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Hamiltonian formulation

So far we have investigated the stationary points of the following
functional

ur I(u) :_/bf(t,u(t),[/(t)) dt, for u € X.

We showed that C? stationary points satisfy the EL equations.
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So far we have investigated the stationary points of the following
functional

Classical Problem

Euler-Lagrange Equations

b iltonian formulation
us I(u) = / f(t,u(t),a(t)) dt, for u € X.
a

Hamilton’s equations

First integrals

We showed that C? stationary points satisfy the EL equations.

Now we are going to show that in some cases, these C? stationary B
points are also the stationary points of another functional whose Eramples
EL equations are going to be systems of 2N first order ODEs

instead of the system of N second order ODEs we obtained.




Hamiltonian formulation

So far we have investigated the stationary points of the following
functional

b
ur I(u) ::/ f(t,u(t),a(t)) dt, for u € X.

a
We showed that C? stationary points satisfy the EL equations.

Now we are going to show that in some cases, these C? stationary
points are also the stationary points of another functional whose
EL equations are going to be systems of 2N first order ODEs
instead of the system of N second order ODEs we obtained.

The functional is, for u,v € C?([a, b]; RV),
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So far we have investigated the stationary points of the following
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So far we have investigated the stationary points of the following
functional

ur I(u) :—/bf(t,u(t),[/(t)) dt, for u € X.

We showed that C? stationary points satisfy the EL equations.

Now we are going to show that in some cases, these C? stationary
points are also the stationary points of another functional whose
EL equations are going to be systems of 2N first order ODEs
instead of the system of N second order ODEs we obtained.

The functional is, for u,v € C?([a, b]; RV),

b
(u,v) = J(u,v) = / [a(t),v(t)y — H(t,u(t),v(t))] dt.

where the function H : [a, b] x RN x RY — R is called the
Hamiltonian and it is the Legendre transform of the
Lagrangian f, which is defined as

H(X7 u, V) = sup {<V7£> - f(Xa va)}'
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We now define the notion of duality, also known as the Legendre
transform, for convex functions.
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Legendre transform

We now define the notion of duality, also known as the Legendre
transform, for convex functions. See Lecture Notes for more. We
allow functions to take the value +oo.
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Legendre transform

We now define the notion of duality, also known as the Legendre
transform, for convex functions. See Lecture Notes for more. We
allow functions to take the value +o0.

Definition (Legendre transform)

Let f : RV — R (or f : RN — RU {+00}).
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We now define the notion of duality, also known as the Legendre
transform, for convex functions. See Lecture Notes for more. We
allow functions to take the value +oo.

Definition (Legendre transform)

Let f : RV — R (or f : RN — RU {+00}).

(i) The Legendre transform, or dual, of f is the function

f*: RN - RU {£o0}
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We now define the notion of duality, also known as the Legendre
transform, for convex functions. See Lecture Notes for more. We
allow functions to take the value +oo.

Definition (Legendre transform)

Let f : RV — R (or f : RN — RU {+00}).

(i) The Legendre transform, or dual, of f is the function

f* RN — RU {£o0o} defined by

*(x*) = seu]gN {{x,x*y = f(x)}
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We now define the notion of duality, also known as the Legendre
transform, for convex functions. See Lecture Notes for more. We Clasical Problem
allow functions to take the value +oo. - '
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Definition (Legendre transform)

Let f : RV — R (or f : RN — RU {+00}).

(i) The Legendre transform, or dual, of f is the function
f* RN — R U {4o0} defined by

*(x*) = seu]gN {{x,x*y = f(x)}

where (-, -) denotes the scalar product in RV,
(i) The bidual of f is the function f** : RN — R U {£00} defined
by

£ (x) = sup {{x,x7) = " (x7)}.

x*ERN
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We now define the notion of duality, also known as the Legendre
transform, for convex functions. See Lecture Notes for more. We
allow functions to take the value +oo.

Definition (Legendre transform)
Let f : RV — R (or f : RN — RU {+00}).

(i) The Legendre transform, or dual, of f is the function
f* RN — RU {£o0o} defined by

() = sup {{x) £ ()

Hamilton’s equations

where (-, -) denotes the scalar product in RV,
(i) The bidual of f is the function f** : RN — R U {£00} defined
by

£ (x) = sup {{x,x7) = " (x7)}.

x*ERN

» In general, f* takes the value +oo, even if f takes only finite
values.
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allow functions to take the value +oo.
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(i) The Legendre transform, or dual, of f is the function
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where (-, -) denotes the scalar product in RV,
(i) The bidual of f is the function f** : RN — R U {£00} defined
by

£ (x) = sup {{x,x7) = " (x7)}.
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» In general, f* takes the value +oo, even if f takes only finite
values.
> If f £ 400, then f* > —o0.
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Legendre transform

Theorem (Properties of Legendre Transform)
Let f :RN - R (or f : RN — RU {+00}).
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Theorem (Properties of Legendre Transform)
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(i) The function f* is convex (even if f is not) and f*** = f*.
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Theorem (Properties of Legendre Transform) B
Let f : RN - R (or f : RN — RU {+00}). B

Hamiltonian formulation

(i) The function f* is convex (even if f is not) and f*** = f*. i Tt
(ii) The function f** is convex and f** < f. e

theorem
Second Variation
Jacobi fields

Examples



Legendre transform

Theorem (Properties of Legendre Transform)

Let f :RN - R (or f : RN — RU {+00}).

(i) The function f* is convex (even if f is not) and f*** = f*.
(ii) The function f** is convex and ** < f. If f is bounded below

and finite but not necessarily convex, then f** is its convex
envelope (the largest convex function that is smaller than f)
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Theorem (Properties of Legendre Transform)

Let f : RN - R (or f : RN — RU {+00}).

(i) The function f* is convex (even if f is not) and f*** = f*.
(ii) The function f** is convex and ** < f. If f is bounded below
and finite but not necessarily convex, then f** is its convex
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if f is moreover, convex, then f** = f.
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Theorem (Properties of Legendre Transform)

Classical Problem

Let f‘ : RN N R (Or f‘ : RN N R U {+OO}) Eu\err‘Lng'anpe E:u‘mnons
amiltonian formulation

(i) The function f* is convex (even if f is not) and f*** = f*. s Trrsform

(ii) The function f** is convex and f** < f. If f is bounded below """«

and finite but not necessarily convex, then f** is its convex o

envelope (the largest convex function that is smaller than f) and Jacoi ieds

if f is moreover, convex, then f** = f. Fome

(iii) /f f : RN — R is strictly convex and if

M—-l-oo

Ixl—oo |x|
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Let f : RN - R (or f : RN — RU {+00}).

(i) The function f* is convex (even if f is not) and f*** = f*.
(ii) The function f** is convex and ** < f. If f is bounded below
and finite but not necessarily convex, then f** is its convex

envelope (the largest convex function that is smaller than f) and
if f is moreover, convex, then f** = f.

(iii) /f f : RN — R is strictly convex and if

lim @ = +00
x| =00 |X|
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Legendre transform

Theorem (Properties of Legendre Transform)
Let f :RN - R (or f : RN — RU {+00}).
(i) The function f* is convex (even if f is not) and f*** = f*.

(ii) The function f** is convex and ** < f. If f is bounded below
and finite but not necessarily convex, then f** is its convex
envelope (the largest convex function that is smaller than f) and
if f is moreover, convex, then f** = f.

(iii) /f f : RN — R is strictly convex and if

M:-l-oo

x| =00 |X|
then f* € Ct (RN). Moreover, if f € C! (RN) and

FO)+ 7 (x7) = (X7 x)
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Legendre transform

Theorem (Properties of Legendre Transform)
Let f :RN - R (or f : RN — RU {+00}).
(i) The function f* is convex (even if f is not) and f*** = f*.

(ii) The function f** is convex and ** < f. If f is bounded below
and finite but not necessarily convex, then f** is its convex
envelope (the largest convex function that is smaller than f) and
if f is moreover, convex, then f** = f.

(iii) /f f : RN — R is strictly convex and if

M:-l-oo

x| =00 |X|
then f* € Ct (RN). Moreover, if f € C! (RN) and
f(x)+ £ (x") = {x",x)

then
x*=VFf(x) and x=VF*"(x").
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Let us try to calculate the Legendre transform of

1
f(x)=;|x|” 1< p<oo.
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Let us try to calculate the Legendre transform of

1 Classical Problem
f(x)==|x|? 1< p<oo. Euler-Lagrange Equations
p Hamiltonian formulation
Legendre Transform
If y achieves the supremum (i.e. a maxima) for the following ' s
First integrals
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Let us try to calculate the Legendre transform of
1
f(x):;|x|p 1< p<oo.
If y achieves the supremum (i.e. a maxima) for the following
function

g(x) = (x",x) — f(x),
then we must have ——
0=Vg(y)=x"—VFf(y)=x"—|y"?y.
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Let us try to calculate the Legendre transform of
1
f(x):;|x|p 1< p<oo.
If y achieves the supremum (i.e. a maxima) for the following
function

g(x) = (x*, x) = f(x),
then we must have —
* -2
0=Vg(y)=x"-Vf(y)=x"—|y["y.
Now, by elementary manipulations
X =Py ey =P X
where p/ is the Holder conjugate of p, i.e
1 1
p P



Example

Let us try to calculate the Legendre transform of
1
f(x):;|x|p 1< p<oo.

If y achieves the supremum (i.e. a maxima) for the following
function
g(x) = (x*, x) = f(x),
then we must have
* -2
0=Vg(y)=x"-Vf(y)=x"—|y["y.
Now, by elementary manipulations
*|Pl—2 *

—2
=y yey=|x x*,

where p/ is the Holder conjugate of p, i.e

1 1
p P
So plugging it in the definition, we deduce
1

f*x*:—,x*p/.
(x7) pl \
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The Euler-Lagrange equations for the functional

Legend

b —————
J(u,v) = / [a(t),v(t)) — H(t,u(t),v(t))] dt, foru,ve C? ([a§ b RNB

are called the Hamilton’s equations and sometimes also called
the canonical form of the Euler-Lagrange equation of the
Lagrangian formulation.




Introduction to the

Hamilton’s equations @t o Werpitie

Swarnendu Sil

The Euler-Lagrange equations for the functional Euler-Logrange Equations

Legend

Hamiltor

b
S, v) ;:/ [ (8). v (8)) — H (£, (2) v (D)] e, for u,v € C ([a b BN}

are called the Hamilton’s equations and sometimes also called
the canonical form of the Euler-Lagrange equation of the
Lagrangian formulation.
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The Euler-Lagrange equations for the functional Eule

Hamilto
Legend

Hamiltor

b
J(u,v) ::/ [(a(t),v(t)) — H(t,u(t),v(t))]dt, foru,ve C? ([a?

are called the Hamilton’s equations and sometimes also called et et
the canonical form of the Euler-Lagrange equation of the e
Lagrangian formulation.

These are 2/ first order ODEs.
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The Euler-Lagrange equations for the functional

are called the Hamilton’s equations and sometimes also called
the canonical form of the Euler-Lagrange equation of the
Lagrangian formulation.

These are 2/ first order ODEs.

Now we are going to show that in some cases these equations are
equivalent to the EL equations for C? stationary points.



Lemma (Regularity of the Hamiltonian)
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Lemma (Regularity of the Hamiltonian)
Let f € C*([a,b] x RN x RN) | f = f (t,u,§) be such that

convexity) fee (t,u, &) positive definite , for every (t,u,§) € a,bmﬁ
139

(coercivity) f (t,u.€) > w ([E))+g (t,u), for every (t,u,€) € [a, B xRNXRY

Examples
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Lemma (Regularity of the Hamiltonian)
Let f € C*([a,b] x RN x RN) | f = f (t,u,§) be such that R

Hamilto

(convexity) fee (t,u,&) positive definite , for every (t,u,€) € [a, b]mﬁ%RsN,

d Noether's

(coercivity) f (t,u.€) > w ([E))+g (t,u), for every (t,u,€) € [a, B xRNXRY

Examples

where w is nonnegative,
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Lemma (Regularity of the Hamiltonian)
Let f € C*([a,b] x RN x RN) | f = f (t,u,§) be such that

(convexity) fie (t,u,£) positive definite , for every (t,u,&) € [a, blaRNaxR

(coercivity) £ (t,u,&) > w(|&)+g(t,u), forevery (t,u,€) € [a, b]xi[% xRN

Examples

where w is nonnegative, continuous
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Lemma (Regularity of the Hamiltonian)
Let f € C?([a,b] x RN x RN) | f = £ (t,u,&) be such that

(convexity) fie (t,u,£) positive definite , for every (t,u,&) € [a, blaRNaxR

(coercivity) £ (t,u,&) > w(|&)+g(t,u), forevery (t,u,€) € [a, b]xi[% XRN

Examples

where w is nonnegative, continuous and increasing
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Lemma (Regularity of the Hamiltonian)
Let f € C?([a,b] x RN x RN) | f = £ (t,u,&) be such that

(coercivity) f (t,u.€) > w ([E))+g (t,u), for every (t,u,€) € [a, B xRNXRY

where w is nonnegative, continuous and increasing with
lim w(t)/t =00
Jim w(t)/
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Lemma (Regularity of the Hamiltonian)
Let f € C?([a,b] x RN x RN) | f = £ (t,u,&) be such that

(coercivity) £ (t,u,€) > w ([E)+g (t,u), for every (t,u,€) € [a, B xRYXR"

Examples

where w is nonnegative, continuous and increasing with
lim w(t)/t =00 and g : [a, b] x RN — R is continuous.
t—o0
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Lemma (Regularity of the Hamiltonian)
Let f € C?([a,b] x RN x RN) | f = £ (t,u,&) be such that

(coercivity) £ (t,u,€) > w ([E)+g (t,u), for every (t,u,€) € [a, B xRYXR"

Examples

where w is nonnegative, continuous and increasing with
lim w(t)/t =00 and g : [a, b] x RN — R is continuous.
t—o0

Then the Hamiltonian H € C? ([a, b] x RN x RV)
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Lemma (Regularity of the Hamiltonian)
Let f € C?([a,b] x RN x RN) | f = £ (t,u,&) be such that

(coercivity) f (t,u.€) > w ([E))+g (t,u), for every (t,u,€) € [a, B xRNXRY

where w is nonnegative, continuous and increasing with
lim w(t)/t =00 and g : [a, b] x RN — R is continuous.
t—o0

Then the Hamiltonian H € C? ([a, b] x RN x R") and we have
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Lemma (Regularity of the Hamiltonian)
Let f € C?([a,b] x RN x RN) | f = £ (t,u,&) be such that

(convexity) fie (t,u,£) positive definite , for every (t,u,&) € [a, blaRNaxR

(coercivity) £ (t,u,&) > w(|&)+g(t,u), forevery (t,u,€) € [a, b]xi[% XRN

Examples
where w is nonnegative, continuous and increasing with
lim w(t)/t =00 and g : [a, b] x RN — R is continuous.
t—o0

Then the Hamiltonian H € C? ([a, b] x RN x R") and we have

H(t,u,v) = (v, H, (t,u,v)) —f(t,u,H, (t,u,v))
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Lemma (Regularity of the Hamiltonian)
Let f € C*([a,b] x RN x RN) | f = f (t,u,§) be such that

(convexity) fie (t,u,£) positive definite , for every (t,u,&) € [a, blaRNaxR

(coercivity) £ (t,u,&) > w(|&)+g(t,u), forevery (t,u,€) € [a, b]xi[% xRN

Examples
where w is nonnegative, continuous and increasing with
lim w(t)/t =00 and g : [a, b] x RN — R is continuous.
t—o0

Then the Hamiltonian H € C? ([a, b] x RN x R") and we have

H(t,u,v) = (v, H, (t,u,v)) —f(t,u,H, (t,u,v))

and v="f(t,u,&) ifandonlyif &=H,(t,u,v).
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Proof of Regularity of the Hamiltonian Lemma
Note that the coercivity assumptions imply

f(t,u,8)

lim ———= =400 for every (t,u) € [a, b] x RV,
lglmoo [€]

Thus given any t € [a, b] and u, v € RV, the the supremum in the .
definition of H, i.e. Examples

sup {<V7£> - f(tv u7§)}

EERN

is achieved at some ¢ = £ (t,u,v) € RV,



Ham“tonys equations Introduction to the

Calculus of Variations

Swarnendu Sil

Proof of Regularity of the Hamiltonian Lemma
Note that the coercivity assumptions imply
f(t,u,)

lim ———= =400 for every (t,u) € [a, b] x RV,
lglmoo [€]

Thus given any t € [a, b] and u, v € RV, the the supremum in the
definition of H, i.e.

sup {<V7£> - f(tv u?&)}

EERN

is achieved at some ¢ = £ (t,u, v) € RV, Thus the function
g : RN — R defined by

g(y) = <Vay> - f(t’ u7y)

achieves a maxima at y = &.
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Proof of Regularity of the Hamiltonian Lemma
Note that the coercivity assumptions imply

f(t,u,8)

lim ———= =400 for every (t,u) € [a, b] x RV,
lglmoo [€]

Thus given any t € [a, b] and u, v € RV, the the supremum in the
definition of H, i.e.

sup {<V7£> - f(tv u?&)}

EERN

is achieved at some ¢ = £ (t,u, v) € RV, Thus the function
g : RN — R defined by

g(y) = <Vay> - f(t’ u7y)

achieves a maxima at y = £. Hence we must have
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Proof of Regularity of the Hamiltonian Lemma
Note that the coercivity assumptions imply

f(t,u,8)

lim ———= =400 for every (t,u) € [a, b] x RV,
lglmoo [€]

Thus given any t € [a, b] and u, v € RV, the the supremum in the "
definition of H, i.e. Examples

sup {<V7£> - f(tv u?&)}

EERN

is achieved at some ¢ = £ (t,u, v) € RV, Thus the function
g : RN — R defined by

g(y) = <Vay> - f(t’ u7y)

achieves a maxima at y = £. Hence we must have

Vg (y)l,—e =0. e
v =fe(t,u,8).
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Proof of Regularity of the Hamiltonian Lemma
Note that the coercivity assumptions imply

f(t,u,8)

lim ———= =400 for every (t,u) € [a, b] x RV,
lglmoo [€]

Thus given any t € [a, b] and u, v € RV, the the supremum in the "
definition of H, i.e. Examples

sup {<V7£> - f(tv u?&)}

EERN

is achieved at some ¢ = £ (t,u, v) € RV, Thus the function
g : RN — R defined by

g(y) = <Vay> - f(t’ u7y)

achieves a maxima at y = £. Hence we must have

Vg (y)l,—e =0. e
v =fe(t,u,8).



Hamilton’s equations

Proof of Regularity of the Hamiltonian Lemma
So far we have established that H (t, u, v) is finite everywhere and

v="fe(t,uf).
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Hamilton’s equations

Proof of Regularity of the Hamiltonian Lemma
So far we have established that H (t, u, v) is finite everywhere and

v=fe(t,u,f).

One can actually establish the continuity of H as well already. Let
& be the maximizer

H(t,u,v)={v,& —f(t,u,§)
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Hamilton’s equations

Proof of Regularity of the Hamiltonian Lemma
So far we have established that H (t, u, v) is finite everywhere and

v="fe(t,uf).

One can actually establish the continuity of H as well already. Let

& be the maximizer
H(tu u, V) = <V7€> - f(t7 U,f)
By definition of H, for some other point (£, &, v) , we have

H(F G,7) > (7,6) — f (F,G,€).
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Proof of Regularity of the Hamiltonian Lemma
So far we have established that H (t, u, v) is finite everywhere and

v=fe (t,u,§).

One can actually establish the continuity of H as well already. Let
& be the maximizer

H(t,u,v)={v,& —f(t,u,§)

By definition of H, for some other point (£, &, v) , we have
H(Ea u, ‘7) > <‘7a§> - f(fa ’jvg)
Thus, we obtain

H(t7U,V)7H(EaE7 ‘7) < <V7‘7a£>+[f(fvlja£)7f(tvuag)]'
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Proof of Regularity of the Hamiltonian Lemma
So far we have established that H (t, u, v) is finite everywhere and

v=fe (t,u,§).

One can actually establish the continuity of H as well already. Let
& be the maximizer

H(t,u,v)={v,& —f(t,u,§)

By definition of H, for some other point (£, &, v) , we have
H(t, a,v) > (v,&) — f(t,a,¢).
Thus, we obtain
H(t,u,v)—H(t,a,v)<{v—v& +[f(t a5, —f(t,uf)].

Now continuity of H follows from the continuity of
(t,u) — f(t,u,&) for every &.



Hamilton’s equations

Proof of Regularity of the Hamiltonian Lemma
Now we want to invert the equation

v =fe(t,u,8)

and express ¢ as a function of t, u, v.
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Hamilton’s equations

Proof of Regularity of the Hamiltonian Lemma
Now we want to invert the equation

v =fe(t,u,8)

and express ¢ as a function of t, u, v. But since f € C?

Introduction to the
Calculus of Variations

Swarnendu Sil

Classical Problem
Euler-Lagrange Equations
Hamiltonian formulation
Legendre Transform
Hamilton's equations

First integrals

and Noether's

Second Variation
Jacobi fields

Examples



Hamilton’s equations

Proof of Regularity of the Hamiltonian Lemma
Now we want to invert the equation

v =fe(t,u,8)

and express ¢ as a function of t, u, v. But since f € C? and fee is
positive definite
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Hamilton’s equations

Proof of Regularity of the Hamiltonian Lemma
Now we want to invert the equation

v =fe(t,u,8)

and express ¢ as a function of t, u, v. But since f € C? and fee is
positive definite and hence invertible,inverse function theorem
implies that ¢ = ¢ (t, u, v) is CL.

Introduction to the
Calculus of Variations

Swarnendu Sil

Equations

ulation
Transform

Hamilton's equations
First integrals

Symmetry and Noether's

Second Variation
Jacobi fields

Examples



Hamilton’s equations

Proof of Regularity of the Hamiltonian Lemma
Now we want to invert the equation

v =fe(t,u,8)

and express ¢ as a function of t, u, v. But since f € C? and fee is
positive definite and hence invertible,inverse function theorem
implies that ¢ = ¢ (t, u, v) is C'. Now the equation

H(t,u,v)={(v,&(t,u,v)) —f(t,u,&(t,u,v))

immediately implies H is C1.
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Hamilton’s equations

Proof of Regularity of the Hamiltonian Lemma
Now we want to invert the equation

v =fe(t,u,8)

and express ¢ as a function of t, u, v. But since f € C? and fee is

positive definite and hence invertible,inverse function theorem
implies that ¢ = ¢ (t, u, v) is C'. Now the equation

H(tv u, V) = <V7£(t7 u, V)> - f(t7 U,ﬁ(t, u, V))
immediately implies H is C'. Furthermore, we deduce
He = (v — fEuft) — fp = —1f;,
H, = <V - ffagu> —fy= *fua
Hv:€+<V_f£a§V> =§-
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Proof of Regularity of the Hamiltonian Lemma
Now we want to invert the equation

v =fe(t,u,8)

and express ¢ as a function of t, u, v. But since f € C? and fee is
positive definite and hence invertible,inverse function theorem
implies that ¢ = ¢ (t, u, v) is C'. Now the equation

H(tv u, V) = <V7£ (tv u, V)> - f(t7 U,ﬁ(t, u, V))
immediately implies H is C'. Furthermore, we deduce

Ht: <V_f.-£7£t> _ft:_fta
H, = <V7 ffagu> —fy= *fua
Hv:€+<V_f£a§V> =§-

The last equation also proves £ = H, if and only if v = ;.



Hamilton’s equations

Proof of Regularity of the Hamiltonian Lemma
But since f is C? and ¢ is Ct,
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Hamilton’s equations

Proof of Regularity of the Hamiltonian Lemma
But since f is C? and ¢ is C!, we deduce that the maps

(t,u,v) = fi (t,u,&(t,u,v)) and (t,u,v) — f,(t,u,&(t, u,v))
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Hamilton’s equations

Proof of Regularity of the Hamiltonian Lemma
But since f is C? and ¢ is C!, we deduce that the maps

(t,u,v) = fi (t,u,&(t,u,v)) and (t,u,v) — f,(t,u,&(t, u,v))

are both C! as well.
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Hamilton’s equations

Proof of Regularity of the Hamiltonian Lemma
But since f is C? and ¢ is C!, we deduce that the maps

(t,u,v) = fi (t,u,&(t,u,v)) and (t,u,v) — f,(t,u,&(t, u,v))

are both C! as well. Thus the equations ( which we deduced on
last slide )

H —f;
VH=|H,| = |-
H, ¢
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Proof of Regularity of the Hamiltonian Lemma
But since f is C? and ¢ is C!, we deduce that the maps

(t,u,v) = fi (t,u,&(t,u,v)) and (t,u,v) — f,(t,u,&(t, u,v))

are both C! as well. Thus the equations ( which we deduced on
last slide )

H —f;
VH=|H,| = |-
H, ¢

implies that H is C2. O
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Proof of Regularity of the Hamiltonian Lemma
But since f is C? and ¢ is C!, we deduce that the maps

(t,u,v) = fi (t,u,&(t,u,v)) and (t,u,v) — f,(t,u,&(t, u,v))

are both C! as well. Thus the equations ( which we deduced on .
last slide )
H —f
VH=|H, | =| -1,
H, 13
implies that H is C2. O

Now we are ready to state and prove our main theorem regarding
the Hamiltonian formulation.



Hamilton’s equations

Theorem (Hamiltonian and Lagrangian formulation)
Let f satisfy the hypotheses of the last lemma
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Hamilton’s equations

Theorem (Hamiltonian and Lagrangian formulation)

Let f satisfy the hypotheses of the last lemma and let H be its
Hamiltonian.
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Hamilton’s equations

Theorem (Hamiltonian and Lagrangian formulation)

Let f satisfy the hypotheses of the last lemma and let H be its
Hamiltonian. Let u,v € C?([a, b]; RN) satisfy,
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Hamilton’s equations

Theorem (Hamiltonian and Lagrangian formulation)

Let f satisfy the hypotheses of the last lemma and let H be its
Hamiltonian. Let u,v € C?([a, b]; RN) satisfy,

a(t) = H, (t,u(t),v(t),
(H) {\'/(t)z—/'/ (t,u(t),v(t),

for every t € [a, b].
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Theorem (Hamiltonian and Lagrangian formulation)

Let f satisfy the hypotheses of the last lemma and let H be its
Hamiltonian. Let u,v € C?([a, b]; RN) satisfy,

i(t) = H, (t,u(t),v(t)),
(H) {\'/(t) = Hy (6 u (), v (1)), for every t € [a, b]. —

Then u verifies

(EL) % [fe (t,u(t),u(t))] =1f,(t,u(t),u(t)), foreveryte (a,b).



Hamilton’s equations

Theorem (Hamiltonian and Lagrangian formulation)

Let f satisfy the hypotheses of the last lemma and let H be its
Hamiltonian. Let u,v € C?([a, b]; RN) satisfy,

a(t) = H, (t,u(t),v(t),
(H) {\'/(t)z—/'/ (t,u(t),v(t),

Then u verifies

for every t € [a, b].
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(EL) % [fe (t,u(t),u(t))] =1f,(t,u(t),u(t)), foreveryte (a,b).

Conversely, if u € C?([a, b];RN) satisfies (EL)



Hamilton’s equations

Theorem (Hamiltonian and Lagrangian formulation)

Let f satisfy the hypotheses of the last lemma and let H be its
Hamiltonian. Let u,v € C?([a, b]; RN) satisfy,

a(t) = H, (t,u(t),v(t),
(H) {\'/(t)z—/'/ (t,u(t),v(t),

Then u verifies

for every t € [a, b].
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(EL) % [fe (t,u(t),u(t))] =1f,(t,u(t),u(t)), foreveryte (a,b).

Conversely, if u € C?([a, b];RN) satisfies (EL) then (u,v) are C?
solutions of (H)
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Theorem (Hamiltonian and Lagrangian formulation)

Let f satisfy the hypotheses of the last lemma and let H be its
Hamiltonian. Let u,v € C?([a, b]; RN) satisfy,

i(t) = H, (t,u(t), v (1),
(H) {\'/(t) = Hy (6 u (), v (1)), for every t € [a, b]. e

Then u verifies

(EL) % [fe (t,u(t),u(t))] =1f,(t,u(t),u(t)), foreveryte (a,b).

Conversely, if u € C?([a, b];RN) satisfies (EL) then (u,v) are C?
solutions of (H) where

v(t)="fe(t,u(t),u(t)), foreveryt€ [a,b].



Hamilton’s equations

Proof of the Hamiltonian and Lagrangian formulation

theorem.
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Hamilton’s equations

Proof of the Hamiltonian and Lagrangian formulation
theorem.

Now that we have done all the hard work in proving the lemma,
the proof is easy.
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Hamilton’s equations

Proof of the Hamiltonian and Lagrangian formulation

theorem.

Now that we have done all the hard work in proving the lemma,

the proof is easy.

u=H,

implies v (t) = f¢ (t,u(t), d(t)).
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Hamilton’s equations

Proof of the Hamiltonian and Lagrangian formulation
theorem.

Now that we have done all the hard work in proving the lemma,
the proof is easy.

u=H, implies v (t)="fe(t,u(t),a(t)).
But then,

if =v=—H,=—{(v—1fe,&)+f, =1
dtf— - u— & Su u — luy

which is the (EL) equations.
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Proof of the Hamiltonian and Lagrangian formulation

theorem.
Now that we have done all the hard work in proving the lemma,
the proof is easy.

u=H, implies v (t)="fe(t,u(t),a(t)).

But then, o
d

dtff:‘./:_HU:_<V_f:§a€u>+fu:fuy

which is the (EL) equations. Conversely, if u € C? ([a, b] ;RN)
satisfies (EL)
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Proof of the Hamiltonian and Lagrangian formulation

theorem.
Now that we have done all the hard work in proving the lemma,
the proof is easy.

u=H, implies v (t)="fe(t,u(t),a(t)).

But then, o
= Hy= (v b =
dt E— V= u— & Su u — luy

which is the (EL) equations. Conversely, if u € C? ([a, b] ;RN)
satisfies (EL) then

v(t)="fe(t,u(t),u(t)) implies d=H,.



Hamilton’s equations

Proof of the Hamiltonian and Lagrangian formulation
theorem.

Now that we have done all the hard work in proving the lemma,

the proof is easy.

u=H, implies v (t)="fe(t,u(t),a(t)).

But then,

dtf:f_V__HU:_<V_f:§a€u>+fu:fuy

which is the (EL) equations. Conversely, if u € C? ([a, b] ;IR{N)
satisfies (EL) then
v(t)="fe(t,u(t),u(t)) implies d=H,.

Also,

dtff;“* f *<V_f5a€u>_ u:_Hm
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Hamilton’s equations

Proof of the Hamiltonian and Lagrangian formulation
theorem.

Now that we have done all the hard work in proving the lemma,

the proof is easy.

u=H, implies v (t)="fe(t,u(t),a(t)).

But then,

dtf:f_V__HU:_<V_f:§a€u>+fu:fuy

which is the (EL) equations. Conversely, if u € C? ([a, b] ;IR{N)
satisfies (EL) then
v(t)="fe(t,u(t),u(t)) implies d=H,.

Also,

dtff;"_f <V_fEa€u>_Hu:_Hu7

verifying (H).
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First integrals

We begin with a few definitions.

Definition (Integral Curves)

An integral curve of the vector field is a curve which is tangent to
the vector field at each point.
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We begin with a few definitions.

Definition (Integral Curves)

An integral curve of the vector field is a curve which is tangent to R
the vector field at each point. Mathematically, given a vector field S
X on RN7 Jacobi fields
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First integrals

We begin with a few definitions.

Definition (Integral Curves)

An integral curve of the vector field is a curve which is tangent to
the vector field at each point. Mathematically, given a vector field
X on RN the map ¢ : [a, b] — RV is an integral curve of the
vector field X
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First integrals

We begin with a few definitions.

Definition (Integral Curves)

An integral curve of the vector field is a curve which is tangent to
the vector field at each point. Mathematically, given a vector field
X on RN the map ¢ : [a, b] — RV is an integral curve of the
vector field X if it satisfies
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First integrals

We begin with a few definitions.

Definition (Integral Curves)

An integral curve of the vector field is a curve which is tangent to
the vector field at each point. Mathematically, given a vector field
X on RN the map ¢ : [a, b] — RV is an integral curve of the
vector field X if it satisfies

o (t) = X (4(t)) for each t € [a, b]. (1)
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First integrals

We begin with a few definitions.

Definition (Integral Curves)

An integral curve of the vector field is a curve which is tangent to
the vector field at each point. Mathematically, given a vector field
X on RN the map ¢ : [a, b] — RV is an integral curve of the
vector field X if it satisfies

o (t) = X (4(t)) for each t € [a, b]. (1)

Clearly, (1) is a system of ODEs.
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First integrals

We begin with a few definitions.

Definition (Integral Curves)

An integral curve of the vector field is a curve which is tangent to
the vector field at each point. Mathematically, given a vector field
X on RN the map ¢ : [a, b] — RV is an integral curve of the
vector field X if it satisfies

o (t) = X (4(t)) for each t € [a, b]. (1)

Clearly, (1) is a system of ODEs. ¢ is also called an integral
curve for the system of ODEs in this case as well.
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First integrals

We begin with a few definitions.

Definition (Integral Curves)

An integral curve of the vector field is a curve which is tangent to
the vector field at each point. Mathematically, given a vector field
X on RN the map ¢ : [a, b] — RV is an integral curve of the
vector field X if it satisfies

o (t) = X (4(t)) for each t € [a, b]. (1)

Clearly, (1) is a system of ODEs. ¢ is also called an integral
curve for the system of ODEs in this case as well.

Definition (First Integral)
A first integral of a system of differential equations
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First integrals

We begin with a few definitions.

Definition (Integral Curves)

An integral curve of the vector field is a curve which is tangent to
the vector field at each point. Mathematically, given a vector field
X on RN the map ¢ : [a, b] — RV is an integral curve of the
vector field X if it satisfies

o (t) = X (4(t)) for each t € [a, b]. (1)

Clearly, (1) is a system of ODEs. ¢ is also called an integral
curve for the system of ODEs in this case as well.

Definition (First Integral)

A first integral of a system of differential equations is a function
which has a constant value along each integral curve of the system.
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Theorem (First Integral)
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Theorem (First Integral)

A function ® € C? (RY x RN) , & = & (u,v), is a first integral of
the Hamilton's equations with Hamiltonian

H=H(t,u,v) € C?([a, b] x RN x RN) if and only if the
Poisson Bracket

o OH 90d OH
oui Ovi Ovi dui

{437 H} = <(Du7 Hv> - <¢V7 Hu> =

i=1
vanishes identically.

Proof.
Along each integral curve (u(t), v(t)) of the Hamilton's equations,
we have

d(t) = dtCD (D, 0) + (®,,v) = {d,H}.
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in mathematics,the Lie Bracket via the construction of
Hamiltonian vector fields in symplectic geometry.
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does not depend explicitly on t.
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Remark

The Poisson bracket is an example of a commutator bracket. [t
is intimately related to another extremely useful bracket operation
in mathematics,the Lie Bracket via the construction of
Hamiltonian vector fields in symplectic geometry.

Note that the last theorem was about finding first integrals which
does not depend explicitly on t. See Assignments for first integrals
S =9 (t,u,v).

If the Hamiltonian H does not depend explicitly on t, the previous
theorem tells us that H itself is a first integral,since

{H,H} =0.

In physics, this is usually stated as the fact that the Hamiltonian (
i.e. the total energy ) of a mechanical system is a conserved
quantity.

This however, is not a coincidence! This is just a special
instance of a profound general fact known as Noether's theorem.

Introduction to the
Calculus of Variations

Swarnendu Sil




Thank you
Questions?
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