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Euler-Lagrange equations

Now we want to derive the Euler-Lagrange equation satisfied by a
minimizer.

But this would require certain regularity of the
integrand f . So far, we have only worked with the assumption that
f is a Carathéodory function satisfying some coercivity conditions.
Now we need to assume something more, which are called growth
conditions. These tells us how |f (x , u, ξ)| grows when
|u| , |ξ| → ∞.

Definition (Growth condition on f )

Let 1 < p <∞. A Carathéodory function

f : Ω× RN × RN×n → R, f = f (x , u, ξ)

is said to satisfy p-growth conditions if there exists α ∈ L1 (Ω)
and β ≥ 0 such that

|f (x , u, ξ)| ≤ α (x) + β
(
|u|p + |ξ|p

)
(Gp)

for a.e. x ∈ Ω and for every (u, ξ) ∈ RN × RN×n.
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Growth conditions on the derivatives

Note that the p-growth conditions automatically implies that

I [u] :=

ˆ
Ω

f (x , u (x) ,∇u (x)) dx <∞

for every u ∈W 1,p
(
Ω;RN

)
.

Now we need some growth conditions on the derivatives of f .

Definition (Controllable p-growth conditions)

Let 1 < p <∞. A Carathéodory function f = f (x , u, ξ) is said to
satisfy controllable p-growth conditions if fui and fξiα are
Carathéodory functions for every 1 ≤ i ≤ N and 1 ≤ α ≤ n and
these functions satisfy the estimates

|Duf (x , u, ξ)| ≤ α1 (x) + β
(
|u|p−1 + |ξ|p−1

)
|Dξf (x , u, ξ)| ≤ α2 (x) + β

(
|u|p−1 + |ξ|p−1

)
 (Gp,cont)

for a.e. x ∈ Ω and for every (u, ξ) ∈ RN × RN×n for some
α1, α2 ∈ L1 (Ω) and β ≥ 0
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Let 1 < p <∞. A Carathéodory function f = f (x , u, ξ) is said to
satisfy controllable p-growth conditions if fui and fξiα are
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Theorem (Euler-Lagrange equations)

Let n ≥ 2,N ≥ 1 be integers, Ω ⊂ Rn be open, bounded, smooth
and 1 < p <∞.

Let f : Ω× RN × RN×n → R, f = f (x , u, ξ)
satisfy (Gp) and (Gp,cont). Suppose ū ∈ u0 + W 1,p

0

(
Ω;RN

)
is a

minimizer for

inf
{
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Proof. By (Gp),

we have I [ū + εφ] is well defined for every

ε ∈ R and every φ ∈W 1,p
0

(
Ω;RN

)
. Since ū is a minimizer, we

must have

0 = lim
ε→0

1

ε
(I [ū + εφ]− I [ū])

Now we compute

1

ε
(I [ū + εφ]− I [ū])

=
1

ε

ˆ
Ω

dx

ˆ 1

0

d

dt
[f (x , ū (x) + tεφ (x) ,∇ū (x) + tε∇φ (x))]dt

=

ˆ
Ω

g (x , ε)dx ,

where

g (x , ε) :=

ˆ 1

0

[
〈Dξf (x , ū + tεφ,∇ū + tε∇φ) ,∇φ〉

+ 〈Duf (x , ū + tεφ,∇ū + tε∇φ) , φ〉

]
dt

Clearly, all we need to prove is that we have

0 = lim
ε→0

1

ε
(I [ū + εφ]− I [ū]) = lim

ε→0

ˆ
Ω

g (x , ε)dx =

ˆ
Ω

lim
ε→0

g (x , ε)dx .
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(I [ū + εφ]− I [ū]) = lim
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ε→0

ˆ
Ω

g (x , ε)dx =

ˆ
Ω

lim
ε→0

g (x , ε)dx .



Introduction to the
Calculus of Variations

Swarnendu Sil

Direct methods

Dirichlet Integral

Integrands depending only
on the gradient

Integrands with x
dependence

Integrands with x and u
dependence

Euler-Lagrange Equations

Necessity of convexity and
the vectorial calculus of
variations

Weak continuity of the
determinants

The End
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ε→0

ˆ
Ω

g (x , ε)dx =

ˆ
Ω

lim
ε→0

g (x , ε)dx .



Introduction to the
Calculus of Variations

Swarnendu Sil

Direct methods

Dirichlet Integral

Integrands depending only
on the gradient

Integrands with x
dependence

Integrands with x and u
dependence

Euler-Lagrange Equations

Necessity of convexity and
the vectorial calculus of
variations

Weak continuity of the
determinants

The End
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=

ˆ
Ω

g (x , ε)dx ,

where

g (x , ε) :=

ˆ 1

0

[
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Now we compute

1

ε
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ε→0

ˆ
Ω

g (x , ε)dx =

ˆ
Ω

lim
ε→0

g (x , ε)dx .



Introduction to the
Calculus of Variations

Swarnendu Sil

Direct methods

Dirichlet Integral

Integrands depending only
on the gradient

Integrands with x
dependence

Integrands with x and u
dependence

Euler-Lagrange Equations

Necessity of convexity and
the vectorial calculus of
variations

Weak continuity of the
determinants

The End

Proof. By (Gp), we have I [ū + εφ] is well defined for every

ε ∈ R and every φ ∈W 1,p
0

(
Ω;RN

)
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show how to estimate the term coming from the last summand
above. Using Young’s inequality and the triangle inequality, we
have∣∣∣∣ˆ 1

0

|∇ū + tε∇φ|p−1 |∇φ|dt
∣∣∣∣ ≤ c

ˆ 1

0

(
|∇ū + tε∇φ|p + |∇φ|p

)
dt

≤ c

ˆ 1

0

(
|∇ū|p + |tε∇φ|p + |∇φ|p

)
dt.
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From this, it is easy to establish the uniform L1 bound. We just
show how to estimate the term coming from the last summand
above. Using Young’s inequality and the triangle inequality, we
have∣∣∣∣ˆ 1

0
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and
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From this, it is easy to establish the uniform L1 bound. We just
show how to estimate the term coming from the last summand
above. Using Young’s inequality and the triangle inequality, we
have∣∣∣∣ˆ 1

0
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|∇ū + tε∇φ|p + |∇φ|p

)
dt

≤ c

ˆ 1

0

(
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Now since we are interested in ε→ 0,

we can assume |ε| ≤ 1. So
we deduce from the last inequality,∣∣∣∣ˆ 1

0

|∇ū + tε∇φ|p−1 |∇φ|dt
∣∣∣∣

≤ c

ˆ 1

0

(
|∇ū|p + |tε|p |∇φ|p + |∇φ|p

)
dt

≤ c

ˆ 1

0

(
|∇ū|p + |∇φ|p + |∇φ|p

)
dt

≤ c
(
|∇ū|p + 2 |∇φ|p

)
.

Now the RHS clearly is in L1 (Ω) since ∇ū,∇φ ∈ Lp
(
Ω;RN×n) .

Other terms can be estimated in a similar manner. This completes
the proof.
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|∇ū|p + |∇φ|p + |∇φ|p

)
dt

≤ c
(
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Necessary condition for wlsc

In general, for sequential weak lower semicontinuity theorems,
convexity of the map ξ 7→ f (x , u, ξ) plays a crucial role.

We have
already seen that this is sufficient for sequential weak lower
semicontinuity assuming the usual lower bounds. Is this a
necessary condition for wlsc?

If either n = 1 or N = 1, this is indeed necessary as well. However,
this is far from the case when n,N ≥ 2. This case is usally referred
to the vectorial calculus of variations ( or the vectorial case in the
calculus of variations).
We do not have enough time left in the course to prove this result.
So we shall only state the result.
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Theorem (Necessary condition for wlsc)

Let Ω ⊂ Rn be open.

Let f : Ω× RN × RN×n → R, f = f (x , u, ξ)
be a Carathéodory function satisfying

|f (x , u, ξ)| ≤ a (x) + b (u, ξ)

for a.e. x ∈ Ω and for every (u, ξ) ∈ RN × RN×n, where a, b ≥ 0,
a ∈ L1 (Rn) and b ∈ C

(
RN × RN×n) . Let

I [u] = I [u,Ω] :=

ˆ
Ω

f (x , u (x) ,∇u (x)) dx

and suppose there exists u0 ∈W 1,∞ (Ω;RN
)

such that
I [u0,Ω] <∞. If I is sequentially weakly ∗ lower semicontinuous in
W 1,∞ (Ω;RN

)
, then

1

|D|

ˆ
D

f (x0, u0, ξ0 +∇φ (y)) dy ≥ f (x0, u0, ξ0)

for every bounded open set D ⊂ Rn, for a.e. x0 ∈ Ω, for every
(u0, ξ0) ∈ RN × RN×n and for every φ ∈W 1,∞

0

(
D;RN

)
.
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be a Carathéodory function satisfying

|f (x , u, ξ)| ≤ a (x) + b (u, ξ)

for a.e. x ∈ Ω and for every (u, ξ) ∈ RN × RN×n, where a, b ≥ 0,
a ∈ L1 (Rn) and b ∈ C

(
RN × RN×n) . Let

I [u] = I [u,Ω] :=

ˆ
Ω

f (x , u (x) ,∇u (x)) dx

and suppose there exists u0 ∈W 1,∞ (Ω;RN
)

such that
I [u0,Ω] <∞. If I is sequentially weakly ∗ lower semicontinuous in
W 1,∞ (Ω;RN

)
, then

1

|D|

ˆ
D

f (x0, u0, ξ0 +∇φ (y)) dy ≥ f (x0, u0, ξ0)

for every bounded open set D ⊂ Rn, for a.e. x0 ∈ Ω, for every
(u0, ξ0) ∈ RN × RN×n and for every φ ∈W 1,∞

0

(
D;RN

)
.



Introduction to the
Calculus of Variations

Swarnendu Sil

Direct methods

Dirichlet Integral

Integrands depending only
on the gradient

Integrands with x
dependence

Integrands with x and u
dependence

Euler-Lagrange Equations

Necessity of convexity and
the vectorial calculus of
variations

Weak continuity of the
determinants

The End

Theorem (Necessary condition for wlsc)

Let Ω ⊂ Rn be open. Let f : Ω× RN × RN×n → R, f = f (x , u, ξ)
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be a Carathéodory function satisfying

|f (x , u, ξ)| ≤ a (x) + b (u, ξ)

for a.e. x ∈ Ω and for every (u, ξ) ∈ RN × RN×n, where a, b ≥ 0,
a ∈ L1 (Rn) and b ∈ C

(
RN × RN×n) . Let

I [u] = I [u,Ω] :=

ˆ
Ω

f (x , u (x) ,∇u (x)) dx

and suppose there exists u0 ∈W 1,∞ (Ω;RN
)

such that
I [u0,Ω] <∞. If I is sequentially weakly ∗ lower semicontinuous in
W 1,∞ (Ω;RN

)
, then

1

|D|

ˆ
D

f (x0, u0, ξ0 +∇φ (y)) dy ≥ f (x0, u0, ξ0)

for every bounded open set D ⊂ Rn, for a.e. x0 ∈ Ω, for every
(u0, ξ0) ∈ RN × RN×n

and for every φ ∈W 1,∞
0

(
D;RN

)
.



Introduction to the
Calculus of Variations

Swarnendu Sil

Direct methods

Dirichlet Integral

Integrands depending only
on the gradient

Integrands with x
dependence

Integrands with x and u
dependence

Euler-Lagrange Equations

Necessity of convexity and
the vectorial calculus of
variations

Weak continuity of the
determinants

The End

Theorem (Necessary condition for wlsc)

Let Ω ⊂ Rn be open. Let f : Ω× RN × RN×n → R, f = f (x , u, ξ)
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The necessary condition above was introduced by Morrey.

He also
showed that under some standard grwoth assumptions, this is also
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Proposition (convexity implies quasiconvexity)

Let f : RN×n → R, f = f (ξ) be continuous.

Then we have

f convex ⇒ f quasiconvex.

Proof. Note that for any bounded open set D ⊂ Rn and any
φ ∈W 1,∞

0

(
D;RN

)
, integrating by parts we deduce,

ˆ
D

∂φi

∂xα
(y) dy = −

ˆ
D

φi (y)
∂

∂xα
(1) dy = 0

for every 1 ≤ i ≤ N and every 1 ≤ α ≤ n. Thus, we obtain

1

|D|

ˆ
D

∇φ (y) dy = 0.

Since f is convex, by Jensen’s inequality, for any ξ0 ∈ RN×n, we
deduce

1

|D|

ˆ
D

f (ξ0 +∇φ (y)) dy ≥ f

(
1

|D|

ˆ
D

[ξ0 +∇φ (y)] dy

)
= f (ξ0) .

This proves f is quasiconvex.
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Proof. Note that for any bounded open set D ⊂ Rn and any
φ ∈W 1,∞

0

(
D;RN

)
, integrating by parts we deduce,

ˆ
D

∂φi

∂xα
(y) dy = −

ˆ
D

φi (y)
∂

∂xα
(1) dy = 0

for every 1 ≤ i ≤ N and every 1 ≤ α ≤ n. Thus, we obtain

1

|D|

ˆ
D

∇φ (y) dy = 0.

Since f is convex, by Jensen’s inequality, for any ξ0 ∈ RN×n, we
deduce

1

|D|

ˆ
D

f (ξ0 +∇φ (y)) dy ≥ f

(
1

|D|

ˆ
D

[ξ0 +∇φ (y)] dy

)
= f (ξ0) .

This proves f is quasiconvex.
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Rank one convexity

However, quasiconvexity generally is hard to check.

There is a
pointwise condition that is implied by quasiconvexity.

Definition (Rank one convexity)

A function f : RN×n → R, f = f (ξ) is called rank one convex if
for every a ∈ Rn, every b ∈ RN and every ξ ∈ RN×n, the function

g (t) := f (ξ + ta⊗ b)

is convex in t.

Note that for an N × n matrix X ,

rank (X ) = 1 if and only if X = a⊗ b

for some a ∈ Rn, b ∈ RN . Thus this is convexity along rank one
matrices.
It can be proved that

f quasiconvex ⇒ f rank one convex .
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The determinant

Now we give an example of a function which is rank one convex
but not convex.

Example

Let n = N = 2. Let f : R2×2 → R be defined as

f (ξ) = det ξ.

Then f is rank one convex but not convex.

Indeed, we have

det

(
ξ11 + ta1b1 ξ12 + ta1b2

ξ21 + ta2b1 ξ22 + ta2b2

)
= (ξ11ξ22 − ξ12ξ21) + t (a2b2ξ11 + a1b1ξ22 − a2b1ξ12 − a1b2ξ21) .

This is clearly affine in t. But clearly, for any λ ∈ (0, 1),

λ (1− λ) = det

(
λ 0

0 1− λ

)
> λ det

(
1 0

0 0

)
+ (1− λ) det

(
0 0

0 1

)
= 0.
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This is clearly affine in t. But clearly, for any λ ∈ (0, 1),

λ (1− λ) = det

(
λ 0

0 1− λ

)
> λ det

(
1 0

0 0

)
+ (1− λ) det

(
0 0

0 1

)
= 0.
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Now we shall show that the determinant is not only rank one
affine,

but actually also quasiaffine. Moreover, it is also weakly
continuous.

Proposition

Let Ω ⊂ R2. Let {us}s≥1 ⊂W 1,p
(
Ω,R2

)
such that

us ⇀ u in W 1,p
(
Ω,R2

)
for some 2 < p <∞. Then up to the extraction of a subsequence,

det∇us ⇀ det∇u in L
p
2 (Ω) .

Proof. By Hölder inequality, it is easy to show that det∇us is
uniformly bounded in L

p
2 (Ω) and thus up to the extraction of a

subsequence, this converges weakly in L
p
2 to a weak limit. So we

just have to identify the weak limit.
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So it is enough to show that for every ψ ∈ C∞c (Ω) ,

we have,

ˆ
Ω

det∇us (x)ψ (x) dx →
ˆ

Ω

det∇u (x)ψ (x) dx .

Now if us is C 2, we have

det∇us =
∂u1

s

∂x1

∂u2
s

∂x2
− ∂u1

s

∂x2

∂u2
s

∂x1

=
∂

∂x1

(
u1
s

∂u2
s

∂x2

)
+

∂

∂x2

(
−u1

s

∂u2
s

∂x1

)
= div

(
u1
s

∂u2
s

∂x2
,−u1

s

∂u2
s

∂x1

)
.

So integrating by parts, we obtain

ˆ
Ω

det∇us (x)ψ (x) dx =

ˆ
Ω

div

(
u1
s

∂u2
s

∂x2
,−u1

s

∂u2
s

∂x1

)
(x)ψ (x) dx

= −
ˆ

Ω

〈(
u1
s

∂u2
s

∂x2
,−u1

s

∂u2
s

∂x1

)
(x) ,∇ψ (x)

〉
dx
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The second term converges to zero by definition of weak
convergence in Lp

and the fact that

∇us ⇀ ∇u in Lp.

Now we can estimate∣∣∣∣ˆ
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(
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s − u1

) ∂u2
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∂ψ

∂x1
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∣∣∣∣ ≤ ∥∥u1
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∥∥
Lp
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s

∂x2

∥∥∥∥
Lp

‖∇ψ‖L∞ .

The RHS clearly goes to zero as ∇us is uniformly bounded in Lp

and the strong convergence us → u in Lp. This completes the
proof.
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