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General convex function of the gradient

Armed with our experience with the Dirichlet integral, we now
move on to more general integrals.
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perhaps the most important property for applying the direct
methods is the sequential weak lower semicontinuity.
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Armed with our experience with the Dirichlet integral, we now
move on to more general integrals. As we have already seen,
perhaps the most important property for applying the direct
methods is the sequential weak lower semicontinuity.

Theorem (sequential weak lower semicontinuity)
Let n>2,N > 1 be integers and 1 < p < oc.
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General convex function of the gradient

Armed with our experience with the Dirichlet integral, we now
move on to more general integrals. As we have already seen,
perhaps the most important property for applying the direct
methods is the sequential weak lower semicontinuity.

Theorem (sequential weak lower semicontinuity)

Let n > 2,N > 1 be integers and 1 < p < co. Let Q C R" be
open, bounded and smooth and let f : RN*" — R U {+o00} be
continuous. Let

Iu] == /Q f(Vu(x)) dx.

Let £ — £ (€) be convex
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Armed with our experience with the Dirichlet integral, we now
move on to more general integrals. As we have already seen,
perhaps the most important property for applying the direct
methods is the sequential weak lower semicontinuity.

Theorem (sequential weak lower semicontinuity)

Let n > 2,N > 1 be integers and 1 < p < co. Let Q C R" be
open, bounded and smooth and let f : RN*" — R U {+o00} be
continuous. Let
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Armed with our experience with the Dirichlet integral, we now
move on to more general integrals. As we have already seen,
perhaps the most important property for applying the direct
methods is the sequential weak lower semicontinuity.
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General convex function of the gradient

Armed with our experience with the Dirichlet integral, we now
move on to more general integrals. As we have already seen,
perhaps the most important property for applying the direct
methods is the sequential weak lower semicontinuity.

Theorem (sequential weak lower semicontinuity)

Let n > 2,N > 1 be integers and 1 < p < co. Let Q C R" be
open, bounded and smooth and let f : RN*" — R U {+o00} be
continuous. Let

Iu] ::/ f(Vu(x)) dx.
Q
Let £ — f (&) be convex and
us —u in WHP (Q;RN) .
Then we have

Igrg!)r;fl[us] > 1u].
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Mazur lemma

We begin by recalling a standard result in functional analysis
whose proof can be found in most textbooks.
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Lemma (Mazur lemma)

Let (X, |||l) be a normed space
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whose proof can be found in most textbooks.

Lemma (Mazur lemma)

Let (X, |||l) be a normed space and let
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Then there exists a sequence {y,} -, C co{xs};>, such that

Yu — X in X.
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We begin by recalling a standard result in functional analysis
whose proof can be found in most textbooks.

Lemma (Mazur lemma)

Let (X, |||l) be a normed space and let
Xs — X in X.

Then there exists a sequence {y,} -, C co{xs};>, such that
Yu — X in X.

More precisely, for every i, there exist an integer m,, and
my
i : i
a, >0 with Zau—l
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such that
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Yu = E X an
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Proof.




Proof of s.w.l.s.c

Proof.
Reduction to positive integrands
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Proof of s.w.l.s.c

Proof.

Reduction to positive integrands We first show we can assume
f>0.
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Proof of s.w.l.s.c

Proof.

Reduction to positive integrands We first show we can assume
f > 0. Since f is convex,
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f > 0. Since f is convex, there exists a vector § € RN*" sych that

F(§) = F(0)+(0,¢)

In Problem sheet 3,
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f (&) > f(0)+(0,€) for all £ € RV*",

In Problem sheet 3, we talked about subgradients of a convex
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This implies that

liminf
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This implies that

S§—00

Iiminf/ﬂg(Vus (x)) dx—/ﬂg(Vu(x)) dx

5§—00

:Iiminf/ﬂf(Vus (x)) dx—/ f(Vu(x)) dx.

Q

Thus, it is enough to prove the theorem with the additional
assumption that f > 0.
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This implies that
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5§—00
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Thus, it is enough to prove the theorem with the additional
assumption that f > 0.
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= lim inf / F(Vus (x)) dx — / F(Vu(x)) dx. —
Thus, it is enough to prove the theorem with the additional

assumption that f > 0.

Strong lower semicontinuity Now we prove that we have strong
lower semicontinuity,




This implies that

Iisnli)r;f/Qg(Vus (x)) dx—/ﬂg(Vu(x)) dx
= Iiminf/Qf(Vus (x)) dx—/ f(Vu(x)) dx.

5§—00 Q

Thus, it is enough to prove the theorem with the additional
assumption that f > 0.

Strong lower semicontinuity Now we prove that we have strong
lower semicontinuity, i.e. if we have a sequence

vy —u in wtp (Q;RN) ,
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Strong lower semicontinuity Now we prove that we have strong
lower semicontinuity, i.e. if we have a sequence
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Vv, = Vu

But this implies that up to the extraction of a subsequence,

a.e. in .
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But this implies that up to the extraction of a subsequence,
Vv, = Vu ae inf.

Since f is nonnegative, by Fatou's lemma, this gives us
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Since f is nonnegative, by Fatou's lemma, this gives us

liminf | (Vv (x)) dx > /Qf(Vu (x)) dx.

H—oo Jo

weak lower semicontinuity Now we finish the proof using the
strong lower semicontinuity. Let

L:=lim inf/Q f(Vus (x)) dx

S—00

and passing to a subsequence if necessary,
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Since f is nonnegative, by Fatou's lemma, this gives us

liminf | (Vv (x)) dx > /Qf(Vu (x)) dx.

H—oo Jo

weak lower semicontinuity Now we finish the proof using the
strong lower semicontinuity. Let

L:=lim inf/Q f(Vus (x)) dx

S—00

and passing to a subsequence if necessary, we can assume

L:= lim /Qf(VuS (x)) dx.

S— 00

Fix € > 0. Thus, there exists sp = sp (€) € N such that for every
s> 50,
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Vv, = Vu ae inf.

Since f is nonnegative, by Fatou's lemma, this gives us

liminf | (Vv (x)) dx > /Qf(Vu (x)) dx.

H—oo Jo

weak lower semicontinuity Now we finish the proof using the
strong lower semicontinuity. Let

L:=lim inf/Q f(Vus (x)) dx

S—00

and passing to a subsequence if necessary, we can assume

L:= lim /Qf(VuS (x)) dx.

S— 00

Fix € > 0. Thus, there exists sp = sp (€) € N such that for every
s > s9, we have

/f(Vus(x)) dx < L+e.
Q
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Now, for every sequence
us—u in WP (Q;RN) ,
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{viu},>1 such that for every 4,
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Now, for every sequence
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Now, for every sequence

us — u in WhHP (Q;RN) ,

applying Mazur's lemma, we know there exists a sequence
{VH}M21 such that for every 1, there exist an integer m,, > s and
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applying Mazur's lemma, we know there exists a sequence
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Now, for every sequence
us — u

in Whe (;RV),

applying Mazur's lemma, we know there exists a sequence
{VH}M21 such that for every 1, there exist an integer m,, > s and

iaL:l

i:SO
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a, > 0 with

such that

my,

v, = Zaiu,- and in Wlp (Q;RN) .
i=so

V'u*)U

Now, since f is convex, for every p > 1,
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us — u in WhHP (Q;RN) ,
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applying Mazur's lemma, we know there exists a sequence :
. . Weak lower semicontinuity
{Viu},>1 such that for every 4, there exist an integer m,, > so and .

aL>0 with ZaL:l

i:SO

such that

my,

— S . ; Lp (O- N
vy = E a;,uj and vy = u inW (Q,R ) .
i=sg

Now, since f is convex, for every p > 1, we have

my, my,

f(Vv,)="f ZaLVu,- < ZaLf(Vu,-).

i=sp i=sy



Thus, for every p > 1,




Thus, for every p > 1, we get




Thus, for every pn > 1, we get

/Qf(vV# (x)) dx < Z;Oa;/ﬂf(vu, (x)) dx

My
<ZaL(L+6):L+€.

1

So
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Thus, for every pn > 1, we get
/f(vV# (x)) dx < ZaL/ F(Vu; (x)) dx
Q Pt Q
<M ai(Lt+e)=L+e.

i=sp

So finally, we deduce
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Thus, for every pn > 1, we get

/Qf(vVM (x)) dx < Z;Oa;/ﬂf(vu, (x)) dx

So finally, we deduce

f(Vu(x)) dx <lim inf/ f(Vvu(x)) dx < L+e.
Q
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Thus, for every pn > 1, we get

/Qf(vVM (x)) dx < ;Oa;/ﬂf(vu, (x)) dx

My
<ZQL(L+€):L+€
i=so

So finally, we deduce

J1—00

/ f(Vu(x)) dx <lim inf/ f(Vvu(x)) dx < L+e.
Q Q

Since € > 0 is arbitrary,
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Thus, for every pn > 1, we get

/Qf(vVM (x)) dx < ;Oa;/ﬂf(vu, (x)) dx

My
<ZQL(L+€):L+€
i=so

So finally, we deduce

J1—00

/ f(Vu(x)) dx <lim inf/ f(Vvu(x)) dx < L+e.
Q Q

Since € > 0 is arbitrary, we obtain
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Thus, for every pn > 1, we get

/Qf(vVM (x)) dx < Z;Oa;/ﬂf(vu, (x)) dx

So finally, we deduce

/ f(Vu(x)) dx <lim inf/ f(Vvu(x)) dx < L+e.
Q Q

J1—00

Since € > 0 is arbitrary, we obtain

/f(Vu(x)) dx < Iiminf/ f(Vus (x)) dx.
Q Q

$§—00
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/Qf(vVM (x)) dx < Zs:oaL/Qf(Vu,- (x)) dx

So finally, we deduce

/ f(Vu(x)) dx <lim inf/ f(Vvu(x)) dx < L+e.
Q Q

J1—00

Since € > 0 is arbitrary, we obtain

/f(Vu(x)) dx < Iiminf/ f(Vus (x)) dx.
Q Q

$§—00

This completes the proof. O



Existence of minimizer

Once the sequential w.l.s.c is established, it is now a routine
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Once the sequential w.l.s.c is established, it is now a routine
exercise to prove the following.

Theorem
Let n > 2,N > 1 be integers, 1 < p < oo and let 2 C R" be open
bounded and smooth. Let ug € WP (Q; RN) be given.
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Once the sequential w.l.s.c is established, it is now a routine
exercise to prove the following.

Theorem

Let n > 2,N > 1 be integers, 1 < p < oo and let 2 C R" be open
bounded and smooth. Let uy € WP (Q; RV) be given. Let
f:RV*" 5 RU {+o00}
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Once the sequential w.l.s.c is established, it is now a routine
exercise to prove the following.

Theorem

Let n > 2,N > 1 be integers, 1 < p < oo and let 2 C R" be open
bounded and smooth. Let uy € WP (Q; RV) be given. Let

f RN 5 RU{+oc} be
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Once the sequential w.l.s.c is established, it is now a routine
exercise to prove the following.

Theorem

Let n > 2,N > 1 be integers, 1 < p < oo and let 2 C R" be open
bounded and smooth. Let uy € WP (Q; RV) be given. Let
f:RNX" — RU {400} be continuous,
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Once the sequential w.l.s.c is established, it is now a routine
exercise to prove the following.

Theorem

Let n > 2,N > 1 be integers, 1 < p < oo and let 2 C R" be open
bounded and smooth. Let uy € WP (Q; RV) be given. Let
f:RN*?  RU {400} be continuous, convex
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Once the sequential w.l.s.c is established, it is now a routine
exercise to prove the following.

Theorem

Let n > 2,N > 1 be integers, 1 < p < oo and let 2 C R" be open
bounded and smooth. Let uy € WP (Q; RV) be given. Let
f:RN*"  RU {400} be continuous, convex and satisfies
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Once the sequential w.l.s.c is established, it is now a routine
exercise to prove the following.

Theorem

Let n > 2,N > 1 be integers, 1 < p < oo and let 2 C R" be open
bounded and smooth. Let uy € WP (Q; RV) be given. Let
f:RN*"  RU {400} be continuous, convex and satisfies

f (&) >cléf

for all € € RN*"
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Once the sequential w.l.s.c is established, it is now a routine
exercise to prove the following.

Theorem

Let n > 2,N > 1 be integers, 1 < p < oo and let 2 C R" be open
bounded and smooth. Let uy € WP (Q; RV) be given. Let
f:RN*"  RU {400} be continuous, convex and satisfies

for some ¢ > 0.

f (&) >cléf

for all € € RN*"
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Once the sequential w.l.s.c is established, it is now a routine
exercise to prove the following.

Theorem

Let n > 2,N > 1 be integers, 1 < p < oo and let 2 C R" be open
bounded and smooth. Let uy € WP (Q; RV) be given. Let
f:RN*"  RU {400} be continuous, convex and satisfies

(&) >clef for all & € RN*"

for some ¢ > 0. Let

/4] ::/Qf(Vu(x)) dx.
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Once the sequential w.l.s.c is established, it is now a routine
exercise to prove the following.

Theorem

Let n > 2,N > 1 be integers, 1 < p < oo and let 2 C R" be open
bounded and smooth. Let uy € WP (Q; RV) be given. Let
f:RN*"  RU {400} be continuous, convex and satisfies

(&) >clef for all & € RN*"

for some ¢ > 0. Let
/4] ;:/ F(Vu(x)) dx.
Q

IF 1 {ug] < o0,
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Let n > 2,N > 1 be integers, 1 < p < oo and let 2 C R" be open
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f:RN*"  RU {400} be continuous, convex and satisfies
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for some ¢ > 0. Let
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If I {up] < oo, then the following problem
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Let n > 2,N > 1 be integers, 1 < p < oo and let 2 C R" be open
bounded and smooth. Let uy € WP (Q; RV) be given. Let
f:RN*"  RU {400} be continuous, convex and satisfies
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If I {up] < oo, then the following problem

inf{l[u] U+ WP (Q;RN)} =m
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exercise to prove the following.

Theorem

Let n > 2,N > 1 be integers, 1 < p < oo and let 2 C R" be open
bounded and smooth. Let uy € WP (Q; RV) be given. Let
f:RN*"  RU {400} be continuous, convex and satisfies

(&) >clef for all & € RN*"

for some ¢ > 0. Let
/] = /Q F(Vu(x)) dx.
If I {up] < oo, then the following problem
inf{l [u] : u € o+ WyP (Q;RN)} =m

admits a minimizer.
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Let n > 2,N > 1 be integers, 1 < p < oo and let 2 C R" be open
bounded and smooth. Let uy € WP (Q; RV) be given. Let
f:RN*"  RU {400} be continuous, convex and satisfies

(&) >clef for all & € RN*"

for some ¢ > 0. Let
/] = /Q F(Vu(x)) dx.
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inf{l [u] : u € o+ WyP (Q;RN)} =m
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Existence of minimizer

Once the sequential w.l.s.c is established, it is now a routine
exercise to prove the following.

Theorem
Let n > 2,N > 1 be integers, 1 < p < oo and let 2 C R" be open
bounded and smooth. Let uy € WP (Q; RV) be given. Let
f:RN*"  RU {400} be continuous, convex and satisfies

(&) >clef for all & € RN*"

for some ¢ > 0. Let
/] = /Q F(Vu(x)) dx.
If I {up] < oo, then the following problem
inf{l [u] : u € o+ WyP (Q;RN)} =m

admits a minimizer. If f is strictly convex, then the minimizer is
unique.
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Of course, the simplest and also the prototype example for the last
theorem is the p-Dirichlet integral.
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Of course, the simplest and also the prototype example for the last
theorem is the p-Dirichlet integral.

D, [u] = %/Q\Vu(xﬂp dx.
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Of course, the simplest and also the prototype example for the last
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The Euler-Lagrange equation is the p-Laplacian

Apu = div (|vu|'3*2 vu) = 0.

The associated boundary value problem is
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The Euler-Lagrange equation is the p-Laplacian

Apu = div (|vu|'3*2 vu) = 0.

The associated boundary value problem is

Apu=0 in Q
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theorem is the p-Dirichlet integral.

1
D, [u] = 7/ |Vu(x)|P dx.
P Ja
The Euler-Lagrange equation is the p-Laplacian

Apu = div (\WVJ*2 vu) = 0.

The associated boundary value problem is

Apu=0 in Q
u=uy on Q.

For p = 2, this is the Laplace equation as we have already seen.
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Of course, the simplest and also the prototype example for the last
theorem is the p-Dirichlet integral.

1
D, [u] = 7/ |Vu(x)|P dx.
P Ja
The Euler-Lagrange equation is the p-Laplacian

Apu = div (\WVJ*2 vu) = 0.

The associated boundary value problem is

Apu=0 in Q
u=uy on Q.

For p = 2, this is the Laplace equation as we have already seen.
This partial differential operator is also second order and elliptic,
but not uniformly elliptic
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Of course, the simplest and also the prototype example for the last
theorem is the p-Dirichlet integral.

1
D, [u] = 7/ |Vu(x)|P dx.
P Ja
The Euler-Lagrange equation is the p-Laplacian

Apu = div (\WVJ*2 vu) = 0.

The associated boundary value problem is

Apu=0 in Q
u=uy on Q.

For p = 2, this is the Laplace equation as we have already seen.
This partial differential operator is also second order and elliptic,
but not uniformly elliptic if p # 2.
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The Euler-Lagrange equation is the p-Laplacian

Apu = div (\WVJ*2 vu) = 0.

The associated boundary value problem is

Apu=0 in Q
u=uy on Q.
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Apu = div (\WVJ*2 vu) = 0.

The associated boundary value problem is

Apu=0 in Q
u=uy on Q.
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Of course, the simplest and also the prototype example for the last
theorem is the p-Dirichlet integral.

D, [u] = %/Q‘VU(XNP dx.

The Euler-Lagrange equation is the p-Laplacian

Apu = div (\WVJ*2 vu) = 0.

The associated boundary value problem is

Apu=0 in Q
u=uy on Q.

For p = 2, this is the Laplace equation as we have already seen.
This partial differential operator is also second order and elliptic,
but not uniformly elliptic if p # 2. It is degenerate elliptic for
2 < p < oo and is singular elliptic
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Of course, the simplest and also the prototype example for the last Srprenttn Sl
theorem is the p-Dirichlet integral.

D, [u] = %/Q‘VU(XNP dx.

The Euler-Lagrange equation is the p-Laplacian

Existence of minimizer

with x

Apu = div (\WVJ*2 vu) = 0.

The associated boundary value problem is

Apu=0 in Q
u=uy on Q.

For p = 2, this is the Laplace equation as we have already seen.
This partial differential operator is also second order and elliptic,
but not uniformly elliptic if p # 2. It is degenerate elliptic for
2 < p < oo and is singular elliptic for 1 < p < 2.
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The result we have established so far is a basic one, but it is too
special to be of much use.
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Integrands with x dependence

The result we have established so far is a basic one, but it is too
special to be of much use. As an example, suppose we want to
solve the Dirichlet boundary value problem for the following PDE
using variational method.
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solve the Dirichlet boundary value problem for the following PDE
using variational method.

div(A(x)Vu)=0 in Q,
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The result we have established so far is a basic one, but it is too
special to be of much use. As an example, suppose we want to
solve the Dirichlet boundary value problem for the following PDE
using variational method.

div(A(x)Vu)=0 in Q,

where A is a bounded and measurable, symmetric, uniformly
positive-definite non-constant matrix-field.
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solve the Dirichlet boundary value problem for the following PDE
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The result we have established so far is a basic one, but it is too
special to be of much use. As an example, suppose we want to
solve the Dirichlet boundary value problem for the following PDE
using variational method.

div(A(x)Vu)=0 in Q,

where A is a bounded and measurable, symmetric, uniformly
positive-definite non-constant matrix-field. The associated energy
functional is

Iu] == %/Q<A (x) Vu(x),Vu(x)) dx.
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The result we have established so far is a basic one, but it is too
special to be of much use. As an example, suppose we want to
solve the Dirichlet boundary value problem for the following PDE
using variational method.

div(A(x)Vu)=0 in Q,

where A is a bounded and measurable, symmetric, uniformly
positive-definite non-constant matrix-field. The associated energy
functional is

Iu] == %/Q<A (x) Vu(x),Vu(x)) dx.

This does not fall into the category covered by our theorem
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Integrands with x dependence

The result we have established so far is a basic one, but it is too
special to be of much use. As an example, suppose we want to
solve the Dirichlet boundary value problem for the following PDE
using variational method.

div(A(x)Vu)=0 in Q,

where A is a bounded and measurable, symmetric, uniformly
positive-definite non-constant matrix-field. The associated energy
functional is

Iu] == %/Q<A (x) Vu(x),Vu(x)) dx.

This does not fall into the category covered by our theorem since
here f depends on x and &, and not just &.
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Weak lower semicontinuity with x dependence

As we have already seen in the last example, we want to allow
merely measurable dependece on x.
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As we have already seen in the last example, we want to allow
merely measurable dependece on x.

Definition (Carathéodory functions)
Let Q C R" be open
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Weak lower semicontinuity with x dependence

As we have already seen in the last example, we want to allow
merely measurable dependece on x.

Definition (Carathéodory functions)
Let Q C R” be open and let f : Q x RM — RU {400} .
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Weak lower semicontinuity with x dependence

As we have already seen in the last example, we want to allow
merely measurable dependece on x.

Definition (Carathéodory functions)

Let Q C R” be open and let f : Q x RM — RU {+o00}. f is called
a Carathéodory function if
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Weak lower semicontinuity with x dependence

As we have already seen in the last example, we want to allow
merely measurable dependece on x.
Definition (Carathéodory functions)

Let Q C R” be open and let f : Q x RM — RU {+o00}. f is called
a Carathéodory function if

» (+— f(x,() is continuous for a.e. x € Q,
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Weak lower semicontinuity with x dependence

As we have already seen in the last example, we want to allow
merely measurable dependece on x.

Definition (Carathéodory functions)

Let Q C R” be open and let f : Q x RM — RU {+o00}. f is called
a Carathéodory function if

» (+— f(x,() is continuous for a.e. x € Q,
> x i~ (x,() is measurable for every ¢ € RM.
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Weak lower semicontinuity with x dependence

As we have already seen in the last example, we want to allow
merely measurable dependece on x.
Definition (Carathéodory functions)

Let Q C R” be open and let f : Q x RM — RU {+o00}. f is called
a Carathéodory function if

» (+— f(x,() is continuous for a.e. x € Q,

> x i~ (x,() is measurable for every ¢ € RM.

Remark
Roughly,
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Weak lower semicontinuity with x dependence

As we have already seen in the last example, we want to allow
merely measurable dependece on x.
Definition (Carathéodory functions)

Let Q C R” be open and let f : Q x RM — RU {+o00}. f is called
a Carathéodory function if

» (+— f(x,() is continuous for a.e. x € Q,
> x i~ (x,() is measurable for every ¢ € RM.

Remark
Roughly, f = f (x,£) is a Carathéodory function when it depends
measurably on x for every £
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Weak lower semicontinuity with x dependence

As we have already seen in the last example, we want to allow
merely measurable dependece on x.
Definition (Carathéodory functions)

Let Q C R” be open and let f : Q x RM — RU {+o00}. f is called
a Carathéodory function if

» (+— f(x,() is continuous for a.e. x € Q,
> x i~ (x,() is measurable for every ¢ € RM.

Remark
Roughly, f = f (x,£) is a Carathéodory function when it depends
measurably on x for every & and continuously on £ for a.e. x € Q.
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measurably on x for every & and continuously on £ for a.e. x € Q.
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Weak lower semicontinuity with x dependence

As we have already seen in the last example, we want to allow
merely measurable dependece on x.
Definition (Carathéodory functions)

Let Q C R” be open and let f : Q x RM — RU {+o00}. f is called
a Carathéodory function if

» (+— f(x,() is continuous for a.e. x € Q,
> x i~ (x,() is measurable for every ¢ € RM.

Remark
Roughly, f = f (x,£) is a Carathéodory function when it depends
measurably on x for every & and continuously on £ for a.e. x € Q.

Similarly, f = f (x, u, )
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Weak lower semicontinuity with x dependence

As we have already seen in the last example, we want to allow
merely measurable dependece on x.
Definition (Carathéodory functions)

Let Q C R” be open and let f : Q x RM — RU {+o00}. f is called
a Carathéodory function if

» (+— f(x,() is continuous for a.e. x € Q,
> x i~ (x,() is measurable for every ¢ € RM.

Remark
Roughly, f = f (x,£) is a Carathéodory function when it depends
measurably on x for every & and continuously on £ for a.e. x € Q.

Similarly, f = f (x, u,§) is a Carathéodory function when it
depends measurably on x for every (u,§)
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Weak lower semicontinuity with x dependence

As we have already seen in the last example, we want to allow
merely measurable dependece on x.

Definition (Carathéodory functions)

Let Q C R” be open and let f : Q x RM — RU {+o00}. f is called
a Carathéodory function if

» (+— f(x,() is continuous for a.e. x € Q,
> x i~ (x,() is measurable for every ¢ € RM.

Remark
Roughly, f = f (x,£) is a Carathéodory function when it depends
measurably on x for every & and continuously on £ for a.e. x € Q.

Similarly, f = f (x, u,§) is a Carathéodory function when it
depends measurably on x for every (u,§) and continuously on
(u, &) for a.e. x € Q.
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Let n > 2,N > 1 be integers and 1 < p < co. Let Q C R” be
open, bounded and smooth and let f : Q x RN*" — R U {+o0},
f =1 (x,€) be a Carathéodory function
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Let n > 2,N > 1 be integers and 1 < p < co. Let Q C R” be
open, bounded and smooth and let f : Q x RN*" — R U {+o0},
f =1 (x,€) be a Carathéodory function satisfying

F(x,6) = (a(x),€) +b(x)
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Let n > 2,N > 1 be integers and 1 < p < co. Let Q C R” be
open, bounded and smooth and let f : Q x RN*" — R U {+o0},
f =1 (x,€) be a Carathéodory function satisfying

F(x,6) = (a(x),€) +b(x)

for a.e. x € Q, for every £ € RN*"
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Theorem (sequential weak lower semicontinuity with x
dependence)

Let n > 2,N > 1 be integers and 1 < p < co. Let Q C R” be
open, bounded and smooth and let f : Q x RN*" — R U {+o0},
f =1 (x,€) be a Carathéodory function satisfying

F(x,6) = (a(x),€) +b(x)

for a.e. x € Q, for every ¢ € RN*" for some a € LP/ (Q;RNX")
and some b € L1 (Q).

Introduction to the
Calculus of Variations

Swarnendu Sil

Dirichlet Integral

Integrands depending only
on the gradient

Weak

er semicontinuity

Exi of minimizer

Integrands with x
dependence

Weak lower semicontinuity

Existence of minimizer

Integrands with x and u

dependence
Weak ontinuity

ce of minimizer



Theorem (sequential weak lower semicontinuity with x o e

Calculus of Variations

dependence) Swarnendu Si

Let n > 2,N > 1 be integers and 1 < p < co. Let Q C R” be
open, bounded and smooth and let f : Q x RN*" — R U {+o0},
f =1 (x,€) be a Carathéodory function satisfying

f(x,€) = (a(x), &) + b(x)

for a.e. x € Q, for every ¢ € RN*" for some a € LP/ (Q;RNX")
and some b € L1 (Q). Let

Iu] == /Q f(x,Vu(x)) dx.
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Let n > 2,N > 1 be integers and 1 < p < co. Let Q C R” be
open, bounded and smooth and let f : Q x RN*" — R U {+o0},
f =1 (x,€) be a Carathéodory function satisfying

F(x,6) = (a(x),€) +b(x)

for a.e. x € Q, for every ¢ € RN*" for some a € LP/ (Q;RNX")
and some b € L1 (Q). Let

Iu] == /Q f(x,Vu(x)) dx.

Let £ — f(x,€) be convex
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open, bounded and smooth and let f : Q x RN*" — R U {+o0},
f =1 (x,€) be a Carathéodory function satisfying

F(x,6) = (a(x),€) +b(x)
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for a.e. x € Q, for every ¢ € RN*" for some a € LP/ (Q;RNX")
and some b € L1 (Q). Let

Iu] := /Q f(x,Vu(x)) dx.

Let £ — f(x,&) be convex for a.e. x € Q and
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Let n > 2,N > 1 be integers and 1 < p < co. Let Q C R” be
open, bounded and smooth and let f : Q x RN*" — R U {+o0},
f =1 (x,€) be a Carathéodory function satisfying

f(x,€) = (a(x), &) + b(x)

for a.e. x € Q, for every ¢ € RN*" for some a € LP/ (Q;RNX")
and some b € L1 (Q). Let

Iu] == / f(x,Vu(x)) dx.
Q
Let £ — f(x,&) be convex for a.e. x € Q and

us —u in WhHP (Q;RN) .
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Let n > 2,N > 1 be integers and 1 < p < co. Let Q C R” be
open, bounded and smooth and let f : Q x RN*" — R U {+o0},
f =1 (x,€) be a Carathéodory function satisfying

F(x,6) = (a(x),€) +b(x)
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for a.e. x € Q, for every ¢ € RN*" for some a € LP/ (Q;RNX")
and some b € L1 (Q). Let

Iu] == / f(x,Vu(x)) dx.
Q
Let £ — f(x,&) be convex for a.e. x € Q and
us —u in WhHP (Q;RN) .
Then we have

Iisriior;fl[us] > 1u].



The proof is exactly similar to the last weak lower semicontinuity
theorem.
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The proof is exactly similar to the last weak lower semicontinuity
theorem. The changes are just cosmetic. The moral of the story
here is that if there is no explicit v dependence,
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The proof is exactly similar to the last weak lower semicontinuity
theorem. The changes are just cosmetic. The moral of the story
here is that if there is no explicit u dependence, even measurable
dependence on x can be handled easily.
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The proof is exactly similar to the last weak lower semicontinuity
theorem. The changes are just cosmetic. The moral of the story
here is that if there is no explicit u dependence, even measurable
dependence on x can be handled easily. This would change
considerably when we shall deal with functions with both x and u

dependence.
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Let n > 2,N > 1 be integers, 1 < p < o0
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Theorem

Let n>2,N > 1 be integers, 1 < p < oc and let Q2 C R" be open
bounded and smooth.
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Existence of minimizer with x dependence

Theorem
Let n>2,N > 1 be integers, 1 < p < oc and let Q2 C R" be open
bounded and smooth. Let ug € WP (Q; RN) be given.
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Existence of minimizer with x dependence

Theorem

Let n>2,N > 1 be integers, 1 < p < oc and let Q2 C R" be open
bounded and smooth. Let ug € WP (Q; RV) be given. Let
f:Q xRV 5 RU{+oc0}
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Existence of minimizer with x dependence

Theorem

Let n>2,N > 1 be integers, 1 < p < oc and let Q2 C R" be open
bounded and smooth. Let ug € WP (Q; RV) be given. Let
f:Qx RVN*X"  RU{+oc} be a Carathéodory function satisfying

F(x,€) = clgf’ +b(x)
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Theorem

Let n>2,N > 1 be integers, 1 < p < oc and let Q2 C R" be open
bounded and smooth. Let ug € WP (Q; RV) be given. Let
f:Qx RVN*X"  RU{+oc} be a Carathéodory function satisfying

F(x,€) = clgf’ +b(x)

for a.e. x € Q, for every ¢ € RVXn
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Theorem

Let n>2,N > 1 be integers, 1 < p < oc and let Q2 C R" be open
bounded and smooth. Let ug € WP (Q; RV) be given. Let
f:Qx RVN*X"  RU{+oc} be a Carathéodory function satisfying

F(x,€) = clgf’ +b(x)

for a.e. x € Q, for every ¢ € RVN*" for some ¢ > 0 and some
bel'(Q).
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Theorem

Let n>2,N > 1 be integers, 1 < p < oc and let Q2 C R" be open
bounded and smooth. Let ug € WP (Q; RV) be given. Let
f:Qx RVN*X"  RU{+oc} be a Carathéodory function satisfying

F(x,€) = clgf’ +b(x)

for a.e. x € Q, for every ¢ € RVN*" for some ¢ > 0 and some
b e LY (Q). Assume & +— f (x,£) be convex
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Theorem

Let n>2,N > 1 be integers, 1 < p < oc and let Q2 C R" be open
bounded and smooth. Let ug € WP (Q; RV) be given. Let
f:Qx RVN*X"  RU{+oc} be a Carathéodory function satisfying

F(x,€) = clgf’ +b(x)

for a.e. x € Q, for every ¢ € RVN*" for some ¢ > 0 and some
b e LY (Q). Assume & +— f (x,£) be convex for a.e. x € Q.



Existence of minimizer with x dependence

Theorem

Let n>2,N > 1 be integers, 1 < p < oc and let Q2 C R" be open
bounded and smooth. Let ug € WP (Q; RV) be given. Let
f:Qx RVN*X"  RU{+oc} be a Carathéodory function satisfying

F(x,€) = clgf’ +b(x)

for a.e. x € Q, for every ¢ € RVN*" for some ¢ > 0 and some
be L' (Q). Assume & — f (x,€) be convex for a.e. x € Q. Let

Iu] := /Q f(Vu(x)) dx.
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Theorem

Let n>2,N > 1 be integers, 1 < p < oc and let Q2 C R" be open
bounded and smooth. Let ug € WP (Q; RV) be given. Let
f:Qx RVN*X"  RU{+oc} be a Carathéodory function satisfying

F(x,€) = clgf’ +b(x)

for a.e. x € Q, for every ¢ € RVN*" for some ¢ > 0 and some
be L' (Q). Assume & — f (x,€) be convex for a.e. x € Q. Let

Iu] := /Q f(Vu(x)) dx.

If 1 up] < o0,



Existence of minimizer with x dependence

Theorem

Let n>2,N > 1 be integers, 1 < p < oc and let Q2 C R" be open
bounded and smooth. Let ug € WP (Q; RV) be given. Let
f:Qx RVN*X"  RU{+oc} be a Carathéodory function satisfying

F(x,€) = clgf’ +b(x)

for a.e. x € Q, for every ¢ € RVN*" for some ¢ > 0 and some
be L' (Q). Assume & — f (x,€) be convex for a.e. x € Q. Let

Iu] := /Q f(Vu(x)) dx.

If I [uo] < oo, then the following problem
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Existence of minimizer with x dependence

Theorem

Let n>2,N > 1 be integers, 1 < p < oc and let Q2 C R" be open

bounded and smooth. Let ug € WP (Q; RV) be given. Let

f:Qx RVN*X"  RU{+oc} be a Carathéodory function satisfying
f(x,6) = clél” + b(x)

for a.e. x € Q, for every ¢ € RVN*" for some ¢ > 0 and some
be L' (Q). Assume & — f (x,€) be convex for a.e. x € Q. Let

Iu] ::/ f(Vu(x)) dx.
Q
If I [uo] < oo, then the following problem
inf{/ [u] - u € up+ WP (Q;]RN)} =m

admits a minimizer.

Introduction to the
Calculus of Variations

Swarnendu Sil

Dirichlet Integral




Introduction to the

Existence of minimizer with x dependence e Ve

Swarnendu Sil

Theorem

Let n>2,N > 1 be integers, 1 < p < oc and let Q2 C R" be open
bounded and smooth. Let ug € WP (Q; RV) be given. Let
f:Qx RVN*X"  RU{+oc} be a Carathéodory function satisfying

F(x,€) = clgf’ +b(x)

for a.e. x € Q, for every ¢ € RVN*" for some ¢ > 0 and some
be L' (Q). Assume & — f (x,€) be convex for a.e. x € Q. Let

Iu] ::/ f(Vu(x)) dx.
Q
If I [uo] < oo, then the following problem
inf{/ [u] - u € up+ WP (Q;]RN)} =m

admits a minimizer. If £ — f (x,&) Is strictly convex
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Theorem

Let n>2,N > 1 be integers, 1 < p < oc and let Q2 C R" be open
bounded and smooth. Let ug € WP (Q; RV) be given. Let
f:Qx RVN*X"  RU{+oc} be a Carathéodory function satisfying

F(x,€) = clgf’ +b(x)

for a.e. x € Q, for every ¢ € RVN*" for some ¢ > 0 and some
be L' (Q). Assume & — f (x,€) be convex for a.e. x € Q. Let

Iu] ::/ f(Vu(x)) dx.
Q
If I [uo] < oo, then the following problem
inf{/ [u] - u € up+ WP (Q;]RN)} =m

admits a minimizer. If £ — f (x,&) is strictly convex for a.e.
x € Q,



Existence of minimizer with x dependence

Theorem

Let n>2,N > 1 be integers, 1 < p < oc and let Q2 C R" be open
bounded and smooth. Let ug € WP (Q; RV) be given. Let
f:Qx RVN*X"  RU{+oc} be a Carathéodory function satisfying

F(x,€) = clgf’ +b(x)

for a.e. x € Q, for every ¢ € RVN*" for some ¢ > 0 and some
be L' (Q). Assume & — f (x,€) be convex for a.e. x € Q. Let

Iu] ::/ f(Vu(x)) dx.
Q
If I [uo] < oo, then the following problem
inf{/ [u] - u € up+ WP (Q;]RN)} =m

admits a minimizer. If £ — f (x,&) is strictly convex for a.e.
x € Q, then the minimizer is unique.
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The proof once again is routine. The only thing that might puzzle
you is how to show the inequality

F(x,6) = (a(x),€) +b(x)

for a.e. x € Q, for every £ € RN*"
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The proof once again is routine. The only thing that might puzzle
you is how to show the inequality

F(x,6) = (a(x),€) +b(x)

for a.e. x € Q, for every £ € RV*" for some a € LP/ (Q;RNX")
and some b € L1 ().
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The proof once again is routine. The only thing that might puzzle
you is how to show the inequality

F(x,6) = (a(x),€) +b(x)

for a.e. x € Q, for every £ € RV*" for some a € LP/ (Q;RNX")
and some b € L (Q). By hypothesis, we have the inequality
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The proof once again is routine. The only thing that might puzzle
you is how to show the inequality

F(x,6) = (a(x),€) +b(x)

for a.e. x € Q, for every £ € RV*" for some a € LP/ (Q;RNX")
and some b € L (Q). By hypothesis, we have the inequality

F(x.€) = clgl”+b(x)
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The proof once again is routine. The only thing that might puzzle
you is how to show the inequality

F(x,6) = (a(x),€) +b(x)

for a.e. x € Q, for every £ € RV*" for some a € LP/ (Q;RNX")
and some b € L (Q). By hypothesis, we have the inequality

F(x.€) = clgl”+b(x)

for a.e. x € Q, for every £ € RVN*" for some ¢ > 0 and some
bel'(Q).
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The proof once again is routine. The only thing that might puzzle
you is how to show the inequality

F(x,6) = (a(x),€) +b(x)

for a.e. x € Q, for every £ € RV*" for some a € LP/ (Q;RNX")
and some b € L (Q). By hypothesis, we have the inequality

F(x.€) = clgl”+b(x)

for a.e. x € Q, for every £ € RVN*" for some ¢ > 0 and some
bel'(Q).
Any ideas?
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The proof once again is routine. The only thing that might puzzle
you is how to show the inequality

F(x,6) = (a(x),€) +b(x)

for a.e. x € Q, for every £ € RV*" for some a € LP/ (Q;RNX")
and some b € L (Q). By hypothesis, we have the inequality

F(x.€) = clgl”+b(x)

for a.e. x € Q, for every £ € RVN*" for some ¢ > 0 and some
be 1(Q).
Any ideas?
Take a = 0!!
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The proof once again is routine. The only thing that might puzzle
you is how to show the inequality

F(x,6) = (a(x),€) +b(x)

for a.e. x € Q, for every £ € RV*" for some a € LP/ (Q;RNX")
and some b € L (Q). By hypothesis, we have the inequality

F(x.€) = clgl”+b(x)

for a.e. x € Q, for every £ € RVN*" for some ¢ > 0 and some
bel'(Q).
Any ideas?
Take a = 0!!

Do not be embarrassed if you did not get this lemon. Most of us
have been there. :)



Integrands with x and u dependence

Unfortunately, our hypotheses still leave out important problems.

Introduction to the
Calculus of Variations

Swarnendu Sil

Dirichlet Integral

Integrands depending only
on the

micontinuity

e of minimizer

semicontinuity

minimizer

Integrands with x and u
dependence

Weak lower semicontinuity

e of minimizer



Integrands with x and u dependence

Unfortunately, our hypotheses still leave out important problems.

For example, the PDE
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Integrands with x and u dependence

Unfortunately, our hypotheses still leave out important problems.
For example, the PDE

where f Z 0.
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Integrands with x and u dependence

Unfortunately, our hypotheses still leave out important problems.

For example, the PDE
Au=f in Q

where f # 0. Indeed, the energy functional is
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Integrands with x and v dependence

Unfortunately, our hypotheses still leave out important problems.

For example, the PDE
Au=f in Q
where f # 0. Indeed, the energy functional is
I [u] :/Q B [Vu () + (F(x),u(x))| dx.

This depends not only on x, but also explicitly on u.
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Integrands with x and v dependence

Unfortunately, our hypotheses still leave out important problems.
For example, the PDE

Au=f in Q
where f # 0. Indeed, the energy functional is

1= [ |5 176007 407 ) )|

This depends not only on x, but also explicitly on u. However,
here at least the dependence on u is linear.
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This depends not only on x, but also explicitly on u. However,
here at least the dependence on u is linear. The functional

1= [ 5196007+ 5 (] ax



Integrands with x and v dependence

Unfortunately, our hypotheses still leave out important problems.

For example, the PDE
Au="f in Q
where f # 0. Indeed, the energy functional is

/[u]:/Q B |VU(X)|2+<f(X),u(X)>} dx.

This depends not only on x, but also explicitly on u. However,
here at least the dependence on u is linear. The functional

1= [ 5196007+ 5 (] ax

which corresponds to the eigenvalue problem
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Unfortunately, our hypotheses still leave out important problems.
For example, the PDE

Au="f in Q

where f # 0. Indeed, the energy functional is

Integral
dependence

/[u]:/Q B |vU(x)|2+<f(x),u(x)>} dx. e

Existenc

This depends not only on x, but also explicitly on u. However,
here at least the dependence on u is linear. The functional

1 A
1= [ 5196007+ 5 (] ax
aQl2 2
which corresponds to the eigenvalue problem

Au= \u in Q
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Unfortunately, our hypotheses still leave out important problems.
For example, the PDE

Au="f in Q

where f # 0. Indeed, the energy functional is

Integral
dependence

/[u]:/Q B |vU(x)|2+<f(x),u(x)>} dx. e

Existenc

This depends not only on x, but also explicitly on u. However,
here at least the dependence on u is linear. The functional

1 A
1= [ 5196007+ 5 (] ax
aQl2 2
which corresponds to the eigenvalue problem
Au=)u in

is a more general important example.
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