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Hamilton-Jacobi equations

Now we are going to show that in some cases, a solution to the
Hamilton’s equations, which are 2N first order ODEs

{
u̇ (t) = Hv (t, u (t) , v (t)) ,

v̇ (t) = −Hu (t, u (t) , v (t)) .
(H)

can be furnished by finding a complete integral of a first order
PDE. These PDE is called the Hamilton-Jacobi equation

St + H (t, u,Su) = 0. (HJE)

First we begin by showing that if S = S (t, u) satisfies (HJE) and
u(t) satisfies

u̇ = Hv (t, u,Su) ,

then v = Su satisfies the other equation of (H). Also, an
m-parameter family of solutions to (HJE) yields m first integrals
of (H).
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Hamilton-Jacobi equation

Theorem
Let H ∈ C 1

(
[a, b]× RN × RN

)
, H = H (t, u, v) .

Suppose there

exists S ∈ C 2
(
[a, b]× RN

)
, S = S (t, u) , a solution of the

Hamilton-Jacobi equation

St + H (t, u,Su) = 0 for all (t, u) ∈ [a, b]× RN . (1)

Assume also that there exists u ∈ C 1
(
[a, b];RN

)
, a solution of

u̇(t) = Hv (t, u,Su) for all t ∈ [a, b]. (2)

Set v (t) = Su (t, u (t)) . Then (u, v) is a solution of the
Hamilton’s equation.

Moreover if S ∈ C 2
(
[a, b]× RN × Rm

)
is an m-parameter family

of solutions to the Hamilton-Jacobi equation (1), then

∂S

∂αi
is a first integral of Hamilton’s equations for each 1 ≤ i ≤ m.
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Proof of the theorem on Hamilton-Jacobi equation

Proof Fix 1 ≤ i ≤ N.

Differentiating the Hamilton-Jacobi
equation w.r.t. ui , we get

Sui t + Hui +

〈
Hv ,

∂

∂ui
Su

〉
= 0.

Since v (t) = Su (t, u (t)) , differentiating we obtain

v̇i (t) = Stui +

〈
∂

∂u
Sui , u̇

〉
.

Thus v̇i (t) = −Hui . For the last part, Differentiating the
Hamilton-Jacobi equation w.r.t. αi , we get

Sαi t +

〈
Hv ,

∂

∂αi
Su

〉
= 0.

So we have

d

dt

(
∂S

∂αi

)
= Sαi t +

〈
u̇,

∂

∂u

[
∂S

∂αi

]〉
=

〈
u̇ − Hv ,

∂

∂u

[
∂S

∂αi

]〉
= 0.
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Jacobi’s theorem

Theorem (Jacobi’s theorem)

Let S ∈ C 2
(
[a, b]× RN × RN

)
, S = S (t, u1, . . . , uN , α1, . . . , αN)

be a

complete integral of the Hamilton-Jacobi equation, i.e. a
general solution of (HJE) depending on N parameters
α1, . . . , αN . Let

det

(
∂2S (t, u, α)

∂α∂u

)
6= 0 for every (t, u, α) ∈ [a, b]× RN × RN

and let β1, . . . , βN be N arbitrary constants. Then the functions
u (t) = u (t, α1, . . . , αN , β1, . . . , βN) defined by the relations

∂

∂αi
S (t, u1, . . . , uN , α1, . . . , αN) = βi for 1 ≤ i ≤ N,

together with the functions

vi =
∂

∂ui
S (t, u1, . . . , uN , α1, . . . , αN) for 1 ≤ i ≤ N

constitute a general solution of the Hamilton’s equations (H).
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Proof of Jacobi’s theorem

Proof Note that since

det

(
∂2S

∂α∂u

)
6= 0 for every (t, u, α) ∈ [a, b]× RN × RN ,

it is indeed possible to determine u as a function of t, α and β
from the relations

∂

∂αi
S (t, u1, . . . , uN , α1, . . . , αN) = βi for 1 ≤ i ≤ N. (3)

Once we have determined u, we can define v via the equations

vi =
∂

∂ui
S (t, u1, . . . , uN , α1, . . . , αN) for 1 ≤ i ≤ N. (4)

So all we need to show is that the pair (u, v) so constructed
satisfy (H). Differntiating(3) w.r.t. t, we obtain

0 =
d

dt

(
∂

∂αi
S

)
=

〈
u̇ − Hv ,

∂

∂u

[
∂S

∂αi

]〉
for 1 ≤ i ≤ N.
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vi =
∂

∂ui
S (t, u1, . . . , uN , α1, . . . , αN) for 1 ≤ i ≤ N. (4)

So all we need to show is that the pair (u, v) so constructed
satisfy (H). Differntiating(3) w.r.t. t, we obtain

0 =
d

dt

(
∂

∂αi
S

)
=

〈
u̇ − Hv ,

∂

∂u
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∂αi

]〉
for 1 ≤ i ≤ N.
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Proof of Jacobi’s theorem

Proof (contd.)

This implies u̇ = Hv . Now, differentiating (4), we obtain as before

v̇i (t) = Stui +

〈
∂

∂u
Sui , u̇

〉
= Stui +

〈
∂

∂u
Sui ,Hv

〉
for 1 ≤ i ≤ N.

Again as before, we differentiate (HJE) to deduce

Sui t + Hui +

〈
Hv ,

∂

∂ui
Su

〉
= 0 for 1 ≤ i ≤ N.

These clearly imply
v̇ = −Hu.

This completes the proof.
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Geometric content of the HJE

The strange looking function S might appear to drop out of
nowhere, but it actually has a geometric meaning.

Let
A = (t0, x0) ,B = (t1, x1) be two points in [a, b]× RN such that
there is a unique integral curve of (H) that passes through those
two points. Then the value of the integral

ˆ t1

t0

f (t, u (t) , u̇ (t)) dt,

where u is the unique integral curve joining A and B, clearly
depends upon the endpoints A and B and is usually known as the
geodesic distance between A and B. As the prototypical
example, this reduces to the usual distance when the Lagrangian
density is arc length. Now if we fix the point A, clearly the above
integral can then be expressed as a function of the coordinates of
point B, which is precisely our function S .

On the other hand, (H) is nothing but the characteristic system
for the nonlinear first order PDE (HJE).
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Second variation

So far we were concerned with any critical point.

Now we want
to investigate necessary and sufficient conditions for a critical
point to be a local minima. We begin with a simple result.

Theorem (Second Variation)

Let f = f (t, u, ξ) ∈ C 3
(
[a, b]× RN × RN

)
, α, β ∈ RN be given

and X =
{
u ∈ C 1

(
[a, b] ;RN
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If ū ∈ X ∩ C 2
(
[a, b] ;RN

)
is a minimizer for (P) , then the
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Calculating the second variation

Proof.
As we did in deriving the EL equations, we take
ψ ∈ C 1

c

(
[a, b];RN

)
. Thus for any h ∈ R, we have ū + hψ ∈ X .

Now we define the function g : R→ R by g(h) := I (ū + hψ) .

Then g ∈ C 2 (R) (Check!) and since ū is a minimizer, g must
have a local minima at 0. Thus we must have g ′′(0) ≥ 0. But

g ′′(0) =
d2

dh2
[I (ū + hψ)]

∣∣∣∣
h=0

.

The rest is a straight forward calculation.

To understand the expression better, we integrate by parts in the
mixed term to arrive at ( This is not entirely correct. Try to find
where and what the mistakes are!)

ˆ b

a

〈
fuξ
(
t, ū, ˙̄u

)
ψ, ψ̇

〉
= −
ˆ b

a

〈
d

dt

[
fuξ
(
t, ū, ˙̄u

)]
ψ,ψ

〉
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have a local minima at 0. Thus we must have g ′′(0) ≥ 0. But

g ′′(0) =
d2

dh2
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Quadratic functional related to second variation

In view of the integration by parts that we just did, we can rewrite
the expression as

ˆ b

a

[〈[
fuu
(
t, ū, ˙̄u

)
− d

dt
fuξ
(
t, ū, ˙̄u

)]
ψ,ψ

〉
+
〈
fξξ
(
t, ū, ˙̄u

)
ψ̇, ψ̇

〉]
.

The important point here is that the matrix fξξ plays the
dominant role here in determining whether the quadratic form will
be nonnegative or not.

The heuristic argument is, since ψ vanishes at the boundary, we
have a Poincaré inequality. Roughly, the function itself can not be
large while keeping its derivative small. But the converse is quite
possible! The function can be small with large derivative! Why? It
can oscillate a lot!
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t, ū, ˙̄u

)
ψ̇, ψ̇

〉]
.

The important point here is that the matrix fξξ plays the
dominant role here in determining whether the quadratic form will
be nonnegative or not.

The heuristic argument is, since ψ vanishes at the boundary, we
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Quadratic functional related to second variation

We now formalize the heuristic argument.

Lemma
If for every ψ ∈ C 1

c

(
[a, b];RN

)
, we have the following inequality

ˆ b

a

[〈[
fuu
(
t, ū, ˙̄u

)
− d

dt
fuξ
(
t, ū, ˙̄u

)]
ψ,ψ

〉
+
〈
fξξ
(
t, ū, ˙̄u

)
ψ̇, ψ̇

〉]
≥ 0,

then the matrix fξξ
(
t, ū, ˙̄u

)
is nonnegative definite for every(

t, ū, ˙̄u
)
.
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