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Classical Methods

The classical problems and methods were all concerned with the
case n = 1. The case n ≥ 2, the so-called multiple integrals in
the calculus of variations is much harder and it took time to
develop the tools needed to address it.

The problem with prescribed Dirichlet boundary value

Let a, b ∈ R, a < b and α, β ∈ RN be given. Let
f ∈ C 2

(
[a, b]× RN × RN

)
and

X =
{
u ∈ C 1

(
[a, b] ;RN

)
: u (a) = α, u (b) = β

}
. Consider the

problem

(P) inf
u∈X

{
I (u) =

ˆ b

a

f (t, u (t) , u̇ (t)) dt

}
= m.

The Dirichlet condition is encoded in the choice of the space X .
Other choices for the space are possible, which we shall discuss
later.
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Euler-Lagrange Equations

Theorem (Euler-Lagrange equation)

Let f = f (t, u, ξ) ∈ C 2
(
[a, b]× RN × RN

)
, α, β ∈ RN be given

and X =
{
u ∈ C 1

(
[a, b] ;RN

)
: u (a) = α, u (b) = β

}
. Consider

the problem

(P) inf
u∈X

{
I (u) =

ˆ b

a

f (t, u (t) , u̇ (t)) dt

}
= m.

If ū ∈ X ∩ C 2
(
[a, b] ;RN

)
is a minimizer for (P) , then ū satisfies,

(EL)
d

dt

[
fξ
(
t, ū (t) , ˙̄u (t)

)]
= fu

(
t, ū (t) , ˙̄u (t)

)
, for every t ∈ (a, b) .

Thus the Euler-Lagrange equations are a system of N second
order ODEs.

fξξ
(
t, ū (t) , ˙̄u (t)

)
¨̄u (t) + fuξ

(
t, ū (t) , ˙̄u (t)

)
˙̄u (t)

+ ftξ
(
t, ū (t) , ˙̄u (t)

)
− fu

(
t, ū (t) , ˙̄u (t)

)
= 0.
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then ū satisfies,

(EL)
d

dt

[
fξ
(
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t, ū (t) , ˙̄u (t)

)
= 0.



Introduction to the
Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem

Euler-Lagrange Equations

Fundamental Lemma of
Calculus of Variations

Derivation of EL equations

Constrained Minimization:
Lagrange Multipliers

Example: Newton’s laws
for a point particle

Hamiltonian formulation

First integrals

Symmetry and Noether’s
theorem

Hamilton-Jacobi theory and
Optimal control

Second Variation

Examples

The End

Fundamental Lemma of Calculus of Variations

To derive the Euler-Lagrange equations, we first need a lemma,
called the fundamental lemma of Calculus of Variations.

Let Ω ⊂ Rn open, 1 ≤ p ≤ ∞. We say u ∈ Lploc (Ω) if u ∈ Lp (K )
for every K ⊂ Ω compact.

Theorem (Fundamental lemma of the calculus of variations)

Let Ω ⊂ Rn be open and u ∈ L1
loc

(
Ω;RN

)
be such that

ˆ
Ω

〈u (x) , ψ (x)〉 dx = 0, for every ψ ∈ C∞
c

(
Ω;RN

)
(1)

then u = 0 a.e. in Ω.

See Lecture notes and Assignments for some corollaries of this
lemma.
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Fundamental Lemma of Calculus of Variations

Proof of Fundamental Lemma of Calculus of Variations.
Enough to prove for N = 1. (why?) Pick K ⊂ Ω be compact
arbitrarily. It is enough to show u = 0 a.e. in K . Set

v :=

{
sgn u if x ∈ K ,

0 if x ∈ Rn \ K .

Mollify to find a sequence {vs} ⊂ C∞
c (Ω) such that

‖vs‖L∞ ≤ ‖v‖L∞ and vs → v in L1. Then, up to a subsequence
vs → v a.e.
Now, since vs ∈ C∞

c (Ω) , for every s, we have

ˆ
Ω

u (x) vs (x)dx = 0 for every s ≥ 1.

By dominated convergence theorem, we have

ˆ
Ω

u (x) v (x)dx = 0 ⇒
ˆ
K

|u|dx = 0 ⇒ u = 0 a.e. in K .
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Derivation of the Euler-Lagrange Equations

Proof of theorem about EL equations.

Take φ ∈ C 1
c

(
(a, b) ;RN

)
. Thus φ (a) = 0 = φ (b)

and for any
h ∈ R, we have ū + hφ ∈ X . Now we define the function
g : R→ R by g(h) := I (ū + hφ) .

Then g ∈ C 1 (R) (Check!) and since ū is a minimizer, g must
have a local minima at 0. Thus we must have g ′(0) = 0. So we
compute (Check!)

0 =
d

dh
[I (ū + hφ)]

∣∣∣∣
h=0

=

ˆ b

a

[〈
fξ
(
t, ū (t) , ˙̄u (t)

)
, φ̇ (t)

〉
+
〈
fu
(
t, ū (t) , ˙̄u (t)

)
, φ (t)

〉]
dt

=

ˆ b

a

〈[
− d

dt
fξ
(
t, ū (t) , ˙̄u (t)

)
+ fu

(
t, ū (t) , ˙̄u (t)

)]
, φ (t)

〉
dt,

where we have used integration by parts in the last line and the
fact that φ (a) = 0 = φ (b) . Conclude by applying the
fundamental lemma.
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t, ū (t) , ˙̄u (t)

)
, φ (t)

〉]
dt

=

ˆ b

a

〈[
− d

dt
fξ
(
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t, ū (t) , ˙̄u (t)

)
+ fu

(
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h ∈ R, we have ū + hφ ∈ X . Now we define the function
g : R→ R by g(h) := I (ū + hφ) .
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Remarks

I The whole point of the derivation of the Euler-Lagrange
equation is the proof and the calculations leading to the
derivation, not the equations themselves.

As we shall see in a moment, different problems might lead to
different equations, but the general method is the same.

I The Euler-Lagrange equation is sometimes called the first
variation formula. The name comes from the fact that given
a functional I (u), its first variation at ū is (its Gateaux
derivative at ū,)

δI (ū, φ) :=
d

dh
[I (ū + hφ)]

∣∣∣∣
h=0

.

The EL equation is just follows from “first variation = 0.”

This is also the reason for the name Calculus of variations.
All we used to do is to compute the first variation and the
second variation!
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Constrained Minimization: Lagrange Multipliers I

Now we are going to derive the Euler-Lagrange equation for
problems with additional constraints.

Theorem (Lagrange Multiplier)

Let f = f (t, u, ξ) ∈ C 2
(
[a, b]× RN × RN

)
,

g = g (t, u, ξ) ∈ C 2
(
[a, b]× RN × RN

)
, α, β ∈ RN be given and

X =


u ∈ C 1

(
[a, b] ;RN

)
: u (a) = α, u (b) = β,ˆ b

a

g (t, u (t) , u̇ (t)) dt = 0


.

Now consider the problem

(P) inf
u∈X

{
I (u) =

ˆ b

a

f (t, u (t) , u̇ (t)) dt

}
= m.
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Constrained Minimization: Lagrange Multipliers II

Theorem (Lagrange Multiplier)

[continued..]

If ū ∈ X ∩ C 2
(
[a, b] ;RN

)
is a minimizer for (P) , then there exists

a λ ∈ R, called the Lagrange multiplier, such that ū satisfies,(
d

dt

[
fξ
(
t, ū (t) , ˙̄u (t)

)]
− fu

(
t, ū (t) , ˙̄u (t)

))
= λ

(
d

dt

[
gξ
(
t, ū (t) , ˙̄u (t)

)]
− gu

(
t, ū (t) , ˙̄u (t)

))
for every t ∈ (a, b) , provided

d

dt

[
gξ
(
t, ū (t) , ˙̄u (t)

)]
6≡ gu

(
t, ū (t) , ˙̄u (t)

)
in (a, b).
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Remarks on Lagrange Multiplier theorem

I Sometimes the equation is written as ( parameter is −λ )

d

dt

[
fξ
(
t, ū (t) , ˙̄u (t)

)
+ λgξ

(
t, ū (t) , ˙̄u (t)

)]
= fu

(
t, ū (t) , ˙̄u (t)

)
+ λgu

(
t, ū (t) , ˙̄u (t)

)
.

I The theorem basically says: The constrained minimization
of ˆ b

a

f (t, u (t) , u̇ (t)) dt

with the constraint
ˆ b

a

g (t, u (t) , u̇ (t)) dt = 0,

is equivalent to the unconstrained minimization of

ˆ b

a

f (t, u (t) , u̇ (t)) dt + λ

ˆ b

a

g (t, u (t) , u̇ (t)) dt

for some λ ∈ R.
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Proof of the Lagrange Multiplier theorem I

Proof of the Lagrange multiplier theorem.

Since

d

dt

[
gξ
(
t, ū (t) , ˙̄u (t)

)]
− gu

(
t, ū (t) , ˙̄u (t)

)
6≡ 0

in (a, b), the fundamental lemma implies the existence of
ψ ∈ C∞

c

(
(a, b);RN

)
such that

ˆ b

a

[〈
gξ
(
t, ū (t) , ˙̄u (t)

)
, ψ̇ (t)

〉
+
〈
gu
(
t, ū (t) , ˙̄u (t)

)
, ψ (t)

〉]
dt 6= 0.

Now we can normalize if necessary to obtain ψ ∈ C∞
c

(
(a, b);RN

)
such that

ˆ b

a

[〈
gξ
(
t, ū (t) , ˙̄u (t)

)
, ψ̇ (t)

〉
+
〈
gu
(
t, ū (t) , ˙̄u (t)

)
, ψ (t)

〉]
dt = 1.
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Proof of the Lagrange Multiplier theorem II

Now we pick φ ∈ C∞
c

(
(a, b);RN

)
arbitrary, ψ as above and for

ε, h ∈ R, we set

F (ε, h) :=

ˆ b

a

f
(
t, ū (t) + εφ (t) + hψ (t) , ˙̄u (t) + εφ̇ (t) + hψ̇ (t)

)
dt

G (ε, h) :=

ˆ b

a

g
(
t, ū (t) + εφ (t) + hψ (t) , ˙̄u (t) + εφ̇ (t) + hψ̇ (t)

)
dt

So G ∈ C 1 (R× R), G (0, 0) = 0 and Gh (0, 0) = 1.

So by the implicit function theorem, we obtain the existence of a
ε0 > 0 and a function h̄ ∈ C 1 ([−ε0, ε0]) such that

h̄(0) = 0 and G
(
ε, h̄(ε)

)
= 0 for every ε ∈ [−ε0, ε0].

Note that the last equation implies

ū + εφ+ h̄(ε)ψ ∈ X for every ε ∈ [−ε0, ε0].
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Proof of the Lagrange Multiplier theorem III

It also implies ( by differentiating ),

Gε
(
ε, h̄(ε)

)
+ Gh

(
ε, h̄(ε)

)
h̄

′
(ε) = 0 for every ε ∈ [−ε0, ε0].

So we deduce
h̄

′
(0) = −Gε (0, 0) . (2)

Now once again we use the technique we have already seen. Since
ū is a minimizer, the real valued function on [−ε0, ε0], given by

ε 7→ F
(
ε, h̄(ε)

)
must have a local minima at ε = 0. So we have

0 =
d

dε

[
F
(
ε, h̄(ε)

)]∣∣∣∣
ε=0

= Fε (0, 0) + Fh (0, 0) h̄
′
(0).

So setting λ = Fh (0, 0) and using (2), we get

Fε (0, 0)− λGε (0, 0) .
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Newton’s laws for a point particle

Let m > 0 be the mass and x(t) ∈ R3 be the position of a point
particle. Let U : R3 → R written as

U(t, x) = U(x)

be a given potential energy function. The variational problem is

m = inf

{
I (x) :=

ˆ T

0

f (t, x(t), ẋ(t)) dt : x(0) = x0, x(T ) = x1

}
,

where the form of the Lagrangian density is

f (t, x , ξ) =
1

2
mξ2 − U (x) .

The EL equation reads

0 =
d

dt
[fξ (t, x(t), ẋ(t))]− fx (t, x(t), ẋ(t))

=
d

dt
[mẋ(t)] +∇U (x(t)) = mẍ(t) +∇U (x(t)) .

i.e. the Newton’s law of motion,

mẍ(t) = −∇U (x(t)) := F (x(t)) .
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Thank you
Questions?
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