Introduction to the Calculus of Variations: Lecture 19

Swarnendu Sil
Department of Mathematics
Indian Institute of Science

Spring Semester 2021

Outline

Direct methods

Dirichlet Integral
Integrands depending only on the gradient
Integrands with x dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

Euler-Lagrange equations

Now we want to derive the Euler-Lagrange equation satisfied by a minimizer.

Direct methods
Dirichlet Integral
Integrands depending only on the gradient

Integrands with x dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

The End

Euler-Lagrange equations

Now we want to derive the Euler-Lagrange equation satisfied by a minimizer. But this would require certain regularity of the integrand f.

Direct methods
Dirichlet Integral
Integrands depending only on the gradient
Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

Euler-Lagrange equations

Now we want to derive the Euler-Lagrange equation satisfied by a minimizer. But this would require certain regularity of the integrand f. So far, we have only worked with the assumption that f is a Carathéodory function satisfying some coercivity conditions.

Direct methods
Dirichlet Integral
Integrands depending only on the gradient

Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

Euler-Lagrange equations

Now we want to derive the Euler-Lagrange equation satisfied by a minimizer. But this would require certain regularity of the integrand f. So far, we have only worked with the assumption that f is a Carathéodory function satisfying some coercivity conditions. Now we need to assume something more, which are called growth conditions.

Direct methods
Dirichlet Integral
Integrands depending only on the gradient
Integrands with X
dependence
Integrands with x and u dependence
Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations

Weak continuity of the determinants

Euler-Lagrange equations

Now we want to derive the Euler-Lagrange equation satisfied by a minimizer. But this would require certain regularity of the integrand f. So far, we have only worked with the assumption that f is a Carathéodory function satisfying some coercivity conditions. Now we need to assume something more, which are called growth conditions. These tells us how $|f(x, u, \xi)|$ grows when $|u|,|\xi| \rightarrow \infty$.

Direct methods
Dirichlet Integral
Integrands depending only on the gradient
Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

Euler-Lagrange equations

Now we want to derive the Euler-Lagrange equation satisfied by a minimizer. But this would require certain regularity of the integrand f. So far, we have only worked with the assumption that f is a Carathéodory function satisfying some coercivity conditions. Now we need to assume something more, which are called growth conditions. These tells us how $|f(x, u, \xi)|$ grows when $|u|,|\xi| \rightarrow \infty$.

Definition (Growth condition on f)

Let $1<p<\infty$. A Carathéodory function

$$
f: \Omega \times \mathbb{R}^{N} \times \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, \quad f=f(x, u, \xi)
$$

is said to satisfy p-growth conditions

Direct methods

Dirichlet Integral
Integrands depending only on the gradient
Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

Euler-Lagrange equations

Now we want to derive the Euler-Lagrange equation satisfied by a minimizer. But this would require certain regularity of the integrand f. So far, we have only worked with the assumption that f is a Carathéodory function satisfying some coercivity conditions. Now we need to assume something more, which are called growth conditions. These tells us how $|f(x, u, \xi)|$ grows when $|u|,|\xi| \rightarrow \infty$.

Definition (Growth condition on f)

Let $1<p<\infty$. A Carathéodory function

$$
f: \Omega \times \mathbb{R}^{N} \times \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, \quad f=f(x, u, \xi)
$$

is said to satisfy p-growth conditions if there exists $\alpha \in L^{1}(\Omega)$ and $\beta \geq 0$ such that

Euler-Lagrange equations

Now we want to derive the Euler-Lagrange equation satisfied by a minimizer. But this would require certain regularity of the integrand f. So far, we have only worked with the assumption that f is a Carathéodory function satisfying some coercivity conditions. Now we need to assume something more, which are called growth conditions. These tells us how $|f(x, u, \xi)|$ grows when $|u|,|\xi| \rightarrow \infty$.

Definition (Growth condition on f)

Let $1<p<\infty$. A Carathéodory function

$$
f: \Omega \times \mathbb{R}^{N} \times \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, \quad f=f(x, u, \xi)
$$

is said to satisfy p-growth conditions if there exists $\alpha \in L^{1}(\Omega)$ and $\beta \geq 0$ such that

$$
\begin{equation*}
|f(x, u, \xi)| \leq \alpha(x)+\beta\left(|u|^{p}+|\xi|^{p}\right) \tag{p}
\end{equation*}
$$

Euler-Lagrange equations

Now we want to derive the Euler-Lagrange equation satisfied by a minimizer. But this would require certain regularity of the integrand f. So far, we have only worked with the assumption that f is a Carathéodory function satisfying some coercivity conditions. Now we need to assume something more, which are called growth conditions. These tells us how $|f(x, u, \xi)|$ grows when $|u|,|\xi| \rightarrow \infty$.

Definition (Growth condition on f)

Let $1<p<\infty$. A Carathéodory function

$$
f: \Omega \times \mathbb{R}^{N} \times \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, \quad f=f(x, u, \xi)
$$

is said to satisfy p-growth conditions if there exists $\alpha \in L^{1}(\Omega)$ and $\beta \geq 0$ such that

$$
\begin{equation*}
|f(x, u, \xi)| \leq \alpha(x)+\beta\left(|u|^{p}+|\xi|^{p}\right) \tag{p}
\end{equation*}
$$

for a.e. $x \in \Omega$ and for every $(u, \xi) \in \mathbb{R}^{N} \times \mathbb{R}^{N \times n}$.

Growth conditions on the derivatives

Note that the p-growth conditions automatically implies that

Growth conditions on the derivatives

Note that the p-growth conditions automatically implies that

$$
I[u]:=\int_{\Omega} f(x, u(x), \nabla u(x)) \mathrm{d} x<\infty
$$

for every $u \in W^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)$.

Direct methods
 Dirichlet Integral
 Integrands depending only on the gradient
 Integrands with x
 dependence

Integrands with x and u dependence
Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

Growth conditions on the derivatives

Note that the p-growth conditions automatically implies that

$$
I[u]:=\int_{\Omega} f(x, u(x), \nabla u(x)) \mathrm{d} x<\infty
$$

for every $u \in W^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)$.
Now we need some growth conditions on the derivatives of f.

Direct methods

Dirichlet Integral
Integrands depending only on the gradient
Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

Growth conditions on the derivatives

Note that the p-growth conditions automatically implies that

$$
I[u]:=\int_{\Omega} f(x, u(x), \nabla u(x)) \mathrm{d} x<\infty
$$

for every $u \in W^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)$.
Now we need some growth conditions on the derivatives of f.
Definition (Controllable p-growth conditions)
Let $1<p<\infty$.

Growth conditions on the derivatives

Note that the p-growth conditions automatically implies that

$$
I[u]:=\int_{\Omega} f(x, u(x), \nabla u(x)) \mathrm{d} x<\infty
$$

for every $u \in W^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)$.
Now we need some growth conditions on the derivatives of f.
Definition (Controllable p-growth conditions)
Let $1<p<\infty$. A Carathéodory function $f=f(x, u, \xi)$ is said to satisfy controllable p-growth conditions

Growth conditions on the derivatives

Note that the p-growth conditions automatically implies that

$$
I[u]:=\int_{\Omega} f(x, u(x), \nabla u(x)) \mathrm{d} x<\infty
$$

for every $u \in W^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)$.
Now we need some growth conditions on the derivatives of f.
Definition (Controllable p-growth conditions)
Let $1<p<\infty$. A Carathéodory function $f=f(x, u, \xi)$ is said to satisfy controllable p-growth conditions if $f_{u^{i}}$ and $f_{\xi_{\alpha}^{i}}$ are Carathéodory functions

Growth conditions on the derivatives

Note that the p-growth conditions automatically implies that

$$
I[u]:=\int_{\Omega} f(x, u(x), \nabla u(x)) \mathrm{d} x<\infty
$$

for every $u \in W^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)$.
Now we need some growth conditions on the derivatives of f.
Definition (Controllable p-growth conditions)
Let $1<p<\infty$. A Carathéodory function $f=f(x, u, \xi)$ is said to satisfy controllable p-growth conditions if $f_{u^{i}}$ and $f_{\xi_{\alpha}^{i}}$ are Carathéodory functions for every $1 \leq i \leq N$ and $1 \leq \alpha \leq n$ and these functions satisfy the estimates

Growth conditions on the derivatives

Note that the p-growth conditions automatically implies that

$$
I[u]:=\int_{\Omega} f(x, u(x), \nabla u(x)) \mathrm{d} x<\infty
$$

for every $u \in W^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)$.
Now we need some growth conditions on the derivatives of f.

Definition (Controllable p-growth conditions)

Let $1<p<\infty$. A Carathéodory function $f=f(x, u, \xi)$ is said to satisfy controllable p-growth conditions if $f_{u^{i}}$ and $f_{\xi_{\alpha}^{i}}$ are Carathéodory functions for every $1 \leq i \leq N$ and $1 \leq \alpha \leq n$ and these functions satisfy the estimates

$$
\left|D_{u} f(x, u, \xi)\right| \leq \alpha_{1}(x)+\beta\left(|u|^{p-1}+|\xi|^{p-1}\right)
$$

Growth conditions on the derivatives

Note that the p-growth conditions automatically implies that

$$
I[u]:=\int_{\Omega} f(x, u(x), \nabla u(x)) \mathrm{d} x<\infty
$$

for every $u \in W^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)$.
Now we need some growth conditions on the derivatives of f.

Definition (Controllable p-growth conditions)

Let $1<p<\infty$. A Carathéodory function $f=f(x, u, \xi)$ is said to satisfy controllable p-growth conditions if $f_{u^{i}}$ and $f_{\xi_{\alpha}^{i}}$ are Carathéodory functions for every $1 \leq i \leq N$ and $1 \leq \alpha \leq n$ and these functions satisfy the estimates

$$
\left.\begin{array}{r}
\left|D_{u} f(x, u, \xi)\right| \leq \alpha_{1}(x)+\beta\left(|u|^{p-1}+|\xi|^{p-1}\right) \\
\left|D_{\xi} f(x, u, \xi)\right| \leq \alpha_{2}(x)+\beta\left(|u|^{p-1}+|\xi|^{p-1}\right)
\end{array}\right\} \quad\left(G_{p, \text { cont }}\right)
$$

Growth conditions on the derivatives

Note that the p-growth conditions automatically implies that

$$
I[u]:=\int_{\Omega} f(x, u(x), \nabla u(x)) \mathrm{d} x<\infty
$$

for every $u \in W^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)$.
Now we need some growth conditions on the derivatives of f.
Definition (Controllable p-growth conditions)
Let $1<p<\infty$. A Carathéodory function $f=f(x, u, \xi)$ is said to satisfy controllable p-growth conditions if $f_{u^{i}}$ and $f_{\xi_{\alpha}^{i}}$ are Carathéodory functions for every $1 \leq i \leq N$ and $1 \leq \alpha \leq n$ and these functions satisfy the estimates

$$
\left.\begin{array}{r}
\left|D_{u} f(x, u, \xi)\right| \leq \alpha_{1}(x)+\beta\left(|u|^{p-1}+|\xi|^{p-1}\right) \\
\left|D_{\xi} f(x, u, \xi)\right| \leq \alpha_{2}(x)+\beta\left(|u|^{p-1}+|\xi|^{p-1}\right) \tag{cont}
\end{array}\right\}
$$

for a.e. $x \in \Omega$ and for every $(u, \xi) \in \mathbb{R}^{N} \times \mathbb{R}^{N \times n}$ for some $\alpha_{1}, \alpha_{2} \in L^{1}(\Omega)$ and $\beta \geq 0$

Euler-Lagrange equations

Theorem (Euler-Lagrange equations)

Let $n \geq 2, N \geq 1$ be integers, $\Omega \subset \mathbb{R}^{n}$ be open, bounded, smooth and $1<p<\infty$.

Direct methods
Dirichlet Integral
Integrands depending only on the gradient

Integrands with x dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

The End

Euler-Lagrange equations

Theorem (Euler-Lagrange equations)

Let $n \geq 2, N \geq 1$ be integers, $\Omega \subset \mathbb{R}^{n}$ be open, bounded, smooth and $1<p<\infty$. Let $f: \Omega \times \mathbb{R}^{N} \times \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(x, u, \xi)$ satisfy $\left(G_{p}\right)$ and $\left(G_{p, \text { cont }}\right)$.

Direct methods

Dirichlet Integral
Integrands depending only on the gradient

Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

Euler-Lagrange equations

Theorem (Euler-Lagrange equations)

Let $n \geq 2, N \geq 1$ be integers, $\Omega \subset \mathbb{R}^{n}$ be open, bounded, smooth and $1<p<\infty$. Let $f: \Omega \times \mathbb{R}^{N} \times \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(x, u, \xi)$ satisfy $\left(G_{p}\right)$ and $\left(G_{p, \text { cont }}\right)$. Suppose $\bar{u} \in u_{0}+W_{0}^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)$ is a minimizer for

Direct methods

Dirichlet Integral
Integrands depending only on the gradient

Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations

Weak continuity of the determinants

Euler-Lagrange equations

Theorem (Euler-Lagrange equations)

Let $n \geq 2, N \geq 1$ be integers, $\Omega \subset \mathbb{R}^{n}$ be open, bounded, smooth and $1<p<\infty$. Let $f: \Omega \times \mathbb{R}^{N} \times \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(x, u, \xi)$ satisfy $\left(G_{p}\right)$ and $\left(G_{p, \text { cont }}\right)$. Suppose $\bar{u} \in u_{0}+W_{0}^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)$ is a minimizer for

$$
\inf \left\{I[u]: u \in u_{0}+W_{0}^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)\right\}=m
$$

Direct methods

Dirichlet Integral
Integrands depending only on the gradient

Integrands with X
dependence
Integrands with x and u dependence
Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations

Weak continuity of the determinants

Euler-Lagrange equations

Theorem (Euler-Lagrange equations)

Let $n \geq 2, N \geq 1$ be integers, $\Omega \subset \mathbb{R}^{n}$ be open, bounded, smooth and $1<p<\infty$. Let $f: \Omega \times \mathbb{R}^{N} \times \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(x, u, \xi)$ satisfy $\left(G_{p}\right)$ and $\left(G_{p, \text { cont }}\right)$. Suppose $\bar{u} \in u_{0}+W_{0}^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)$ is a minimizer for

$$
\inf \left\{I[u]: u \in u_{0}+W_{0}^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)\right\}=m
$$

Then for every $\phi \in W_{0}^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)$, we have

Direct methods

Dirichlet Integral
Integrands depending only on the gradient

Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations

Weak continuity of the determinants

Euler-Lagrange equations

Theorem (Euler-Lagrange equations)

Let $n \geq 2, N \geq 1$ be integers, $\Omega \subset \mathbb{R}^{n}$ be open, bounded, smooth and $1<p<\infty$. Let $f: \Omega \times \mathbb{R}^{N} \times \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(x, u, \xi)$ satisfy $\left(G_{p}\right)$ and $\left(G_{p, \text { cont }}\right)$. Suppose $\bar{u} \in u_{0}+W_{0}^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)$ is a minimizer for

$$
\inf \left\{I[u]: u \in u_{0}+W_{0}^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)\right\}=m
$$

Then for every $\phi \in W_{0}^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)$, we have

$$
\int_{\Omega}\left[\left\langle D_{\xi} f(x, \bar{u}, \nabla \bar{u}), \nabla \phi\right\rangle+\left\langle D_{u} f(x, \bar{u}, \nabla \bar{u}), \phi\right\rangle\right] \mathrm{d} x=0 .
$$

Euler-Lagrange equations

Theorem (Euler-Lagrange equations)

Let $n \geq 2, N \geq 1$ be integers, $\Omega \subset \mathbb{R}^{n}$ be open, bounded, smooth and $1<p<\infty$. Let $f: \Omega \times \mathbb{R}^{N} \times \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(x, u, \xi)$ satisfy $\left(G_{p}\right)$ and $\left(G_{p, \text { cont }}\right)$. Suppose $\bar{u} \in u_{0}+W_{0}^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)$ is a minimizer for

$$
\inf \left\{l[u]: u \in u_{0}+W_{0}^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)\right\}=m
$$

Then for every $\phi \in W_{0}^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)$, we have

$$
\int_{\Omega}\left[\left\langle D_{\xi} f(x, \bar{u}, \nabla \bar{u}), \nabla \phi\right\rangle+\left\langle D_{u} f(x, \bar{u}, \nabla \bar{u}), \phi\right\rangle\right] \mathrm{d} x=0 .
$$

In other words, \bar{u} is a 'weak' solution for the Dirichlet BVP for the (system of) PDE

Euler-Lagrange equations

Theorem (Euler-Lagrange equations)

Let $n \geq 2, N \geq 1$ be integers, $\Omega \subset \mathbb{R}^{n}$ be open, bounded, smooth and $1<p<\infty$. Let $f: \Omega \times \mathbb{R}^{N} \times \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(x, u, \xi)$ satisfy $\left(G_{p}\right)$ and $\left(G_{p, \text { cont }}\right)$. Suppose $\bar{u} \in u_{0}+W_{0}^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)$ is a minimizer for

$$
\inf \left\{l[u]: u \in u_{0}+W_{0}^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)\right\}=m
$$

Then for every $\phi \in W_{0}^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)$, we have

$$
\int_{\Omega}\left[\left\langle D_{\xi} f(x, \bar{u}, \nabla \bar{u}), \nabla \phi\right\rangle+\left\langle D_{u} f(x, \bar{u}, \nabla \bar{u}), \phi\right\rangle\right] \mathrm{d} x=0 .
$$

In other words, \bar{u} is a 'weak' solution for the Dirichlet BVP for the (system of) PDE

$$
\left\{\begin{aligned}
\operatorname{div}\left[D_{\xi} f(x, u, \nabla u)\right] & =D_{u} f(x, u, \nabla u) & & \text { in } \Omega \\
u & =u_{0} & & \text { on } \partial \Omega .
\end{aligned}\right.
$$

Direct methods

Dirichlet Integral
Integrands depending only on the gradient
Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

Proof. By $\left(G_{p}\right)$,

Introduction to the

 Calculus of VariationsSwarnendu Sil

Direct methods
Dirichlet Integral
Integrands depending only on the gradient

Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations

Weak continuity of the determinants

The End

Proof. By $\left(G_{p}\right)$, we have $I[\bar{u}+\varepsilon \phi]$ is well defined for every $\varepsilon \in \mathbb{R}$ and every $\phi \in W_{0}^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)$.

Proof. By $\left(G_{p}\right)$, we have $I[\bar{u}+\varepsilon \phi]$ is well defined for every $\varepsilon \in \mathbb{R}$ and every $\phi \in W_{0}^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)$. Since \bar{u} is a minimizer,

Proof. By $\left(G_{p}\right)$, we have $I[\bar{u}+\varepsilon \phi]$ is well defined for every $\varepsilon \in \mathbb{R}$ and every $\phi \in W_{0}^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)$. Since \bar{u} is a minimizer, we must have

Proof. By $\left(G_{p}\right)$, we have $I[\bar{u}+\varepsilon \phi]$ is well defined for every $\varepsilon \in \mathbb{R}$ and every $\phi \in W_{0}^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)$. Since \bar{u} is a minimizer, we must have

$$
0=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}(I[\bar{u}+\varepsilon \phi]-I[\bar{u}])
$$

Direct methods

Dirichlet Integral
Integrands depending only on the gradient
Integrands with x dependence
Integrands with x and u dependence
Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

Proof. By $\left(G_{\rho}\right)$, we have $I[\bar{u}+\varepsilon \phi]$ is well defined for every $\varepsilon \in \mathbb{R}$ and every $\phi \in W_{0}^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)$. Since \bar{u} is a minimizer, we must have

$$
0=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}(I[\bar{u}+\varepsilon \phi]-I[\bar{u}])
$$

Now we compute

Direct methods

Dirichlet Integral
Integrands depending only on the gradient
Integrands with x dependence
Integrands with x and u dependence
Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

Proof. By $\left(G_{p}\right)$, we have $I[\bar{u}+\varepsilon \phi]$ is well defined for every $\varepsilon \in \mathbb{R}$ and every $\phi \in W_{0}^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)$. Since \bar{u} is a minimizer, we must have

$$
0=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}(I[\bar{u}+\varepsilon \phi]-I[\bar{u}])
$$

Now we compute

$$
\begin{aligned}
& \frac{1}{\varepsilon}(I[\bar{u}+\varepsilon \phi]-I[\bar{u}]) \\
& \quad=\frac{1}{\varepsilon} \int_{\Omega} \mathrm{d} x \int_{0}^{1} \frac{d}{d t}[f(x, \bar{u}(x)+t \varepsilon \phi(x), \nabla \bar{u}(x)+t \varepsilon \nabla \phi(x))] \mathrm{d} t
\end{aligned}
$$

Direct methods

Dirichlet Integral
Integrands depending only on the gradient
Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

Proof. By $\left(G_{p}\right)$, we have $I[\bar{u}+\varepsilon \phi]$ is well defined for every $\varepsilon \in \mathbb{R}$ and every $\phi \in W_{0}^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)$. Since \bar{u} is a minimizer, we must have

$$
0=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}(I[\bar{u}+\varepsilon \phi]-I[\bar{u}])
$$

Now we compute

$$
\begin{aligned}
\frac{1}{\varepsilon} & (I[\bar{u}+\varepsilon \phi]-I[\bar{u}]) \\
& =\frac{1}{\varepsilon} \int_{\Omega} \mathrm{d} x \int_{0}^{1} \frac{d}{d t}[f(x, \bar{u}(x)+t \varepsilon \phi(x), \nabla \bar{u}(x)+t \varepsilon \nabla \phi(x))] \mathrm{d} t \\
& =\int_{\Omega} g(x, \varepsilon) \mathrm{d} x,
\end{aligned}
$$

where

$$
g(x, \varepsilon):=\int_{0}^{1}\left[\begin{array}{c}
\left\langle D_{\xi} f(x, \bar{u}+t \varepsilon \phi, \nabla \bar{u}+t \varepsilon \nabla \phi), \nabla \phi\right\rangle \\
+\left\langle D_{u} f(x, \bar{u}+t \varepsilon \phi, \nabla \bar{u}+t \varepsilon \nabla \phi), \phi\right\rangle
\end{array}\right] \mathrm{d} t
$$

Proof. By $\left(G_{p}\right)$, we have $I[\bar{u}+\varepsilon \phi]$ is well defined for every $\varepsilon \in \mathbb{R}$ and every $\phi \in W_{0}^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)$. Since \bar{u} is a minimizer, we

$$
0=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}(I[\bar{u}+\varepsilon \phi]-I[\bar{u}])
$$

Now we compute

$$
\begin{aligned}
\frac{1}{\varepsilon} & (I[\bar{u}+\varepsilon \phi]-I[\bar{u}]) \\
& =\frac{1}{\varepsilon} \int_{\Omega} \mathrm{d} x \int_{0}^{1} \frac{d}{d t}[f(x, \bar{u}(x)+t \varepsilon \phi(x), \nabla \bar{u}(x)+t \varepsilon \nabla \phi(x))] \mathrm{d} t \\
& =\int_{\Omega} g(x, \varepsilon) \mathrm{d} x,
\end{aligned}
$$ Calculus of Variations must have

Dirichlet Integral

Integrands depending only on the gradient

Integrands with x

 dependence
Integrands with x and u

 dependenceEuler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

Proof. By $\left(G_{\rho}\right)$, we have $I[\bar{u}+\varepsilon \phi]$ is well defined for every $\varepsilon \in \mathbb{R}$ and every $\phi \in W_{0}^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)$. Since \bar{u} is a minimizer, we

$$
0=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}(I[\bar{u}+\varepsilon \phi]-I[\bar{u}])
$$

Now we compute

$$
\begin{aligned}
\frac{1}{\varepsilon} & (I[\bar{u}+\varepsilon \phi]-I[\bar{u}]) \\
& =\frac{1}{\varepsilon} \int_{\Omega} \mathrm{d} x \int_{0}^{1} \frac{d}{d t}[f(x, \bar{u}(x)+t \varepsilon \phi(x), \nabla \bar{u}(x)+t \varepsilon \nabla \phi(x))] \mathrm{d} t \\
& =\int_{\Omega} g(x, \varepsilon) \mathrm{d} x,
\end{aligned}
$$

where

$$
g(x, \varepsilon):=\int_{0}^{1}\left[\begin{array}{c}
\left\langle D_{\xi} f(x, \bar{u}+t \varepsilon \phi, \nabla \bar{u}+t \varepsilon \nabla \phi), \nabla \phi\right\rangle \\
+\left\langle D_{u} f(x, \bar{u}+t \varepsilon \phi, \nabla \bar{u}+t \varepsilon \nabla \phi), \phi\right\rangle
\end{array}\right] \mathrm{d} t
$$

Clearly, all we need to prove is that we have Calculus of Variations

Proof. By $\left(G_{p}\right)$, we have $I[\bar{u}+\varepsilon \phi]$ is well defined for every $\varepsilon \in \mathbb{R}$ and every $\phi \in W_{0}^{1, p}\left(\Omega ; \mathbb{R}^{N}\right)$. Since \bar{u} is a minimizer, we

$$
0=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}(I[\bar{u}+\varepsilon \phi]-I[\bar{u}])
$$

Now we compute

$$
\begin{aligned}
\frac{1}{\varepsilon} & (I[\bar{u}+\varepsilon \phi]-I[\bar{u}]) \\
& =\frac{1}{\varepsilon} \int_{\Omega} \mathrm{d} x \int_{0}^{1} \frac{d}{d t}[f(x, \bar{u}(x)+t \varepsilon \phi(x), \nabla \bar{u}(x)+t \varepsilon \nabla \phi(x))] \mathrm{d} t \\
& =\int_{\Omega} g(x, \varepsilon) \mathrm{d} x,
\end{aligned}
$$

where

$$
g(x, \varepsilon):=\int_{0}^{1}\left[\begin{array}{c}
\left\langle D_{\xi} f(x, \bar{u}+t \varepsilon \phi, \nabla \bar{u}+t \varepsilon \nabla \phi), \nabla \phi\right\rangle \\
+\left\langle D_{u} f(x, \bar{u}+t \varepsilon \phi, \nabla \bar{u}+t \varepsilon \nabla \phi), \phi\right\rangle
\end{array}\right] \mathrm{d} t
$$

Clearly, all we need to prove is that we have

$$
0=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}(I[\bar{u}+\varepsilon \phi]-I[\bar{u}])=\lim _{\varepsilon \rightarrow 0} \int_{\Omega} g(x, \varepsilon) \mathrm{d} x=\int_{\Omega} \lim _{\varepsilon \rightarrow 0} g(x, \varepsilon) \mathrm{d} x .
$$

This will follow from dominated convergence theorem as soon as we can establish a bound of $g(x, \varepsilon)$

This will follow from dominated convergence theorem as soon as we can establish a bound of $g(x, \varepsilon)$ which is independent of ε

This will follow from dominated convergence theorem as soon as we can establish a bound of $g(x, \varepsilon)$ which is independent of ε and is in $L^{1}(\Omega)$.

This will follow from dominated convergence theorem as soon as we can establish a bound of $g(x, \varepsilon)$ which is independent of ε and is in $L^{1}(\Omega)$. Using $\left(G_{p, \text { cont }}\right)$, we have

This will follow from dominated convergence theorem as soon as we can establish a bound of $g(x, \varepsilon)$ which is independent of ε and is in $L^{1}(\Omega)$. Using $\left(G_{p, \text { cont }}\right)$, we have

$$
\begin{aligned}
& \left|\left\langle D_{u} f(x, \bar{u}+t \varepsilon \phi, \nabla \bar{u}+t \varepsilon \nabla \phi), \phi\right\rangle\right| \\
& \quad \leq\left|\alpha_{1}\right||\phi|+\beta|\bar{u}+t \varepsilon \phi|^{p-1}|\phi|+\beta|\nabla \bar{u}+t \varepsilon \nabla \phi|^{p-1}|\phi|
\end{aligned}
$$

This will follow from dominated convergence theorem as soon as we can establish a bound of $g(x, \varepsilon)$ which is independent of ε and is in $L^{1}(\Omega)$. Using $\left(G_{p, \text { cont }}\right)$, we have

$$
\begin{aligned}
& \left|\left\langle D_{u} f(x, \bar{u}+t \varepsilon \phi, \nabla \bar{u}+t \varepsilon \nabla \phi), \phi\right\rangle\right| \\
& \quad \leq\left|\alpha_{1}\right||\phi|+\beta|\bar{u}+t \varepsilon \phi|^{p-1}|\phi|+\beta|\nabla \bar{u}+t \varepsilon \nabla \phi|^{p-1}|\phi|
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|\left\langle D_{\xi} f(x, \bar{u}+t \varepsilon \phi, \nabla \bar{u}+t \varepsilon \nabla \phi), \nabla \phi\right\rangle\right| \\
& \quad \leq\left|\alpha_{2}\right||\nabla \phi|+\beta|\bar{u}+t \varepsilon \phi|^{p-1}|\nabla \phi|+\beta|\nabla \bar{u}+t \varepsilon \nabla \phi|^{p-1}|\nabla \phi| .
\end{aligned}
$$

Direct methods

Dirichlet Integral
Integrands depending only on the gradient
Integrands with x dependence
Integrands with x and u dependence
Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

This will follow from dominated convergence theorem as soon as we can establish a bound of $g(x, \varepsilon)$ which is independent of ε and is in $L^{1}(\Omega)$. Using $\left(G_{p, \text { cont }}\right)$, we have

$$
\begin{aligned}
& \left|\left\langle D_{u} f(x, \bar{u}+t \varepsilon \phi, \nabla \bar{u}+t \varepsilon \nabla \phi), \phi\right\rangle\right| \\
& \quad \leq\left|\alpha_{1}\right||\phi|+\beta|\bar{u}+t \varepsilon \phi|^{p-1}|\phi|+\beta|\nabla \bar{u}+t \varepsilon \nabla \phi|^{p-1}|\phi|
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|\left\langle D_{\xi} f(x, \bar{u}+t \varepsilon \phi, \nabla \bar{u}+t \varepsilon \nabla \phi), \nabla \phi\right\rangle\right| \\
& \quad \leq\left|\alpha_{2}\right||\nabla \phi|+\beta|\bar{u}+t \varepsilon \phi|^{p-1}|\nabla \phi|+\beta|\nabla \bar{u}+t \varepsilon \nabla \phi|^{p-1}|\nabla \phi| .
\end{aligned}
$$

Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

From this, it is easy to establish the uniform L^{1} bound.

This will follow from dominated convergence theorem as soon as we can establish a bound of $g(x, \varepsilon)$ which is independent of ε and is in $L^{1}(\Omega)$. Using $\left(G_{p, \text { cont }}\right)$, we have

$$
\begin{aligned}
& \left|\left\langle D_{u} f(x, \bar{u}+t \varepsilon \phi, \nabla \bar{u}+t \varepsilon \nabla \phi), \phi\right\rangle\right| \\
& \quad \leq\left|\alpha_{1}\right||\phi|+\beta|\bar{u}+t \varepsilon \phi|^{p-1}|\phi|+\beta|\nabla \bar{u}+t \varepsilon \nabla \phi|^{p-1}|\phi|
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|\left\langle D_{\xi} f(x, \bar{u}+t \varepsilon \phi, \nabla \bar{u}+t \varepsilon \nabla \phi), \nabla \phi\right\rangle\right| \\
& \quad \leq\left|\alpha_{2}\right||\nabla \phi|+\beta|\bar{u}+t \varepsilon \phi|^{p-1}|\nabla \phi|+\beta|\nabla \bar{u}+t \varepsilon \nabla \phi|^{p-1}|\nabla \phi| .
\end{aligned}
$$

From this, it is easy to establish the uniform L^{1} bound. We just show how to estimate the term coming from the last summand above.

This will follow from dominated convergence theorem as soon as we can establish a bound of $g(x, \varepsilon)$ which is independent of ε and is in $L^{1}(\Omega)$. Using $\left(G_{p, \text { cont }}\right)$, we have

$$
\begin{aligned}
& \left|\left\langle D_{u} f(x, \bar{u}+t \varepsilon \phi, \nabla \bar{u}+t \varepsilon \nabla \phi), \phi\right\rangle\right| \\
& \quad \leq\left|\alpha_{1}\right||\phi|+\beta|\bar{u}+t \varepsilon \phi|^{p-1}|\phi|+\beta|\nabla \bar{u}+t \varepsilon \nabla \phi|^{p-1}|\phi|
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|\left\langle D_{\xi} f(x, \bar{u}+t \varepsilon \phi, \nabla \bar{u}+t \varepsilon \nabla \phi), \nabla \phi\right\rangle\right| \\
& \quad \leq\left|\alpha_{2}\right||\nabla \phi|+\beta|\bar{u}+t \varepsilon \phi|^{p-1}|\nabla \phi|+\beta|\nabla \bar{u}+t \varepsilon \nabla \phi|^{p-1}|\nabla \phi| .
\end{aligned}
$$

From this, it is easy to establish the uniform L^{1} bound. We just show how to estimate the term coming from the last summand above. Using Young's inequality and the triangle inequality,

This will follow from dominated convergence theorem as soon as we can establish a bound of $g(x, \varepsilon)$ which is independent of ε and is in $L^{1}(\Omega)$. Using $\left(G_{p, \text { cont }}\right)$, we have

$$
\begin{aligned}
& \left|\left\langle D_{u} f(x, \bar{u}+t \varepsilon \phi, \nabla \bar{u}+t \varepsilon \nabla \phi), \phi\right\rangle\right| \\
& \quad \leq\left|\alpha_{1}\right||\phi|+\beta|\bar{u}+t \varepsilon \phi|^{p-1}|\phi|+\beta|\nabla \bar{u}+t \varepsilon \nabla \phi|^{p-1}|\phi|
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|\left\langle D_{\xi} f(x, \bar{u}+t \varepsilon \phi, \nabla \bar{u}+t \varepsilon \nabla \phi), \nabla \phi\right\rangle\right| \\
& \quad \leq\left|\alpha_{2}\right||\nabla \phi|+\beta|\bar{u}+t \varepsilon \phi|^{p-1}|\nabla \phi|+\beta|\nabla \bar{u}+t \varepsilon \nabla \phi|^{p-1}|\nabla \phi| .
\end{aligned}
$$

From this, it is easy to establish the uniform L^{1} bound. We just show how to estimate the term coming from the last summand above. Using Young's inequality and the triangle inequality, we have

This will follow from dominated convergence theorem as soon as we can establish a bound of $g(x, \varepsilon)$ which is independent of ε and is in $L^{1}(\Omega)$. Using $\left(G_{p, \text { cont }}\right)$, we have

$$
\begin{aligned}
& \left|\left\langle D_{u} f(x, \bar{u}+t \varepsilon \phi, \nabla \bar{u}+t \varepsilon \nabla \phi), \phi\right\rangle\right| \\
& \quad \leq\left|\alpha_{1}\right||\phi|+\beta|\bar{u}+t \varepsilon \phi|^{p-1}|\phi|+\beta|\nabla \bar{u}+t \varepsilon \nabla \phi|^{p-1}|\phi|
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|\left\langle D_{\xi} f(x, \bar{u}+t \varepsilon \phi, \nabla \bar{u}+t \varepsilon \nabla \phi), \nabla \phi\right\rangle\right| \\
& \quad \leq\left|\alpha_{2}\right||\nabla \phi|+\beta|\bar{u}+t \varepsilon \phi|^{p-1}|\nabla \phi|+\beta|\nabla \bar{u}+t \varepsilon \nabla \phi|^{p-1}|\nabla \phi| .
\end{aligned}
$$

From this, it is easy to establish the uniform L^{1} bound. We just show how to estimate the term coming from the last summand above. Using Young's inequality and the triangle inequality, we have
$\left|\int_{0}^{1}\right| \nabla \bar{u}+\left.t \varepsilon \nabla \phi\right|^{p-1}|\nabla \phi| \mathrm{d} t \mid \leq c \int_{0}^{1}\left(|\nabla \bar{u}+t \varepsilon \nabla \phi|^{p}+|\nabla \phi|^{p}\right) \mathrm{d} t$

This will follow from dominated convergence theorem as soon as we can establish a bound of $g(x, \varepsilon)$ which is independent of ε and is in $L^{1}(\Omega)$. Using $\left(G_{p, \text { cont }}\right)$, we have

$$
\begin{aligned}
& \left|\left\langle D_{u} f(x, \bar{u}+t \varepsilon \phi, \nabla \bar{u}+t \varepsilon \nabla \phi), \phi\right\rangle\right| \\
& \quad \leq\left|\alpha_{1}\right||\phi|+\beta|\bar{u}+t \varepsilon \phi|^{p-1}|\phi|+\beta|\nabla \bar{u}+t \varepsilon \nabla \phi|^{p-1}|\phi|
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|\left\langle D_{\xi} f(x, \bar{u}+t \varepsilon \phi, \nabla \bar{u}+t \varepsilon \nabla \phi), \nabla \phi\right\rangle\right| \\
& \quad \leq\left|\alpha_{2}\right||\nabla \phi|+\beta|\bar{u}+t \varepsilon \phi|^{p-1}|\nabla \phi|+\beta|\nabla \bar{u}+t \varepsilon \nabla \phi|^{p-1}|\nabla \phi| .
\end{aligned}
$$

From this, it is easy to establish the uniform L^{1} bound. We just show how to estimate the term coming from the last summand above. Using Young's inequality and the triangle inequality, we have

$$
\begin{aligned}
\left|\int_{0}^{1}\right| \nabla \bar{u}+\left.t \varepsilon \nabla \phi\right|^{p-1}|\nabla \phi| \mathrm{d} t \mid & \leq c \int_{0}^{1}\left(|\nabla \bar{u}+t \varepsilon \nabla \phi|^{p}+|\nabla \phi|^{p}\right) \mathrm{d} t \\
& \leq c \int_{0}^{1}\left(|\nabla \bar{u}|^{p}+|t \varepsilon \nabla \phi|^{p}+|\nabla \phi|^{p}\right) \mathrm{d} t
\end{aligned}
$$

Introduction to the Calculus of Variations

Swarnendu Sil
Now since we are interested in $\varepsilon \rightarrow 0$,

Direct methods
Dirichlet Integral
Integrands depending only on the gradient

Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations

Weak continuity of the determinants

The End

Introduction to the Calculus of Variations

Swarnendu Sil
Now since we are interested in $\varepsilon \rightarrow 0$, we can assume $|\varepsilon| \leq 1$.

Direct methods
Dirichlet Integral
Integrands depending only on the gradient

Integrands with x dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations

Weak continuity of the determinants

The End

Now since we are interested in $\varepsilon \rightarrow 0$, we can assume $|\varepsilon| \leq 1$. So we deduce from the last inequality,

Now since we are interested in $\varepsilon \rightarrow 0$, we can assume $|\varepsilon| \leq 1$. So we deduce from the last inequality,

$$
\begin{aligned}
\left|\int_{0}^{1}\right| \nabla \bar{u}+\left.t \varepsilon \nabla \phi\right|^{p-1} & |\nabla \phi| \mathrm{d} t \mid \\
& \leq c \int_{0}^{1}\left(|\nabla \bar{u}|^{p}+|t \varepsilon|^{p}|\nabla \phi|^{p}+|\nabla \phi|^{p}\right) \mathrm{d} t
\end{aligned}
$$

Direct methods
Dirichlet Integral
Integrands depending only on the gradient

Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

Now since we are interested in $\varepsilon \rightarrow 0$, we can assume $|\varepsilon| \leq 1$. So we deduce from the last inequality,

$$
\begin{aligned}
\left|\int_{0}^{1}\right| \nabla \bar{u}+\left.t \varepsilon \nabla \phi\right|^{p-1} & |\nabla \phi| \mathrm{d} t \mid \\
& \leq c \int_{0}^{1}\left(|\nabla \bar{u}|^{p}+|t \varepsilon|^{p}|\nabla \phi|^{p}+|\nabla \phi|^{p}\right) \mathrm{d} t \\
& \leq c \int_{0}^{1}\left(|\nabla \bar{u}|^{p}+|\nabla \phi|^{p}+|\nabla \phi|^{p}\right) \mathrm{d} t
\end{aligned}
$$

Dirichlet Integral
Integrands depending only on the gradient

Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

Now since we are interested in $\varepsilon \rightarrow 0$, we can assume $|\varepsilon| \leq 1$. So we deduce from the last inequality,

$$
\begin{aligned}
\left|\int_{0}^{1}\right| \nabla \bar{u}+\left.t \varepsilon \nabla \phi\right|^{p-1} & |\nabla \phi| \mathrm{d} t \mid \\
& \leq c \int_{0}^{1}\left(|\nabla \bar{u}|^{p}+|t \varepsilon|^{p}|\nabla \phi|^{p}+|\nabla \phi|^{p}\right) \mathrm{d} t \\
& \leq c \int_{0}^{1}\left(|\nabla \bar{u}|^{p}+|\nabla \phi|^{p}+|\nabla \phi|^{p}\right) \mathrm{d} t \\
& \leq c\left(|\nabla \bar{u}|^{p}+2|\nabla \phi|^{p}\right) .
\end{aligned}
$$

Dirichlet Integral
Integrands depending only on the gradient

Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations

Weak continuity of the determinants

Now since we are interested in $\varepsilon \rightarrow 0$, we can assume $|\varepsilon| \leq 1$. So we deduce from the last inequality,

$$
\begin{aligned}
\left|\int_{0}^{1}\right| \nabla \bar{u}+\left.t \varepsilon \nabla \phi\right|^{p-1} & |\nabla \phi| \mathrm{d} t \mid \\
& \leq c \int_{0}^{1}\left(|\nabla \bar{u}|^{p}+|t \varepsilon|^{p}|\nabla \phi|^{p}+|\nabla \phi|^{p}\right) \mathrm{d} t \\
& \leq c \int_{0}^{1}\left(|\nabla \bar{u}|^{p}+|\nabla \phi|^{p}+|\nabla \phi|^{p}\right) \mathrm{d} t \\
& \leq c\left(|\nabla \bar{u}|^{p}+2|\nabla \phi|^{p}\right) .
\end{aligned}
$$

Direct methods
Dirichlet Integral
Integrands depending only on the gradient

Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations

Weak continuity of the determinants

Now the RHS clearly is in $L^{1}(\Omega)$

Now since we are interested in $\varepsilon \rightarrow 0$, we can assume $|\varepsilon| \leq 1$. So we deduce from the last inequality,

$$
\begin{aligned}
\left|\int_{0}^{1}\right| \nabla \bar{u}+\left.t \varepsilon \nabla \phi\right|^{p-1} & |\nabla \phi| \mathrm{d} t \mid \\
& \leq c \int_{0}^{1}\left(|\nabla \bar{u}|^{p}+|t \varepsilon|^{p}|\nabla \phi|^{p}+|\nabla \phi|^{p}\right) \mathrm{d} t \\
& \leq c \int_{0}^{1}\left(|\nabla \bar{u}|^{p}+|\nabla \phi|^{p}+|\nabla \phi|^{p}\right) \mathrm{d} t \\
& \leq c\left(|\nabla \bar{u}|^{p}+2|\nabla \phi|^{p}\right) .
\end{aligned}
$$

Now the RHS clearly is in $L^{1}(\Omega)$ since $\nabla \bar{u}, \nabla \phi \in L^{p}\left(\Omega ; \mathbb{R}^{N \times n}\right)$.

Now since we are interested in $\varepsilon \rightarrow 0$, we can assume $|\varepsilon| \leq 1$. So we deduce from the last inequality,

$$
\begin{aligned}
\left|\int_{0}^{1}\right| \nabla \bar{u}+\left.t \varepsilon \nabla \phi\right|^{p-1} & |\nabla \phi| \mathrm{d} t \mid \\
& \leq c \int_{0}^{1}\left(|\nabla \bar{u}|^{p}+|t \varepsilon|^{p}|\nabla \phi|^{p}+|\nabla \phi|^{p}\right) \mathrm{d} t \\
& \leq c \int_{0}^{1}\left(|\nabla \bar{u}|^{p}+|\nabla \phi|^{p}+|\nabla \phi|^{p}\right) \mathrm{d} t \\
& \leq c\left(|\nabla \bar{u}|^{p}+2|\nabla \phi|^{p}\right) .
\end{aligned}
$$

Now the RHS clearly is in $L^{1}(\Omega)$ since $\nabla \bar{u}, \nabla \phi \in L^{p}\left(\Omega ; \mathbb{R}^{N \times n}\right)$. Other terms can be estimated in a similar manner. This completes the proof.

Necessary condition for wlsc

In general, for sequential weak lower semicontinuity theorems, convexity of the map $\xi \mapsto f(x, u, \xi)$ plays a crucial role.

Direct methods
Dirichlet Integral
Integrands depending only on the gradient

Integrands with x dependence
Integrands with x and u dependence
Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations

Weak continuity of the determinants

Necessary condition for wlsc

In general, for sequential weak lower semicontinuity theorems, convexity of the map $\xi \mapsto f(x, u, \xi)$ plays a crucial role. We have already seen that this is sufficient for sequential weak lower semicontinuity assuming the usual lower bounds.

Necessary condition for wlsc

In general, for sequential weak lower semicontinuity theorems, convexity of the map $\xi \mapsto f(x, u, \xi)$ plays a crucial role. We have already seen that this is sufficient for sequential weak lower semicontinuity assuming the usual lower bounds. Is this a necessary condition for wlsc?

Necessary condition for wlsc

In general, for sequential weak lower semicontinuity theorems, convexity of the map $\xi \mapsto f(x, u, \xi)$ plays a crucial role. We have already seen that this is sufficient for sequential weak lower semicontinuity assuming the usual lower bounds. Is this a necessary condition for wlsc?
If either $n=1$ or $N=1$,

Direct methods
Dirichlet Integral
Integrands depending only on the gradient
Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

Necessary condition for wlsc

In general, for sequential weak lower semicontinuity theorems, convexity of the map $\xi \mapsto f(x, u, \xi)$ plays a crucial role. We have already seen that this is sufficient for sequential weak lower semicontinuity assuming the usual lower bounds. Is this a necessary condition for wlsc?
If either $n=1$ or $N=1$, this is indeed necessary as well.

Direct methods
Dirichlet Integral
Integrands depending only on the gradient
Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

Necessary condition for wlsc

In general, for sequential weak lower semicontinuity theorems, convexity of the map $\xi \mapsto f(x, u, \xi)$ plays a crucial role. We have already seen that this is sufficient for sequential weak lower semicontinuity assuming the usual lower bounds. Is this a necessary condition for wlsc?
If either $n=1$ or $N=1$, this is indeed necessary as well. However, this is far from the case when $n, N \geq 2$.

Direct methods
Dirichlet Integral
Integrands depending only on the gradient

Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

Necessary condition for wlsc

In general, for sequential weak lower semicontinuity theorems, convexity of the map $\xi \mapsto f(x, u, \xi)$ plays a crucial role. We have already seen that this is sufficient for sequential weak lower semicontinuity assuming the usual lower bounds. Is this a necessary condition for wlsc?
If either $n=1$ or $N=1$, this is indeed necessary as well. However, this is far from the case when $n, N \geq 2$. This case is usally referred to the vectorial calculus of variations (or the vectorial case in the calculus of variations).

Direct methods

Dirichlet Integral
Integrands depending only on the gradient

Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

Necessary condition for wlsc

In general, for sequential weak lower semicontinuity theorems, convexity of the map $\xi \mapsto f(x, u, \xi)$ plays a crucial role. We have already seen that this is sufficient for sequential weak lower semicontinuity assuming the usual lower bounds. Is this a necessary condition for wlsc?
If either $n=1$ or $N=1$, this is indeed necessary as well. However, this is far from the case when $n, N \geq 2$. This case is usally referred to the vectorial calculus of variations (or the vectorial case in the calculus of variations).
We do not have enough time left in the course to prove this result.

Necessary condition for wlsc

In general, for sequential weak lower semicontinuity theorems, convexity of the map $\xi \mapsto f(x, u, \xi)$ plays a crucial role. We have already seen that this is sufficient for sequential weak lower semicontinuity assuming the usual lower bounds. Is this a necessary condition for wlsc?
If either $n=1$ or $N=1$, this is indeed necessary as well. However, this is far from the case when $n, N \geq 2$. This case is usally referred to the vectorial calculus of variations (or the vectorial case in the calculus of variations).
We do not have enough time left in the course to prove this result. So we shall only state the result.

Direct methods

Dirichlet Integral
Integrands depending only on the gradient

Necessary condition for wlsc

In general, for sequential weak lower semicontinuity theorems, convexity of the map $\xi \mapsto f(x, u, \xi)$ plays a crucial role. We have already seen that this is sufficient for sequential weak lower semicontinuity assuming the usual lower bounds. Is this a necessary condition for wlsc?
If either $n=1$ or $N=1$, this is indeed necessary as well. However, this is far from the case when $n, N \geq 2$. This case is usally referred to the vectorial calculus of variations (or the vectorial case in the calculus of variations).
We do not have enough time left in the course to prove this result. So we shall only state the result.

Direct methods

Dirichlet Integral
Integrands depending only on the gradient

Introduction to the Calculus of Variations

Swarnendu Sil
Let $\Omega \subset \mathbb{R}^{n}$ be open.

Dirichlet Integral
Integrands depending only on the gradient

Integrands with x dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations

Weak continuity of the determinants

The End

Theorem (Necessary condition for wlsc)

Let $\Omega \subset \mathbb{R}^{n}$ be open. Let $f: \Omega \times \mathbb{R}^{N} \times \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(x, u, \xi)$ be a Carathéodory function satisfying Calculus of Variations

Swarnendu Sil

Direct methods
Dirichlet Integral
Integrands depending only on the gradient

Integrands with x dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations

Weak continuity of the determinants

Theorem (Necessary condition for wlsc)

Let $\Omega \subset \mathbb{R}^{n}$ be open. Let $f: \Omega \times \mathbb{R}^{N} \times \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(x, u, \xi)$ be a Carathéodory function satisfying

$$
|f(x, u, \xi)| \leq a(x)+b(u, \xi)
$$

Theorem (Necessary condition for wlsc)

Let $\Omega \subset \mathbb{R}^{n}$ be open. Let $f: \Omega \times \mathbb{R}^{N} \times \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(x, u, \xi)$ be a Carathéodory function satisfying

$$
|f(x, u, \xi)| \leq a(x)+b(u, \xi)
$$

for a.e. $x \in \Omega$ and for every $(u, \xi) \in \mathbb{R}^{N} \times \mathbb{R}^{N \times n}$, Calculus of Variations

Swarnendu Sil

Direct methods

Dirichlet Integral
Integrands depending only on the gradient

Integrands with x dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations

Weak continuity of the determinants

Theorem (Necessary condition for wlsc)

Let $\Omega \subset \mathbb{R}^{n}$ be open. Let $f: \Omega \times \mathbb{R}^{N} \times \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(x, u, \xi)$ be a Carathéodory function satisfying

$$
|f(x, u, \xi)| \leq a(x)+b(u, \xi)
$$

for a.e. $x \in \Omega$ and for every $(u, \xi) \in \mathbb{R}^{N} \times \mathbb{R}^{N \times n}$, where $a, b \geq 0$, $a \in L^{1}\left(\mathbb{R}^{n}\right)$ and $b \in C\left(\mathbb{R}^{N} \times \mathbb{R}^{N \times n}\right)$.

Theorem (Necessary condition for wlsc)

Let $\Omega \subset \mathbb{R}^{n}$ be open. Let $f: \Omega \times \mathbb{R}^{N} \times \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(x, u, \xi)$ be a Carathéodory function satisfying

$$
|f(x, u, \xi)| \leq a(x)+b(u, \xi)
$$

for a.e. $x \in \Omega$ and for every $(u, \xi) \in \mathbb{R}^{N} \times \mathbb{R}^{N \times n}$, where $a, b \geq 0$, $a \in L^{1}\left(\mathbb{R}^{n}\right)$ and $b \in C\left(\mathbb{R}^{N} \times \mathbb{R}^{N \times n}\right)$. Let

$$
I[u]=I[u, \Omega]:=\int_{\Omega} f(x, u(x), \nabla u(x)) \mathrm{d} x
$$

Theorem (Necessary condition for wlsc)

Let $\Omega \subset \mathbb{R}^{n}$ be open. Let $f: \Omega \times \mathbb{R}^{N} \times \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(x, u, \xi)$ be a Carathéodory function satisfying

$$
|f(x, u, \xi)| \leq a(x)+b(u, \xi)
$$

for a.e. $x \in \Omega$ and for every $(u, \xi) \in \mathbb{R}^{N} \times \mathbb{R}^{N \times n}$, where $a, b \geq 0$, $a \in L^{1}\left(\mathbb{R}^{n}\right)$ and $b \in C\left(\mathbb{R}^{N} \times \mathbb{R}^{N \times n}\right)$. Let

$$
I[u]=I[u, \Omega]:=\int_{\Omega} f(x, u(x), \nabla u(x)) \mathrm{d} x
$$

and suppose there exists $u_{0} \in W^{1, \infty}\left(\Omega ; \mathbb{R}^{N}\right)$

Theorem (Necessary condition for wlsc)

Let $\Omega \subset \mathbb{R}^{n}$ be open. Let $f: \Omega \times \mathbb{R}^{N} \times \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(x, u, \xi)$ be a Carathéodory function satisfying

$$
|f(x, u, \xi)| \leq a(x)+b(u, \xi)
$$

for a.e. $x \in \Omega$ and for every $(u, \xi) \in \mathbb{R}^{N} \times \mathbb{R}^{N \times n}$, where $a, b \geq 0$, $a \in L^{1}\left(\mathbb{R}^{n}\right)$ and $b \in C\left(\mathbb{R}^{N} \times \mathbb{R}^{N \times n}\right)$. Let

$$
I[u]=I[u, \Omega]:=\int_{\Omega} f(x, u(x), \nabla u(x)) \mathrm{d} x
$$

and suppose there exists $u_{0} \in W^{1, \infty}\left(\Omega ; \mathbb{R}^{N}\right)$ such that $I\left[u_{0}, \Omega\right]<\infty$.

Calculus of Variations

Swarnendu Sil

Direct methods

Dirichlet Integral
Integrands depending only on the gradient

Integrands with x

dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

Theorem (Necessary condition for wlsc)

Let $\Omega \subset \mathbb{R}^{n}$ be open. Let $f: \Omega \times \mathbb{R}^{N} \times \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(x, u, \xi)$ be a Carathéodory function satisfying

$$
|f(x, u, \xi)| \leq a(x)+b(u, \xi)
$$

for a.e. $x \in \Omega$ and for every $(u, \xi) \in \mathbb{R}^{N} \times \mathbb{R}^{N \times n}$, where $a, b \geq 0$, $a \in L^{1}\left(\mathbb{R}^{n}\right)$ and $b \in C\left(\mathbb{R}^{N} \times \mathbb{R}^{N \times n}\right)$. Let

$$
I[u]=I[u, \Omega]:=\int_{\Omega} f(x, u(x), \nabla u(x)) \mathrm{d} x
$$

and suppose there exists $u_{0} \in W^{1, \infty}\left(\Omega ; \mathbb{R}^{N}\right)$ such that I $\left[u_{0}, \Omega\right]<\infty$. If I is sequentially weakly * lower semicontinuous in $W^{1, \infty}\left(\Omega ; \mathbb{R}^{N}\right)$,

Theorem (Necessary condition for wlsc)

Let $\Omega \subset \mathbb{R}^{n}$ be open. Let $f: \Omega \times \mathbb{R}^{N} \times \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(x, u, \xi)$ be a Carathéodory function satisfying

$$
|f(x, u, \xi)| \leq a(x)+b(u, \xi)
$$

for a.e. $x \in \Omega$ and for every $(u, \xi) \in \mathbb{R}^{N} \times \mathbb{R}^{N \times n}$, where $a, b \geq 0$, $a \in L^{1}\left(\mathbb{R}^{n}\right)$ and $b \in C\left(\mathbb{R}^{N} \times \mathbb{R}^{N \times n}\right)$. Let

$$
I[u]=I[u, \Omega]:=\int_{\Omega} f(x, u(x), \nabla u(x)) \mathrm{d} x
$$

and suppose there exists $u_{0} \in W^{1, \infty}\left(\Omega ; \mathbb{R}^{N}\right)$ such that I $\left[u_{0}, \Omega\right]<\infty$. If I is sequentially weakly * lower semicontinuous in $W^{1, \infty}\left(\Omega ; \mathbb{R}^{N}\right)$, then

$$
\frac{1}{|D|} \int_{D} f\left(x_{0}, u_{0}, \xi_{0}+\nabla \phi(y)\right) \mathrm{d} y \geq f\left(x_{0}, u_{0}, \xi_{0}\right)
$$

Theorem (Necessary condition for wlsc)

Let $\Omega \subset \mathbb{R}^{n}$ be open. Let $f: \Omega \times \mathbb{R}^{N} \times \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(x, u, \xi)$ be a Carathéodory function satisfying

$$
|f(x, u, \xi)| \leq a(x)+b(u, \xi)
$$

for a.e. $x \in \Omega$ and for every $(u, \xi) \in \mathbb{R}^{N} \times \mathbb{R}^{N \times n}$, where $a, b \geq 0$, $a \in L^{1}\left(\mathbb{R}^{n}\right)$ and $b \in C\left(\mathbb{R}^{N} \times \mathbb{R}^{N \times n}\right)$. Let

$$
I[u]=I[u, \Omega]:=\int_{\Omega} f(x, u(x), \nabla u(x)) \mathrm{d} x
$$

and suppose there exists $u_{0} \in W^{1, \infty}\left(\Omega ; \mathbb{R}^{N}\right)$ such that I $\left[u_{0}, \Omega\right]<\infty$. If I is sequentially weakly * lower semicontinuous in $W^{1, \infty}\left(\Omega ; \mathbb{R}^{N}\right)$, then

$$
\frac{1}{|D|} \int_{D} f\left(x_{0}, u_{0}, \xi_{0}+\nabla \phi(y)\right) \mathrm{d} y \geq f\left(x_{0}, u_{0}, \xi_{0}\right)
$$

for every bounded open set $D \subset \mathbb{R}^{n}$,

Direct methods

Dirichlet Integral
Integrands depending only on the gradient

Theorem (Necessary condition for wlsc)

Let $\Omega \subset \mathbb{R}^{n}$ be open. Let $f: \Omega \times \mathbb{R}^{N} \times \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(x, u, \xi)$ be a Carathéodory function satisfying

$$
|f(x, u, \xi)| \leq a(x)+b(u, \xi)
$$

for a.e. $x \in \Omega$ and for every $(u, \xi) \in \mathbb{R}^{N} \times \mathbb{R}^{N \times n}$, where $a, b \geq 0$, $a \in L^{1}\left(\mathbb{R}^{n}\right)$ and $b \in C\left(\mathbb{R}^{N} \times \mathbb{R}^{N \times n}\right)$. Let

$$
I[u]=I[u, \Omega]:=\int_{\Omega} f(x, u(x), \nabla u(x)) \mathrm{d} x
$$

and suppose there exists $u_{0} \in W^{1, \infty}\left(\Omega ; \mathbb{R}^{N}\right)$ such that I $\left[u_{0}, \Omega\right]<\infty$. If I is sequentially weakly $*$ lower semicontinuous in $W^{1, \infty}\left(\Omega ; \mathbb{R}^{N}\right)$, then

$$
\frac{1}{|D|} \int_{D} f\left(x_{0}, u_{0}, \xi_{0}+\nabla \phi(y)\right) \mathrm{d} y \geq f\left(x_{0}, u_{0}, \xi_{0}\right)
$$

for every bounded open set $D \subset \mathbb{R}^{n}$, for a.e. $x_{0} \in \Omega$, for every $\left(u_{0}, \xi_{0}\right) \in \mathbb{R}^{N} \times \mathbb{R}^{N \times n}$

Theorem (Necessary condition for wlsc)

Let $\Omega \subset \mathbb{R}^{n}$ be open. Let $f: \Omega \times \mathbb{R}^{N} \times \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(x, u, \xi)$ be a Carathéodory function satisfying

$$
|f(x, u, \xi)| \leq a(x)+b(u, \xi)
$$

for a.e. $x \in \Omega$ and for every $(u, \xi) \in \mathbb{R}^{N} \times \mathbb{R}^{N \times n}$, where $a, b \geq 0$, $a \in L^{1}\left(\mathbb{R}^{n}\right)$ and $b \in C\left(\mathbb{R}^{N} \times \mathbb{R}^{N \times n}\right)$. Let

$$
I[u]=I[u, \Omega]:=\int_{\Omega} f(x, u(x), \nabla u(x)) \mathrm{d} x
$$

and suppose there exists $u_{0} \in W^{1, \infty}\left(\Omega ; \mathbb{R}^{N}\right)$ such that I $\left[u_{0}, \Omega\right]<\infty$. If I is sequentially weakly * lower semicontinuous in $W^{1, \infty}\left(\Omega ; \mathbb{R}^{N}\right)$, then

$$
\frac{1}{|D|} \int_{D} f\left(x_{0}, u_{0}, \xi_{0}+\nabla \phi(y)\right) \mathrm{d} y \geq f\left(x_{0}, u_{0}, \xi_{0}\right)
$$

for every bounded open set $D \subset \mathbb{R}^{n}$, for a.e. $x_{0} \in \Omega$, for every $\left(u_{0}, \xi_{0}\right) \in \mathbb{R}^{N} \times \mathbb{R}^{N \times n}$ and for every $\phi \in W_{0}^{1, \infty}\left(D ; \mathbb{R}^{N}\right)$.

Quasiconvexity

The necessary condition above was introduced by Morrey.

Direct methods

Dirichlet Integral
Integrands depending only on the gradient

Integrands with x dependence
Integrands with x and u dependence
Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations

Weak continuity of the determinants

The End

Quasiconvexity

The necessary condition above was introduced by Morrey. He also showed that under some standard grwoth assumptions, this is also sufficient.

Direct methods

Dirichlet Integral
Integrands depending only on the gradient

Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations

Weak continuity of the determinants

Quasiconvexity

The necessary condition above was introduced by Morrey. He also showed that under some standard grwoth assumptions, this is also sufficient.

Definition (Quasiconvexity)

Let $f: \Omega \times \mathbb{R}^{N} \times \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(x, u, \xi)$ be a Carathéodory function.

Direct methods

Dirichlet Integral
Integrands depending only on the gradient

Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations

Quasiconvexity

The necessary condition above was introduced by Morrey. He also showed that under some standard grwoth assumptions, this is also sufficient.

Definition (Quasiconvexity)

Let $f: \Omega \times \mathbb{R}^{N} \times \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(x, u, \xi)$ be a Carathéodory function. f is said to be quasiconvex if it satisfies

Direct methods

Dirichlet Integral
Integrands depending only on the gradient
Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations

Quasiconvexity

The necessary condition above was introduced by Morrey. He also showed that under some standard grwoth assumptions, this is also sufficient.

Definition (Quasiconvexity)

Let $f: \Omega \times \mathbb{R}^{N} \times \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(x, u, \xi)$ be a Carathéodory function. f is said to be quasiconvex if it satisfies

$$
\frac{1}{|D|} \int_{D} f\left(x_{0}, u_{0}, \xi_{0}+\nabla \phi(y)\right) \mathrm{d} y \geq f\left(x_{0}, u_{0}, \xi_{0}\right)
$$

Direct methods

Dirichlet Integral
Integrands depending only on the gradient
Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

The End

Quasiconvexity

The necessary condition above was introduced by Morrey. He also showed that under some standard grwoth assumptions, this is also sufficient.

Definition (Quasiconvexity)

Let $f: \Omega \times \mathbb{R}^{N} \times \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(x, u, \xi)$ be a Carathéodory function. f is said to be quasiconvex if it satisfies

$$
\frac{1}{|D|} \int_{D} f\left(x_{0}, u_{0}, \xi_{0}+\nabla \phi(y)\right) \mathrm{d} y \geq f\left(x_{0}, u_{0}, \xi_{0}\right)
$$

for every bounded open set $D \subset \mathbb{R}^{n}$,

Direct methods

Dirichlet Integral
Integrands depending only on the gradient
Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

The End

Quasiconvexity

The necessary condition above was introduced by Morrey. He also showed that under some standard grwoth assumptions, this is also sufficient.

Definition (Quasiconvexity)

Let $f: \Omega \times \mathbb{R}^{N} \times \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(x, u, \xi)$ be a Carathéodory function. f is said to be quasiconvex if it satisfies

$$
\frac{1}{|D|} \int_{D} f\left(x_{0}, u_{0}, \xi_{0}+\nabla \phi(y)\right) \mathrm{d} y \geq f\left(x_{0}, u_{0}, \xi_{0}\right)
$$

for every bounded open set $D \subset \mathbb{R}^{n}$, for a.e. $x_{0} \in \Omega$,

Direct methods

Dirichlet Integral
Integrands depending only on the gradient

Integrands with x

dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

The End

Quasiconvexity

The necessary condition above was introduced by Morrey. He also showed that under some standard grwoth assumptions, this is also sufficient.

Definition (Quasiconvexity)

Let $f: \Omega \times \mathbb{R}^{N} \times \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(x, u, \xi)$ be a Carathéodory function. f is said to be quasiconvex if it satisfies

$$
\frac{1}{|D|} \int_{D} f\left(x_{0}, u_{0}, \xi_{0}+\nabla \phi(y)\right) \mathrm{d} y \geq f\left(x_{0}, u_{0}, \xi_{0}\right)
$$

for every bounded open set $D \subset \mathbb{R}^{n}$, for a.e. $x_{0} \in \Omega$, for every $\left(u_{0}, \xi_{0}\right) \in \mathbb{R}^{N} \times \mathbb{R}^{N \times n}$

Quasiconvexity

The necessary condition above was introduced by Morrey. He also showed that under some standard grwoth assumptions, this is also sufficient.

Definition (Quasiconvexity)

Let $f: \Omega \times \mathbb{R}^{N} \times \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(x, u, \xi)$ be a Carathéodory function. f is said to be quasiconvex if it satisfies

$$
\frac{1}{|D|} \int_{D} f\left(x_{0}, u_{0}, \xi_{0}+\nabla \phi(y)\right) \mathrm{d} y \geq f\left(x_{0}, u_{0}, \xi_{0}\right)
$$

for every bounded open set $D \subset \mathbb{R}^{n}$, for a.e. $x_{0} \in \Omega$, for every $\left(u_{0}, \xi_{0}\right) \in \mathbb{R}^{N} \times \mathbb{R}^{N \times n}$ and for every $\phi \in W_{0}^{1, \infty}\left(D ; \mathbb{R}^{N}\right)$.

Quasiconvexity

The necessary condition above was introduced by Morrey. He also showed that under some standard grwoth assumptions, this is also sufficient.

Definition (Quasiconvexity)

Let $f: \Omega \times \mathbb{R}^{N} \times \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(x, u, \xi)$ be a Carathéodory function. f is said to be quasiconvex if it satisfies

$$
\frac{1}{|D|} \int_{D} f\left(x_{0}, u_{0}, \xi_{0}+\nabla \phi(y)\right) \mathrm{d} y \geq f\left(x_{0}, u_{0}, \xi_{0}\right)
$$

for every bounded open set $D \subset \mathbb{R}^{n}$, for a.e. $x_{0} \in \Omega$, for every $\left(u_{0}, \xi_{0}\right) \in \mathbb{R}^{N} \times \mathbb{R}^{N \times n}$ and for every $\phi \in W_{0}^{1, \infty}\left(D ; \mathbb{R}^{N}\right)$.
Let us now show in a simple setting that

$$
\text { convexity } \Rightarrow \text { quasiconvexity. }
$$

Direct methods

Dirichlet Integral
Integrands depending only on the gradient

Integrands with x

dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

The End

Proposition (convexity implies quasiconvexity)
Let $f: \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(\xi)$ be continuous.

Direct methods

Dirichlet Integral
Integrands depending only on the gradient

Integrands with x dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations

Weak continuity of the determinants

Proposition (convexity implies quasiconvexity)
Let $f: \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(\xi)$ be continuous. Then we have
f convex $\quad \Rightarrow \quad f$ quasiconvex.

Direct methods

Dirichlet Integral
Integrands depending only on the gradient

Integrands with x dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations

Weak continuity of the determinants

Proposition (convexity implies quasiconvexity)
Let $f: \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(\xi)$ be continuous. Then we have

$$
f \text { convex } \quad \Rightarrow \quad f \text { quasiconvex. }
$$

Proof. Note that for any bounded open set $D \subset \mathbb{R}^{n}$

Direct methods

Dirichlet Integral
Integrands depending only on the gradient

Integrands with x dependence
Integrands with x and u dependence
Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

Proposition (convexity implies quasiconvexity)
Let $f: \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(\xi)$ be continuous. Then we have

$$
f \text { convex } \quad \Rightarrow \quad f \text { quasiconvex. }
$$

Proof. Note that for any bounded open set $D \subset \mathbb{R}^{n}$ and any $\phi \in W_{0}^{1, \infty}\left(D ; \mathbb{R}^{N}\right)$,

Direct methods

Dirichlet Integral
Integrands depending only on the gradient

Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

Proposition (convexity implies quasiconvexity)
Let $f: \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(\xi)$ be continuous. Then we have

$$
f \text { convex } \quad \Rightarrow \quad f \text { quasiconvex. }
$$

Proof. Note that for any bounded open set $D \subset \mathbb{R}^{n}$ and any $\phi \in W_{0}^{1, \infty}\left(D ; \mathbb{R}^{N}\right)$, integrating by parts we deduce,

Direct methods

Dirichlet Integral
Integrands depending only on the gradient

Integrands with x dependence
Integrands with x and u dependence
Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

Proposition (convexity implies quasiconvexity)
Let $f: \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(\xi)$ be continuous. Then we have

$$
f \text { convex } \quad \Rightarrow \quad f \text { quasiconvex. }
$$

Proof. Note that for any bounded open set $D \subset \mathbb{R}^{n}$ and any $\phi \in W_{0}^{1, \infty}\left(D ; \mathbb{R}^{N}\right)$, integrating by parts we deduce,

$$
\int_{D} \frac{\partial \phi^{i}}{\partial x_{\alpha}}(y) \mathrm{d} y=-\int_{D} \phi^{i}(y) \frac{\partial}{\partial x_{\alpha}}(1) \mathrm{d} y=0
$$

Direct methods

Dirichlet Integral
Integrands depending only on the gradient
Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

Proposition (convexity implies quasiconvexity)
Let $f: \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(\xi)$ be continuous. Then we have

$$
f \text { convex } \quad \Rightarrow \quad f \text { quasiconvex. }
$$

Proof. Note that for any bounded open set $D \subset \mathbb{R}^{n}$ and any $\phi \in W_{0}^{1, \infty}\left(D ; \mathbb{R}^{N}\right)$, integrating by parts we deduce,

$$
\int_{D} \frac{\partial \phi^{i}}{\partial x_{\alpha}}(y) \mathrm{d} y=-\int_{D} \phi^{i}(y) \frac{\partial}{\partial x_{\alpha}}(1) \mathrm{d} y=0
$$

for every $1 \leq i \leq N$ and every $1 \leq \alpha \leq n$.

Direct methods

Dirichlet Integral

Integrands depending only on the gradient
Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations

Weak continuity of the determinants

Proposition (convexity implies quasiconvexity)
Let $f: \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(\xi)$ be continuous. Then we have

$$
f \text { convex } \quad \Rightarrow \quad f \text { quasiconvex. }
$$

Proof. Note that for any bounded open set $D \subset \mathbb{R}^{n}$ and any $\phi \in W_{0}^{1, \infty}\left(D ; \mathbb{R}^{N}\right)$, integrating by parts we deduce,

$$
\int_{D} \frac{\partial \phi^{i}}{\partial x_{\alpha}}(y) \mathrm{d} y=-\int_{D} \phi^{i}(y) \frac{\partial}{\partial x_{\alpha}}(1) \mathrm{d} y=0
$$

for every $1 \leq i \leq N$ and every $1 \leq \alpha \leq n$. Thus, we obtain

$$
\frac{1}{|D|} \int_{D} \nabla \phi(y) \mathrm{d} y=0
$$

Proposition (convexity implies quasiconvexity)
Let $f: \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(\xi)$ be continuous. Then we have

$$
f \text { convex } \quad \Rightarrow \quad f \text { quasiconvex. }
$$

Proof. Note that for any bounded open set $D \subset \mathbb{R}^{n}$ and any $\phi \in W_{0}^{1, \infty}\left(D ; \mathbb{R}^{N}\right)$, integrating by parts we deduce,

$$
\int_{D} \frac{\partial \phi^{i}}{\partial x_{\alpha}}(y) \mathrm{d} y=-\int_{D} \phi^{i}(y) \frac{\partial}{\partial x_{\alpha}}(1) \mathrm{d} y=0
$$

for every $1 \leq i \leq N$ and every $1 \leq \alpha \leq n$. Thus, we obtain

$$
\frac{1}{|D|} \int_{D} \nabla \phi(y) \mathrm{d} y=0
$$

Since f is convex, by Jensen's inequality,

Proposition (convexity implies quasiconvexity)

Let $f: \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(\xi)$ be continuous. Then we have

$$
f \text { convex } \quad \Rightarrow \quad f \text { quasiconvex. }
$$

Proof. Note that for any bounded open set $D \subset \mathbb{R}^{n}$ and any $\phi \in W_{0}^{1, \infty}\left(D ; \mathbb{R}^{N}\right)$, integrating by parts we deduce,

$$
\int_{D} \frac{\partial \phi^{i}}{\partial x_{\alpha}}(y) \mathrm{d} y=-\int_{D} \phi^{i}(y) \frac{\partial}{\partial x_{\alpha}}(1) \mathrm{d} y=0
$$

Integrands with x and u dependence
Euler-Lagrange Equations
for every $1 \leq i \leq N$ and every $1 \leq \alpha \leq n$. Thus, we obtain

$$
\frac{1}{|D|} \int_{D} \nabla \phi(y) \mathrm{d} y=0
$$

Since f is convex, by Jensen's inequality, for any $\xi_{0} \in \mathbb{R}^{N \times n}$, we deduce

$$
\frac{1}{|D|} \int_{D} f\left(\xi_{0}+\nabla \phi(y)\right) \mathrm{d} y \geq f\left(\frac{1}{|D|} \int_{D}\left[\xi_{0}+\nabla \phi(y)\right] \mathrm{d} y\right)=f\left(\xi_{0}\right) .
$$

Proposition (convexity implies quasiconvexity)

Let $f: \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(\xi)$ be continuous. Then we have

$$
f \text { convex } \quad \Rightarrow \quad f \text { quasiconvex. }
$$

Proof. Note that for any bounded open set $D \subset \mathbb{R}^{n}$ and any $\phi \in W_{0}^{1, \infty}\left(D ; \mathbb{R}^{N}\right)$, integrating by parts we deduce,

$$
\int_{D} \frac{\partial \phi^{i}}{\partial x_{\alpha}}(y) \mathrm{d} y=-\int_{D} \phi^{i}(y) \frac{\partial}{\partial x_{\alpha}}(1) \mathrm{d} y=0
$$

Integrands with x and u dependence
Euler-Lagrange Equations
for every $1 \leq i \leq N$ and every $1 \leq \alpha \leq n$. Thus, we obtain

$$
\frac{1}{|D|} \int_{D} \nabla \phi(y) \mathrm{d} y=0
$$

Since f is convex, by Jensen's inequality, for any $\xi_{0} \in \mathbb{R}^{N \times n}$, we deduce

$$
\frac{1}{|D|} \int_{D} f\left(\xi_{0}+\nabla \phi(y)\right) \mathrm{d} y \geq f\left(\frac{1}{|D|} \int_{D}\left[\xi_{0}+\nabla \phi(y)\right] \mathrm{d} y\right)=f\left(\xi_{0}\right) .
$$

This proves f is quasiconvex.

Rank one convexity

Introduction to the

 Calculus of VariationsHowever, quasiconvexity generally is hard to check.

Direct methods
Dirichlet Integral
Integrands depending only on the gradient

Integrands with x dependence

Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations

Weak continuity of the determinants

The End

Rank one convexity

However, quasiconvexity generally is hard to check. There is a pointwise condition that is implied by quasiconvexity.

Direct methods

Dirichlet Integral
Integrands depending only on the gradient

Integrands with x dependence
Integrands with x and u dependence
Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

Rank one convexity

However, quasiconvexity generally is hard to check. There is a pointwise condition that is implied by quasiconvexity.
Definition (Rank one convexity)
A function $f: \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(\xi)$

Direct methods
Dirichlet Integral
Integrands depending only on the gradient
Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

Rank one convexity

However, quasiconvexity generally is hard to check. There is a pointwise condition that is implied by quasiconvexity.

Definition (Rank one convexity)
A function $f: \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(\xi)$ is called rank one convex

Direct methods
Dirichlet Integral
Integrands depending only on the gradient
Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

Rank one convexity

However, quasiconvexity generally is hard to check. There is a pointwise condition that is implied by quasiconvexity.

Definition (Rank one convexity)
A function $f: \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(\xi)$ is called rank one convex if for every $a \in \mathbb{R}^{n}$,

Direct methods
Dirichlet Integral
Integrands depending only on the gradient
Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

Rank one convexity

However, quasiconvexity generally is hard to check. There is a pointwise condition that is implied by quasiconvexity.
Definition (Rank one convexity)
A function $f: \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(\xi)$ is called rank one convex if for every $a \in \mathbb{R}^{n}$, every $b \in \mathbb{R}^{N}$

Direct methods
Dirichlet Integral
Integrands depending only on the gradient
Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

Rank one convexity

However, quasiconvexity generally is hard to check. There is a pointwise condition that is implied by quasiconvexity.

Definition (Rank one convexity)
A function $f: \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(\xi)$ is called rank one convex if for every $a \in \mathbb{R}^{n}$, every $b \in \mathbb{R}^{N}$ and every $\xi \in \mathbb{R}^{N \times n}$,

Direct methods
Dirichlet Integral
Integrands depending only on the gradient
Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

Rank one convexity

However, quasiconvexity generally is hard to check. There is a pointwise condition that is implied by quasiconvexity.

Definition (Rank one convexity)
A function $f: \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(\xi)$ is called rank one convex if for every $a \in \mathbb{R}^{n}$, every $b \in \mathbb{R}^{N}$ and every $\xi \in \mathbb{R}^{N \times n}$, the function

$$
g(t):=f(\xi+t a \otimes b)
$$

Direct methods

Dirichlet Integral
Integrands depending only on the gradient
Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

Rank one convexity

However, quasiconvexity generally is hard to check. There is a pointwise condition that is implied by quasiconvexity.

Definition (Rank one convexity)
A function $f: \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(\xi)$ is called rank one convex if for every $a \in \mathbb{R}^{n}$, every $b \in \mathbb{R}^{N}$ and every $\xi \in \mathbb{R}^{N \times n}$, the function

$$
g(t):=f(\xi+t a \otimes b)
$$

is convex in t.

Rank one convexity

However, quasiconvexity generally is hard to check. There is a pointwise condition that is implied by quasiconvexity.

Definition (Rank one convexity)
A function $f: \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(\xi)$ is called rank one convex if for every $a \in \mathbb{R}^{n}$, every $b \in \mathbb{R}^{N}$ and every $\xi \in \mathbb{R}^{N \times n}$, the function

$$
g(t):=f(\xi+t a \otimes b)
$$

is convex in t.
Note that for an $N \times n$ matrix X,

Direct methods
Dirichlet Integral
Integrands depending only on the gradient

Integrands with x

dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

Rank one convexity

However, quasiconvexity generally is hard to check. There is a pointwise condition that is implied by quasiconvexity.

Definition (Rank one convexity)
A function $f: \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(\xi)$ is called rank one convex if for every $a \in \mathbb{R}^{n}$, every $b \in \mathbb{R}^{N}$ and every $\xi \in \mathbb{R}^{N \times n}$, the function

$$
g(t):=f(\xi+t a \otimes b)
$$

is convex in t.
Note that for an $N \times n$ matrix X,

$$
\operatorname{rank}(X)=1 \text { if and only if } X=a \otimes b
$$

Rank one convexity

However, quasiconvexity generally is hard to check. There is a pointwise condition that is implied by quasiconvexity.

Definition (Rank one convexity)

A function $f: \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(\xi)$ is called rank one convex if for every $a \in \mathbb{R}^{n}$, every $b \in \mathbb{R}^{N}$ and every $\xi \in \mathbb{R}^{N \times n}$, the function

$$
g(t):=f(\xi+t a \otimes b)
$$

is convex in t.
Note that for an $N \times n$ matrix X,

$$
\operatorname{rank}(X)=1 \text { if and only if } X=a \otimes b
$$

for some $a \in \mathbb{R}^{n}, b \in \mathbb{R}^{N}$.

Direct methods
Dirichlet Integral
Integrands depending only on the gradient

Integrands with x

dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

Rank one convexity

However, quasiconvexity generally is hard to check. There is a pointwise condition that is implied by quasiconvexity.

Definition (Rank one convexity)

A function $f: \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(\xi)$ is called rank one convex if for every $a \in \mathbb{R}^{n}$, every $b \in \mathbb{R}^{N}$ and every $\xi \in \mathbb{R}^{N \times n}$, the function

$$
g(t):=f(\xi+t a \otimes b)
$$

is convex in t.
Note that for an $N \times n$ matrix X,

$$
\operatorname{rank}(X)=1 \text { if and only if } X=a \otimes b
$$

for some $a \in \mathbb{R}^{n}, b \in \mathbb{R}^{N}$. Thus this is convexity along rank one matrices.

Direct methods

Dirichlet Integral
Integrands depending only on the gradient

Integrands with x

dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

Rank one convexity

However, quasiconvexity generally is hard to check. There is a pointwise condition that is implied by quasiconvexity.

Definition (Rank one convexity)

A function $f: \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(\xi)$ is called rank one convex if for every $a \in \mathbb{R}^{n}$, every $b \in \mathbb{R}^{N}$ and every $\xi \in \mathbb{R}^{N \times n}$, the function

$$
g(t):=f(\xi+t a \otimes b)
$$

is convex in t.
Note that for an $N \times n$ matrix X,

$$
\operatorname{rank}(X)=1 \text { if and only if } X=a \otimes b
$$

for some $a \in \mathbb{R}^{n}, b \in \mathbb{R}^{N}$. Thus this is convexity along rank one matrices.
It can be proved that

Rank one convexity

However, quasiconvexity generally is hard to check. There is a pointwise condition that is implied by quasiconvexity.

Definition (Rank one convexity)

A function $f: \mathbb{R}^{N \times n} \rightarrow \mathbb{R}, f=f(\xi)$ is called rank one convex if for every $a \in \mathbb{R}^{n}$, every $b \in \mathbb{R}^{N}$ and every $\xi \in \mathbb{R}^{N \times n}$, the function

$$
g(t):=f(\xi+t a \otimes b)
$$

is convex in t.
Note that for an $N \times n$ matrix X,

$$
\operatorname{rank}(X)=1 \text { if and only if } X=a \otimes b
$$

for some $a \in \mathbb{R}^{n}, b \in \mathbb{R}^{N}$. Thus this is convexity along rank one matrices.
It can be proved that

$$
f \text { quasiconvex } \quad \Rightarrow \quad f \text { rank one convex } .
$$

The determinant

Now we give an example of a function which is rank one convex but not convex.

Direct methods

Dirichlet Integral
Integrands depending only on the gradient

Integrands with x dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

The End

The determinant

Now we give an example of a function which is rank one convex but not convex.

Example

Let $n=N=2$.

Direct methods

Dirichlet Integral
Integrands depending only on the gradient

Integrands with x dependence
Integrands with x and u dependence
Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

The determinant

Now we give an example of a function which is rank one convex but not convex.

Example

Let $n=N=2$. Let $f: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}$ be defined as

$$
f(\xi)=\operatorname{det} \xi
$$

Direct methods

Dirichlet Integral
Integrands depending only on the gradient

Integrands with x dependence
Integrands with x and u dependence

Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations

Weak continuity of the determinants

The determinant

Now we give an example of a function which is rank one convex but not convex.

Example

Let $n=N=2$. Let $f: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}$ be defined as

$$
f(\xi)=\operatorname{det} \xi
$$

Then f is rank one convex but not convex.

Direct methods

Dirichlet Integral
Integrands depending only on the gradient

Integrands with x
dependence
Integrands with x and u dependence

Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations

The determinant

Now we give an example of a function which is rank one convex but not convex.

Example

Let $n=N=2$. Let $f: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}$ be defined as

$$
f(\xi)=\operatorname{det} \xi
$$

Then f is rank one convex but not convex.
Indeed, we have

Direct methods

Dirichlet Integral
Integrands depending only on the gradient
Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations

The determinant

Now we give an example of a function which is rank one convex but not convex.

Example

Let $n=N=2$. Let $f: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}$ be defined as

$$
f(\xi)=\operatorname{det} \xi
$$

Then f is rank one convex but not convex.
Indeed, we have

$$
\operatorname{det}\left(\begin{array}{ll}
\xi_{11}+\operatorname{ta}_{1} b_{1} & \xi_{12}+t a_{1} b_{2} \\
\xi_{21}+\operatorname{ta}_{2} b_{1} & \xi_{22}+\operatorname{ta}_{2} b_{2}
\end{array}\right)
$$

The determinant

Now we give an example of a function which is rank one convex but not convex.

Example

Let $n=N=2$. Let $f: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}$ be defined as

$$
f(\xi)=\operatorname{det} \xi
$$

Then f is rank one convex but not convex.
Indeed, we have

$$
\begin{aligned}
\operatorname{det} & \left(\begin{array}{ll}
\xi_{11}+t a_{1} b_{1} & \xi_{12}+t a_{1} b_{2} \\
\xi_{21}+t a_{2} b_{1} & \xi_{22}+t a_{2} b_{2}
\end{array}\right) \\
& =\left(\xi_{11} \xi_{22}-\xi_{12} \xi_{21}\right)+t\left(a_{2} b_{2} \xi_{11}+a_{1} b_{1} \xi_{22}-a_{2} b_{1} \xi_{12}-a_{1} b_{2} \xi_{21}\right) .
\end{aligned}
$$

Direct methods

Dirichlet Integral
Integrands depending only on the gradient

Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

The determinant

Now we give an example of a function which is rank one convex but not convex.

Example

Let $n=N=2$. Let $f: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}$ be defined as

$$
f(\xi)=\operatorname{det} \xi
$$

Then f is rank one convex but not convex.
Indeed, we have

$$
\begin{aligned}
\operatorname{det} & \left(\begin{array}{ll}
\xi_{11}+t a_{1} b_{1} & \xi_{12}+t a_{1} b_{2} \\
\xi_{21}+t a_{2} b_{1} & \xi_{22}+t a_{2} b_{2}
\end{array}\right) \\
& =\left(\xi_{11} \xi_{22}-\xi_{12} \xi_{21}\right)+t\left(a_{2} b_{2} \xi_{11}+a_{1} b_{1} \xi_{22}-a_{2} b_{1} \xi_{12}-a_{1} b_{2} \xi_{21}\right) .
\end{aligned}
$$

This is clearly affine in t.

The determinant

Now we give an example of a function which is rank one convex but not convex.

Example

Let $n=N=2$. Let $f: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}$ be defined as

$$
f(\xi)=\operatorname{det} \xi
$$

Then f is rank one convex but not convex.
Indeed, we have

$$
\begin{aligned}
\operatorname{det} & \left(\begin{array}{ll}
\xi_{11}+t a_{1} b_{1} & \xi_{12}+t a_{1} b_{2} \\
\xi_{21}+t a_{2} b_{1} & \xi_{22}+t a_{2} b_{2}
\end{array}\right) \\
& =\left(\begin{array}{ll}
\left.\xi_{11} \xi_{22}-\xi_{12} \xi_{21}\right)+t\left(a_{2} b_{2} \xi_{11}+a_{1} b_{1} \xi_{22}-a_{2} b_{1} \xi_{12}-a_{1} b_{2} \xi_{21}\right) .
\end{array} . . \begin{array}{ll}
\end{array}\right)
\end{aligned}
$$

This is clearly affine in t. But clearly, for any $\lambda \in(0,1)$,

The determinant

Now we give an example of a function which is rank one convex but not convex.

Example

Let $n=N=2$. Let $f: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}$ be defined as

$$
f(\xi)=\operatorname{det} \xi
$$

Then f is rank one convex but not convex.
Indeed, we have

$$
\begin{aligned}
\operatorname{det} & \left(\begin{array}{ll}
\xi_{11}+t a_{1} b_{1} & \xi_{12}+t a_{1} b_{2} \\
\xi_{21}+t a_{2} b_{1} & \xi_{22}+t a_{2} b_{2}
\end{array}\right) \\
& =\left(\xi_{11} \xi_{22}-\xi_{12} \xi_{21}\right)+t\left(a_{2} b_{2} \xi_{11}+a_{1} b_{1} \xi_{22}-a_{2} b_{1} \xi_{12}-a_{1} b_{2} \xi_{21}\right) .
\end{aligned}
$$

This is clearly affine in t. But clearly, for any $\lambda \in(0,1)$,
$\lambda(1-\lambda)=\operatorname{det}\left(\begin{array}{ll}\lambda & 0 \\ 0 & 1-\lambda\end{array}\right)$

The determinant

Now we give an example of a function which is rank one convex but not convex.

Example

Let $n=N=2$. Let $f: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}$ be defined as

$$
f(\xi)=\operatorname{det} \xi
$$

Then f is rank one convex but not convex.
Indeed, we have

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ll}
\xi_{11}+t a_{1} b_{1} & \xi_{12}+t a_{1} b_{2} \\
\xi_{21}+t a_{2} b_{1} & \xi_{22}+t a_{2} b_{2}
\end{array}\right) \\
& \quad=\left(\xi_{11} \xi_{22}-\xi_{12} \xi_{21}\right)+t\left(a_{2} b_{2} \xi_{11}+a_{1} b_{1} \xi_{22}-a_{2} b_{1} \xi_{12}-a_{1} b_{2} \xi_{21}\right) .
\end{aligned}
$$

This is clearly affine in t. But clearly, for any $\lambda \in(0,1)$,
$\lambda(1-\lambda)=\operatorname{det}\left(\begin{array}{ll}\lambda & 0 \\ 0 & 1-\lambda\end{array}\right)>\lambda \operatorname{det}\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)+(1-\lambda) \operatorname{det}\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$

The determinant

Now we give an example of a function which is rank one convex but not convex.

Example

Let $n=N=2$. Let $f: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}$ be defined as

$$
f(\xi)=\operatorname{det} \xi
$$

Then f is rank one convex but not convex.
Indeed, we have

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ll}
\xi_{11}+t a_{1} b_{1} & \xi_{12}+t a_{1} b_{2} \\
\xi_{21}+t a_{2} b_{1} & \xi_{22}+t a_{2} b_{2}
\end{array}\right) \\
& \quad=\left(\xi_{11} \xi_{22}-\xi_{12} \xi_{21}\right)+t\left(a_{2} b_{2} \xi_{11}+a_{1} b_{1} \xi_{22}-a_{2} b_{1} \xi_{12}-a_{1} b_{2} \xi_{21}\right) .
\end{aligned}
$$

This is clearly affine in t. But clearly, for any $\lambda \in(0,1)$,
$\lambda(1-\lambda)=\operatorname{det}\left(\begin{array}{ll}\lambda & 0 \\ 0 & 1-\lambda\end{array}\right)>\lambda \operatorname{det}\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)+(1-\lambda) \operatorname{det}\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)=0$.

Weak continuity of the determinants

Now we shall show that the determinant is not only rank one affine,

Direct methods
Dirichlet Integral
Integrands depending only on the gradient

Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and
the vectorial calculus of variations
Weak continuity of the determinants

The End

Weak continuity of the determinants

Now we shall show that the determinant is not only rank one affine, but actually also quasiaffine.

Direct methods
Dirichlet Integral
Integrands depending only on the gradient
Integrands with x dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

The End

Weak continuity of the determinants

Now we shall show that the determinant is not only rank one affine, but actually also quasiaffine. Moreover, it is also weakly continuous.

Direct methods
Dirichlet Integral
Integrands depending only on the gradient
Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

The End

Weak continuity of the determinants

Now we shall show that the determinant is not only rank one affine, but actually also quasiaffine. Moreover, it is also weakly continuous.

Proposition

Let $\Omega \subset \mathbb{R}^{2}$.

Direct methods
Dirichlet Integral
Integrands depending only on the gradient
Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

Weak continuity of the determinants

Now we shall show that the determinant is not only rank one affine, but actually also quasiaffine. Moreover, it is also weakly continuous.

Proposition

Let $\Omega \subset \mathbb{R}^{2}$. Let $\left\{u_{s}\right\}_{s \geq 1} \subset W^{1, p}\left(\Omega, \mathbb{R}^{2}\right)$

Direct methods

Dirichlet Integral
Integrands depending only on the gradient
Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and
the vectorial calculus of variations
Weak continuity of the determinants

Weak continuity of the determinants

Now we shall show that the determinant is not only rank one affine, but actually also quasiaffine. Moreover, it is also weakly continuous.

Proposition

Let $\Omega \subset \mathbb{R}^{2}$. Let $\left\{u_{s}\right\}_{s \geq 1} \subset W^{1, p}\left(\Omega, \mathbb{R}^{2}\right)$ such that

$$
u_{s} \rightharpoonup u \quad \text { in } W^{1, p}\left(\Omega, \mathbb{R}^{2}\right)
$$

Direct methods

Dirichlet Integral
Integrands depending only on the gradient
Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

The End

Weak continuity of the determinants

Now we shall show that the determinant is not only rank one affine, but actually also quasiaffine. Moreover, it is also weakly continuous.

Proposition

Let $\Omega \subset \mathbb{R}^{2}$. Let $\left\{u_{s}\right\}_{s \geq 1} \subset W^{1, p}\left(\Omega, \mathbb{R}^{2}\right)$ such that

$$
u_{s} \rightharpoonup u \quad \text { in } W^{1, p}\left(\Omega, \mathbb{R}^{2}\right)
$$

Direct methods

Dirichlet Integral
Integrands depending only on the gradient
Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

The End
for some $2<p<\infty$.

Weak continuity of the determinants

Now we shall show that the determinant is not only rank one affine, but actually also quasiaffine. Moreover, it is also weakly continuous.

Proposition

Let $\Omega \subset \mathbb{R}^{2}$. Let $\left\{u_{s}\right\}_{s \geq 1} \subset W^{1, p}\left(\Omega, \mathbb{R}^{2}\right)$ such that

$$
u_{s} \rightharpoonup u \quad \text { in } W^{1, p}\left(\Omega, \mathbb{R}^{2}\right)
$$

Direct methods
Dirichlet Integral
Integrands depending only on the gradient
Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

The End
for some $2<p<\infty$. Then up to the extraction of a subsequence,

Weak continuity of the determinants

Now we shall show that the determinant is not only rank one affine, but actually also quasiaffine. Moreover, it is also weakly continuous.

Proposition

Let $\Omega \subset \mathbb{R}^{2}$. Let $\left\{u_{s}\right\}_{s \geq 1} \subset W^{1, p}\left(\Omega, \mathbb{R}^{2}\right)$ such that

$$
u_{s} \rightharpoonup u \quad \text { in } W^{1, p}\left(\Omega, \mathbb{R}^{2}\right)
$$

Direct methods

Dirichlet Integral
Integrands depending only on the gradient
Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

The End
for some $2<p<\infty$. Then up to the extraction of a subsequence,

$$
\operatorname{det} \nabla u_{s} \rightharpoonup \operatorname{det} \nabla u \quad \text { in } L^{\frac{p}{2}}(\Omega)
$$

Weak continuity of the determinants

Now we shall show that the determinant is not only rank one affine, but actually also quasiaffine. Moreover, it is also weakly continuous.

Proposition

Let $\Omega \subset \mathbb{R}^{2}$. Let $\left\{u_{s}\right\}_{s \geq 1} \subset W^{1, p}\left(\Omega, \mathbb{R}^{2}\right)$ such that

$$
u_{s} \rightharpoonup u \quad \text { in } W^{1, p}\left(\Omega, \mathbb{R}^{2}\right)
$$

Direct methods

Dirichlet Integral
Integrands depending only on the gradient
Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

The End
for some $2<p<\infty$. Then up to the extraction of a subsequence,

$$
\operatorname{det} \nabla u_{s} \rightharpoonup \operatorname{det} \nabla u \quad \text { in } L^{\frac{p}{2}}(\Omega)
$$

Proof.

Weak continuity of the determinants

Now we shall show that the determinant is not only rank one affine, but actually also quasiaffine. Moreover, it is also weakly continuous.

Proposition

Let $\Omega \subset \mathbb{R}^{2}$. Let $\left\{u_{s}\right\}_{s \geq 1} \subset W^{1, p}\left(\Omega, \mathbb{R}^{2}\right)$ such that

$$
u_{s} \rightharpoonup u \quad \text { in } W^{1, p}\left(\Omega, \mathbb{R}^{2}\right)
$$

for some $2<p<\infty$. Then up to the extraction of a subsequence,

$$
\operatorname{det} \nabla u_{s} \rightharpoonup \operatorname{det} \nabla u \quad \text { in } L^{\frac{\rho}{2}}(\Omega) .
$$

Proof. By Hölder inequality, it is easy to show that $\operatorname{det} \nabla u_{s}$ is uniformly bounded in $L^{\frac{p}{2}}(\Omega)$

Weak continuity of the determinants

Now we shall show that the determinant is not only rank one affine, but actually also quasiaffine. Moreover, it is also weakly continuous.

Proposition

Let $\Omega \subset \mathbb{R}^{2}$. Let $\left\{u_{s}\right\}_{s \geq 1} \subset W^{1, p}\left(\Omega, \mathbb{R}^{2}\right)$ such that

$$
u_{s} \rightharpoonup u \quad \text { in } W^{1, p}\left(\Omega, \mathbb{R}^{2}\right)
$$

Direct methods

Dirichlet Integral
Integrands depending only on the gradient
Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations

Weak continuity of the determinants

The End
for some $2<p<\infty$. Then up to the extraction of a subsequence,

$$
\operatorname{det} \nabla u_{s} \rightharpoonup \operatorname{det} \nabla u \quad \text { in } L^{\frac{p}{2}}(\Omega) .
$$

Proof. By Hölder inequality, it is easy to show that $\operatorname{det} \nabla u_{s}$ is uniformly bounded in $L^{\frac{p}{2}}(\Omega)$ and thus up to the extraction of a subsequence, this converges weakly in $L^{\frac{p}{2}}$ to a weak limit.

Weak continuity of the determinants

Now we shall show that the determinant is not only rank one affine, but actually also quasiaffine. Moreover, it is also weakly continuous.

Proposition

Let $\Omega \subset \mathbb{R}^{2}$. Let $\left\{u_{s}\right\}_{s \geq 1} \subset W^{1, p}\left(\Omega, \mathbb{R}^{2}\right)$ such that

$$
u_{s} \rightharpoonup u \quad \text { in } W^{1, p}\left(\Omega, \mathbb{R}^{2}\right)
$$

for some $2<p<\infty$. Then up to the extraction of a subsequence,

$$
\operatorname{det} \nabla u_{s} \rightharpoonup \operatorname{det} \nabla u \quad \text { in } L^{\frac{p}{2}}(\Omega)
$$

Proof. By Hölder inequality, it is easy to show that $\operatorname{det} \nabla u_{s}$ is uniformly bounded in $L^{\frac{\rho}{2}}(\Omega)$ and thus up to the extraction of a subsequence, this converges weakly in $L^{\frac{p}{2}}$ to a weak limit. So we just have to identify the weak limit.

So it is enough to show that for every $\psi \in C_{c}^{\infty}(\Omega)$,

Direct methods
Dirichlet Integral
Integrands depending only on the gradient
Integrands with x dependence
Integrands with x and u dependence
Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations

Weak continuity of the determinants

The End

So it is enough to show that for every $\psi \in C_{c}^{\infty}(\Omega)$, we have,

Direct methods
Dirichlet Integral
Integrands depending only on the gradient
Integrands with x dependence
Integrands with x and u dependence
Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

The End

So it is enough to show that for every $\psi \in C_{c}^{\infty}(\Omega)$, we have,

$$
\int_{\Omega} \operatorname{det} \nabla u_{s}(x) \psi(x) \mathrm{d} x \rightarrow \int_{\Omega} \operatorname{det} \nabla u(x) \psi(x) \mathrm{d} x .
$$

So it is enough to show that for every $\psi \in C_{c}^{\infty}(\Omega)$, we have,

$$
\int_{\Omega} \operatorname{det} \nabla u_{s}(x) \psi(x) \mathrm{d} x \rightarrow \int_{\Omega} \operatorname{det} \nabla u(x) \psi(x) \mathrm{d} x .
$$

Now if u_{s} is C^{2},

Direct methods

Dirichlet Integral
Integrands depending only on the gradient

Integrands with x dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations

Weak continuity of the determinants

So it is enough to show that for every $\psi \in C_{c}^{\infty}(\Omega)$, we have,

$$
\int_{\Omega} \operatorname{det} \nabla u_{s}(x) \psi(x) \mathrm{d} x \rightarrow \int_{\Omega} \operatorname{det} \nabla u(x) \psi(x) \mathrm{d} x
$$

Now if u_{s} is C^{2}, we have

$$
\operatorname{det} \nabla u_{s}=\frac{\partial u_{s}^{1}}{\partial x_{1}} \frac{\partial u_{s}^{2}}{\partial x_{2}}-\frac{\partial u_{s}^{1}}{\partial x_{2}} \frac{\partial u_{s}^{2}}{\partial x_{1}}
$$

Direct methods

Dirichlet Integral
Integrands depending only on the gradient

Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations

Weak continuity of the determinants

So it is enough to show that for every $\psi \in C_{c}^{\infty}(\Omega)$, we have,

$$
\int_{\Omega} \operatorname{det} \nabla u_{s}(x) \psi(x) \mathrm{d} x \rightarrow \int_{\Omega} \operatorname{det} \nabla u(x) \psi(x) \mathrm{d} x
$$

Now if u_{s} is C^{2}, we have

$$
\begin{aligned}
\operatorname{det} \nabla u_{s} & =\frac{\partial u_{s}^{1}}{\partial x_{1}} \frac{\partial u_{s}^{2}}{\partial x_{2}}-\frac{\partial u_{s}^{1}}{\partial x_{2}} \frac{\partial u_{s}^{2}}{\partial x_{1}} \\
& =\frac{\partial}{\partial x_{1}}\left(u_{s}^{1} \frac{\partial u_{s}^{2}}{\partial x_{2}}\right)+\frac{\partial}{\partial x_{2}}\left(-u_{s}^{1} \frac{\partial u_{s}^{2}}{\partial x_{1}}\right)
\end{aligned}
$$

Direct methods

Dirichlet Integral
Integrands depending only on the gradient

Integrands with x

dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations

Weak continuity of the determinants

So it is enough to show that for every $\psi \in C_{c}^{\infty}(\Omega)$, we have,

$$
\int_{\Omega} \operatorname{det} \nabla u_{s}(x) \psi(x) \mathrm{d} x \rightarrow \int_{\Omega} \operatorname{det} \nabla u(x) \psi(x) \mathrm{d} x
$$

Now if u_{s} is C^{2}, we have

$$
\begin{aligned}
\operatorname{det} \nabla u_{s} & =\frac{\partial u_{s}^{1}}{\partial x_{1}} \frac{\partial u_{s}^{2}}{\partial x_{2}}-\frac{\partial u_{s}^{1}}{\partial x_{2}} \frac{\partial u_{s}^{2}}{\partial x_{1}} \\
& =\frac{\partial}{\partial x_{1}}\left(u_{s}^{1} \frac{\partial u_{s}^{2}}{\partial x_{2}}\right)+\frac{\partial}{\partial x_{2}}\left(-u_{s}^{1} \frac{\partial u_{s}^{2}}{\partial x_{1}}\right) \\
& =\operatorname{div}\left(u_{s}^{1} \frac{\partial u_{s}^{2}}{\partial x_{2}},-u_{s}^{1} \frac{\partial u_{s}^{2}}{\partial x_{1}}\right) .
\end{aligned}
$$

So it is enough to show that for every $\psi \in C_{c}^{\infty}(\Omega)$, we have,

$$
\int_{\Omega} \operatorname{det} \nabla u_{s}(x) \psi(x) \mathrm{d} x \rightarrow \int_{\Omega} \operatorname{det} \nabla u(x) \psi(x) \mathrm{d} x
$$

Now if u_{s} is C^{2}, we have

$$
\begin{aligned}
\operatorname{det} \nabla u_{s} & =\frac{\partial u_{s}^{1}}{\partial x_{1}} \frac{\partial u_{s}^{2}}{\partial x_{2}}-\frac{\partial u_{s}^{1}}{\partial x_{2}} \frac{\partial u_{s}^{2}}{\partial x_{1}} \\
& =\frac{\partial}{\partial x_{1}}\left(u_{s}^{1} \frac{\partial u_{s}^{2}}{\partial x_{2}}\right)+\frac{\partial}{\partial x_{2}}\left(-u_{s}^{1} \frac{\partial u_{s}^{2}}{\partial x_{1}}\right) \\
& =\operatorname{div}\left(u_{s}^{1} \frac{\partial u_{s}^{2}}{\partial x_{2}},-u_{s}^{1} \frac{\partial u_{s}^{2}}{\partial x_{1}}\right)
\end{aligned}
$$

So integrating by parts, we obtain

So it is enough to show that for every $\psi \in C_{c}^{\infty}(\Omega)$, we have,

$$
\int_{\Omega} \operatorname{det} \nabla u_{s}(x) \psi(x) \mathrm{d} x \rightarrow \int_{\Omega} \operatorname{det} \nabla u(x) \psi(x) \mathrm{d} x
$$

Now if u_{s} is C^{2}, we have

$$
\begin{aligned}
\operatorname{det} \nabla u_{s} & =\frac{\partial u_{s}^{1}}{\partial x_{1}} \frac{\partial u_{s}^{2}}{\partial x_{2}}-\frac{\partial u_{s}^{1}}{\partial x_{2}} \frac{\partial u_{s}^{2}}{\partial x_{1}} \\
& =\frac{\partial}{\partial x_{1}}\left(u_{s}^{1} \frac{\partial u_{s}^{2}}{\partial x_{2}}\right)+\frac{\partial}{\partial x_{2}}\left(-u_{s}^{1} \frac{\partial u_{s}^{2}}{\partial x_{1}}\right) \\
& =\operatorname{div}\left(u_{s}^{1} \frac{\partial u_{s}^{2}}{\partial x_{2}},-u_{s}^{1} \frac{\partial u_{s}^{2}}{\partial x_{1}}\right)
\end{aligned}
$$

So integrating by parts, we obtain

$$
\int_{\Omega} \operatorname{det} \nabla u_{s}(x) \psi(x) \mathrm{d} x=\int_{\Omega} \operatorname{div}\left(u_{s}^{1} \frac{\partial u_{s}^{2}}{\partial x_{2}},-u_{s}^{1} \frac{\partial u_{s}^{2}}{\partial x_{1}}\right)(x) \psi(x) \mathrm{d} x
$$

So it is enough to show that for every $\psi \in C_{c}^{\infty}(\Omega)$, we have,

$$
\int_{\Omega} \operatorname{det} \nabla u_{s}(x) \psi(x) \mathrm{d} x \rightarrow \int_{\Omega} \operatorname{det} \nabla u(x) \psi(x) \mathrm{d} x
$$

Now if u_{s} is C^{2}, we have

$$
\begin{aligned}
\operatorname{det} \nabla u_{s} & =\frac{\partial u_{s}^{1}}{\partial x_{1}} \frac{\partial u_{s}^{2}}{\partial x_{2}}-\frac{\partial u_{s}^{1}}{\partial x_{2}} \frac{\partial u_{s}^{2}}{\partial x_{1}} \\
& =\frac{\partial}{\partial x_{1}}\left(u_{s}^{1} \frac{\partial u_{s}^{2}}{\partial x_{2}}\right)+\frac{\partial}{\partial x_{2}}\left(-u_{s}^{1} \frac{\partial u_{s}^{2}}{\partial x_{1}}\right) \\
& =\operatorname{div}\left(u_{s}^{1} \frac{\partial u_{s}^{2}}{\partial x_{2}},-u_{s}^{1} \frac{\partial u_{s}^{2}}{\partial x_{1}}\right) .
\end{aligned}
$$

So integrating by parts, we obtain

$$
\begin{aligned}
\int_{\Omega} \operatorname{det} \nabla u_{s}(x) \psi(x) \mathrm{d} x & =\int_{\Omega} \operatorname{div}\left(u_{s}^{1} \frac{\partial u_{s}^{2}}{\partial x_{2}},-u_{s}^{1} \frac{\partial u_{s}^{2}}{\partial x_{1}}\right)(x) \psi(x) \mathrm{d} x \\
& =-\int_{\Omega}\left\langle\left(u_{s}^{1} \frac{\partial u_{s}^{2}}{\partial x_{2}},-u_{s}^{1} \frac{\partial u_{s}^{2}}{\partial x_{1}}\right)(x), \nabla \psi(x)\right\rangle \mathrm{d} x
\end{aligned}
$$

The last identity is truw for u_{s} in $W^{1, p}$ as well, by density.

Introduction to the Calculus of Variations

Swarnendu Sil

Direct methods

Dirichlet Integral
Integrands depending only on the gradient

Integrands with x dependence

Integrands with x and u dependence
Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations

Weak continuity of the determinants

The End

The last identity is truw for u_{s} in $W^{1, p}$ as well, by density. Now we claim

Introduction to the Calculus of Variations

Swarnendu Sil

Direct methods
Dirichlet Integral
Integrands depending only on the gradient
Integrands with x dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

The End

The last identity is truw for u_{s} in $W^{1, p}$ as well, by density. Now we claim

$$
\int_{\Omega}\left\langle\left(u_{s}^{1} \frac{\partial u_{s}^{2}}{\partial x_{2}},-u_{s}^{1} \frac{\partial u_{s}^{2}}{\partial x_{1}}\right), \nabla \psi\right\rangle \rightarrow \int_{\Omega}\left\langle\left(u^{1} \frac{\partial u^{2}}{\partial x_{2}},-u^{1} \frac{\partial u^{2}}{\partial x_{1}}\right), \nabla \psi\right\rangle .
$$

Direct methods

Dirichlet Integral
Integrands depending only on the gradient

Integrands with x dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations

Weak continuity of the determinants

The last identity is truw for u_{s} in $W^{1, p}$ as well, by density. Now we claim

$$
\int_{\Omega}\left\langle\left(u_{s}^{1} \frac{\partial u_{s}^{2}}{\partial x_{2}},-u_{s}^{1} \frac{\partial u_{s}^{2}}{\partial x_{1}}\right), \nabla \psi\right\rangle \rightarrow \int_{\Omega}\left\langle\left(u^{1} \frac{\partial u^{2}}{\partial x_{2}},-u^{1} \frac{\partial u^{2}}{\partial x_{1}}\right), \nabla \psi\right\rangle .
$$

This is enough to prove the result by another integration by parts.

The last identity is truw for u_{s} in $W^{1, p}$ as well, by density. Now we claim
$\int_{\Omega}\left\langle\left(u_{s}^{1} \frac{\partial u_{s}^{2}}{\partial x_{2}},-u_{s}^{1} \frac{\partial u_{s}^{2}}{\partial x_{1}}\right), \nabla \psi\right\rangle \rightarrow \int_{\Omega}\left\langle\left(u^{1} \frac{\partial u^{2}}{\partial x_{2}},-u^{1} \frac{\partial u^{2}}{\partial x_{1}}\right), \nabla \psi\right\rangle$.
This is enough to prove the result by another integration by parts. Now we show

The last identity is truw for u_{s} in $W^{1, p}$ as well, by density. Now we claim

$$
\int_{\Omega}\left\langle\left(u_{s}^{1} \frac{\partial u_{s}^{2}}{\partial x_{2}},-u_{s}^{1} \frac{\partial u_{s}^{2}}{\partial x_{1}}\right), \nabla \psi\right\rangle \rightarrow \int_{\Omega}\left\langle\left(u^{1} \frac{\partial u^{2}}{\partial x_{2}},-u^{1} \frac{\partial u^{2}}{\partial x_{1}}\right), \nabla \psi\right\rangle .
$$

This is enough to prove the result by another integration by parts. Now we show

$$
\int_{\Omega} u_{s}^{1}(x) \frac{\partial u_{s}^{2}}{\partial x_{2}}(x) \frac{\partial \psi}{\partial x_{1}}(x) \mathrm{d} x \rightarrow \int_{\Omega} u^{1}(x) \frac{\partial u^{2}}{\partial x_{2}}(x) \frac{\partial \psi}{\partial x_{1}}(x) \mathrm{d} x
$$

Direct methods

Dirichlet Integral
Integrands depending only on the gradient
Integrands with x dependence
Integrands with x and u dependence
Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

The last identity is truw for u_{s} in $W^{1, p}$ as well, by density. Now we claim

$$
\int_{\Omega}\left\langle\left(u_{s}^{1} \frac{\partial u_{s}^{2}}{\partial x_{2}},-u_{s}^{1} \frac{\partial u_{s}^{2}}{\partial x_{1}}\right), \nabla \psi\right\rangle \rightarrow \int_{\Omega}\left\langle\left(u^{1} \frac{\partial u^{2}}{\partial x_{2}},-u^{1} \frac{\partial u^{2}}{\partial x_{1}}\right), \nabla \psi\right\rangle .
$$

This is enough to prove the result by another integration by parts. Now we show

$$
\int_{\Omega} u_{s}^{1}(x) \frac{\partial u_{s}^{2}}{\partial x_{2}}(x) \frac{\partial \psi}{\partial x_{1}}(x) \mathrm{d} x \rightarrow \int_{\Omega} u^{1}(x) \frac{\partial u^{2}}{\partial x_{2}}(x) \frac{\partial \psi}{\partial x_{1}}(x) \mathrm{d} x .
$$

By Rellich-Kondrachov, $u_{s} \rightarrow u$ strongly in L^{p}.

The last identity is truw for u_{s} in $W^{1, p}$ as well, by density. Now we claim

$$
\int_{\Omega}\left\langle\left(u_{s}^{1} \frac{\partial u_{s}^{2}}{\partial x_{2}},-u_{s}^{1} \frac{\partial u_{s}^{2}}{\partial x_{1}}\right), \nabla \psi\right\rangle \rightarrow \int_{\Omega}\left\langle\left(u^{1} \frac{\partial u^{2}}{\partial x_{2}},-u^{1} \frac{\partial u^{2}}{\partial x_{1}}\right), \nabla \psi\right\rangle .
$$

This is enough to prove the result by another integration by parts. Now we show

$$
\int_{\Omega} u_{s}^{1}(x) \frac{\partial u_{s}^{2}}{\partial x_{2}}(x) \frac{\partial \psi}{\partial x_{1}}(x) \mathrm{d} x \rightarrow \int_{\Omega} u^{1}(x) \frac{\partial u^{2}}{\partial x_{2}}(x) \frac{\partial \psi}{\partial x_{1}}(x) \mathrm{d} x .
$$

By Rellich-Kondrachov, $u_{s} \rightarrow u$ strongly in L^{p}. Thus, we have,

$$
\begin{aligned}
& \int_{\Omega}\left(u_{s}^{1} \frac{\partial u_{s}^{2}}{\partial x_{2}} \frac{\partial \psi}{\partial x_{1}}-u^{1} \frac{\partial u^{2}}{\partial x_{2}} \frac{\partial \psi}{\partial x_{1}}\right) \mathrm{d} x \\
& \quad=\int_{\Omega}\left(u_{s}^{1}-u^{1}\right) \frac{\partial u_{s}^{2}}{\partial x_{2}} \frac{\partial \psi}{\partial x_{1}} d x+\int_{\Omega} u^{1}\left(\frac{\partial u_{s}^{2}}{\partial x_{2}}-\frac{\partial u^{2}}{\partial x_{2}}\right) \frac{\partial \psi}{\partial x_{1}} \mathrm{~d} x
\end{aligned}
$$

The second term converges to zero by definition of weak convergence in L^{p}

Direct methods

Dirichlet Integral
Integrands depending only on the gradient

Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations

Weak continuity of the determinants

The End

The second term converges to zero by definition of weak convergence in L^{p} and the fact that

$$
\nabla u_{s} \rightharpoonup \nabla u \quad \text { in } L^{p}
$$

Direct methods
Dirichlet Integral
Integrands depending only on the gradient

Integrands with x dependence

Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations

Weak continuity of the determinants

The End

The second term converges to zero by definition of weak convergence in L^{p} and the fact that

$$
\nabla u_{s} \rightharpoonup \nabla u \quad \text { in } L^{p} .
$$

Now we can estimate

Dirichlet Integral
Integrands depending only on the gradient

Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations
Weak continuity of the determinants

The second term converges to zero by definition of weak convergence in L^{p} and the fact that

$$
\nabla u_{s} \rightharpoonup \nabla u \quad \text { in } L^{p}
$$

Now we can estimate

$$
\left|\int_{\Omega}\left(u_{s}^{1}-u^{1}\right) \frac{\partial u_{s}^{2}}{\partial x_{2}} \frac{\partial \psi}{\partial x_{1}} \mathrm{~d} x\right| \leq\left\|u_{s}^{1}-u^{1}\right\|_{L^{p}}\left\|\frac{\partial u_{s}^{2}}{\partial x_{2}}\right\|_{L^{p}}\|\nabla \psi\|_{L^{\infty}} .
$$

Direct methods

Dirichlet Integral
Integrands depending only on the gradient

Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations

Weak continuity of the determinants

The second term converges to zero by definition of weak convergence in L^{p} and the fact that

$$
\nabla u_{s} \rightharpoonup \nabla u \quad \text { in } L^{p}
$$

Now we can estimate

$$
\left|\int_{\Omega}\left(u_{s}^{1}-u^{1}\right) \frac{\partial u_{s}^{2}}{\partial x_{2}} \frac{\partial \psi}{\partial x_{1}} \mathrm{~d} x\right| \leq\left\|u_{s}^{1}-u^{1}\right\|_{L^{p}}\left\|\frac{\partial u_{s}^{2}}{\partial x_{2}}\right\|_{L^{p}}\|\nabla \psi\|_{L^{\infty}} .
$$

The RHS clearly goes to zero as ∇u_{s} is uniformly bounded in L^{p}

The second term converges to zero by definition of weak convergence in L^{p} and the fact that

$$
\nabla u_{s} \rightharpoonup \nabla u \quad \text { in } L^{p}
$$

Now we can estimate

$$
\left|\int_{\Omega}\left(u_{s}^{1}-u^{1}\right) \frac{\partial u_{s}^{2}}{\partial x_{2}} \frac{\partial \psi}{\partial x_{1}} \mathrm{~d} x\right| \leq\left\|u_{s}^{1}-u^{1}\right\|_{L^{p}}\left\|\frac{\partial u_{s}^{2}}{\partial x_{2}}\right\|_{L^{p}}\|\nabla \psi\|_{L^{\infty}} .
$$

The RHS clearly goes to zero as ∇u_{s} is uniformly bounded in L^{p} and the strong convergence $u_{s} \rightarrow u$ in L^{p}.

The second term converges to zero by definition of weak convergence in L^{p} and the fact that

$$
\nabla u_{s} \rightharpoonup \nabla u \quad \text { in } L^{p}
$$

Now we can estimate

$$
\left|\int_{\Omega}\left(u_{s}^{1}-u^{1}\right) \frac{\partial u_{s}^{2}}{\partial x_{2}} \frac{\partial \psi}{\partial x_{1}} \mathrm{~d} x\right| \leq\left\|u_{s}^{1}-u^{1}\right\|_{L^{p}}\left\|\frac{\partial u_{s}^{2}}{\partial x_{2}}\right\|_{L^{p}}\|\nabla \psi\|_{L^{\infty}} .
$$

The RHS clearly goes to zero as ∇u_{s} is uniformly bounded in L^{p} and the strong convergence $u_{s} \rightarrow u$ in L^{p}. This completes the proof.

Direct methods

Dirichlet Integral
Integrands depending only on the gradient

Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations
Necessity of convexity and the vectorial calculus of variations

Weak continuity of the determinants

Introduction to the Calculus of Variations

Swarnendu Sil

Direct methods
Dirichlet Integral
Integrands depending only on the gradient

Integrands with x
dependence
Integrands with x and u dependence
Euler-Lagrange Equations Necessity of convexity and the vectorial calculus of variations

Weak continuity of the determinants

The End

