instead of nonnegative definite, be a sufficient condition?

Somewhat surprisingly, the answer is still No!

Understanding the trouble

The reason is that the condition is purely local, whereas being a minimizer is not really a local property. We go back to geodesics. Think of the unit sphere in \mathbb{R}^3 centered at the origin and consider the points A = (1,0,0), B = (0,1,0) and $C = (-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0)$. All three points lie on the circle $\{(x,y,0): x^2 + y^2 = 1\}$, which being a great circle is a geodesic on the sphere. Now, the part of the circle going from A to B is a minimizing path and so is the part of the circle going from A to C can not be minimizing, as the part of the circle going from C to A is definitely shorter.

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's theorem Hamilton-Jacobi equations

Second Variation

Examples

We now consider the second variation itself as an integral functional

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation

First integrals

Symmetry and Noether's theorem

Hamilton-Jacobi equations

Second Variation

Examples

We now consider the second variation itself as an integral functional

Introduction to the Calculus of Variations

Swarnendu Sil

Symmetry and Noether's $J[\psi] := \int_{a}^{b} \left[\left\langle P\dot{\psi}, \dot{\psi} \right\rangle + \left\langle Q\psi, \psi \right\rangle \right] \, \mathrm{d}t, \qquad \psi \in C^{1}, \psi(\mathbf{a}) = \psi(\mathbf{b}) = \underbrace{\mathbf{0}_{\mathsf{daraulton-Jacobi equations}}_{\mathsf{Second Variation}}$ Examples

We now consider the second variation itself as an integral functional

$$J[\psi] := \int_{a}^{b} \left[\left\langle P\dot{\psi}, \dot{\psi} \right\rangle + \left\langle Q\psi, \psi \right\rangle \right] \, \mathrm{d}t, \qquad \psi \in C^{1}, \psi(a) = \psi(b) = \underbrace{\begin{array}{c} \text{Symparty and Nother's theorem of the second variation} \\ \text{Sumparises of the second variation} \\ \text{Sump$$

Note that if

$$J\left[\psi
ight]>c\int_{a}^{b}\left|\dot{\psi}
ight|^{2},\qquad ext{ for all }\psi\in C^{1},\psi
ot\equiv0 ext{ with }\psi\left(a
ight)=\psi\left(b
ight)=0,$$

Introduction to the Calculus of Variations

Swarnendu Sil

First integrals

We now consider the second variation itself as an integral functional

$$J[\psi] := \int_{a}^{b} \left[\left\langle P\dot{\psi}, \dot{\psi} \right\rangle + \left\langle Q\psi, \psi \right\rangle \right] \, \mathrm{d}t, \qquad \psi \in C^{1}, \psi(a) = \psi(b) = \underbrace{\mathsf{O}_{\mathsf{d}arefitor-lacobic equations}^{\mathsf{Symphetry and Noether theorem}}_{\mathsf{Complexity}} \left[\mathsf{C}_{\mathsf{d}arefitor-lacobic equation}^{\mathsf{Symphetry and Noether theorem}} \right]$$

Note that if

$$J[\psi] > c \int_{a}^{b} \left| \dot{\psi} \right|^{2}, \qquad ext{for all } \psi \in C^{1}, \psi
eq 0 ext{ with } \psi(a) = \psi(b) = 0,$$

for some c > 0, then \bar{u} is a minimizer. (Check!)

Introduction to the Calculus of Variations

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's theorem Hamilton-Jacobi equations Second Variation

We now consider the second variation itself as an integral functional

$$J[\psi] := \int_{a}^{b} \left[\left\langle P\dot{\psi}, \dot{\psi} \right\rangle + \left\langle Q\psi, \psi \right\rangle \right] \, \mathrm{d}t, \qquad \psi \in C^{1}, \psi(a) = \psi(b) = \underbrace{\mathsf{O}_{\mathsf{tracent}}^{\mathsf{Symmetry and N}}_{\mathsf{tracent}} \\ \mathsf{O}_{\mathsf{cond Variation-Jacobi}}^{\mathsf{Symmetry and N}}_{\mathsf{Cond Variation-Jacobi}}$$

Note that if

$$J\left[\psi
ight]>c\int_{a}^{b}\left|\dot{\psi}
ight|^{2},\qquad ext{ for all }\psi\in \mathcal{C}^{1},\psi
ot\equiv0 ext{ with }\psi\left(a
ight)=\psi\left(b
ight)=0,$$

for some c > 0, then \bar{u} is a minimizer. (Check!) $J[\psi] > 0$ is not enough!

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

lassical Problem uler-Lagrange Equations amiltonian formulation irst integrals ymmetry and Noether's secrem amilton-Jacobi equations econd Variation

We now consider the second variation itself as an integral functional

$$J[\psi] := \int_{a}^{b} \left[\left\langle P\dot{\psi}, \dot{\psi} \right\rangle + \left\langle Q\psi, \psi \right\rangle \right] \, \mathrm{d}t, \qquad \psi \in C^{1}, \psi(a) = \psi(b) = \underbrace{\begin{array}{c} \text{Symmetry an integration of the set of th$$

Note that if

$$J\left[\psi
ight]>c\int_{a}^{b}\left|\dot{\psi}
ight|^{2},\qquad ext{ for all }\psi\in \mathcal{C}^{1},\psi
ot\equiv0 ext{ with }\psi\left(a
ight)=\psi\left(b
ight)=0,$$

for some c > 0, then \bar{u} is a minimizer. (Check!) $J[\psi] > 0$ is not enough! P > 0 for all $t \in (a, b)$ Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

lassical Problem uler-Lagrange Equations amiltonian formulation rst integrals rrmmetry and Noether's uerem amilton-Jacobi equations scond Variation

We now consider the second variation itself as an integral functional

$$J[\psi] := \int_{a}^{b} \left[\left\langle P\dot{\psi}, \dot{\psi} \right\rangle + \left\langle Q\psi, \psi \right\rangle \right] \, \mathrm{d}t, \qquad \psi \in C^{1}, \psi(a) = \psi(b) = \underbrace{\mathsf{O}_{\mathsf{starting}}^{\mathsf{Symmetry}}}_{\mathsf{Explosited}}$$

Note that if

$$J\left[\psi
ight]>c\int_{a}^{b}\left|\dot{\psi}
ight|^{2},\qquad ext{ for all }\psi\in C^{1},\psi
ot\equiv0 ext{ with }\psi\left(a
ight)=\psi\left(b
ight)=0,$$

for some c > 0, then \bar{u} is a minimizer. (Check!) $J[\psi] > 0$ is not enough! P > 0 for all $t \in (a, b)$ is not enough to obtain this. Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

assical Problem Jler-Lagrange Equations amiltonian formulation rst integrals mmetry and Noether's edrem amilton-Jacobi equations scond Variation

We now consider the second variation itself as an integral functional

$$J[\psi] := \int_{a}^{b} \left[\left\langle P\dot{\psi}, \dot{\psi} \right\rangle + \left\langle Q\psi, \psi \right\rangle \right] \, \mathrm{d}t, \qquad \psi \in C^{1}, \psi(a) = \psi(b) = \underbrace{0}_{a}^{\text{Symmetry}} \underbrace{0}_{a \text{ where and }}_{\text{Second V}}$$

Note that if

$$J\left[\psi
ight]>c\int_{a}^{b}\left|\dot{\psi}
ight|^{2},\qquad ext{ for all }\psi\in \mathcal{C}^{1},\psi
ot\equiv0 ext{ with }\psi\left(a
ight)=\psi\left(b
ight)=0,$$

for some c > 0, then \bar{u} is a minimizer. (Check!) $J[\psi] > 0$ is not enough! P > 0 for all $t \in (a, b)$ is not enough to obtain this. So what other condition is needed to ensure this? Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

lassical Problem uler-Lagrange Equations amiltonian formulation rst integrals rrmmetry and Noether's uerem amilton-Jacobi equations scond Variation

We now consider the second variation itself as an integral functional

$$J[\psi] := \int_{a}^{b} \left[\left\langle P\dot{\psi}, \dot{\psi} \right\rangle + \left\langle Q\psi, \psi \right\rangle \right] \, \mathrm{d}t, \qquad \psi \in C^{1}, \psi(a) = \psi(b) = \underbrace{\mathbf{0}_{\mathsf{index}}^{\mathsf{symmetry}}}_{\mathsf{Second W}}$$

Note that if

$$J\left[\psi
ight]>c\int_{a}^{b}\left|\dot{\psi}
ight|^{2},\qquad ext{ for all }\psi\in C^{1},\psi
ot\equiv0 ext{ with }\psi\left(a
ight)=\psi\left(b
ight)=0,$$

for some c > 0, then \bar{u} is a minimizer. (Check!) $J[\psi] > 0$ is not enough! P > 0 for all $t \in (a, b)$ is not enough to obtain this. So what other condition is needed to ensure this?

Legendre wanted to 'complete the square'

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

lassical Problem uler-Lagrange Equations amiltonian formulation <u>rst</u> integrals rrmmetry and Noether's eerem amilton-Jacobi equations cond Variation

We now consider the second variation itself as an integral functional

$$J[\psi] := \int_{a}^{b} \left[\left\langle P\dot{\psi}, \dot{\psi} \right\rangle + \left\langle Q\psi, \psi \right\rangle \right] \, \mathrm{d}t, \qquad \psi \in C^{1}, \psi(a) = \psi(b) = \underbrace{\mathsf{O}_{\mathsf{index}}^{\mathsf{Symmetry}}}_{\mathsf{Sector}} \psi$$

Note that if

$$J\left[\psi
ight]>c\int_{a}^{b}\left|\dot{\psi}
ight|^{2},\qquad ext{ for all }\psi\in \mathcal{C}^{1},\psi
ot\equiv0 ext{ with }\psi\left(a
ight)=\psi\left(b
ight)=0,$$

for some c > 0, then \bar{u} is a minimizer. (Check!) $J[\psi] > 0$ is not enough! P > 0 for all $t \in (a, b)$ is not enough to obtain this. So what other condition is needed to ensure this?

Legendre wanted to 'complete the square' by adding a **null** Lagrangian.

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

assical Problem Jler-Lagrange Equations amiltonian formulation rst integrals mmetry and Noether's errem amilton-Jacobi equations scond Variation

Let W be an arbitrary differentiable symmetric matrix.

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations

First integrals

Symmetry and Noether's theorem

Hamilton-Jacobi equations

Second Variation

Examples

Let W be an arbitrary differentiable symmetric matrix. Then

$$0 = \int_{a}^{b} \frac{d}{dt} \left[\langle W\psi, \psi \rangle \right] \, \mathrm{d}t \qquad \text{for all } \psi \text{ with } \psi \left(a \right) = \psi \left(b \right) = 0.$$

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals

ymmetry and Noether's neorem

lamilton-Jacobi equations

Second Variation

Examples

Let W be an arbitrary differentiable symmetric matrix. Then

$$0 = \int_{a}^{b} \frac{d}{dt} \left[\langle W\psi, \psi \rangle \right] \, \mathrm{d}t \qquad \text{for all } \psi \text{ with } \psi \left(a \right) = \psi \left(b \right) = 0.$$

Thus

$$rac{d}{dt}\left[\langle W\psi,\psi
angle
ight]$$
 is a null lagrangian for any W

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's theorem Hamilton-Jacobi equations

Second Variation

Examples

Let W be an arbitrary differentiable symmetric matrix. Then

$$0 = \int_{a}^{b} \frac{d}{dt} \left[\langle W\psi, \psi \rangle \right] \, \mathrm{d}t \qquad \text{for all } \psi \text{ with } \psi \left(a \right) = \psi \left(b \right) = 0.$$

Thus

$$\frac{d}{dt} [\langle W\psi, \psi \rangle]$$
 is a null lagrangian for any W .

Hence adding such a term does not alter the value of $J[\psi]$.

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's theorem Hamilton-Jacobi equations Second Variation

Examples

Let W be an arbitrary differentiable symmetric matrix. Then

$$0 = \int_{a}^{b} \frac{d}{dt} \left[\langle W\psi, \psi \rangle \right] \, \mathrm{d}t \qquad \text{for all } \psi \text{ with } \psi \left(a \right) = \psi \left(b \right) = 0.$$

Thus

$$rac{d}{dt}\left[\langle W\psi,\psi
angle
ight]$$
 is a null lagrangian for any $W.$

Hence adding such a term does not alter the value of $J\left[\psi\right].$ So we get

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's theorem Hamilton-Jacobi equations Second Variation Examples

Let W be an arbitrary differentiable symmetric matrix. Then

$$0 = \int_{a}^{b} \frac{d}{dt} \left[\langle W\psi, \psi \rangle \right] \, \mathrm{d}t \qquad \text{for all } \psi \text{ with } \psi \left(a \right) = \psi \left(b \right) = 0.$$

Thus

$$\frac{d}{dt} [\langle W\psi, \psi \rangle]$$
 is a null lagrangian for any W .

Hence adding such a term does not alter the value of $J\left[\psi\right].$ So we get

$$J[\psi] = J[\psi] + \int_{a}^{b} \frac{d}{dt} \left[\langle W\psi, \psi \rangle \right] \, \mathrm{d}t$$

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's theorem Hamilton-Jacobi equations Second Variation Examples

Let W be an arbitrary differentiable symmetric matrix. Then

$$0 = \int_{a}^{b} \frac{d}{dt} \left[\langle W\psi, \psi \rangle \right] \, \mathrm{d}t \qquad \text{for all } \psi \text{ with } \psi \left(a \right) = \psi \left(b \right) = 0.$$

Thus

$$\frac{d}{dt} [\langle W\psi,\psi\rangle]$$
 is a null lagrangian for any W .

Hence adding such a term does not alter the value of $J\left[\psi\right].$ So we get

$$\begin{split} J[\psi] &= J[\psi] + \int_{a}^{b} \frac{d}{dt} \left[\langle W\psi, \psi \rangle \right] \, \mathrm{d}t \\ &= \int_{a}^{b} \left[\left\langle P\dot{\psi}, \dot{\psi} \right\rangle + 2 \left\langle W\psi, \dot{\psi} \right\rangle + \left\langle \left(Q + \dot{W} \right) \psi, \psi \right\rangle \right] \, \mathrm{d}t \end{split}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's theorem Hamilton-Jacobi equations **Second Variation** Examples

Let W be an arbitrary differentiable symmetric matrix. Then

$$0 = \int_{a}^{b} \frac{d}{dt} \left[\langle W\psi, \psi \rangle \right] \, \mathrm{d}t \qquad \text{for all } \psi \text{ with } \psi \left(a \right) = \psi \left(b \right) = 0.$$

Thus

$$\frac{d}{dt} [\langle W\psi,\psi\rangle]$$
 is a null lagrangian for any W .

Hence adding such a term does not alter the value of $J\left[\psi\right].$ So we get

$$\begin{split} J[\psi] &= J[\psi] + \int_{a}^{b} \frac{d}{dt} \left[\langle W\psi, \psi \rangle \right] \, \mathrm{d}t \\ &= \int_{a}^{b} \left[\left\langle P\dot{\psi}, \dot{\psi} \right\rangle + 2 \left\langle W\psi, \dot{\psi} \right\rangle + \left\langle \left(Q + \dot{W} \right) \psi, \psi \right\rangle \right] \, \mathrm{d}t \end{split}$$

When can we make this a perfect square?

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's theorem Hamilton-Jacobi equations **Second Variation** Examples

Proposition

Suppose W is a solution of the following matrix Riccati equation,

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation

symmetry and Noether's

lamilton-Jacobi equations

Second Variation

Examples

Proposition

Suppose W is a solution of the following matrix Riccati equation,

 $\dot{W} = -Q + WP^{-1}W.$

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation

Symmetry and Noether's theorem

lamilton-Jacobi equations

Second Variation

Examples

Proposition

Suppose W is a solution of the following matrix Riccati equation,

 $\dot{W} = -Q + WP^{-1}W.$

Then we have

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation

Symmetry and Noether's theorem

lamilton-Jacobi equations

Second Variation

Examples

Proposition

Suppose W is a solution of the following matrix Riccati equation,

$$\dot{W} = -Q + WP^{-1}W.$$

Then we have

$$\begin{split} \left[\left\langle P\dot{\psi}, \dot{\psi} \right\rangle + 2\left\langle W\psi, \dot{\psi} \right\rangle + \left\langle \left(Q + \dot{W}\right)\psi, \psi \right\rangle \right] \\ &= \left| P^{\frac{1}{2}}\dot{\psi} + P^{-\frac{1}{2}}W\psi \right|^{2}. \end{split}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's

neorem

lamilton-Jacobi equations

Second Variation

Examples

Proposition

Suppose W is a solution of the following matrix Riccati equation,

 $\dot{W} = -Q + WP^{-1}W.$

Then we have

$$\begin{split} \left[\left\langle P\dot{\psi}, \dot{\psi} \right\rangle + 2\left\langle W\psi, \dot{\psi} \right\rangle + \left\langle \left(Q + \dot{W}\right)\psi, \psi \right\rangle \right] \\ &= \left| P^{\frac{1}{2}}\dot{\psi} + P^{-\frac{1}{2}}W\psi \right|^{2}. \end{split}$$

Note that since P is symmetric and positive definite,

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's

amiltan Jacobi equations

Second Variation

Examples

Proposition

Suppose W is a solution of the following matrix Riccati equation,

 $\dot{W} = -Q + WP^{-1}W.$

Then we have

$$\begin{split} \left[\left\langle P\dot{\psi},\dot{\psi}\right\rangle + 2\left\langle W\psi,\dot{\psi}\right\rangle + \left\langle \left(Q+\dot{W}\right)\psi,\psi\right\rangle \right] \\ &= \left| P^{\frac{1}{2}}\dot{\psi} + P^{-\frac{1}{2}}W\psi \right|^{2}. \end{split}$$

Note that since P is symmetric and positive definite, $P^{\frac{1}{2}}$ is well defined

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's

amilton-Jacobi equations

Second Variation

Examples

Proposition

Suppose W is a solution of the following matrix Riccati equation,

 $\dot{W} = -Q + WP^{-1}W.$

Then we have

$$\begin{split} \left[\left\langle P\dot{\psi}, \dot{\psi} \right\rangle + 2\left\langle W\psi, \dot{\psi} \right\rangle + \left\langle \left(Q + \dot{W}\right)\psi, \psi \right\rangle \right] \\ &= \left| P^{\frac{1}{2}}\dot{\psi} + P^{-\frac{1}{2}}W\psi \right|^{2}. \end{split}$$

Note that since P is symmetric and positive definite, $P^{\frac{1}{2}}$ is well defined and is itself symmetric

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's

amilton-Jacobi equations

Second Variation

Examples

Proposition

Suppose W is a solution of the following matrix Riccati equation,

 $\dot{W} = -Q + WP^{-1}W.$

Then we have

$$\begin{split} \left[\left\langle P\dot{\psi}, \dot{\psi} \right\rangle + 2\left\langle W\psi, \dot{\psi} \right\rangle + \left\langle \left(Q + \dot{W}\right)\psi, \psi \right\rangle \right] \\ &= \left| P^{\frac{1}{2}}\dot{\psi} + P^{-\frac{1}{2}}W\psi \right|^2. \end{split}$$

Note that since P is symmetric and positive definite, $P^{\frac{1}{2}}$ is well defined and is itself symmetric and positive definite.

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's

amilton-Jacobi equations

Second Variation

Examples

To solve the Riccati equation

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations

First integrals

Symmetry and Noether's theorem

Hamilton-Jacobi equations

Second Variation

Examples

To solve the Riccati equation

$$\dot{W} = -Q + WP^{-1}W,$$

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation

First integrals

Symmetry and Noether's theorem

Hamilton-Jacobi equations

Second Variation

Examples

To solve the Riccati equation

$$\dot{W} = -Q + WP^{-1}W,$$

let us substitute

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation

First integrals

Symmetry and Noether's theorem

Hamilton-Jacobi equations

Second Variation

Examples

To solve the Riccati equation

$$\dot{W} = -Q + WP^{-1}W,$$

let us substitute

$$W = -P \dot{\Psi} \Psi^{-1}.$$

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation

First integrals

Symmetry and Noether's theorem

lamilton-Jacobi equations

Second Variation

Examples

To solve the Riccati equation

$$\dot{W} = -Q + WP^{-1}W,$$

let us substitute

$$W = -P\dot{\Psi}\Psi^{-1}.$$

Plugging it in the Riccati equation, we obtain

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation

mmetry and Noethe

heorem

Hamilton-Jacobi equation

Second Variation

Examples

To solve the Riccati equation

$$\dot{W} = -Q + WP^{-1}W,$$

let us substitute

$$W = -P\dot{\Psi}\Psi^{-1}$$

Plugging it in the Riccati equation, we obtain

$$\frac{d}{dt}\left(P\dot{\Psi}\right)=Q\Psi.$$

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation

ummetry and Neeth

heorem

Hamilton-Jacobi equations

Second Variation

Examples

To solve the Riccati equation

$$\dot{W} = -Q + WP^{-1}W,$$

let us substitute

$$W = -P\dot{\Psi}\Psi^{-1}.$$

Plugging it in the Riccati equation, we obtain

$$\frac{d}{dt}\left(P\dot{\Psi}\right)=Q\Psi.$$

Any solution \varPsi of the above equation

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation

First integrals

Symmetry and Noether's theorem

Hamilton-Jacobi equations

Second Variation

Examples

To solve the Riccati equation

$$\dot{W} = -Q + WP^{-1}W,$$

let us substitute

$$W = -P\dot{\Psi}\Psi^{-1}.$$

Plugging it in the Riccati equation, we obtain

$$\frac{d}{dt}\left(P\dot{\Psi}\right)=Q\Psi.$$

Any solution \varPsi of the above equation would furnish a solution W of the Riccati equation

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals

symmetry and Noether's heorem

lamilton-Jacobi equations

Second Variation

Examples

To solve the Riccati equation

$$\dot{W} = -Q + WP^{-1}W,$$

let us substitute

$$W = -P\dot{\Psi}\Psi^{-1}.$$

Plugging it in the Riccati equation, we obtain

$$\frac{d}{dt}\left(P\dot{\Psi}\right)=Q\Psi.$$

Any solution Ψ of the above equation would furnish a solution W of the Riccati equation if Ψ is **invertible.**

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals

symmetry and Noether's heorem

lamilton-Jacobi equations

Second Variation

Examples

To solve the Riccati equation

$$\dot{W} = -Q + WP^{-1}W,$$

let us substitute

$$W = -P\dot{\Psi}\Psi^{-1}.$$

Plugging it in the Riccati equation, we obtain

$$\frac{d}{dt}\left(P\dot{\Psi}\right)=Q\Psi.$$

Any solution Ψ of the above equation would furnish a solution W of the Riccati equation if Ψ is **invertible**.

However, the equation above has another nice interpretation.

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals

symmetry and Noether's heorem

lamilton-Jacobi equations

Second Variation

Examples

To solve the Riccati equation

$$\dot{W} = -Q + WP^{-1}W,$$

let us substitute

$$W = -P\dot{\Psi}\Psi^{-1}.$$

Plugging it in the Riccati equation, we obtain

$$\frac{d}{dt}\left(P\dot{\Psi}\right)=Q\Psi.$$

Any solution Ψ of the above equation would furnish a solution W of the Riccati equation if Ψ is **invertible**.

However, the equation above has another nice interpretation.

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals

symmetry and Noether's heorem

lamilton-Jacobi equations

Second Variation

Examples

We again consider the second variation itself as an integral functional

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations

First integrals

Symmetry and Noether's theorem

lamilton-Jacobi equations

Second Variation

Examples

We again consider the second variation itself as an integral functional

$$J[\psi] := \int_{a}^{b} \left[\left\langle P\dot{\psi}, \dot{\psi} \right\rangle + \left\langle Q\psi, \psi \right\rangle \right] \, \mathrm{d}t, \qquad \psi \in C^{1}, \psi(a) = \psi(b) = 0^{\text{Hensiton-Jacobi equation}}_{\text{The End}}$$

Introduction to the Calculus of Variations

Swarnendu Sil

We again consider the second variation itself as an integral functional

$$J\left[\psi\right] := \int_{a}^{b} \left[\left\langle P\dot{\psi}, \dot{\psi} \right\rangle + \left\langle Q\psi, \psi \right\rangle\right] \, \mathrm{d}t, \qquad \psi \in C^{1}, \psi\left(a\right) = \psi\left(b\right) = 0^{\text{Second Variation Second Variation}}_{\text{End End}}$$

The Euler-Lagrange equation to this variational problem is

Introduction to the Calculus of Variations

We again consider the second variation itself as an integral functional

$$J\left[\psi\right] := \int_{a}^{b} \left[\left\langle P\dot{\psi}, \dot{\psi} \right\rangle + \left\langle Q\psi, \psi \right\rangle\right] \, \mathrm{d}t, \qquad \psi \in C^{1}, \psi\left(a\right) = \psi\left(b\right) = 0^{\text{Second Variation Second Variation}}_{\text{End End}}$$

The Euler-Lagrange equation to this variational problem is

$$rac{d}{dt}\left(P\dot{\psi}
ight)=Q\psi.$$

Introduction to the Calculus of Variations

Swarnendu Sil

We again consider the second variation itself as an integral functional

$$J[\psi] := \int_{a}^{b} \left[\left\langle P\dot{\psi}, \dot{\psi} \right\rangle + \left\langle Q\psi, \psi \right\rangle \right] \, \mathrm{d}t, \qquad \psi \in C^{1}, \psi(a) = \psi(b) = 0^{\text{Second Variation}}_{\text{The End}}$$

The Euler-Lagrange equation to this variational problem is

$$rac{d}{dt}\left(P\dot{\psi}
ight)=Q\psi.$$

This is called the Jacobi equation

Introduction to the Calculus of Variations

Hamilton-Jacobi equations

We again consider the second variation itself as an integral functional

$$J[\psi] := \int_{a}^{b} \left[\left\langle P\dot{\psi}, \dot{\psi} \right\rangle + \left\langle Q\psi, \psi \right\rangle \right] \, \mathrm{d}t, \qquad \psi \in C^{1}, \psi(a) = \psi(b) = \underbrace{\begin{array}{c} \text{Hermiton-Jacobi equations} \\ \text{Second Variation} \\ \text{End} \end{array}}_{\text{The End}}$$

Introduction to the

Calculus of Variations Swarnendu Sil

The Euler-Lagrange equation to this variational problem is

$$rac{d}{dt}\left(P\dot{\psi}
ight)=Q\psi.$$

This is called the **Jacobi equation** and its solutions (for a given u) is called

We again consider the second variation itself as an integral functional

$$J[\psi] := \int_{a}^{b} \left[\left\langle P\dot{\psi}, \dot{\psi} \right\rangle + \left\langle Q\psi, \psi \right\rangle \right] \, \mathrm{d}t, \qquad \psi \in C^{1}, \psi(a) = \psi(b) = \underbrace{\begin{array}{c} \text{Hermiton-Jacobi equations} \\ \text{Second Variation} \\ \text{End} \end{array}}_{\text{The End}}$$

Introduction to the

Calculus of Variations Swarnendu Sil

The Euler-Lagrange equation to this variational problem is

$$rac{d}{dt}\left(P\dot{\psi}
ight)=Q\psi.$$

This is called the **Jacobi equation** and its solutions (for a given u) is called a **Jacobi field along** u.

We again consider the second variation itself as an integral functional

$$J\left[\psi\right] := \int_{a}^{b} \left[\left\langle P\dot{\psi}, \dot{\psi}\right\rangle + \left\langle Q\psi, \psi\right\rangle\right] \, \mathrm{d}t, \qquad \psi \in C^{1}, \psi\left(a\right) = \psi\left(b\right) = 0^{\text{Social Variation}} 0^{\text{Social Variation}}_{\text{The End}}$$

The Euler-Lagrange equation to this variational problem is

$$rac{d}{dt}\left(P\dot{\psi}
ight)=Q\psi.$$

This is called the **Jacobi equation** and its solutions (for a given *u*) is called a **Jacobi field along** *u*. Before proceeding further, we need the notion of conjugate points.

Introduction to the Calculus of Variations

Hamilton-Jacobi equations

Definition

Let Ψ be the matrix of N solutions of the Jacobi equation,

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations

First integrals

Symmetry and Noether's theorem

Hamilton-Jacobi equations

Second Variation

Examples

Definition

Let Ψ be the matrix of N solutions of the Jacobi equation, i.e.

$$\Psi := \begin{pmatrix} \psi_1 \\ \vdots \\ \psi_N \end{pmatrix}.$$

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation

First integrals

Symmetry and Noether's theorem

Hamilton-Jacobi equations

Second Variation

Examples

Definition

Let Ψ be the matrix of N solutions of the Jacobi equation, i.e.

$$\Psi := \begin{pmatrix} \psi_1 \\ \vdots \\ \psi_N \end{pmatrix}.$$

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation

First integrals

Symmetry and Noether's theorem

Hamilton-Jacobi equations

Second Variation

Examples

The End

where ψ_1, \ldots, ψ_N

Definition

Let Ψ be the matrix of N solutions of the Jacobi equation, i.e.

$$\Psi := \begin{pmatrix} \psi_1 \\ \vdots \\ \psi_N \end{pmatrix}.$$

where ψ_1,\ldots,ψ_N solves the Jacobi equation and satisfies

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation

First integrals

Symmetry and Noether's theorem

lamilton-Jacobi equations

Second Variation

Examples

Definition

Let Ψ be the matrix of N solutions of the Jacobi equation, i.e.

$$\Psi := \begin{pmatrix} \psi_1 \\ \vdots \\ \psi_N \end{pmatrix}.$$

where ψ_1, \ldots, ψ_N solves the Jacobi equation and satisfies

$$\Psi\left(a
ight)=0$$
 and $\dot{\Psi}\left(a
ight)=\mathbb{I}_{N}.$

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation

symmetry and Noether's heorem

Hamilton-Jacobi equations

Second Variation

Examples

Definition

Let Ψ be the matrix of N solutions of the Jacobi equation, i.e.

$$\Psi := \begin{pmatrix} \psi_1 \\ \vdots \\ \psi_N \end{pmatrix}.$$

where ψ_1, \ldots, ψ_N solves the Jacobi equation and satisfies

$$\Psi(a) = 0$$
 and $\dot{\Psi}(a) = \mathbb{I}_N$.

A point $\bar{a} \in (a, b]$

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation

ymmetry and Noether's

lamilton-Jacobi equations

Second Variation

Examples

Definition

Let Ψ be the matrix of N solutions of the Jacobi equation, i.e.

$$\Psi := \begin{pmatrix} \psi_1 \\ \vdots \\ \psi_N \end{pmatrix}.$$

where ψ_1,\ldots,ψ_N solves the Jacobi equation and satisfies

$$\Psi(a) = 0$$
 and $\dot{\Psi}(a) = \mathbb{I}_N$.

A point $\bar{a} \in (a, b]$ is called a **conjugate to the point** a or simply a **conjugate point of** a

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's

amilton- lacobi equations

Second Variation

Examples

Definition

Let Ψ be the matrix of N solutions of the Jacobi equation, i.e.

$$\Psi := \begin{pmatrix} \psi_1 \\ \vdots \\ \psi_N \end{pmatrix}.$$

where ψ_1, \ldots, ψ_N solves the Jacobi equation and satisfies

$$\Psi(a) = 0$$
 and $\dot{\Psi}(a) = \mathbb{I}_N$.

A point $\bar{a} \in (a, b]$ is called a **conjugate to the point** a or simply a **conjugate point of** a if we have

$$\det \Psi\left(\bar{a}\right) = 0.$$

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's

lamilton-Jacobi equations

Second Variation

Examples

Definition

Let Ψ be the matrix of N solutions of the Jacobi equation, i.e.

$$\Psi := \begin{pmatrix} \psi_1 \\ \vdots \\ \psi_N \end{pmatrix}.$$

where ψ_1, \ldots, ψ_N solves the Jacobi equation and satisfies

$$\Psi(a) = 0$$
 and $\dot{\Psi}(a) = \mathbb{I}_N$.

A point $\bar{a} \in (a, b]$ is called a **conjugate to the point** a or simply a **conjugate point of** a if we have

$$\det \Psi\left(\bar{a}\right)=0.$$

Hopefully, by now all of you can see the point.

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's

lamilton-Jacobi equations

Second Variation

Examples

Definition

Let Ψ be the matrix of N solutions of the Jacobi equation, i.e.

$$\Psi := \begin{pmatrix} \psi_1 \\ \vdots \\ \psi_N \end{pmatrix}.$$

where ψ_1,\ldots,ψ_N solves the Jacobi equation and satisfies

$$\Psi(a) = 0$$
 and $\dot{\Psi}(a) = \mathbb{I}_N$.

A point $\bar{a} \in (a, b]$ is called a **conjugate to the point** a or simply a **conjugate point of** a if we have

$$\det \Psi\left(\bar{a}\right) = 0.$$

Hopefully, by now all of you can see the point. If there are no interior conjugate points to a,

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's theorem

lamilton-Jacobi equations

Second Variation

Examples

Definition

Let Ψ be the matrix of N solutions of the Jacobi equation, i.e.

$$\Psi := \begin{pmatrix} \psi_1 \\ \vdots \\ \psi_N \end{pmatrix}.$$

where ψ_1,\ldots,ψ_N solves the Jacobi equation and satisfies

$$\Psi(a) = 0$$
 and $\dot{\Psi}(a) = \mathbb{I}_N$.

A point $\bar{a} \in (a, b]$ is called a **conjugate to the point** a or simply a **conjugate point of** a if we have

$$\det \Psi\left(\bar{a}\right)=0.$$

Hopefully, by now all of you can see the point. If there are no interior conjugate points to a, then Ψ would be invertible

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's theorem

lamilton-Jacobi equations

Second Variation

Examples

Definition

Let Ψ be the matrix of N solutions of the Jacobi equation, i.e.

$$\Psi := \begin{pmatrix} \psi_1 \\ \vdots \\ \psi_N \end{pmatrix}.$$

where ψ_1,\ldots,ψ_N solves the Jacobi equation and satisfies

$$\Psi(a) = 0$$
 and $\dot{\Psi}(a) = \mathbb{I}_N$.

A point $\bar{a} \in (a, b]$ is called a **conjugate to the point** a or simply a **conjugate point of** a if we have

$$\det \Psi\left(\bar{a}\right) = 0.$$

Hopefully, by now all of you can see the point. If there are no interior conjugate points to a, then Ψ would be invertible and would furnish a solution to the Riccati equation.

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's theorem

lamilton-Jacobi equations

Second Variation

Examples

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Hamiltonian formulation First integrals Symmetry and Noether's theorem Hamilton-Jacobi equations Second Variation Examples

The End

Thank you *Questions?*