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Caccioppoli inequality for elliptic systems

Theorem (Caccioppoli inequality for elliptic systems)

Let u ∈W 1,2
(
Ω;RN

)
be a weak solution of

− div (A (x)∇u) = f − div F in Ω,

where f ∈ L2
(
Ω;RN

)
, F ∈ L2

(
Ω;RN×n) and

A ∈ L∞
(
Ω;RN×n × RN×n) . Assume A satisfies the strong

Legendre condition, i.e. 〈A (x) ξ, ξ〉 ≥ λ |ξ|2 for all ξ ∈ RN×n for
some λ > 0. Then for every x0 ∈ Ω, 0 < ρ < R < dist (x0, ∂Ω) ,
we have

ˆ
Bρ(x0)

|∇u|2 dx ≤ c

{
1

(R − ρ)2

ˆ
BR (x0)\Bρ(x0)

|u − ζ|2 dx

+R2

ˆ
BR (x0)

|f |2 dx +

ˆ
BR (x0)

|F |2 dx

}

for all ζ ∈ RN , for some constant c = c (λ, ‖A‖L∞) > 0.
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Proof. We first assume f = 0.

We choose η as before and set
φ := (u − ζ) η2. Plugging into the weak formulation, we get using
the Legendre condition

λ

ˆ
BR (x0)

|∇u|2 η2 dx

≤
ˆ
BR (x0)

η2 〈A (x)∇u,∇u〉 dx

≤ −
ˆ
BR (x0)

〈A (x)∇u, 2η∇η ⊗ (u − ζ)〉 dx

+

ˆ
BR (x0)

η2 〈F ,∇u〉 dx +

ˆ
BR (x0)

〈F , 2η∇η ⊗ (u − ζ)〉 dx

:= I1 + I2 + I3.

Now we estimate all three terms. Let Λ = ‖A‖L∞ . We recall the
Young’s inequality with ε > 0.

2ab ≤ εa2 +
1

ε
b2.
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It remains to prove the theorem when f 6= 0.

But we can absorb f
inside F by writing it as a divergence. This is fairly easy, but we
want to keep track of the scaling as well to get the R2 factor. To
this end, define

f̃ (y) := R2f (Ry + x0) for all y ∈ B1 (0) .

Then we find ṽ ∈W 1,2
0

(
B1 (0) ;RN

)
solving the following problem

( e.g. by minimization ){
∆ṽ = f̃ in B1 (0)

ṽ = 0 on ∂B1 (0) .

Since ṽ itself can be used as a test function, we obtain using
Young’s inequality with ε > 0 and Poincaré inequality,ˆ

B1(0)

|∇ṽ |2 dx ≤
ˆ
B1(0)

∣∣∣〈f̃ , ṽ〉∣∣∣ dx

≤ ε
ˆ
B1(0)

|ṽ |2 dx +
1

ε

ˆ
B1(0)

∣∣∣f̃ ∣∣∣2 dx

≤ cε

ˆ
B1(0)

|∇ṽ |2 dx +
1

ε

ˆ
B1(0)

∣∣∣f̃ ∣∣∣2 dx
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B1(0)
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want to keep track of the scaling as well to get the R2 factor. To
this end, define

f̃ (y) := R2f (Ry + x0) for all y ∈ B1 (0) .

Then we find ṽ ∈W 1,2
0

(
B1 (0) ;RN

)
solving the following problem

( e.g. by minimization )

{
∆ṽ = f̃ in B1 (0)

ṽ = 0 on ∂B1 (0) .

Since ṽ itself can be used as a test function, we obtain using
Young’s inequality with ε > 0 and Poincaré inequality,ˆ

B1(0)

|∇ṽ |2 dx ≤
ˆ
B1(0)

∣∣∣〈f̃ , ṽ〉∣∣∣ dx

≤ ε
ˆ
B1(0)

|ṽ |2 dx +
1

ε

ˆ
B1(0)

∣∣∣f̃ ∣∣∣2 dx

≤ cε

ˆ
B1(0)

|∇ṽ |2 dx +
1

ε

ˆ
B1(0)

∣∣∣f̃ ∣∣∣2 dx
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∆ṽ = f̃ in B1 (0)
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Choosing ε > 0 small enough, we obtain,

ˆ
B1(0)

|∇ṽ |2 dx ≤ c

ˆ
B1(0)

∣∣∣f̃ ∣∣∣2 dx .

Now, we set

v (x) := ṽ

(
x − x0

R

)
for all x ∈ BR (x0) .

It is easy to show that v ∈W 1,2
0

(
BR (x0) ;RN

)
and is a weak

solution to

div (∇v) = ∆v = f in BR (x0) .

Now scaling back to BR (x0) , we obtain

ˆ
BR (x0)

|∇v |2 dx = Rn−2

ˆ
B1(0)

|∇ṽ |2 dy

≤ cRn−2

ˆ
B1(0)

∣∣∣f̃ ∣∣∣2 dy = R2

ˆ
BR (x0)

|f |2 dx .

This completes the proof.
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(
x − x0

R

)
for all x ∈ BR (x0) .

It is easy to show that v ∈W 1,2
0

(
BR (x0) ;RN

)
and is a weak

solution to

div (∇v) = ∆v = f in BR (x0) .

Now scaling back to BR (x0) , we obtain

ˆ
BR (x0)

|∇v |2 dx = Rn−2

ˆ
B1(0)
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The End

L2 regularity

Now we prove the so-called interior W 2,2 estimate.

Theorem (Interior L2 estimate)

Let u ∈W 1,2
(
Ω;RN

)
be a weak solution of the following

− div (A (x)∇u) = f − div F in Ω,

where f ∈ L2
(
Ω;RN

)
, F ∈W 1,2

(
Ω;RN×n) and

A ∈W 1,∞ (Ω;RN×n × RN×n) satisfies the strong Legendre

condition. Then u ∈W 2,2
loc

(
Ω;RN

)
and for any Ω̃ ⊂⊂ Ω, we have

the estimate∥∥∇2u
∥∥
L2(Ω̃) ≤ c

(
‖u‖L2(Ω) + ‖f ‖L2(Ω) + ‖∇F‖L2(Ω)

)
where c > 0 is a constant depending only on Ω̃, Ω and the
ellipticity and the bounds on A.
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W 2,2 regularity for the Laplacian

Before starting the proof, first let us show that since the Laplacian
has constant coefficients,

the previous Caccioppoli inequality is
enough to establish the following special case.

Theorem (Interior L2 estimate for the Laplacian)

Let u ∈W 1,2
(
Ω;RN

)
be a weak solution of the following

−∆u = f in Ω,

where f ∈ L2
(
Ω;RN

)
. Then u ∈W 2,2

loc

(
Ω;RN

)
and for any

Ω̃ ⊂⊂ Ω, we have the estimate∥∥∇2u
∥∥
L2(Ω̃) ≤ c

(
‖u‖L2(Ω) + ‖f ‖L2(Ω)

)
,

where c > 0 is a constant depending only on Ω̃ and Ω.

Proof. Fix x0 ∈ Ω and 0 < 2R < dist (x0, ∂Ω) . Let uε := u ∗ ρε
and fε := f ∗ ρε for some standard symmetric mollifying kernel ρ.
Then we can show that

−∆uε = fε in B2R (x0) .
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Now for any 1 ≤ i ≤ n,

we deduce

−∆

(
∂uε
∂xi

)
=
∂fε
∂xi

in B2R (x0) .

Thus, writing the weak formulation and integrating by parts, we
have for any φ ∈W 1,2

0

(
B2R (x0) ;RN

)
,

ˆ
B2R (x0)

〈
∇
(
∂uε
∂xi

)
,∇φ

〉
dx =

ˆ
B2R (x0)

〈
∂fε
∂xi

, φ

〉
dx

=

ˆ
B2R (x0)

〈
−fε,

∂φ

∂xi

〉
dx

=

ˆ
B2R (x0)

〈F ,∇φ〉 dx ,

where F := (F1, . . . ,Fn) with Fi = −fε and Fj = 0 for 1 ≤ j ≤ n
with j 6= i . Note that this is the weak formulation of

−∆

(
∂uε
∂xi

)
= − div F in B2R (x0) .
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So applying the Caccioppoli inequality with ζ = 0, we have,

ˆ
BR/4

∣∣∣∣∇(∂uε∂xi

)∣∣∣∣2 dx ≤ c

(
1

R2

ˆ
BR/2\BR/4

∣∣∣∣∂uε∂xi

∣∣∣∣2 dx +

ˆ
BR/2

|F |2 dx

)

≤ c

(
1

R2

ˆ
BR/2

|∇uε|2 dx +

ˆ
BR/2

|fε|2 dx

)
.

But now since

−∆uε = fε in B2R (x0) ,
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Since uε → u and fε → f , we deduce that
∥∥∇2uε
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L2(BR/4(x0)) is

uniformly bounded and hence weakly convergent. But the weak
limit can only be ∇2u. Now by passing to the limit ε→ 0, we getˆ
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This completes the proof by by a covering argument.

Remark
Note that the constant blows up as R → 0, so we really need
Ω̃ ⊂⊂ Ω for the covering arguement to work. Also, this is how the
constant depends on Ω̃ and Ω.
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Nirenberg’s difference quotient method

Now we attempt the general case.

The trouble here is that since
the operator does not have constant coefficients, we can not claim
that the derivatives of u satisfies the same type of equation. So
instead we work with difference quotients and use the properties of
difference quotients we proved in Lecture 12 ( Characterization of
difference quotients theorem ).

Proof. We need to prove just the local estimate on balls. More
precisely, for any x0 ∈ Ω, 0 < R < dist (x0, ∂Ω) , we need to show

ˆ
BR/4(x0)

∣∣∇2u
∣∣2 dx ≤ c

(ˆ
BR (x0)

|u|2 dx +

ˆ
BR (x0)

|f |2 dx +

ˆ
BR (x0)

|∇F |2 dx

)
,

where the constant c > 0 can depend on R, λ and ‖A‖W 1,∞ .The
result follows from this this by a covering argument. Writing f as
a divergence ( but this time using the W 2,2 estimate for the
Laplacian ), it is enough to prove for the case f = 0.
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Now we attempt the general case. The trouble here is that since
the operator does not have constant coefficients, we can not claim
that the derivatives of u satisfies the same type of equation. So
instead we work with difference quotients and use the properties of
difference quotients we proved in Lecture 12 ( Characterization of
difference quotients theorem ).

Proof. We need to prove just the local estimate on balls. More
precisely, for any x0 ∈ Ω, 0 < R < dist (x0, ∂Ω) , we need to show

ˆ
BR/4(x0)

∣∣∇2u
∣∣2 dx ≤ c

(ˆ
BR (x0)

|u|2 dx +

ˆ
BR (x0)

|f |2 dx +

ˆ
BR (x0)

|∇F |2 dx

)
,

where the constant c > 0 can depend on R, λ and ‖A‖W 1,∞ .The
result follows from this this by a covering argument. Writing f as
a divergence

( but this time using the W 2,2 estimate for the
Laplacian ), it is enough to prove for the case f = 0.
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With f = 0, the weak formulation becomes

ˆ
Ω

〈A (x)∇u (x) ,∇φ (x)〉 dx =

ˆ
Ω

〈F (x) ,∇φ (x)〉 dx

for any φ ∈ C∞c
(
Ω;RN

)
. For any 1 ≤ i ≤ n and for h ∈ R with

|h| small, we can plugg φ (x − hei ) as the test function and after a
change of variables, we obtain

ˆ
Ω

〈A (x + hei )∇u (x + hei ) ,∇φ (x)〉 dx =

ˆ
Ω

〈F (x + hei ) ,∇φ (x)〉 dx

Subtracting the previous identity from this one and diving by h, we
obtainˆ

Ω

〈A (x + hei )Dh,i (∇u) ,∇φ〉 dx +

ˆ
Ω

〈(Dh,iA)∇u,∇φ〉 dx

=

ˆ
Ω

〈(Dh,iF ) ,∇φ〉 dx

Note that
Dh,i (∇u) = ∇ (Dh,iu)
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Thus, we get

ˆ
Ω

〈A (x + hei )∇ (Dh,iu) ,∇φ〉 dx +

ˆ
Ω

〈(Dh,iA)∇u,∇φ〉 dx

=

ˆ
Ω

〈(Dh,iF ) ,∇φ〉 dx

Applying the Caccioppoli inequality, we deduce, for any x0 ∈ Ω,
0 < R < dist (x0, ∂Ω) ,

ˆ
BR/4(x0)

|∇ (Dh,iu)|2 dx ≤ c

R2

ˆ
BR/2(x0)

|Dh,iu|2 dx

+ c

ˆ
BR/2(x0)

|Dh,iA|2 |∇u|2 dx + c

ˆ
BR/2(x0)

|Dh,iF |2 dx

Since u and F are both W 1,2 and A is W 1,∞, the RHS stays
uniformly bounded as h→ 0. Thus,

ˆ
BR/4(x0)

|Dh,i (∇u)|2 dx =

ˆ
BR/4(x0)

|∇ (Dh,iu)|2 dx

stays uniformly bounded as h→ 0.
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Applying Caccioppoli inequality once again to estimate the
gradient term,

we obtain

ˆ
BR/4(x0)

∣∣∇2u
∣∣2 dx ≤ c

(ˆ
BR (x0)

|u|2 dx + c

ˆ
BR (x0)

|∇F |2 dx

)
,

where the constant c > 0 this time depends on R, λ, and
‖A‖W 1,∞ . This completes the proof.

Now we are going to show another interesting corollary of the
Caccioppoli inequality.
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Hole filling technique

Now we are going to prove a decay estimate for for the gradient.

The method is known as the ‘hole filling technique’ of Widman.

Proposition

Let u ∈W 1,2
(
Ω;RN

)
be a weak solution of

− div (A (x)∇u) = 0 in Ω,

where A ∈ L∞
(
Ω;RN×n × RN×n) . Assume A satisfies the strong

Legendre condition. Then there exists an α = α (λ, ‖A‖L∞) > 0
such that for every x0 ∈ Ω, 0 < ρ < dist (x0, ∂Ω) , we have

ˆ
Bρ(x0)

|∇u|2 dx ≤ cρα.
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Hole filling technique

Proof.

For every x0 ∈ Ω, 0 < R < dist (x0, ∂Ω) , applying the
Caccioppoli inequality, we get
ˆ
BR/2(x0)

|∇u|2 dx ≤ c
1

R2

ˆ
BR (x0)\BR/2(x0)

∣∣∣u − (u)BR\BR/2

∣∣∣2 dx

Applying Poincaré inequality, this implies
ˆ
BR/2(x0)

|∇u|2 dx ≤ c

ˆ
BR (x0)\BR/2(x0)

|∇u|2 dx .

Filling the hole, we obtain,

ˆ
BR/2(x0)

|∇u|2 dx ≤
(

c

c + 1

)ˆ
BR (x0)

|∇u|2 dx .

Iterating, we have

ˆ
B
R/2k

(x0)

|∇u|2 dx ≤
(

c

c + 1

)k ˆ
BR (x0)

|∇u|2 dx .
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c+1 < 1,

the last one is a decay estimate. Then for any
0 < ρ < R, we have by interpolating,

ˆ
Bρ(x0)

|∇u|2 dx ≤ 2α
( ρ
R

)α ˆ
BR (x0)

|∇u|2 dx ,

where α := log2

(
c+1
c

)
. This proves the result.

This immediately implies that if u is a weak solution of

− div (A (x)∇u) = 0 in Rn

with finite energy, then u is constant. We also have the

Theorem (Liouville theorem)

Let u ∈W 1,2
loc

(
R2;RN

)
be a weak solution of

− div (A (x)∇u) = 0 in R2,

where A ∈ L∞
(
Ω;RN×n × RN×n) and satisfies the strong

Legendre condition. If u is L∞, then u is constant.
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Proof.
By Caccioppoli inequality, we have for any R > 0,

we get

ˆ
BR (0)

|∇u|2 dx ≤ c
1

R2

ˆ
B2R (0)

|u|2 dx ≤ c sup
R2

|u|2 .

Hence, by the inequality we derived in the proof of last result, we
have for any 0 < ρ < R,

ˆ
Bρ(x0)

|∇u|2 dx ≤ 2α
( ρ
R

)α ˆ
BR (x0)

|∇u|2 dx ≤ c2α
( ρ
R

)α
sup
R2

|u|2 .

Letting R →∞, we obtain the conclusion.
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