Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem

Euler-Lagrange Equations

Fundamental Lemma of Calculus of Variations

Derivation of EL equations

Constrained Minimization: Lagrange Multipliers

Example: Newton's laws for a point particle

Hamiltonian formulation

First integrals

Symmetry and Noether's theorem

Hamilton-Jacobi theory and Optimal control

Second Variation

Examples

The End

Introduction to the Calculus of Variations: Lecture 2

Swarnendu Sil

Department of Mathematics Indian Institute of Science

Spring Semester 2021

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem

Euler-Lagrange Equations

Fundamental Lemma of Calculus of Variations

Derivation of EL equations

Constrained Minimization: Lagrange Multipliers

Example: Newton's laws for a point particle

Hamiltonian formulation

First integrals

Symmetry and Noether's theorem

lamilton-Jacobi theory and Optimal control

Second Variation

Examples

The End

Chapter 2: Classical Methods

Outline

Classical Methods

Classical Problem Euler-Lagrange Equations Fundamental Lemma of Calculus of Variations Derivation of EL equations Constrained Minimization: Lagrange Multipliers Example: Newton's laws for a point particle Hamiltonian formulation First integrals Symmetry and Noether's theorem Hamilton-Jacobi theory and Optimal control Second Variation Examples Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem

Euler-Lagrange Equations

Fundamental Lemma of Calculus of Variations

Derivation of EL equations

Constrained Minimization: Lagrange Multipliers

Example: Newton's laws for a point particle

Hamiltonian formulation

First integrals

Symmetry and Noether's theorem

Hamilton-Jacobi theory and Optimal control

Second Variation

Examples

The classical problems and methods were all concerned with the case n = 1. The case $n \ge 2$, the so-called **multiple integrals in the calculus of variations** is much harder and it took time to develop the tools needed to address it.

The problem with prescribed Dirichlet boundary value

Let
$$a, b \in \mathbb{R}$$
, $a < b$ and $\alpha, \beta \in \mathbb{R}^N$ be given. Let $f \in C^2([a, b] \times \mathbb{R}^N \times \mathbb{R}^N)$ and $X = \{u \in C^1([a, b]; \mathbb{R}^N) : u(a) = \alpha, u(b) = \beta\}$. Consider the problem

$$(P) \quad \inf_{u \in X} \left\{ I(u) = \int_a^b f(t, u(t), \dot{u}(t)) \, \mathrm{d}t \right\} = m.$$

The Dirichlet condition is encoded in the choice of the space X. Other choices for the space are possible, which we shall discuss later.

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem

Euler-Lagrange Equations Fundamental Lemma of Calculus of Variations

erivation of EL equations

Constrained Minimization: .agrange Multipliers

Example: Newton's laws or a point particle

Hamiltonian formulation

First integrals

Symmetry and Noether's theorem

lamilton-Jacobi theory and Optimal control

Second Variation

Examples

Let $f = f(t, u, \xi) \in C^2([a, b] \times \mathbb{R}^N \times \mathbb{R}^N)$, $\alpha, \beta \in \mathbb{R}^N$ be given and $X = \{u \in C^1([a, b]; \mathbb{R}^N) : u(a) = \alpha, u(b) = \beta\}$. Consider the problem

$$(P) \quad \inf_{u \in X} \left\{ I(u) = \int_{a}^{b} f(t, u(t), \dot{u}(t)) \, \mathrm{d}t \right\} = m.$$

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

lassical Problem

Euler-Lagrange Equations

Fundamental Lemma of Calculus of Variations

Derivation of EL equations

Constrained Minimization: Lagrange Multipliers

Example: Newton's laws for a point particle

Hamiltonian formulation

First integrals

Symmetry and Noether's theorem

Hamilton-Jacobi theory and Optimal control

Second Variation

Examples

Let $f = f(t, u, \xi) \in C^2([a, b] \times \mathbb{R}^N \times \mathbb{R}^N)$, $\alpha, \beta \in \mathbb{R}^N$ be given and $X = \{u \in C^1([a, b]; \mathbb{R}^N) : u(a) = \alpha, u(b) = \beta\}$. Consider the problem

$$(P) \quad \inf_{u \in X} \left\{ I(u) = \int_a^b f(t, u(t), \dot{u}(t)) \, \mathrm{d}t \right\} = m.$$

If $\overline{u} \in X \cap C^2([a, b]; \mathbb{R}^N)$ is a minimizer for (P),

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem

Euler-Lagrange Equations

Fundamental Lemma of Calculus of Variations

Derivation of EL equations

Constrained Minimization: Lagrange Multipliers

Example: Newton's laws for a point particle

Hamiltonian formulation

First integrals

Symmetry and Noether's theorem

Hamilton-Jacobi theory and Optimal control

Second Variation

Examples

Let $f = f(t, u, \xi) \in C^2([a, b] \times \mathbb{R}^N \times \mathbb{R}^N)$, $\alpha, \beta \in \mathbb{R}^N$ be given and $X = \{u \in C^1([a, b]; \mathbb{R}^N) : u(a) = \alpha, u(b) = \beta\}$. Consider the problem

$$(P) \quad \inf_{u \in X} \left\{ I(u) = \int_{a}^{b} f(t, u(t), \dot{u}(t)) \, \mathrm{d}t \right\} = m.$$

If $\overline{u} \in X \cap C^2([a, b]; \mathbb{R}^N)$ is a minimizer for (P), then \overline{u} satisfies,

$$(\mathsf{EL}) \quad \frac{d}{dt} \left[f_{\xi} \left(t, \bar{u}\left(t \right), \dot{\bar{u}}\left(t \right) \right) \right] = f_{u} \left(t, \bar{u}\left(t \right), \dot{\bar{u}}\left(t \right) \right), \quad \text{ for every } t \in (\overset{\mathsf{The En}}{a, b}).$$

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem

Euler-Lagrange Equations

Fundamental Lemma of Calculus of Variations

Derivation of EL equations

Constrained Minimization: Lagrange Multipliers

Example: Newton's laws for a point particle

Hamiltonian formulation

First integrals

Symmetry and Noether's theorem

Hamilton-Jacobi theory and Optimal control

Second Variation

Examples

Let $f = f(t, u, \xi) \in C^2([a, b] \times \mathbb{R}^N \times \mathbb{R}^N)$, $\alpha, \beta \in \mathbb{R}^N$ be given and $X = \{u \in C^1([a, b]; \mathbb{R}^N) : u(a) = \alpha, u(b) = \beta\}$. Consider the problem

$$(P) \quad \inf_{u \in X} \left\{ I(u) = \int_{a}^{b} f(t, u(t), \dot{u}(t)) \, \mathrm{d}t \right\} = m.$$

If $\bar{u} \in X \cap C^2([a, b]; \mathbb{R}^N)$ is a minimizer for (P), then \bar{u} satisfies,

$$(\mathsf{EL}) \quad \frac{d}{dt} \left[f_{\xi} \left(t, \bar{u}\left(t \right), \dot{\bar{u}}\left(t \right) \right) \right] = f_{u} \left(t, \bar{u}\left(t \right), \dot{\bar{u}}\left(t \right) \right), \quad \text{ for every } t \in (a, b).$$

Thus the **Euler-Lagrange** equations are a system of N second order ODEs.

$$\begin{split} f_{\xi\xi}\left(t,\bar{u}\left(t\right),\dot{\bar{u}}\left(t\right)\right) &\stackrel{:}{\bar{u}}\left(t\right) + f_{u\xi}\left(t,\bar{u}\left(t\right),\dot{\bar{u}}\left(t\right)\right) &\stackrel{:}{\bar{u}}\left(t\right) \\ &+ f_{t\xi}\left(t,\bar{u}\left(t\right),\dot{\bar{u}}\left(t\right)\right) - f_{u}\left(t,\bar{u}\left(t\right),\dot{\bar{u}}\left(t\right)\right) = 0 \end{split}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem

Euler-Lagrange Equations

Fundamental Lemma of Calculus of Variations

Derivation of EL equations

Constrained Minimization: Lagrange Multipliers

Example: Newton's laws for a point particle

Hamiltonian formulation

First integrals

Symmetry and Noether's theorem

Hamilton-Jacobi theory and Optimal control

Second Variation

Examples

Fundamental Lemma of Calculus of Variations

To derive the Euler-Lagrange equations, we first need a lemma, called the fundamental lemma of Calculus of Variations.

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem

uler-Lagrange Equations

Fundamental Lemma of Calculus of Variations

Derivation of EL equations

Constrained Minimization: Lagrange Multipliers

Example: Newton's laws for a point particle

Hamiltonian formulation

First integrals

Symmetry and Noether's theorem

Hamilton-Jacobi theory and Optimal control

Second Variation

Examples

To derive the Euler-Lagrange equations, we first need a lemma, called the fundamental lemma of Calculus of Variations.

Let $\Omega \subset \mathbb{R}^n$ open, $1 \leq p \leq \infty$. We say $u \in L^p_{loc}(\Omega)$ if $u \in L^p(K)$ for every $K \subset \Omega$ compact.

Theorem (Fundamental lemma of the calculus of variations) Let $\Omega \subset \mathbb{R}^n$ be open and $u \in L^1_{loc}(\Omega; \mathbb{R}^N)$ be such that

$$\int_{\Omega} \left\langle u(x), \psi(x) \right\rangle \, \mathrm{d}x = 0, \quad \text{for every } \psi \in C_{c}^{\infty}\left(\Omega; \mathbb{R}^{N}\right) \qquad (1)$$

then u = 0 a.e. in Ω .

0

See Lecture notes and Assignments for some corollaries of this lemma.

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem

uler-Lagrange Equations

Fundamental Lemma of Calculus of Variations

Derivation of EL equations

Constrained Minimization: Lagrange Multipliers

Example: Newton's laws for a point particle

Hamiltonian formulation

First integrals

Symmetry and Noether's theorem

lamilton-Jacobi theory and Optimal control

Second Variation

Examples

Fundamental Lemma of Calculus of Variations

Proof of Fundamental Lemma of Calculus of Variations. Enough to prove for N = 1. (why?) Pick $K \subset \Omega$ be compact arbitrarily. It is enough to show u = 0 a.e. in K. Set

$$v := \begin{cases} \operatorname{sgn} u & \text{if } x \in K, \\ 0 & \text{if } x \in \mathbb{R}^n \setminus K \end{cases}$$

Mollify to find a sequence $\{v_s\} \subset C_c^{\infty}(\Omega)$ such that $\|v_s\|_{L^{\infty}} \leq \|v\|_{L^{\infty}}$ and $v_s \to v$ in L^1 . Then, up to a subsequence $v_s \to v$ a.e.

Now, since $v_s \in C_c^{\infty}(\Omega)$, for every *s*, we have

$$\int_{\Omega} u(x) v_s(x) dx = 0 \qquad \text{for every } s \ge 1.$$

By dominated convergence theorem, we have

$$\int_{\Omega} u(x) v(x) dx = 0 \quad \Rightarrow \int_{\mathcal{K}} |u| dx = 0 \quad \Rightarrow u = 0 \text{ a.e. in } \mathcal{K}.$$

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem

Euler-Lagrange Equations

Fundamental Lemma of Calculus of Variations

Derivation of EL equations

Constrained Minimization: Lagrange Multipliers

Example: Newton's laws for a point particle

Hamiltonian formulation

First integrals

Symmetry and Noether's theorem

Hamilton-Jacobi theory and Optimal control

Second Variation

Examples

Proof of theorem about EL equations. Take $\phi \in C_c^1((a, b); \mathbb{R}^N)$. Thus $\phi(a) = 0 = \phi(b)$ Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations

Derivation of EL equations

Constrained Minimization: Lagrange Multipliers

Example: Newton's laws for a point particle

Hamiltonian formulation

First integrals

Symmetry and Noether's theorem

Hamilton-Jacobi theory and Optimal control

Second Variation

Examples

Take $\phi \in C_c^1((a, b); \mathbb{R}^N)$. Thus $\phi(a) = 0 = \phi(b)$ and for any $h \in \mathbb{R}$, we have $\bar{u} + h\phi \in X$.

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem

Euler-Lagrange Equations

Fundamental Lemma of Calculus of Variations

Derivation of EL equations

Constrained Minimization: Lagrange Multipliers

Example: Newton's laws for a point particle

Hamiltonian formulation

First integrals

Symmetry and Noether's theorem

Hamilton-Jacobi theory and Optimal control

Second Variation

Examples

Take $\phi \in C_c^1((a, b); \mathbb{R}^N)$. Thus $\phi(a) = 0 = \phi(b)$ and for any $h \in \mathbb{R}$, we have $\bar{u} + h\phi \in X$. Now we define the function $g: \mathbb{R} \to \mathbb{R}$ by $g(h) := I(\bar{u} + h\phi)$.

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations

undamental Lemma of Calculus of Variations

Derivation of EL equations

Constrained Minimization: Lagrange Multipliers

Example: Newton's laws for a point particle

Hamiltonian formulation

First integrals

Symmetry and Noether's theorem

Hamilton-Jacobi theory and Optimal control

Second Variation

Examples

Take $\phi \in C_c^1((a, b); \mathbb{R}^N)$. Thus $\phi(a) = 0 = \phi(b)$ and for any $h \in \mathbb{R}$, we have $\bar{u} + h\phi \in X$. Now we define the function $g : \mathbb{R} \to \mathbb{R}$ by $g(h) := I(\bar{u} + h\phi)$.

Then $g \in C^1(\mathbb{R})$ (Check!)

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations

Fundamental Lemma of Calculus of Variations

Derivation of EL equations

Constrained Minimization: Lagrange Multipliers

Example: Newton's laws for a point particle

Hamiltonian formulation

First integrals

Symmetry and Noether's theorem

Hamilton-Jacobi theory and Optimal control

Second Variation

Examples

Take $\phi \in C_c^1((a, b); \mathbb{R}^N)$. Thus $\phi(a) = 0 = \phi(b)$ and for any $h \in \mathbb{R}$, we have $\bar{u} + h\phi \in X$. Now we define the function $g: \mathbb{R} \to \mathbb{R}$ by $g(h) := I(\bar{u} + h\phi)$.

Then $g \in C^1(\mathbb{R})$ (Check!) and since \overline{u} is a minimizer, g must have a local minima at 0. Thus we must have g'(0) = 0.

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Fundamental Lemma of

Calculus of Variations

Derivation of EL equations

Constrained Minimization: Lagrange Multipliers

Example: Newton's laws or a point particle

Hamiltonian formulation

First integrals

Symmetry and Noether's theorem

Hamilton-Jacobi theory and Optimal control

Second Variation

Examples

Take $\phi \in C_c^1((a, b); \mathbb{R}^N)$. Thus $\phi(a) = 0 = \phi(b)$ and for any $h \in \mathbb{R}$, we have $\bar{u} + h\phi \in X$. Now we define the function $g: \mathbb{R} \to \mathbb{R}$ by $g(h) := I(\bar{u} + h\phi)$.

Then $g \in C^1(\mathbb{R})$ (Check!) and since \bar{u} is a minimizer, g must have a local minima at 0. Thus we must have g'(0) = 0. So we compute (Check!)

$$0 = \left. \frac{d}{dh} \left[I\left(\bar{u} + h\phi\right) \right] \right|_{h=0}$$

= $\int_{a}^{b} \left[\left\langle f_{\xi}\left(t, \bar{u}\left(t\right), \dot{\bar{u}}\left(t\right)\right), \dot{\phi}\left(t\right) \right\rangle + \left\langle f_{u}\left(t, \bar{u}\left(t\right), \dot{\bar{u}}\left(t\right)\right), \phi\left(t\right) \right\rangle \right] dt$
= $\int_{a}^{b} \left\langle \left[-\frac{d}{dt} f_{\xi}\left(t, \bar{u}\left(t\right), \dot{\bar{u}}\left(t\right)\right) + f_{u}\left(t, \bar{u}\left(t\right), \dot{\bar{u}}\left(t\right)\right) \right], \phi\left(t\right) \right\rangle dt$,

where we have used integration by parts in the last line and the fact that $\phi(a) = 0 = \phi(b)$. Conclude by applying the fundamental lemma.

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Fundamental Lemma of

Derivation of EL equations

Constrained Minimization: Lagrange Multipliers

Example: Newton's laws or a point particle

Hamiltonian formulation

First integrals

Symmetry and Noether's theorem

Hamilton-Jacobi theory and Optimal control

Second Variation

Examples

Remarks

The whole point of the derivation of the Euler-Lagrange equation is the proof and the calculations leading to the derivation, not the equations themselves.

As we shall see in a moment, different problems might lead to different equations, but **the general method is the same**.

The Euler-Lagrange equation is sometimes called the first variation formula. The name comes from the fact that given a functional *I(u)*, its first variation at *ū* is (its Gateaux derivative at *ū*,)

$$\delta I\left(\bar{u},\phi\right) := \left.\frac{d}{dh}\left[I\left(\bar{u}+h\phi\right)\right]\right|_{h=0}.$$

The EL equation is just follows from "first variation = 0." This is also the reason for the name Calculus of variations. All we used to do is to compute the first variation and the second variation!

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations

Fundamental Lemma of Calculus of Variations

Derivation of EL equations

Constrained Minimization: Lagrange Multipliers

Example: Newton's laws for a point particle

Hamiltonian formulation

First integrals

Symmetry and Noether's theorem

lamilton-Jacobi theory and Optimal control

Second Variation

Examples

Constrained Minimization: Lagrange Multipliers I

Now we are going to derive the Euler-Lagrange equation for problems with additional constraints.

Theorem (Lagrange Multiplier)

Let
$$f = f(t, u, \xi) \in C^2([a, b] \times \mathbb{R}^N \times \mathbb{R}^N)$$
,
 $g = g(t, u, \xi) \in C^2([a, b] \times \mathbb{R}^N \times \mathbb{R}^N)$, $\alpha, \beta \in \mathbb{R}^N$ be given and

$$X = \left\{ u \in C^{1}\left([a, b]; \mathbb{R}^{N} \right) : u(a) = \alpha, \ u(b) = \beta, \\ \int_{a}^{b} g(t, u(t), \dot{u}(t)) \ dt = 0 \right\}.$$

Now consider the problem

$$(P) \quad \inf_{u \in X} \left\{ I(u) = \int_{a}^{b} f(t, u(t), \dot{u}(t)) \, \mathrm{d}t \right\} = m.$$

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem

Euler-Lagrange Equations

Fundamental Lemma of Calculus of Variations

Derivation of EL equations

Constrained Minimization: Lagrange Multipliers

Example: Newton's laws for a point particle

Hamiltonian formulation

First integrals

Symmetry and Noether's theorem

Hamilton-Jacobi theory and Optimal control

Second Variation

Examples

Theorem (Lagrange Multiplier) [continued..]

If $\overline{u} \in X \cap C^2([a, b]; \mathbb{R}^N)$ is a minimizer for (P), then there exists a $\lambda \in \mathbb{R}$, called the Lagrange multiplier, such that \overline{u} satisfies,

$$\begin{pmatrix} \frac{d}{dt} \left[f_{\xi} \left(t, \bar{u} \left(t \right), \dot{\bar{u}} \left(t \right) \right) \right] - f_{u} \left(t, \bar{u} \left(t \right), \dot{\bar{u}} \left(t \right) \right) \\ = \lambda \left(\frac{d}{dt} \left[g_{\xi} \left(t, \bar{u} \left(t \right), \dot{\bar{u}} \left(t \right) \right) \right] - g_{u} \left(t, \bar{u} \left(t \right), \dot{\bar{u}} \left(t \right) \right) \right)$$

for every $t \in (a, b)$, provided

$$\frac{d}{dt}\left[g_{\xi}\left(t,\bar{u}\left(t\right),\dot{\bar{u}}\left(t\right)\right)\right] \neq g_{u}\left(t,\bar{u}\left(t\right),\dot{\bar{u}}\left(t\right)\right)$$

in (a, b).

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem

Euler-Lagrange Equations

Fundamental Lemma of Calculus of Variations

Derivation of EL equations

Constrained Minimization: Lagrange Multipliers

Example: Newton's laws for a point particle

Hamiltonian formulation

First integrals

Symmetry and Noether's theorem

lamilton-Jacobi theory and Optimal control

Second Variation

Examples

Remarks on Lagrange Multiplier theorem

Sometimes the equation is written as (parameter is $-\lambda$)

$$\begin{split} \frac{d}{dt} \left[f_{\xi} \left(t, \bar{u}\left(t \right), \dot{\bar{u}}\left(t \right) \right) + \lambda g_{\xi} \left(t, \bar{u}\left(t \right), \dot{\bar{u}}\left(t \right) \right) \right] \\ &= f_{u} \left(t, \bar{u}\left(t \right), \dot{\bar{u}}\left(t \right) \right) + \lambda g_{u} \left(t, \bar{u}\left(t \right), \dot{\bar{u}}\left(t \right) \right). \end{split}$$

The theorem basically says: The constrained minimization of

 $\int_{a}^{b} f(t, u(t), \dot{u}(t)) dt$

with the constraint

$$\int_{a}^{b} g\left(t, u\left(t\right), \dot{u}\left(t\right)\right) \, \mathrm{d}t = 0,$$

is equivalent to the unconstrained minimization of

$$\int_{a}^{b} f(t, u(t), \dot{u}(t)) dt + \lambda \int_{a}^{b} g(t, u(t), \dot{u}(t)) dt$$

for some $\lambda \in \mathbb{R}$.

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem

Euler-Lagrange Equations

Fundamental Lemma of Calculus of Variations

Derivation of EL equations

Constrained Minimization: Lagrange Multipliers

Example: Newton's laws for a point particle

Hamiltonian formulation

First integrals

Symmetry and Noether's theorem

Hamilton-Jacobi theory and Optimal control

Second Variation

Examples

Proof of the Lagrange multiplier theorem.

Since

$$\frac{d}{dt}\left[g_{\xi}\left(t,\bar{u}\left(t\right),\dot{\bar{u}}\left(t\right)\right)\right]-g_{u}\left(t,\bar{u}\left(t\right),\dot{\bar{u}}\left(t\right)\right)\neq0$$

in (a, b), the fundamental lemma implies the existence of $\psi \in C_c^{\infty}((a, b); \mathbb{R}^N)$ such that

$$\int_{a}^{b} \left[\left\langle g_{\xi}\left(t,\bar{u}\left(t\right),\dot{\bar{u}}\left(t\right)\right),\dot{\psi}\left(t\right) \right\rangle + \left\langle g_{u}\left(t,\bar{u}\left(t\right),\dot{\bar{u}}\left(t\right)\right),\psi\left(t\right) \right\rangle \right] \, \mathrm{d}t \neq 0.$$

Now we can normalize if necessary to obtain $\psi \in C_c^{\infty}((a, b); \mathbb{R}^N)$ such that

$$\int_{a}^{b} \left[\left\langle g_{\xi}\left(t, \bar{u}\left(t\right), \dot{\bar{u}}\left(t\right)\right), \dot{\psi}\left(t\right) \right\rangle + \left\langle g_{u}\left(t, \bar{u}\left(t\right), \dot{\bar{u}}\left(t\right)\right), \psi\left(t\right) \right\rangle \right] \, \mathrm{d}t = 1.$$

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem

Euler-Lagrange Equations

Fundamental Lemma of Calculus of Variations

Derivation of EL equations

Constrained Minimization: Lagrange Multipliers

Example: Newton's laws for a point particle

Hamiltonian formulation

irst integrals

Symmetry and Noether's theorem

Hamilton-Jacobi theory and Optimal control

Second Variation

Examples

Now we pick $\phi \in C_c^{\infty}((a, b); \mathbb{R}^N)$ arbitrary, ψ as above and for $\varepsilon, h \in \mathbb{R}$, we set

$$F(\varepsilon, h) := \int_{a}^{b} f\left(t, \bar{u}(t) + \varepsilon \phi(t) + h\psi(t), \dot{\bar{u}}(t) + \varepsilon \dot{\phi}(t) + h\dot{\psi}(t)\right)$$
$$G(\varepsilon, h) := \int_{a}^{b} g\left(t, \bar{u}(t) + \varepsilon \phi(t) + h\psi(t), \dot{\bar{u}}(t) + \varepsilon \dot{\phi}(t) + h\dot{\psi}(t)\right)$$

So
$$G\in C^{1}\left(\mathbb{R} imes\mathbb{R}
ight)$$
, $G\left(0,0
ight)=0$ and $G_{h}\left(0,0
ight)=1.$

So by the implicit function theorem, we obtain the existence of a $\varepsilon_0 > 0$ and a function $\bar{h} \in C^1([-\varepsilon_0, \varepsilon_0])$ such that

$$ar{h}(0)=0$$
 and $G\left(arepsilon,ar{h}(arepsilon)
ight)=0$ for every $arepsilon\in [-arepsilon_0,arepsilon_0].$

Note that the last equation implies

$$ar{u} + arepsilon \phi + ar{h}(arepsilon) \psi \in X$$
 for every $arepsilon \in [-arepsilon_0, arepsilon_0]$.

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem

Euler-Lagrange Equations

Fundamental Lemma of Calculus of Variations

Derivation of EL equations

Constrained Minimization: Lagrange Multipliers

Example: Newton's laws for a point particle

Hamiltonian formulation

First integrals

Symmetry and Noether's theorem

Hamilton-Jacobi theory and Optimal control

Second Variation

Examples

Proof of the Lagrange Multiplier theorem III

It also implies (by differentiating),

$$\mathcal{G}_{\varepsilon}\left(\varepsilon,\bar{h}(\varepsilon)\right)+\mathcal{G}_{h}\left(\varepsilon,\bar{h}(\varepsilon)\right)\bar{h}'(\varepsilon)=0 \qquad \text{ for every } \varepsilon\in[-\varepsilon_{0},\varepsilon_{0}].$$

So we deduce

$$ar{h}'(0) = -G_{arepsilon}\left(0,0
ight).$$
 (2)

Now once again we use the technique we have already seen. Since \bar{u} is a minimizer, the real valued function on $[-\varepsilon_0, \varepsilon_0]$, given by

$$\varepsilon \mapsto F\left(\varepsilon, \overline{h}(\varepsilon)\right)$$

must have a local minima at $\varepsilon = 0$. So we have

$$0 = \left. \frac{d}{d\varepsilon} \left[F\left(\varepsilon, \bar{h}(\varepsilon)\right) \right] \right|_{\varepsilon=0} = F_{\varepsilon}\left(0, 0\right) + F_{h}\left(0, 0\right) \bar{h}'(0).$$

So setting $\lambda = F_h(0,0)$ and using (2), we get

$$F_{\varepsilon}(0,0) - \lambda G_{\varepsilon}(0,0)$$
.

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem

Euler-Lagrange Equations

Fundamental Lemma of Calculus of Variations

Derivation of EL equations

Constrained Minimization: Lagrange Multipliers

Example: Newton's laws for a point particle

Hamiltonian formulation

First integrals

Symmetry and Noether's theorem

lamilton-Jacobi theory and Optimal control

Second Variation

Examples

Newton's laws for a point particle

Let m > 0 be the mass and $x(t) \in \mathbb{R}^3$ be the position of a point particle. Let $U : \mathbb{R}^3 \to \mathbb{R}$ written as

$$U(t,x)=U(x)$$

be a given potential energy function. The variational problem is

$$m = \inf \left\{ I(x) := \int_0^T f(t, x(t), \dot{x}(t)) \, \mathrm{d}t : x(0) = x_0, x(T) = x_1 \right\},\$$

where the form of the Lagrangian density is

$$f(t,x,\xi)=\frac{1}{2}m\xi^2-U(x).$$

The EL equation reads

$$0 = \frac{d}{dt} \left[f_{\xi} \left(t, x(t), \dot{x}(t) \right) \right] - f_{x} \left(t, x(t), \dot{x}(t) \right)$$
$$= \frac{d}{dt} \left[m \dot{x}(t) \right] + \nabla U \left(x(t) \right) = m \ddot{x}(t) + \nabla U \left(x(t) \right)$$

i.e. the Newton's law of motion,

$$m\ddot{x}(t) = -\nabla U(x(t)) := F(x(t))$$

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem Euler-Lagrange Equations Fundamental Lemma of Calculus of Variations

Derivation of EL equations

Constrained Minimization: Lagrange Multipliers

Example: Newton's laws for a point particle

Hamiltonian formulation

First integrals

Symmetry and Noether's theorem

Hamilton-Jacobi theory and Optimal control

Second Variation

Examples

Introduction to the Calculus of Variations

Swarnendu Sil

Classical Methods

Classical Problem

Euler-Lagrange Equations

Fundamental Lemma of Calculus of Variations

Derivation of EL equations

Constrained Minimization: Lagrange Multipliers

Example: Newton's laws for a point particle

Hamiltonian formulation

First integrals

Symmetry and Noether's theorem

Hamilton-Jacobi theory and Optimal control

Second Variation

Examples

The End

Thank you *Questions?*