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Euler-Lagrange equations

Now we want to derive the Euler-Lagrange equation satisfied by a
minimizer.
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Now we want to derive the Euler-Lagrange equation satisfied by a
minimizer. But this would require certain regularity of the

integrand f. So far, we have only worked with the assumption that
f is a Carathéodory function satisfying some coercivity conditions.
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Now we want to derive the Euler-Lagrange equation satisfied by a
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Now we want to derive the Euler-Lagrange equation satisfied by a
minimizer. But this would require certain regularity of the
integrand f. So far, we have only worked with the assumption that
f is a Carathéodory function satisfying some coercivity conditions. ieganc
Now we need to assume something more, which are called growth B
conditions. These tells us how |f (x, u,&)| grows when e
Ju] J¢] = oo

Definition (Growth condition on f)
Let 1 < p < co. A Carathéodory function

f:Q xRV x RV¥" 5 R, f=f(x,u,f)

is said to satisfy p-growth conditions
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Euler-Lagrange equations

Now we want to derive the Euler-Lagrange equation satisfied by a
minimizer. But this would require certain regularity of the
integrand f. So far, we have only worked with the assumption that
f is a Carathéodory function satisfying some coercivity conditions.
Now we need to assume something more, which are called growth
conditions. These tells us how |f (x, u, £)| grows when

Ju] J€] = oc.

Definition (Growth condition on f)
Let 1 < p < co. A Carathéodory function

FrQx RV xRV SR, f=f(x,u,8)

is said to satisfy p-growth conditions if there exists a € L1 (Q)
and 8 > 0 such that
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Euler-Lagrange equations

Now we want to derive the Euler-Lagrange equation satisfied by a
minimizer. But this would require certain regularity of the
integrand f. So far, we have only worked with the assumption that
f is a Carathéodory function satisfying some coercivity conditions.
Now we need to assume something more, which are called growth
conditions. These tells us how |f (x, u, £)| grows when

Ju] J€] = oc.

Definition (Growth condition on f)
Let 1 < p < co. A Carathéodory function

f:Q xRV x RV¥" 5 R, f=f(x,u,f)

is said to satisfy p-growth conditions if there exists a € L1 (Q)
and 8 > 0 such that

[ (6w, &)l < a(x) + 8 (|lul” +[¢]°) (Gp)

for a.e. x € Q and for every (u,&) € RN x RV,
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Note that the p-growth conditions automatically implies that
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Growth conditions on the derivatives

Note that the p-growth conditions automatically implies that
Iu] := / f(x,u(x),Vu(x)) dx < oo
Q

for every u € Whp (Q; RN) .
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Growth conditions on the derivatives

Note that the p-growth conditions automatically implies that
Iu] := / f(x,u(x),Vu(x)) dx < oo
Q

for every u € Whp (Q; RN) .

Now we need some growth conditions on the derivatives of f.
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Growth conditions on the derivatives

Note that the p-growth conditions automatically implies that
Iu] := / f(x,u(x),Vu(x)) dx < oo
Q

for every u € Whp (Q; RN) .

Now we need some growth conditions on the derivatives of f.

Definition (Controllable p-growth conditions)
Let 1 < p < 0.
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Note that the p-growth conditions automatically implies that
Iu] := / f(x,u(x),Vu(x)) dx < oo
Q

for every u € Whp (Q; RN) .
Now we need some growth conditions on the derivatives of f.

Definition (Controllable p-growth conditions)
Let 1 < p < oco. A Carathéodory function f = f (x, u, &) is said to
satisfy controllable p-growth conditions



Growth conditions on the derivatives

Note that the p-growth conditions automatically implies that
Iu] := / f(x,u(x),Vu(x)) dx < oo
Q

for every u € Whp (Q; RN) .
Now we need some growth conditions on the derivatives of f.

Definition (Controllable p-growth conditions)

Let 1 < p < oco. A Carathéodory function f = f (x, u, &) is said to
satisfy controllable p-growth conditions if f,; and f; are
Carathéodory functions
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Note that the p-growth conditions automatically implies that
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Definition (Controllable p-growth conditions)

Let 1 < p < oco. A Carathéodory function f = f (x, u, &) is said to
satisfy controllable p-growth conditions if f,; and f; are
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Note that the p-growth conditions automatically implies that
Iu] := / f(x,u(x),Vu(x)) dx < oo
Q

for every u € Whp (Q; RN) .
Now we need some growth conditions on the derivatives of f.

Definition (Controllable p-growth conditions)

Let 1 < p < oco. A Carathéodory function f = f (x, u, &) is said to
satisfy controllable p-growth conditions if f,; and f; are
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Growth conditions on the derivatives

Note that the p-growth conditions automatically implies that
Iu] := / f(x,u(x),Vu(x)) dx < oo
Q

for every u € Whp (Q; RN) .

Now we need some growth conditions on the derivatives of f.

Definition (Controllable p-growth conditions)

Let 1 < p < oco. A Carathéodory function f = f (x, u, &) is said to

satisfy controllable p-growth conditions if f,; and f; are

Carathéodory functions for every 1 <i< Nand 1 <a < nand

these functions satisfy the estimates
IDuf (x,0,€)] < ax () + 8 (Jul” ™ +[¢P"™)
[Def (x,u,€)| < a2 () + B (Juf* ™" + 177

for a.e. x € Q and for every (u, &) € RN x RVN*" for some
ar,a; € L1 (Q) and 3 >0

(Gp,cont)
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Euler-Lagrange equations

Theorem (Euler-Lagrange equations)

Let n > 2,N > 1 be integers, Q C R" be open, bounded, smooth
and 1 < p < 0.
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Theorem (Euler-Lagrange equations)

Let n > 2,N > 1 be integers, Q C R" be open, bounded, smooth
and1 < p<oo. Let f: QxRN xRV R, f=f(x,u,§)
satisfy (Gp) and (Gp cont)-
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Theorem (Euler-Lagrange equations)

Let n > 2,N > 1 be integers, Q C R" be open, bounded, smooth
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satisfy (Gp) and (Gp.cont). Suppose i € ug + Wy P (4 RV) is a
minimizer for
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Euler-Lagrange equations

Theorem (Euler-Lagrange equations)

Let n > 2,N > 1 be integers, Q C R" be open, bounded, smooth
and1 < p<oo. Let f: QxRN xRV R, f =f(x,u,§)
satisfy (Gp) and (Gp.cont). Suppose i € ug + Wy P (4 RV) is a
minimizer for

inf{l[u] U+ WP (Q;RN)} =m
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Theorem (Euler-Lagrange equations)

Let n > 2,N > 1 be integers, Q C R" be open, bounded, smooth
and1 < p<oo. Let f: QxRN xRV R, f =f(x,u,§)
satisfy (Gp) and (Gp.cont). Suppose i € ug + Wy P (4 RV) is a
minimizer for
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Theorem (Euler-Lagrange equations)
Let n > 2,N > 1 be integers, Q C R" be open, bounded, smooth
and1 < p<oo. Let f: QxRN xRV R, f =f(x,u,§)

satisfy (Gp) and (Gp.cont). Suppose i € ug + Wy P (4 RV) is a
minimizer for

Euler-Lagrange Equations

ty of convexity and

inf{l[u] U+ WP (Q;RN)} =m
Then for every ¢ € W, P (Q;RV) , we have

/Q[<D§f(x, §,V0),V6) + (Duf (x, 5, Vi), $)] dx = 0.



Euler-Lagrange equations

Theorem (Euler-Lagrange equations)

Let n > 2,N > 1 be integers, Q C R" be open, bounded, smooth
and1 < p<oo. Let f: QxRN xRV R, f =f(x,u,§)
satisfy (Gp) and (Gp.cont). Suppose i € ug + Wy P (4 RV) is a
minimizer for

inf{l[u] U+ WP (Q;RN)} =m
Then for every ¢ € W, P (Q;RV) , we have
/ [(Def (x, 8, V), Vo) + (Duf (x, 8, V), $)] dx = 0.
Q

In other words, i is a ‘weak’ solution for the Dirichlet BVP for the
(system of) PDE

Introduction to the
Calculus of Variations

Swarnendu Sil




Euler-Lagrange equations o e

Calculus of Variations

Swarnendu Sil
Theorem (Euler-Lagrange equations)
Let n > 2,N > 1 be integers, Q C R" be open, bounded, smooth
and1 < p<oo. Let f: QxRN xRV R, f =f(x,u,§)

satisfy (Gp) and (Gp.cont). Suppose i € ug + Wy P (4 RV) is a
minimizer for

Dirichlet Integral

inf{l[u] U+ WP (Q;RN)} =m
Then for every ¢ € W, P (Q;RV) , we have
/ [(Def (x, 8, V), Vo) + (Duf (x, 8, V), $)] dx = 0.
Q

In other words, i is a ‘weak’ solution for the Dirichlet BVP for the
(system of) PDE

{div [Def (x,u, Vu)] = Dyf (x,u,Vu) inQ

u=u on 0f2.
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Proof. By (G,), we have | [+ 9] is well defined for every
e € R and every ¢ € Wol’P (4 RN).
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Proof. By (G,), we have | [+ 9] is well defined for every
€ € R and every ¢ € Wol’P (Q;RN) . Since & is a minimizer, we
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Proof. By (G,), we have | [+ 9] is well defined for every
€ € R and every ¢ € Wol’P (Q;RN) . Since & is a minimizer, we

must have

0= lim = (13 +<¢] - 15])

Introduction to the
Calculus of Variations

Swarnendu Sil

Dirichlet Integral

nds depending only

endence

grands with x and u

dependence

Euler-Lagrange Equations

of convexity and

ial calculus of

We

continuity of the
determinants




Proof. By (G,), we have | [+ 9] is well defined for every
€ € R and every ¢ € Wol’P (Q;RN) . Since & is a minimizer, we

must have

Now we compute

0= lim = (13 +<¢] - 15])
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Now we compute

(115 + 6]~ 1 [a])

/dx/ [F (x, 0 (x) + te6 (x), Vi (x) + V6 (x))] dt
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0 = lim = (I[a -+ ¢] — 1 [a])

Now we compute

(115 + 6]~ 1 [a])

- /dx/ [F (x, 0 (x) + te6 (x), Vi (x) + V6 (x))] dt
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Proof. By (G,), we have | [+ 9] is well defined for every Introduction to the
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e € R and every ¢ € WyP (Q;RN) . Since & is a minimizer, we Swarnendu Si
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0= lim = (13 +<¢] - 15])

Now we compute

(115 + 6]~ 1 [a])

/dx/ [F (x, 0 (x) + te6 (x), Vi (x) + V6 (x))] dt

—/Qg(x g) dx,

where

g (xe) = /01 [(Dgf(x,ﬁ—k te, Vi + teVo), Vo)

b (Duf (x, 1+ teg, Vi + £2V8), 6| O
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1, _
0= lim = (/{d+e¢] - /d])
Now we compute

(115 + 6]~ 1 [a])

/dx/ [F (x, 0 (x) + te6 (x), Vi (x) + V6 (x))] dt

—/Qg(x g) dx,

where

[N [(Def (x, T+ teg, Vi + teV) , Vo)
g (x.e) = /o [ F (Duf (x,0+ ted, Vi + teV ), ¢>} a

Clearly, all we need to prove is that we have

Ozsliinoé(l[Uangb]f/[ﬂ])zelim)/ﬂg(x,s)dX:/ lim g (x,e)dx.

Q&0



This will follow from dominated convergence theorem as soon as
we can establish a bound of g (x, ¢)
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This will follow from dominated convergence theorem as soon as
we can establish a bound of g (x, &) which is independent of ¢
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This will follow from dominated convergence theorem as soon as
we can establish a bound of g (x, &) which is independent of ¢ and

isin L1(Q).
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This will follow from dominated convergence theorem as soon as
we can establish a bound of g (x, &) which is independent of ¢ and
is in L' (). Using (Gp cont), we have
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This will follow from dominated convergence theorem as soon as nreduction to ihe
alculus o ariations

we can establish a bound of g (x, &) which is independent of ¢ and

is in L' (). Using (Gp cont), we have
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[(Duf (x, 0+ tep, Vi + teV), d)]
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This will follow from dominated convergence theorem as soon as
we can establish a bound of g (x, ) which is independent of £ and
is in L' (). Using (Gp cont), we have
[{Duf (x, 0+ tep, Vi + teV), ¢)]|
< laa| |¢] + Bl + tegP ™ |¢] + 5|V + eVl ||

and

[(Def (x, 0+ tep, Vi + teVe), V)|
< |ao| [Vo| + BT+ teg|P " |[Vo| + VT + teVp|P ! V).
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This will follow from dominated convergence theorem as soon as
we can establish a bound of g (x, ) which is independent of £ and
is in L' (). Using (Gp cont), we have

(Duf (x, i+ tep, Vi + teV ), d)|
< ay||p| + Bla+ ted|P | + B|VE + te V[Pt ||
and
|(Def (x, 0+ tep, Vi + teV), V)|
< ool V| + B |d + t5¢|p*1 V| + B|Vi+ tgv(b‘pﬂ Vo).

From this, it is easy to establish the uniform L! bound.
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This will follow from dominated convergence theorem as soon as
we can establish a bound of g (x, ) which is independent of £ and
is in L' (). Using (Gp cont), we have
[{Duf (x, 0+ tep, Vi + teV), ¢)]|
< laa| |¢] + Bl + tegP ™ |¢] + 5|V + eVl ||
and
[(Def (x, 0+ tep, Vi + teVe), V)|
< laa| V| + Ba+ te” " [Vl + 5|V + te Vol [V

From this, it is easy to establish the uniform L! bound. We just
show how to estimate the term coming from the last summand
above.
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[(Def (x, 0+ tep, Vi + teVe), V)|
< |ao| [Vo| + BT+ teg|P " |[Vo| + VT + teVp|P ! V).

From this, it is easy to establish the uniform L! bound. We just
show how to estimate the term coming from the last summand
above. Using Young's inequality and the triangle inequality,



This will follow from dominated convergence theorem as soon as
we can establish a bound of g (x, ) which is independent of £ and
is in L' (). Using (Gp cont), we have
[{Duf (x, 0+ tep, Vi + teV), ¢)]|
< laa| |¢] + Bl + tegP ™ |¢] + 5|V + eVl ||

and

[(Def (x, 0+ tep, Vi + teVe), V)|
< |ao| [Vo| + BT+ teg|P " |[Vo| + VT + teVp|P ! V).

From this, it is easy to establish the uniform L! bound. We just
show how to estimate the term coming from the last summand
above. Using Young's inequality and the triangle inequality, we
have
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This will follow from dominated convergence theorem as soon as
we can establish a bound of g (x, ) which is independent of £ and
is in L' (). Using (Gp cont), we have
[{Duf (x, 0+ tep, Vi + teV), ¢)]|
< laa| |¢] + Bl + tegP ™ |¢] + 5|V + eVl ||

and

[(Def (x, 0+ tep, Vi + teVe), V)|
< |ao| [Vo| + BT+ teg|P " |[Vo| + VT + teVp|P ! V).

From this, it is easy to establish the uniform L! bound. We just
show how to estimate the term coming from the last summand
above. Using Young's inequality and the triangle inequality, we
have

1 1
‘/ Vi + teVo|P Vol dt| < c/ (IVd+ teVolP + |Vo|?) dt
0 0
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This will follow from dominated convergence theorem as soon as nreduction to ihe
alculus o ariations

we can establish a bound of g (x, ) which is independent of £ and

is in L' (). Using (Gp cont), we have
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[(Duf (x, 0+ tep, Vi + teV) , §)|
< laa| |¢] + Bl + tegP ™ |¢] + 5|V + eVl ||
and

[(Def (x, 0+ tep, Vi + teVe), V)|
< |ao| [Vo| + BT+ teg|P " |[Vo| + VT + teVp|P ! V).

From this, it is easy to establish the uniform L! bound. We just
show how to estimate the term coming from the last summand
above. Using Young's inequality and the triangle inequality, we
have

1 1
‘/ Vi + teVo|P Vol dt| < c/ (IVd+ teVolP + |Vo|?) dt
0 0

1
< c/ (IVaP + |t=Vol” + [Vo[?) dt.
0



Now since we are interested in € — 0,




Now since we are interested in € — 0, we can assume || < 1.




Now since we are interested in ¢ — 0, we can assume |¢| < 1. So
we deduce from the last inequality,
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Now since we are interested in ¢ — 0, we can assume |¢| < 1. So
we deduce from the last inequality,

1
’/ Vi + teVo[P™" |Vo|dt
0

1
< c/ (IVaP + |t [Vol” + Vo) dt
0
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Now since we are interested in ¢ — 0, we can assume |¢| < 1. So
we deduce from the last inequality,

1
’/ Vi + teVo[P™" |Vo|dt
0

1
< c/ (IVal + |t Vol + [Vo[°) dt
0

1
< c/ (1Val® + (Vo + [Vol?) dt
0
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Now since we are interested in ¢ — 0, we can assume |¢| < 1. So
we deduce from the last inequality,

1
’/ Vi + teVo[P™" |Vo|dt
0

1
< c/ (IVal + |t Vol + [Vo[°) dt
0

1
< c/ (1Val® + (Vo + [Vol?) dt
0

<c(|Va]® +2|VeP).



Introduction to the
Calculus of Variations

Swarnendu Sil

Now since we are interested in ¢ — 0, we can assume |¢| < 1. So
we deduce from the last inequality,

1
’/ Vi + teVo[P™" |Vo|dt
0

1
< c/ (IVaP + |t [Vol” + Vo) dt
0

IN

1

¢ [ (9P +VolP + 967 ar
0

c(IVal® +2|Vel).

A

Now the RHS clearly is in L! ()
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Now since we are interested in € — 0, we can assume || < 1. So
we deduce from the last inequality,

1
’/ Vi + teVo[P™" |Vo|dt
0

1
< c/ (IVaP + |t [Vol” + Vo) dt
0

IN

1
¢ [ (9P +VolP + 967 ar
0

c(IVal® +2|Vel).

A

Now the RHS clearly is in L! (Q) since Vi1, V¢ € LP (Q; RN*") .
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Now since we are interested in € — 0, we can assume || < 1. So
we deduce from the last inequality,

1
’/ Vi + teVo[P™" |Vo|dt
0

1
< c/ (IVaP + |t [Vol” + Vo) dt
0

1

<c / (IVaP + Vol + Vo) dt
0

< c(VaP +2|Ve]).

Now the RHS clearly is in L! (Q) since Vi1, V¢ € LP (Q; RN*") .

Other terms can be estimated in a similar manner. This completes
the proof. O



Necessary condition for wlisc

In general, for sequential weak lower semicontinuity theorems,
convexity of the map £ — f (x, u,£) plays a crucial role.
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Necessary condition for wlisc

In general, for sequential weak lower semicontinuity theorems,
convexity of the map £ — f (x, u, ) plays a crucial role. We have
already seen that this is sufficient for sequential weak lower
semicontinuity assuming the usual lower bounds.
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Necessary condition for wlisc

In general, for sequential weak lower semicontinuity theorems,
convexity of the map £ — f (x, u, ) plays a crucial role. We have
already seen that this is sufficient for sequential weak lower
semicontinuity assuming the usual lower bounds. Is this a
necessary condition for wlsc?
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Necessary condition for wlisc

In general, for sequential weak lower semicontinuity theorems,
convexity of the map £ — f (x, u, ) plays a crucial role. We have
already seen that this is sufficient for sequential weak lower
semicontinuity assuming the usual lower bounds. Is this a
necessary condition for wlsc?

If eithern=10or N =1,
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Necessary condition for wlisc

In general, for sequential weak lower semicontinuity theorems,
convexity of the map £ — f (x, u, ) plays a crucial role. We have
already seen that this is sufficient for sequential weak lower
semicontinuity assuming the usual lower bounds. Is this a
necessary condition for wlsc?

If either n =1 or N = 1, this is indeed necessary as well.
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If either n =1 or N = 1, this is indeed necessary as well. However,

this is far from the case when n, N > 2.
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We do not have enough time left in the course to prove this result.




Necessary condition for wlisc

In general, for sequential weak lower semicontinuity theorems,
convexity of the map £ — f (x, u, ) plays a crucial role. We have
already seen that this is sufficient for sequential weak lower
semicontinuity assuming the usual lower bounds. Is this a
necessary condition for wlsc?

If either n =1 or N = 1, this is indeed necessary as well. However,
this is far from the case when n, N > 2. This case is usally referred
to the vectorial calculus of variations ( or the vectorial case in the
calculus of variations).

We do not have enough time left in the course to prove this result.
So we shall only state the result.
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Necessary condition for wlisc

In general, for sequential weak lower semicontinuity theorems,
convexity of the map £ — f (x, u, ) plays a crucial role. We have
already seen that this is sufficient for sequential weak lower
semicontinuity assuming the usual lower bounds. Is this a
necessary condition for wlsc?

If either n =1 or N = 1, this is indeed necessary as well. However,
this is far from the case when n, N > 2. This case is usally referred
to the vectorial calculus of variations ( or the vectorial case in the
calculus of variations).

We do not have enough time left in the course to prove this result.
So we shall only state the result.
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Theorem (Necessary condition for wlsc)
Let Q C R" be open.

Introduction to the
Calculus of Variations

Swarnendu Sil

Direct methods
Dirichlet Integral

Integrands depending only
on the gradient

Integrands with x
dependence

Integrands with x and u
dependence

Euler-Lagrange Equations

Necessity of convexity and
the vectorial calculus of
variations

Weak continuity of the
determinants

The End



Theorem (Necessary condition for wlsc)

Let Q C R" be open. Let f: Q x RN x RNX" R, f = f (x, u, &)
be a Carathéodory function satisfying
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Theorem (Necessary condition for wlsc)

Let Q C R" be open. Let f: Q x RN x RNX" R, f = f (x, u, &)
be a Carathéodory function satisfying

(x5 u,8) < a(x) + b(u,€)
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Theorem (Necessary condition for wlsc)

Let Q C R" be open. Let f: Q x RN x RNX" R, f = f (x, u, &)
be a Carathéodory function satisfying

(x5 u,8) < a(x) + b(u,€)

for a.e. x € Q and for every (u,&) € RN x RNxn,
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Theorem (Necessary condition for wlsc)

Let Q C R" be open. Let f: Q x RN x RNX" R, f = f (x, u, &)
be a Carathéodory function satisfying

(x5 u,8) < a(x) + b(u,€)

for a.e. x € Q and for every (u,¢) € RV x RN*" where a, b > 0,
ac *(R") and b e C (RN x RNV*n) .
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Theorem (Necessary condition for wlsc)

Let Q C R" be open. Let f: Q x RN x RNX" R, f = f (x, u, &)
be a Carathéodory function satisfying

(x5 u,8) < a(x) + b(u,€)

for a.e. x € Q and for every (u,¢) € RV x RN*" where a, b > 0,
ac*(R") and b e C (RN x RN*") | Let

1u] = 10, 9 ;:/Qf(m(x),vu(x)) dx
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Theorem (Necessary condition for wlsc)

Let Q C R" be open. Let f: Q x RN x RNX" R, f = f (x, u, &)
be a Carathéodory function satisfying

(x5 u,8) < a(x) + b(u,€)

for a.e. x € Q and for every (u,¢) € RV x RN*" where a, b > 0,
ac*(R") and b e C (RN x RN*") | Let

1u] = 10, 9 ;:/Qf(m(x),vu(x)) dx

and suppose there exists ug € W (Q; RV)
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Theorem (Necessary condition for wlsc)

Let Q C R" be open. Let f: Q x RN x RNX" R, f = f (x, u, &)
be a Carathéodory function satisfying

(x5 u,8) < a(x) + b(u,€)

for a.e. x € Q and for every (u,¢) € RV x RN*" where a, b > 0,
ac*(R") and b e C (RN x RN*") | Let

1u] = 10, 9 ;:/Qf(m(x),vu(x)) dx

and suppose there exists ug € W (Q; RY) such that
[ uo, Q] < 0.
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Theorem (Necessary condition for wlsc)

Let Q C R" be open. Let f: Q x RN x RNX" R, f = f (x, u, &)
be a Carathéodory function satisfying

(x5 u,8) < a(x) + b(u,€)

for a.e. x € Q and for every (u,¢) € RV x RN*" where a, b > 0,
ac*(R") and b e C (RN x RN*") | Let

1u] = 10, 9 ::/Qf(x7u(x),Vu(X)) dx

and suppose there exists ug € W (Q; RY) such that

I [ug, Q] < co. If | is sequentially weakly  lower semicontinuous in
Wl,oo (Q, RN) ;
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Theorem (Necessary condition for wlsc)

Let Q C R" be open. Let f: Q x RN x RNX" R, f = f (x, u, &)
be a Carathéodory function satisfying

(x5 u,8) < a(x) + b(u,€)

for a.e. x € Q and for every (u,¢) € RV x RN*" where a, b > 0,
ac*(R") and b e C (RN x RN*") | Let

1u] = 10, 9 ::/Qf(x7u(x),Vu(X)) dx

and suppose there exists ug € W (Q; RY) such that

I [ug, Q] < co. If | is sequentially weakly  lower semicontinuous in
Wwieo (Q;RN) , then

“17/Df(Xo,anfo + Vo (y)) dy = f (o, uo, &)

Introduction to the
Calculus of Variations

Swarnendu Sil




Theorem (Necessary condition for wlsc)

Let Q C R" be open. Let f: Q x RN x RNX" R, f = f (x, u, &)
be a Carathéodory function satisfying

(x5 u,8) < a(x) + b(u,€)

for a.e. x € Q and for every (u,¢) € RV x RN*" where a, b > 0,
ac*(R") and b e C (RN x RN*") | Let

1u] = 10, 9 ::/Qf(x7u(x),Vu(X)) dx

and suppose there exists ug € W (Q; RY) such that

I [ug, Q] < co. If | is sequentially weakly  lower semicontinuous in
Wwieo (Q;RN) , then

|D‘ / f(X07U07§0+V¢( )) dyz f(X()aangO)

for every bounded open set D C R",
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Theorem (Necessary condition for wlsc)

Let Q C R" be open. Let f: Q x RN x RNX" R, f = f (x, u, &)
be a Carathéodory function satisfying

(x5 u,8) < a(x) + b(u,€)

for a.e. x € Q and for every (u,¢) € RV x RN*" where a, b > 0,
ac*(R") and b e C (RN x RN*") | Let

1u] = 10, 9 ::/Qf(x7u(x),Vu(X)) dx

and suppose there exists ug € W (Q; RY) such that

I [ug, Q] < co. If | is sequentially weakly  lower semicontinuous in
Wwieo (Q;RN) , then

|D‘ / f(X07U07§0+V¢( )) dyz f(X()aangO)

for every bounded open set D C R", for a.e. xy € Q, for every
(u07£0) € RN X RNX”
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Theorem (Necessary condition for wlsc)

Let Q C R" be open. Let f: Q x RN x RNX" R, f = f (x, u, &)
be a Carathéodory function satisfying

(x5 u,8) < a(x) + b(u,€)

for a.e. x € Q and for every (u,¢) € RV x RN*" where a, b > 0,
ac*(R") and b e C (RN x RN*") | Let

1u] = 10, 9 ::/Qf(x7u(x),Vu(X)) dx

and suppose there exists ug € W (Q; RY) such that

I [ug, Q] < co. If | is sequentially weakly  lower semicontinuous in
Wwieo (Q;RN) , then

|D‘ / f(X07U07§0+V¢( )) dyz f(X()aangO)

for every bounded open set D C R", for a.e. xy € Q, for every
(uo, &) € RN x RN*" and for every ¢ € Wol’Oo (D;RM) .
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Quasiconvexity

The necessary condition above was introduced by Morrey.
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Quasiconvexity

The necessary condition above was introduced by Morrey. He also
showed that under some standard grwoth assumptions, this is also
sufficient.
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Quasiconvexity

The necessary condition above was introduced by Morrey. He also
showed that under some standard grwoth assumptions, this is also

sufficient.

Definition (Quasiconvexity)
Let f: Q x RN x RV*" R, f = f (x, u, &) be a Carathéodory

function.
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Quasiconvexity

The necessary condition above was introduced by Morrey. He also
showed that under some standard grwoth assumptions, this is also
sufficient.

Definition (Quasiconvexity)

Let f: Q x RN x RV*" R, f = f (x, u, &) be a Carathéodory
function. f is said to be quasiconvex if it satisfies
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Quasiconvexity

The necessary condition above was introduced by Morrey. He also
showed that under some standard grwoth assumptions, this is also
sufficient.

Definition (Quasiconvexity)

Let f: Q x RN x RV*" R, f = f (x, u, &) be a Carathéodory
function. f is said to be quasiconvex if it satisfies

57 L7 Gort. o+ Vo (1) dy = (0,0, )
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Quasiconvexity

The necessary condition above was introduced by Morrey. He also
showed that under some standard grwoth assumptions, this is also
sufficient.

Definition (Quasiconvexity)

Let f: Q x RN x RV*" R, f = f (x, u, &) be a Carathéodory
function. f is said to be quasiconvex if it satisfies

57 L7 Gort. o+ Vo (1) dy = (0,0, )

for every bounded open set D C R",
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Quasiconvexity

The necessary condition above was introduced by Morrey. He also
showed that under some standard grwoth assumptions, this is also
sufficient.

Definition (Quasiconvexity)

Let f: Q x RN x RV*" R, f = f (x, u, &) be a Carathéodory
function. f is said to be quasiconvex if it satisfies

57 L7 Gort. o+ Vo (1) dy = (0,0, )

for every bounded open set D C R", for a.e. xg € £,
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Quasiconvexity

The necessary condition above was introduced by Morrey. He also
showed that under some standard grwoth assumptions, this is also
sufficient.

Definition (Quasiconvexity)

Let f: Q x RN x RV*" R, f = f (x, u, &) be a Carathéodory
function. f is said to be quasiconvex if it satisfies

57 L7 Gort. o+ Vo (1) dy = (0,0, )

for every bounded open set D C R”, for a.e. xp € £, for every
(up, &) € RN x RVxn
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Quasiconvexity

The necessary condition above was introduced by Morrey. He also
showed that under some standard grwoth assumptions, this is also
sufficient.

Definition (Quasiconvexity)

Let f: Q x RN x RV*" R, f = f (x, u, &) be a Carathéodory
function. f is said to be quasiconvex if it satisfies

57 L7 Gort. o+ Vo (1) dy = (0,0, )

for every bounded open set D C R”, for a.e. xp € €2, for every
(up, &) € RN x RVX" and for every ¢ € Wol’Oo (D;RN).
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The necessary condition above was introduced by Morrey. He also
showed that under some standard grwoth assumptions, this is also
sufficient.

Definition (Quasiconvexity) fulertaganee B

Necessity of convexity and
, the vectorial calculus of

Let f: Q x RN x RV*" R, f = f (x, u, &) be a Carathéodory ratiors

function. f is said to be quasiconvex if it satisfies deerminants

57 L7 Gort. o+ Vo (1) dy = (0,0, )

for every bounded open set D C R”, for a.e. xp € €2, for every
(up, &) € RN x RVX" and for every ¢ € Wol’Oo (D;RN).

Let us now show in a simple setting that

convexity = quasiconvexity.



Proposition (convexity implies quasiconvexity)
Let f : RNX" 5 R, f = f (£) be continuous.
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Proposition (convexity implies quasiconvexity)

Let f : RNX" R, f = f (£¢) be continuous. Then we have

f convex

=

f quasiconvex.
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Proposition (convexity implies quasiconvexity)
Let f : RNX" R, f = f (£¢) be continuous. Then we have

f convex = f quasiconvex.

Proof. Note that for any bounded open set D C R”
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Proposition (convexity implies quasiconvexity)
Let f : RNX" R, f = f (£¢) be continuous. Then we have

f convex = f quasiconvex.

Proof. Note that for any bounded open set D C R” and any
¢ € W™ (D;RY),
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Let f : RNX" R, f = f (£¢) be continuous. Then we have

f convex = f quasiconvex.

Proof. Note that for any bounded open set D C R” and any
b e Wy™ (D; RN) | integrating by parts we deduce,
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for every 1 </ < N and every 1 < a < n. Thus, we obtain

1
|D|/Dv¢>(y) dy = 0.
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Proof. Note that for any bounded open set D C R” and any
b e Wy™ (D; RN) | integrating by parts we deduce,

o' ; 0
)y == [ G5 () dy=0

for every 1 </ < N and every 1 < a < n. Thus, we obtain

1
|D|/Dv¢>(y) dy = 0.

Since f is convex, by Jensen's inequality, for any & € RV*" we
deduce

1
o1 e+ Tou ar= 7 (5 [ 10+ 7000 &) = ().

This proves f is quasiconvex. U
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However, quasiconvexity generally is hard to check. There is a
pointwise condition that is implied by quasiconvexity.
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Rank one convexity

However, quasiconvexity generally is hard to check. There is a
pointwise condition that is implied by quasiconvexity.

Definition (Rank one convexity)
A function f : RNX" 5 R, f = f (&)
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Rank one convexity

However, quasiconvexity generally is hard to check. There is a
pointwise condition that is implied by quasiconvexity.

Definition (Rank one convexity)
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for every a € R",
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However, quasiconvexity generally is hard to check. There is a
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However, quasiconvexity generally is hard to check. There is a
pointwise condition that is implied by quasiconvexity. .

Definition (Rank one convexity)
A function f : RNX" R, f = f (£) is called rank one convex if
for every a € R", every b € RN and every ¢ € RV*", the function ety o ety and

the vectorial calculus of
variations
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A function f : RNX" R, f = f (£) is called rank one convex if
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However, quasiconvexity generally is hard to check. There is a
pointwise condition that is implied by quasiconvexity.

Definition (Rank one convexity)

A function f : RNX" R, f = f (£) is called rank one convex if
for every a € R", every b € RN and every ¢ € RV*", the function

g(t):=f(E+ta®b)

is convex in t.

Note that for an N x n matrix X,

rank(X)=1ifandonlyif X =a® b
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However, quasiconvexity generally is hard to check. There is a
pointwise condition that is implied by quasiconvexity.

Definition (Rank one convexity)

A function f : RNX" R, f = f (£) is called rank one convex if
for every a € R", every b € RN and every ¢ € RV*", the function

g(t):=f(E+ta®b)

is convex in t.
Note that for an N x n matrix X,

rank(X)=1ifandonlyif X =a® b
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Rank one convexity

However, quasiconvexity generally is hard to check. There is a
pointwise condition that is implied by quasiconvexity.

Definition (Rank one convexity)

A function f : RNX" R, f = f (£) is called rank one convex if
for every a € R", every b € RN and every ¢ € RV*", the function

g(t):=f(E+ta®b)

is convex in t.
Note that for an N x n matrix X,

rank(X)=1ifandonlyif X =a® b

for some a € R", b € RN. Thus this is convexity along rank one
matrices.
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However, quasiconvexity generally is hard to check. There is a
pointwise condition that is implied by quasiconvexity.

Definition (Rank one convexity)

A function f : RNX" R, f = f (£) is called rank one convex if
for every a € R", every b € RN and every ¢ € RV*", the function

g(t):=f(E+ta®b)

is convex in t.
Note that for an N x n matrix X,

rank(X)=1ifandonlyif X =a® b

for some a € R", b € RN. Thus this is convexity along rank one
matrices.
It can be proved that
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However, quasiconvexity generally is hard to check. There is a
pointwise condition that is implied by quasiconvexity.

Definition (Rank one convexity)

A function f : RNX" R, f = f (£) is called rank one convex if
for every a € R", every b € RN and every ¢ € RV*", the function

Euler-Lagrange Equations
Necessity of convexity and
the vectorial calculus of
variations

g(t):=f(E+ta®b)

is convex in t.
Note that for an N x n matrix X,

rank(X)=1ifandonlyif X =a® b

for some a € R", b € RN. Thus this is convexity along rank one
matrices.
It can be proved that

f quasiconvex = f rank one convex .



The determinant

Now we give an example of a function which is rank one convex
but not convex.
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Now we give an example of a function which is rank one convex
but not convex.

Example
Let n=N=2.
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The determinant

Now we give an example of a function which is rank one convex

but not convex.

Example

Let n= N = 2. Let f : R2*2 5 R be defined as

f(€) = det&.

Introduction to the
Calculus of Variations

Swarnendu Sil

Dirichlet Integral

nds depending only

pendence

grands with x and u
dependence
Euler-Lagrange Equations
Necessity of convexity and
the vectorial calculus of
variations

Weak continuity of the
determinants




The determinant

Now we give an example of a function which is rank one convex
but not convex.

Example
Let n = N = 2. Let f : R?*2 — R be defined as

f(€) = det&.
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The determinant

Now we give an example of a function which is rank one convex

but not convex.

Example

Let n= N = 2. Let f : R2*2 5 R be defined as

Then f is rank one convex but not convex.

Indeed, we have

f(€) = det&.
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The determinant

Now we give an example of a function which is rank one convex
but not convex.

Example
Let n = N = 2. Let f : R?*2 — R be defined as

f(€) = det&.

Then f is rank one convex but not convex.

Indeed, we have

§u1 +tarhy &o+taibo
&o1 + taghy  Eon + tashs
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The determinant

Now we give an example of a function which is rank one convex
but not convex.

Example
Let n = N = 2. Let f : R?*2 — R be defined as

f(€) = det&.

Then f is rank one convex but not convex.

Indeed, we have

§u1 +tarhy &o+taibo
&o1 + taghy  Eon + tashs

= (&1&22 — &12801) + t(a2b2&11 + a1b1&a2 — asb1&12 — a1b2821) -
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The determinant

Now we give an example of a function which is rank one convex
but not convex.

Example
Let n = N = 2. Let f : R?*2 — R be defined as

f(€) = det&.

Then f is rank one convex but not convex.

Indeed, we have

§u1 +tarhy &o+taibo
&o1 + taghy  Eon + tashs

= (&1&22 — &12801) + t(a2b2&11 + a1b1&a2 — asb1&12 — a1b2821) -

This is clearly affine in t.
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The determinant

Now we give an example of a function which is rank one convex
but not convex.

Example
Let n = N = 2. Let f : R?*2 — R be defined as

f(€) = det&.

Then f is rank one convex but not convex.

Indeed, we have

det §u1 +tarhy &o+taibo
&o1 + taghy  Eon + tashs

= (&1&22 — &12801) + t(a2b2&11 + a1b1&a2 — asb1&12 — a1b2821) -

This is clearly affine in t. But clearly, for any A € (0,1),
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but not convex.
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Let n = N = 2. Let f : R?*2 — R be defined as

f(€) = det&.

Then f is rank one convex but not convex.

Indeed, we have

det §u1 +tarhy &o+taibo
&o1 + taghy  Eon + tashs

= (&1&22 — &12801) + t(a2b2&11 + a1b1&a2 — asb1&12 — a1b2821) -
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Now we shall show that the determinant is not only rank one
affine,
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Weak continuity of the determinants

Now we shall show that the determinant is not only rank one
affine, but actually also quasiaffine.
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Now we shall show that the determinant is not only rank one
affine, but actually also quasiaffine. Moreover, it is also weakly

continuous.
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Weak continuity of the determinants

Now we shall show that the determinant is not only rank one
affine, but actually also quasiaffine. Moreover, it is also weakly

continuous.

Proposition
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Weak continuity of the determinants

Now we shall show that the determinant is not only rank one
affine, but actually also quasiaffine. Moreover, it is also weakly
continuous.

Proposition
Let Q C R?. Let {us} 5, C WP (Q,R?)
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Weak continuity of the determinants

Now we shall show that the determinant is not only rank one
affine, but actually also quasiaffine. Moreover, it is also weakly
continuous.

Proposition
Let Q C R?. Let {us},~, C WP (Q,R?) such that

Us — u in WhP (Q,R2)
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Weak continuity of the determinants

Now we shall show that the determinant is not only rank one
affine, but actually also quasiaffine. Moreover, it is also weakly
continuous.

Proposition
Let Q C R?. Let {us},~, C WP (Q,R?) such that

Us — u in WhP (Q,R2)

for some 2 < p < c.
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Weak continuity of the determinants

Now we shall show that the determinant is not only rank one
affine, but actually also quasiaffine. Moreover, it is also weakly
continuous.

Proposition
Let Q C R?. Let {us},~, C WP (Q,R?) such that

Us — u in WhP (Q,R2)

for some 2 < p < oo. Then up to the extraction of a subsequence,
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Now we shall show that the determinant is not only rank one
affine, but actually also quasiaffine. Moreover, it is also weakly
continuous.

Proposition
Let Q C R?. Let {us},~, C WP (Q,R?) such that
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for some 2 < p < oo. Then up to the extraction of a subsequence,

det Vu, — det Vu in L2 (Q).



Weak continuity of the determinants

Now we shall show that the determinant is not only rank one
affine, but actually also quasiaffine. Moreover, it is also weakly
continuous.

Proposition
Let Q C R?. Let {us},~, C WP (Q,R?) such that

Us — u in WhP (Q,R2)
for some 2 < p < oo. Then up to the extraction of a subsequence,

det Vu, — det Vu in L2 (Q).

Proof.
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Weak continuity of the determinants

Now we shall show that the determinant is not only rank one
affine, but actually also quasiaffine. Moreover, it is also weakly
continuous.

Proposition
Let Q C R?. Let {us},~, C WP (Q,R?) such that

Us — u in WhP (Q,R2)
for some 2 < p < oo. Then up to the extraction of a subsequence,

det Vu, — det Vu in L2 (Q).

Proof. By Holder inequality, it is easy to show that det Vus is
uniformly bounded in L2 (Q)
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Weak continuity of the determinants

Now we shall show that the determinant is not only rank one
affine, but actually also quasiaffine. Moreover, it is also weakly
continuous.

Proposition
Let Q C R?. Let {us},~, C WP (Q,R?) such that

Us — u in WhP (Q,R2)
for some 2 < p < oo. Then up to the extraction of a subsequence,

det Vu, — det Vu in L2 (Q).

Proof. By Holder inequality, it is easy to show that det Vus is
uniformly bounded in L2 (Q) and thus up to the extraction of a
subsequence, this converges weakly in L? to a weak limit.
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Weak continuity of the determinants

Now we shall show that the determinant is not only rank one
affine, but actually also quasiaffine. Moreover, it is also weakly
continuous.

Proposition
Let Q C R?. Let {us},~, C WP (Q,R?) such that
Us — u in WhP (Q,R2)
for some 2 < p < oo. Then up to the extraction of a subsequence,

det Vu, — det Vu in L2 (Q).

Proof. By Holder inequality, it is easy to show that det Vus is

uniformly bounded in L2 (Q) and thus up to the extraction of a

subsequence, this converges weakly in L? to a weak limit. So we
just have to identify the weak limit.
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So it is enough to show that for every ¢ € C2° (2), we have,

Q

det Vus (x) 9 (x) dx — /Qdet Vu(x)y(x) dx.
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So it is enough to show that for every ¢ € C2° (2), we have,

/QdetVuS (x) ¢ (x) dx—>/QdetVu(x)z/J(x) dx.

Now if ug is C2,
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So it is enough to show that for every ¢ € C2° (2), we have,

/QdetVuS (x) ¢ (x) dx—>/QdetVu(x)z/J(x) dx.
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The last identity is truw for us in WP as well, by density.
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This is enough to prove the result by another integration by parts.
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The second term converges to zero by definition of weak
convergence in LP
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The second term converges to zero by definition of weak
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The RHS clearly goes to zero as Vus is uniformly bounded in L
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