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Hamiltonian formulation

So far we have investigated the stationary points of the following
functional

u 7→ I (u) :=

ˆ b

a

f (t, u (t) , u̇ (t)) dt, for u ∈ X .

We showed that C 2 stationary points satisfy the EL equations.

Now we are going to show that in some cases, these C 2 stationary
points are also the stationary points of another functional whose
EL equations are going to be systems of 2N first order ODEs
instead of the system of N second order ODEs we obtained.

The functional is, for u, v ∈ C 2
(
[a, b];RN

)
,

(u, v) 7→ J(u, v) :=

ˆ b

a

[〈u̇ (t) , v (t)〉 − H (t, u (t) , v (t))] dt.

where the function H : [a, b]× RN × RN → R is called the
Hamiltonian and it is the Legendre transform of the
Lagrangian f , which is defined as

H (x , u, v) = sup
ξ∈RN

{〈v , ξ〉 − f (x , u, ξ)} .
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Legendre transform

We now define the notion of duality, also known as the Legendre
transform, for convex functions.

See Lecture Notes for more. We
allow functions to take the value +∞.
Definition (Legendre transform)

Let f : RN → R (or f : RN → R ∪ {+∞}).

(i) The Legendre transform, or dual, of f is the function
f ∗ : RN → R ∪ {±∞} defined by

f ∗ (x∗) = sup
x∈RN

{〈x , x∗〉 − f (x)}

where 〈·, ·〉 denotes the scalar product in RN .

(ii) The bidual of f is the function f ∗∗ : RN → R∪ {±∞} defined
by

f ∗∗ (x) = sup
x∗∈RN

{〈x , x∗〉 − f ∗ (x∗)} .

I In general, f ∗ takes the value +∞, even if f takes only finite
values.

I If f 6≡ +∞, then f ∗ > −∞.
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Legendre transform

Theorem (Properties of Legendre Transform)

Let f : RN → R (or f : RN → R ∪ {+∞}).

(i) The function f ∗ is convex (even if f is not) and f ∗∗∗ = f ∗.

(ii) The function f ∗∗ is convex and f ∗∗ ≤ f . If f is bounded below
and finite but not necessarily convex, then f ∗∗ is its convex
envelope (the largest convex function that is smaller than f ) and
if f is moreover, convex, then f ∗∗ = f .

(iii) If f : RN → R is strictly convex and if

lim
|x|→∞

f (x)

|x |
= +∞

then f ∗ ∈ C 1
(
RN
)
. Moreover, if f ∈ C 1

(
RN
)

and

f (x) + f ∗ (x∗) = 〈x∗, x〉

then
x∗ = ∇f (x) and x = ∇f ∗ (x∗) .
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(i) The function f ∗ is convex (even if f is not) and f ∗∗∗ = f ∗.

(ii) The function f ∗∗ is convex and f ∗∗ ≤ f . If f is bounded below
and finite but not necessarily convex, then f ∗∗ is its convex
envelope (the largest convex function that is smaller than f ) and
if f is moreover, convex, then f ∗∗ = f .
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Example

Let us try to calculate the Legendre transform of

f (x) =
1

p
|x |p 1 < p <∞.

If y achieves the supremum (i.e. a maxima) for the following
function

g(x) := 〈x∗, x〉 − f (x),

then we must have

0 = ∇g (y) = x∗ −∇f (y) = x∗ − |y |p−2 y .

Now, by elementary manipulations

x∗ = |y |p−2 y ⇔ y = |x∗|p
′
−2 x∗,

where p
′

is the Hölder conjugate of p, i.e

1

p
+

1

p′
= 1.

So plugging it in the definition, we deduce

f ∗ (x∗) =
1

p′
|x∗|p

′

.
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Hamilton’s equations

The Euler-Lagrange equations for the functional

J(u, v) :=

ˆ b

a

[〈u̇ (t) , v (t)〉 − H (t, u (t) , v (t))] dt, for u, v ∈ C 2
(
[a, b];RN

)
are called the Hamilton’s equations and sometimes also called
the canonical form of the Euler-Lagrange equation of the
Lagrangian formulation.

(H)

{
u̇ (t) = Hv (t, u (t) , v (t)) ,

v̇ (t) = −Hu (t, u (t) , v (t)) .

These are 2N first order ODEs.

Now we are going to show that in some cases these equations are
equivalent to the EL equations for C 2 stationary points.
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Hamilton’s equations

Lemma (Regularity of the Hamiltonian)

Let f ∈ C 2
(
[a, b]× RN × RN

)
, f = f (t, u, ξ) be such that

(convexity) fξξ (t, u, ξ) positive definite , for every (t, u, ξ) ∈ [a, b]×RN×RN ,

(coercivity) f (t, u, ξ) ≥ ω (|ξ|)+g (t, u) , for every (t, u, ξ) ∈ [a, b]×RN×RN

where ω is nonnegative, continuous and increasing with
lim
t→∞

ω (t) /t =∞ and g : [a, b]× RN → R is continuous.

Then the Hamiltonian H ∈ C 2
(
[a, b]× RN × RN

)
and we have

Ht (t, u, v) = −ft (t, u,Hv (t, u, v))

Hu (t, u, v) = −fu (t, u,Hv (t, u, v)) ,

H (t, u, v) = 〈v ,Hv (t, u, v)〉 − f (t, u,Hv (t, u, v))

and v = fξ (t, u, ξ) if and only if ξ = Hv (t, u, v) .
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Proof of Regularity of the Hamiltonian Lemma

Note that the coercivity assumptions imply

lim
|ξ|→∞

f (t, u, ξ)

|ξ|
= +∞ for every (t, u) ∈ [a, b]× RN .

Thus given any t ∈ [a, b] and u, v ∈ RN , the the supremum in the
definition of H, i.e.

sup
ξ∈RN

{〈v , ξ〉 − f (t, u, ξ)}

is achieved at some ξ = ξ (t, u, v) ∈ RN . Thus the function
g : RN → R defined by

g(y) := 〈v , y〉 − f (t, u, y)

achieves a maxima at y = ξ. Hence we must have
∇g (y)|y=ξ = 0. i.e.

v = fξ (t, u, ξ) .
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Proof of Regularity of the Hamiltonian Lemma

So far we have established that H (t, u, v) is finite everywhere and

v = fξ (t, u, ξ) .

One can actually establish the continuity of H as well already. Let
ξ be the maximizer

H (t, u, v) = 〈v , ξ〉 − f (t, u, ξ)

By definition of H, for some other point (t̄, ū, v̄) , we have

H (t̄, ū, v̄) ≥ 〈v̄ , ξ〉 − f (t̄, ū, ξ) .

Thus, we obtain

H (t, u, v)− H (t̄, ū, v̄) ≤ 〈v − v̄ , ξ〉+ [f (t̄, ū, ξ)− f (t, u, ξ)] .

Now continuity of H follows from the continuity of
(t, u) 7→ f (t, u, ξ) for every ξ.
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H (t̄, ū, v̄) ≥ 〈v̄ , ξ〉 − f (t̄, ū, ξ) .
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Proof of Regularity of the Hamiltonian Lemma

Now we want to invert the equation

v = fξ (t, u, ξ)

and express ξ as a function of t, u, v .

But since f ∈ C 2 and fξξ is
positive definite and hence invertible,inverse function theorem
implies that ξ = ξ (t, u, v) is C 1. Now the equation

H (t, u, v) = 〈v , ξ (t, u, v)〉 − f (t, u, ξ (t, u, v))

immediately implies H is C 1. Furthermore, we deduce

Ht = 〈v − fξ, ξt〉 − ft = −ft ,
Hu = 〈v − fξ, ξu〉 − fu = −fu,
Hv = ξ + 〈v − fξ, ξv 〉 = ξ.

The last equation also proves ξ = Hv if and only if v = fξ.
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H (t, u, v) = 〈v , ξ (t, u, v)〉 − f (t, u, ξ (t, u, v))

immediately implies H is C 1. Furthermore, we deduce

Ht = 〈v − fξ, ξt〉 − ft = −ft ,
Hu = 〈v − fξ, ξu〉 − fu = −fu,
Hv = ξ + 〈v − fξ, ξv 〉 = ξ.

The last equation also proves ξ = Hv if and only if v = fξ.
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Proof of Regularity of the Hamiltonian Lemma

But since f is C 2 and ξ is C 1,

we deduce that the maps

(t, u, v) 7→ ft (t, u, ξ (t, u, v)) and (t, u, v) 7→ fu (t, u, ξ (t, u, v))

are both C 1 as well. Thus the equations ( which we deduced on
last slide )

∇H =

Ht

Hu

Hv

 =

−ft−fu
ξ


implies that H is C 2.

Now we are ready to state and prove our main theorem regarding
the Hamiltonian formulation.
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Theorem (Hamiltonian and Lagrangian formulation)

Let f satisfy the hypotheses of the last lemma

and let H be its
Hamiltonian. Let u, v ∈ C 2

(
[a, b] ;RN

)
satisfy,

(H)

{
u̇ (t) = Hv (t, u (t) , v (t)) ,

v̇ (t) = −Hu (t, u (t) , v (t)) ,
for every t ∈ [a, b] .

Then u verifies

(EL)
d

dt
[fξ (t, u (t) , u̇ (t))] = fu (t, u (t) , u̇ (t)) , for every t ∈ (a, b) .

Conversely, if u ∈ C 2
(
[a, b] ;RN

)
satisfies (EL) then (u, v) are C 2

solutions of (H) where

v (t) = fξ (t, u (t) , u̇ (t)) , for every t ∈ [a, b] .
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Proof of the Hamiltonian and Lagrangian formulation
theorem.

Now that we have done all the hard work in proving the lemma,
the proof is easy.

u̇ = Hv implies v (t) = fξ (t, u (t) , u̇ (t)) .

But then,

d

dt
fξ = v̇ = −Hu = −〈v − fξ, ξu〉+ fu = fu,

which is the (EL) equations. Conversely, if u ∈ C 2
(
[a, b] ;RN

)
satisfies (EL) then

v (t) = fξ (t, u (t) , u̇ (t)) implies u̇ = Hv .

Also,

v̇ =
d

dt
fξ = fu = 〈v − fξ, ξu〉 − Hu = −Hu,

verifying (H).
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First integrals

We begin with a few definitions.

Definition (Integral Curves)

An integral curve of the vector field is a curve which is tangent to
the vector field at each point. Mathematically, given a vector field
X on RN , the map φ : [a, b]→ RN is an integral curve of the
vector field X if it satisfies

φ̇ (t) = X (φ (t)) for each t ∈ [a, b]. (1)

Clearly, (1) is a system of ODEs. φ is also called an integral
curve for the system of ODEs in this case as well.

Definition (First Integral)

A first integral of a system of differential equations is a function
which has a constant value along each integral curve of the system.
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Finding first integrals

Theorem (First Integral)

A function Φ ∈ C 2
(
RN × RN

)
, Φ = Φ (u, v) , is a first integral of

the Hamilton’s equations with Hamiltonian
H = H (t, u, v) ∈ C 2

(
[a, b]× RN × RN

)
if and only if the

Poisson Bracket

{Φ,H} := 〈Φu,Hv 〉 − 〈Φv ,Hu〉 :=
N∑
i=1

∂Φ

∂ui
∂H

∂v i
− ∂Φ

∂v i

∂H

∂ui

vanishes identically.

Proof.
Along each integral curve (u(t), v(t)) of the Hamilton’s equations,
we have

Φ̇ (t) =
d

dt
Φ = 〈Φu, u̇〉+ 〈Φv , v̇〉 = {Φ,H} .
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Remarks on first integrals

Remark
The Poisson bracket is an example of a commutator bracket.

It
is intimately related to another extremely useful bracket operation
in mathematics,the Lie Bracket via the construction of
Hamiltonian vector fields in symplectic geometry.

Note that the last theorem was about finding first integrals which
does not depend explicitly on t. See Assignments for first integrals
Φ = Φ (t, u, v) .

If the Hamiltonian H does not depend explicitly on t, the previous
theorem tells us that H itself is a first integral,since

{H,H} ≡ 0.

In physics, this is usually stated as the fact that the Hamiltonian (
i.e. the total energy ) of a mechanical system is a conserved
quantity.
This however, is not a coincidence! This is just a special
instance of a profound general fact known as Noether’s theorem.
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