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Scorza-Dragoni theorem

Proving a weak lower semicontinuity result in the general case is
quite delicate and we need some preparations.
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Proving a weak lower semicontinuity result in the general case is
quite delicate and we need some preparations. First, we need a
generalization of the classical Lusin's theorem for Carathéodory
functions. Measurable dependence on x creates difficulties in
handling, so we improve measurability to continuity at the cost of B
leaving out a set of controlled small measure. Feee o




Scorza-Dragoni theorem o e

Calculus of Variations

Swarnendu Sil

Proving a weak lower semicontinuity result in the general case is
quite delicate and we need some preparations. First, we need a
generalization of the classical Lusin's theorem for Carathéodory
functions. Measurable dependence on x creates difficulties in
handling, so we improve measurability to continuity at the cost of AN
leaving out a set of controlled small measure. F

Euler-La

of minimizer

Theorem (Scorza-Dragoni)
Let Q C R" be bounded and measurable



Introduction to the

Scorza-Dragoni theorem Calculus of Variations

Swarnendu Sil

Proving a weak lower semicontinuity result in the general case is
quite delicate and we need some preparations. First, we need a
generalization of the classical Lusin's theorem for Carathéodory
functions. Measurable dependence on x creates difficulties in
handling, so we improve measurability to continuity at the cost of Wenk lover semicontinaty
leaving out a set of controlled small measure. Feee o

Theorem (Scorza-Dragoni)

Let Q C R" be bounded and measurable and let S ¢ RM pe
compact.



Scorza-Dragoni theorem o e

Calculus of Variations

Swarnendu Sil

Proving a weak lower semicontinuity result in the general case is
quite delicate and we need some preparations. First, we need a
generalization of the classical Lusin's theorem for Carathéodory
functions. Measurable dependence on x creates difficulties in "
handling, so we improve measurability to continuity at the cost of e

Weak lower semicontinuity

leaving out a set of controlled small measure. F

Theorem (Scorza-Dragoni)

Let Q C R" be bounded and measurable and let S ¢ RM pe

compact. Let f : Q x RM — RU {+00} be a Carathéodory
function.
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function. Then for every € > 0,
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compact. Let f : Q x RM — RU {+00} be a Carathéodory
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such that

I\ K| <€ and is continuous .
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The proof is both delicate and technical, using the Egoroff
theorem and the Lusin theorem.
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Proving a weak lower semicontinuity result in the general case is
quite delicate and we need some preparations. First, we need a
generalization of the classical Lusin's theorem for Carathéodory
functions. Measurable dependence on x creates difficulties in o
handling, so we improve measurability to continuity at the cost of e o oty
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Theorem (Scorza-Dragoni)

Let Q C R" be bounded and measurable and let S ¢ RM pe
compact. Let f : Q x RM — RU {+00} be a Carathéodory
function. Then for every € > 0, there exists a compact set K. C Q2
such that

I\ K| <€ and is continuous .

f‘KExS

The proof is both delicate and technical, using the Egoroff
theorem and the Lusin theorem. Since it would be quite difficult
to follow on slides, we relegate the proof to the Lecture Notes.
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Proof. We begin by noting that we can assume f > 0. Indeed, we
can replace f by

g(X,U,f) = f(x,u,g)—(a(x),§>+b(x)+c\u|r.

By our assumption on the exponent r and Rellich-Kondrachov
theorem, we know
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Thus, it is enough to prove the theorem with the additional
assumption that f > 0.



Now our task is to reduce the proof to the previous case,

Introduction to the
Calculus of Variations

Swarnendu Sil

Direct methods
Dirichlet Integral

Integrands depending only
on the gradient

Integrands with x
dependence

Integrands with x and u
dependence

Weak lower semicontinuity
Existence of minimizer

Euler-Lagrange Equations

The End



Now our task is to reduce the proof to the previous case, i.e.

integrands depending only on x and &,

Introduction to the
Calculus of Variations

Swarnendu Sil

Dirichlet Integral

egrands depending only
on the e

Integrands with x

dependence

Integrands with x and u
dependence

Weak lower semicontinuity

Existence of minimizer

Euler-Lag

ge Equations



Now our task is to reduce the proof to the previous case, i.e.

integrands depending only on x and &, by ‘freezing’ u.

Introduction to the
Calculus of Variations

Swarnendu Sil

Dirichlet Integral

nds depending only

endence

grands with x and u
dependence

Weak lower semicontinuity

f minimizer

ge Equations
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As before, let

L :=liminf
S$— 00

/ F (x, s (x), Vs (x)) dx
Q
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integrands depending only on x and &, by ‘freezing’ u.
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and passing to a subsequence if necessary,
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integrands depending only on x and &, by ‘freezing’ u.
As before, let

S— 00

L:=lim inf/Q f(x,us(x),Vus (x)) dx

and passing to a subsequence if necessary, we can assume

Fix e > 0.
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Now our task is to reduce the proof to the previous case, i.e.

integrands depending only on x and &, by ‘freezing’ u.
As before, let

L:=lim inf/Q f(x,us(x),Vus (x)) dx
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:/196 (x) f (%, u (x), Vu (x)) dx — ]9
Q
Note that by monotone convergence

/]].QE (X)) f (x,u(x),Vu(x)) dx — / f(x,u(x),Vu(x)) dx
Q Q

as ¢ — 0. So letting € — 0, we prove the conclusion.
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Claim. There exists a measurable set 2. C Q and a subsequence
{sj};>1 with s; = 400 such that
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Fix £; > 0 for now. For any h € L9 (Q; RV) for some 1 < g < oo,
from the Chebyshev's inequality we deduce the following estimate

1 1
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Thus, we can choose a number M., > 0 large enough and
independent of s such that

1 &j

’Q \ Qsj,s < E; )

where

Q;S ={x€Q:|u(x)|,|us (x)|,|Vus (x)] < M, for every s > 1} .
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QE XS
‘ N €58 €j
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where

55 = {(U,g) € RN X RNX" : ‘U| ) |£| < Msf} : Wesl e iz hutsy

Exis

Hence, by continuity, there exists 0 (¢;) > 0 such that
lu—v| <d(g) = If (x,u,8) —f(x,v,8)| <¢j
for all x € Q2

£j,S7 for all |U| ) |V| ) |£‘ < MEj'
But by the convergence
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and the Chebyshev’s inequality, we can find s.; € N such that if
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Thus, we have

2\ Q. <Y |\,
j=1
Also, for every j > 1, we have

/Q | (x,us; (x), Vs, (x)) = £ (x,u(x), Vus (x))| dx
<e|Q <elQ].

This proves the claim and finishes the proof of the theorem.
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This implies {us} -, is uniformly bounded in W'

The rest follows the same way as before using the weak lower
semicontinuity theorem.
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Since 1 < g < p, we can find constants v7,7g > 0 such that

micontinuit

m+12>7 ||U5H’|;V1~P(Q;RN) LS

Existence of minimizer

This implies {us}.~; is uniformly bounded in WP,

The rest follows the same way as before using the weak lower
semicontinuity theorem. The inequality in the hypothesis can be
easily verified from the coercivity inequality by taking a=0, r =g
and the same b.
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Since 1 < g < p, we can find constants v7,7g > 0 such that

micontinuit

m+12>7 ||U5H’|;V1~P(Q;RN) LS

Existence of minimizer

This implies {us}.~; is uniformly bounded in WP,

The rest follows the same way as before using the weak lower
semicontinuity theorem. The inequality in the hypothesis can be
easily verified from the coercivity inequality by taking a=0, r =g
and the same b. This completes the proof. O
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