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Theorem (Interior L2 estimate)
Let u € W2 (Q;RV) be a weak solution of the following

—div(A(x)Vu) =f —divF in €,
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where o := log, (<L) . This proves the result. O

This immediately implies that if u is a weak solution of
—div(A(x)Vu) =0 in R"

with finite energy, then u is constant. We also have the

Theorem (Liouville theorem)
Let u € W.;? (R%RN) be a weak solution of

loc
—div(A(x)Vu)=0 in R?,

where A € L™ (Q; RNxn « RNX”) and satisfies the strong
Legendre condition. If u is L*°, then u is constant.
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