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General convex function of the gradient

Armed with our experience with the Dirichlet integral, we now
move on to more general integrals.

As we have already seen,
perhaps the most important property for applying the direct
methods is the sequential weak lower semicontinuity.

Theorem (sequential weak lower semicontinuity)

Let n ≥ 2,N ≥ 1 be integers and 1 ≤ p <∞. Let Ω ⊂ Rn be
open, bounded and smooth and let f : RN×n → R ∪ {+∞} be
continuous. Let

I [u] :=

ˆ
Ω

f (∇u (x)) dx .

Let ξ 7→ f (ξ) be convex and

us ⇀ u in W 1,p
(
Ω;RN

)
.

Then we have

lim inf
s→∞

I [us ] ≥ I [u] .



Introduction to the
Calculus of Variations

Swarnendu Sil

Direct methods

Dirichlet Integral

Integrands depending only
on the gradient

Weak lower semicontinuity

Existence of minimizer

Integrands with x
dependence

Weak lower semicontinuity

Existence of minimizer

Integrands with x and u
dependence

Weak lower semicontinuity

Existence of minimizer

The End

General convex function of the gradient

Armed with our experience with the Dirichlet integral, we now
move on to more general integrals. As we have already seen,
perhaps the most important property for applying the direct
methods is the sequential weak lower semicontinuity.

Theorem (sequential weak lower semicontinuity)

Let n ≥ 2,N ≥ 1 be integers and 1 ≤ p <∞. Let Ω ⊂ Rn be
open, bounded and smooth and let f : RN×n → R ∪ {+∞} be
continuous. Let

I [u] :=

ˆ
Ω

f (∇u (x)) dx .

Let ξ 7→ f (ξ) be convex and

us ⇀ u in W 1,p
(
Ω;RN

)
.

Then we have

lim inf
s→∞

I [us ] ≥ I [u] .



Introduction to the
Calculus of Variations

Swarnendu Sil

Direct methods

Dirichlet Integral

Integrands depending only
on the gradient

Weak lower semicontinuity

Existence of minimizer

Integrands with x
dependence

Weak lower semicontinuity

Existence of minimizer

Integrands with x and u
dependence

Weak lower semicontinuity

Existence of minimizer

The End

General convex function of the gradient

Armed with our experience with the Dirichlet integral, we now
move on to more general integrals. As we have already seen,
perhaps the most important property for applying the direct
methods is the sequential weak lower semicontinuity.

Theorem (sequential weak lower semicontinuity)

Let n ≥ 2,N ≥ 1 be integers and 1 ≤ p <∞.

Let Ω ⊂ Rn be
open, bounded and smooth and let f : RN×n → R ∪ {+∞} be
continuous. Let

I [u] :=

ˆ
Ω

f (∇u (x)) dx .

Let ξ 7→ f (ξ) be convex and

us ⇀ u in W 1,p
(
Ω;RN

)
.

Then we have

lim inf
s→∞

I [us ] ≥ I [u] .



Introduction to the
Calculus of Variations

Swarnendu Sil

Direct methods

Dirichlet Integral

Integrands depending only
on the gradient

Weak lower semicontinuity

Existence of minimizer

Integrands with x
dependence

Weak lower semicontinuity

Existence of minimizer

Integrands with x and u
dependence

Weak lower semicontinuity

Existence of minimizer

The End

General convex function of the gradient

Armed with our experience with the Dirichlet integral, we now
move on to more general integrals. As we have already seen,
perhaps the most important property for applying the direct
methods is the sequential weak lower semicontinuity.

Theorem (sequential weak lower semicontinuity)

Let n ≥ 2,N ≥ 1 be integers and 1 ≤ p <∞. Let Ω ⊂ Rn be
open, bounded and smooth

and let f : RN×n → R ∪ {+∞} be
continuous. Let

I [u] :=

ˆ
Ω

f (∇u (x)) dx .

Let ξ 7→ f (ξ) be convex and

us ⇀ u in W 1,p
(
Ω;RN

)
.

Then we have

lim inf
s→∞

I [us ] ≥ I [u] .



Introduction to the
Calculus of Variations

Swarnendu Sil

Direct methods

Dirichlet Integral

Integrands depending only
on the gradient

Weak lower semicontinuity

Existence of minimizer

Integrands with x
dependence

Weak lower semicontinuity

Existence of minimizer

Integrands with x and u
dependence

Weak lower semicontinuity

Existence of minimizer

The End

General convex function of the gradient

Armed with our experience with the Dirichlet integral, we now
move on to more general integrals. As we have already seen,
perhaps the most important property for applying the direct
methods is the sequential weak lower semicontinuity.

Theorem (sequential weak lower semicontinuity)

Let n ≥ 2,N ≥ 1 be integers and 1 ≤ p <∞. Let Ω ⊂ Rn be
open, bounded and smooth and let f : RN×n → R ∪ {+∞}

be
continuous. Let

I [u] :=

ˆ
Ω

f (∇u (x)) dx .

Let ξ 7→ f (ξ) be convex and

us ⇀ u in W 1,p
(
Ω;RN

)
.

Then we have

lim inf
s→∞

I [us ] ≥ I [u] .



Introduction to the
Calculus of Variations

Swarnendu Sil

Direct methods

Dirichlet Integral

Integrands depending only
on the gradient

Weak lower semicontinuity

Existence of minimizer

Integrands with x
dependence

Weak lower semicontinuity

Existence of minimizer

Integrands with x and u
dependence

Weak lower semicontinuity

Existence of minimizer

The End

General convex function of the gradient

Armed with our experience with the Dirichlet integral, we now
move on to more general integrals. As we have already seen,
perhaps the most important property for applying the direct
methods is the sequential weak lower semicontinuity.

Theorem (sequential weak lower semicontinuity)

Let n ≥ 2,N ≥ 1 be integers and 1 ≤ p <∞. Let Ω ⊂ Rn be
open, bounded and smooth and let f : RN×n → R ∪ {+∞} be
continuous.

Let

I [u] :=

ˆ
Ω

f (∇u (x)) dx .

Let ξ 7→ f (ξ) be convex and

us ⇀ u in W 1,p
(
Ω;RN

)
.

Then we have

lim inf
s→∞

I [us ] ≥ I [u] .



Introduction to the
Calculus of Variations

Swarnendu Sil

Direct methods

Dirichlet Integral

Integrands depending only
on the gradient

Weak lower semicontinuity

Existence of minimizer

Integrands with x
dependence

Weak lower semicontinuity

Existence of minimizer

Integrands with x and u
dependence

Weak lower semicontinuity

Existence of minimizer

The End

General convex function of the gradient

Armed with our experience with the Dirichlet integral, we now
move on to more general integrals. As we have already seen,
perhaps the most important property for applying the direct
methods is the sequential weak lower semicontinuity.

Theorem (sequential weak lower semicontinuity)

Let n ≥ 2,N ≥ 1 be integers and 1 ≤ p <∞. Let Ω ⊂ Rn be
open, bounded and smooth and let f : RN×n → R ∪ {+∞} be
continuous. Let

I [u] :=

ˆ
Ω

f (∇u (x)) dx .

Let ξ 7→ f (ξ) be convex and

us ⇀ u in W 1,p
(
Ω;RN

)
.

Then we have

lim inf
s→∞

I [us ] ≥ I [u] .



Introduction to the
Calculus of Variations

Swarnendu Sil

Direct methods

Dirichlet Integral

Integrands depending only
on the gradient

Weak lower semicontinuity

Existence of minimizer

Integrands with x
dependence

Weak lower semicontinuity

Existence of minimizer

Integrands with x and u
dependence

Weak lower semicontinuity

Existence of minimizer

The End

General convex function of the gradient

Armed with our experience with the Dirichlet integral, we now
move on to more general integrals. As we have already seen,
perhaps the most important property for applying the direct
methods is the sequential weak lower semicontinuity.

Theorem (sequential weak lower semicontinuity)

Let n ≥ 2,N ≥ 1 be integers and 1 ≤ p <∞. Let Ω ⊂ Rn be
open, bounded and smooth and let f : RN×n → R ∪ {+∞} be
continuous. Let

I [u] :=

ˆ
Ω

f (∇u (x)) dx .

Let ξ 7→ f (ξ) be convex

and

us ⇀ u in W 1,p
(
Ω;RN

)
.

Then we have

lim inf
s→∞

I [us ] ≥ I [u] .



Introduction to the
Calculus of Variations

Swarnendu Sil

Direct methods

Dirichlet Integral

Integrands depending only
on the gradient

Weak lower semicontinuity

Existence of minimizer

Integrands with x
dependence

Weak lower semicontinuity

Existence of minimizer

Integrands with x and u
dependence

Weak lower semicontinuity

Existence of minimizer

The End

General convex function of the gradient

Armed with our experience with the Dirichlet integral, we now
move on to more general integrals. As we have already seen,
perhaps the most important property for applying the direct
methods is the sequential weak lower semicontinuity.

Theorem (sequential weak lower semicontinuity)

Let n ≥ 2,N ≥ 1 be integers and 1 ≤ p <∞. Let Ω ⊂ Rn be
open, bounded and smooth and let f : RN×n → R ∪ {+∞} be
continuous. Let

I [u] :=

ˆ
Ω

f (∇u (x)) dx .

Let ξ 7→ f (ξ) be convex and

us ⇀ u in W 1,p
(
Ω;RN

)
.

Then we have

lim inf
s→∞

I [us ] ≥ I [u] .



Introduction to the
Calculus of Variations

Swarnendu Sil

Direct methods

Dirichlet Integral

Integrands depending only
on the gradient

Weak lower semicontinuity

Existence of minimizer

Integrands with x
dependence

Weak lower semicontinuity

Existence of minimizer

Integrands with x and u
dependence

Weak lower semicontinuity

Existence of minimizer

The End

General convex function of the gradient

Armed with our experience with the Dirichlet integral, we now
move on to more general integrals. As we have already seen,
perhaps the most important property for applying the direct
methods is the sequential weak lower semicontinuity.

Theorem (sequential weak lower semicontinuity)

Let n ≥ 2,N ≥ 1 be integers and 1 ≤ p <∞. Let Ω ⊂ Rn be
open, bounded and smooth and let f : RN×n → R ∪ {+∞} be
continuous. Let

I [u] :=

ˆ
Ω

f (∇u (x)) dx .

Let ξ 7→ f (ξ) be convex and

us ⇀ u in W 1,p
(
Ω;RN

)
.

Then we have

lim inf
s→∞

I [us ] ≥ I [u] .



Introduction to the
Calculus of Variations

Swarnendu Sil

Direct methods

Dirichlet Integral

Integrands depending only
on the gradient

Weak lower semicontinuity

Existence of minimizer

Integrands with x
dependence

Weak lower semicontinuity

Existence of minimizer

Integrands with x and u
dependence

Weak lower semicontinuity

Existence of minimizer

The End

General convex function of the gradient

Armed with our experience with the Dirichlet integral, we now
move on to more general integrals. As we have already seen,
perhaps the most important property for applying the direct
methods is the sequential weak lower semicontinuity.

Theorem (sequential weak lower semicontinuity)

Let n ≥ 2,N ≥ 1 be integers and 1 ≤ p <∞. Let Ω ⊂ Rn be
open, bounded and smooth and let f : RN×n → R ∪ {+∞} be
continuous. Let

I [u] :=

ˆ
Ω

f (∇u (x)) dx .

Let ξ 7→ f (ξ) be convex and

us ⇀ u in W 1,p
(
Ω;RN

)
.

Then we have

lim inf
s→∞

I [us ] ≥ I [u] .



Introduction to the
Calculus of Variations

Swarnendu Sil

Direct methods

Dirichlet Integral

Integrands depending only
on the gradient

Weak lower semicontinuity

Existence of minimizer

Integrands with x
dependence

Weak lower semicontinuity

Existence of minimizer

Integrands with x and u
dependence

Weak lower semicontinuity

Existence of minimizer

The End

Mazur lemma

We begin by recalling a standard result in functional analysis
whose proof can be found in most textbooks.

Lemma (Mazur lemma)

Let (X , ‖·‖) be a normed space and let

xs ⇀ x in X .

Then there exists a sequence {yµ}µ≥1 ⊂ co {xs}s≥1 such that

yµ → x in X .

More precisely, for every µ, there exist an integer mµ and

αi
µ > 0 with

mµ∑
i=1

αi
µ = 1

such that

yµ =

mµ∑
i=1

αi
µxi and ‖yµ − x‖X → 0 as µ→∞.



Introduction to the
Calculus of Variations

Swarnendu Sil

Direct methods

Dirichlet Integral

Integrands depending only
on the gradient

Weak lower semicontinuity

Existence of minimizer

Integrands with x
dependence

Weak lower semicontinuity

Existence of minimizer

Integrands with x and u
dependence

Weak lower semicontinuity

Existence of minimizer

The End

Mazur lemma

We begin by recalling a standard result in functional analysis
whose proof can be found in most textbooks.

Lemma (Mazur lemma)

Let (X , ‖·‖) be a normed space

and let

xs ⇀ x in X .

Then there exists a sequence {yµ}µ≥1 ⊂ co {xs}s≥1 such that

yµ → x in X .

More precisely, for every µ, there exist an integer mµ and

αi
µ > 0 with

mµ∑
i=1

αi
µ = 1

such that

yµ =

mµ∑
i=1

αi
µxi and ‖yµ − x‖X → 0 as µ→∞.



Introduction to the
Calculus of Variations

Swarnendu Sil

Direct methods

Dirichlet Integral

Integrands depending only
on the gradient

Weak lower semicontinuity

Existence of minimizer

Integrands with x
dependence

Weak lower semicontinuity

Existence of minimizer

Integrands with x and u
dependence

Weak lower semicontinuity

Existence of minimizer

The End

Mazur lemma

We begin by recalling a standard result in functional analysis
whose proof can be found in most textbooks.

Lemma (Mazur lemma)

Let (X , ‖·‖) be a normed space and let

xs ⇀ x in X .

Then there exists a sequence {yµ}µ≥1 ⊂ co {xs}s≥1 such that

yµ → x in X .

More precisely, for every µ, there exist an integer mµ and

αi
µ > 0 with

mµ∑
i=1

αi
µ = 1

such that

yµ =

mµ∑
i=1

αi
µxi and ‖yµ − x‖X → 0 as µ→∞.



Introduction to the
Calculus of Variations

Swarnendu Sil

Direct methods

Dirichlet Integral

Integrands depending only
on the gradient

Weak lower semicontinuity

Existence of minimizer

Integrands with x
dependence

Weak lower semicontinuity

Existence of minimizer

Integrands with x and u
dependence

Weak lower semicontinuity

Existence of minimizer

The End

Mazur lemma

We begin by recalling a standard result in functional analysis
whose proof can be found in most textbooks.

Lemma (Mazur lemma)

Let (X , ‖·‖) be a normed space and let

xs ⇀ x in X .

Then there exists a sequence {yµ}µ≥1 ⊂ co {xs}s≥1

such that

yµ → x in X .

More precisely, for every µ, there exist an integer mµ and

αi
µ > 0 with

mµ∑
i=1

αi
µ = 1

such that

yµ =

mµ∑
i=1

αi
µxi and ‖yµ − x‖X → 0 as µ→∞.



Introduction to the
Calculus of Variations

Swarnendu Sil

Direct methods

Dirichlet Integral

Integrands depending only
on the gradient

Weak lower semicontinuity

Existence of minimizer

Integrands with x
dependence

Weak lower semicontinuity

Existence of minimizer

Integrands with x and u
dependence

Weak lower semicontinuity

Existence of minimizer

The End

Mazur lemma

We begin by recalling a standard result in functional analysis
whose proof can be found in most textbooks.

Lemma (Mazur lemma)

Let (X , ‖·‖) be a normed space and let

xs ⇀ x in X .

Then there exists a sequence {yµ}µ≥1 ⊂ co {xs}s≥1 such that

yµ → x in X .

More precisely, for every µ, there exist an integer mµ and

αi
µ > 0 with

mµ∑
i=1

αi
µ = 1

such that

yµ =

mµ∑
i=1

αi
µxi and ‖yµ − x‖X → 0 as µ→∞.



Introduction to the
Calculus of Variations

Swarnendu Sil

Direct methods

Dirichlet Integral

Integrands depending only
on the gradient

Weak lower semicontinuity

Existence of minimizer

Integrands with x
dependence

Weak lower semicontinuity

Existence of minimizer

Integrands with x and u
dependence

Weak lower semicontinuity

Existence of minimizer

The End

Mazur lemma

We begin by recalling a standard result in functional analysis
whose proof can be found in most textbooks.

Lemma (Mazur lemma)

Let (X , ‖·‖) be a normed space and let

xs ⇀ x in X .

Then there exists a sequence {yµ}µ≥1 ⊂ co {xs}s≥1 such that

yµ → x in X .

More precisely,

for every µ, there exist an integer mµ and

αi
µ > 0 with

mµ∑
i=1

αi
µ = 1

such that

yµ =

mµ∑
i=1

αi
µxi and ‖yµ − x‖X → 0 as µ→∞.



Introduction to the
Calculus of Variations

Swarnendu Sil

Direct methods

Dirichlet Integral

Integrands depending only
on the gradient

Weak lower semicontinuity

Existence of minimizer

Integrands with x
dependence

Weak lower semicontinuity

Existence of minimizer

Integrands with x and u
dependence

Weak lower semicontinuity

Existence of minimizer

The End

Mazur lemma

We begin by recalling a standard result in functional analysis
whose proof can be found in most textbooks.

Lemma (Mazur lemma)

Let (X , ‖·‖) be a normed space and let

xs ⇀ x in X .

Then there exists a sequence {yµ}µ≥1 ⊂ co {xs}s≥1 such that

yµ → x in X .

More precisely, for every µ,

there exist an integer mµ and

αi
µ > 0 with

mµ∑
i=1

αi
µ = 1

such that

yµ =

mµ∑
i=1

αi
µxi and ‖yµ − x‖X → 0 as µ→∞.



Introduction to the
Calculus of Variations

Swarnendu Sil

Direct methods

Dirichlet Integral

Integrands depending only
on the gradient

Weak lower semicontinuity

Existence of minimizer

Integrands with x
dependence

Weak lower semicontinuity

Existence of minimizer

Integrands with x and u
dependence

Weak lower semicontinuity

Existence of minimizer

The End

Mazur lemma

We begin by recalling a standard result in functional analysis
whose proof can be found in most textbooks.

Lemma (Mazur lemma)

Let (X , ‖·‖) be a normed space and let

xs ⇀ x in X .

Then there exists a sequence {yµ}µ≥1 ⊂ co {xs}s≥1 such that

yµ → x in X .

More precisely, for every µ, there exist an integer mµ

and

αi
µ > 0 with

mµ∑
i=1

αi
µ = 1

such that

yµ =

mµ∑
i=1

αi
µxi and ‖yµ − x‖X → 0 as µ→∞.



Introduction to the
Calculus of Variations

Swarnendu Sil

Direct methods

Dirichlet Integral

Integrands depending only
on the gradient

Weak lower semicontinuity

Existence of minimizer

Integrands with x
dependence

Weak lower semicontinuity

Existence of minimizer

Integrands with x and u
dependence

Weak lower semicontinuity

Existence of minimizer

The End

Mazur lemma

We begin by recalling a standard result in functional analysis
whose proof can be found in most textbooks.

Lemma (Mazur lemma)

Let (X , ‖·‖) be a normed space and let

xs ⇀ x in X .

Then there exists a sequence {yµ}µ≥1 ⊂ co {xs}s≥1 such that

yµ → x in X .

More precisely, for every µ, there exist an integer mµ and

αi
µ > 0 with

mµ∑
i=1

αi
µ = 1

such that

yµ =

mµ∑
i=1

αi
µxi and ‖yµ − x‖X → 0 as µ→∞.



Introduction to the
Calculus of Variations

Swarnendu Sil

Direct methods

Dirichlet Integral

Integrands depending only
on the gradient

Weak lower semicontinuity

Existence of minimizer

Integrands with x
dependence

Weak lower semicontinuity

Existence of minimizer

Integrands with x and u
dependence

Weak lower semicontinuity

Existence of minimizer

The End

Mazur lemma

We begin by recalling a standard result in functional analysis
whose proof can be found in most textbooks.

Lemma (Mazur lemma)

Let (X , ‖·‖) be a normed space and let

xs ⇀ x in X .

Then there exists a sequence {yµ}µ≥1 ⊂ co {xs}s≥1 such that

yµ → x in X .

More precisely, for every µ, there exist an integer mµ and

αi
µ > 0 with

mµ∑
i=1

αi
µ = 1

such that

yµ =

mµ∑
i=1

αi
µxi and ‖yµ − x‖X → 0 as µ→∞.



Introduction to the
Calculus of Variations

Swarnendu Sil

Direct methods

Dirichlet Integral

Integrands depending only
on the gradient

Weak lower semicontinuity

Existence of minimizer

Integrands with x
dependence

Weak lower semicontinuity

Existence of minimizer

Integrands with x and u
dependence

Weak lower semicontinuity

Existence of minimizer

The End

Mazur lemma

We begin by recalling a standard result in functional analysis
whose proof can be found in most textbooks.

Lemma (Mazur lemma)

Let (X , ‖·‖) be a normed space and let

xs ⇀ x in X .

Then there exists a sequence {yµ}µ≥1 ⊂ co {xs}s≥1 such that

yµ → x in X .

More precisely, for every µ, there exist an integer mµ and

αi
µ > 0 with

mµ∑
i=1

αi
µ = 1

such that

yµ =

mµ∑
i=1

αi
µxi and ‖yµ − x‖X → 0 as µ→∞.



Introduction to the
Calculus of Variations

Swarnendu Sil

Direct methods

Dirichlet Integral

Integrands depending only
on the gradient

Weak lower semicontinuity

Existence of minimizer

Integrands with x
dependence

Weak lower semicontinuity

Existence of minimizer

Integrands with x and u
dependence

Weak lower semicontinuity

Existence of minimizer

The End

Proof of s.w.l.s.c

Proof.

Reduction to positive integrands We first show we can assume
f ≥ 0. Since f is convex, there exists a vector θ ∈ RN×n such that

f (ξ) ≥ f (0) + 〈θ, ξ〉 for all ξ ∈ RN×n.

In Problem sheet 3, we talked about subgradients of a convex
function. Here θ is nothing but a subgradient of f at 0, i.e.
θ ∈ ∂f (0) . Now we set

g (ξ) := f (ξ)− f (0)− 〈θ, ξ〉 .

Clearly, g ≥ 0. Note that since the vector θ, considered as the

constant function is in Lp
′

(Ω) , for every sequence

us ⇀ u in W 1,p
(
Ω;RN

)
,

we have ˆ
Ω

〈θ,∇us (x)〉 dx →
ˆ

Ω

〈θ,∇u (x)〉 dx .
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The End

This implies that

lim inf
s→∞

ˆ
Ω

g (∇us (x)) dx −
ˆ

Ω

g (∇u (x)) dx

= lim inf
s→∞

ˆ
Ω

f (∇us (x)) dx −
ˆ

Ω

f (∇u (x)) dx .

Thus, it is enough to prove the theorem with the additional
assumption that f ≥ 0.

Strong lower semicontinuity Now we prove that we have strong
lower semicontinuity, i.e. if we have a sequence

vµ → u in W 1,p
(
Ω;RN

)
,

then up to the extraction of a subsequence, we have

lim inf
µ→∞

ˆ
Ω

f (∇vµ (x)) dx ≥
ˆ

Ω

f (∇u (x)) dx .

Indeed the strong convergence in W 1,p implies

∇vµ → ∇u in Lp
(
Ω;RN×n) .
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,
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we have
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weak lower semicontinuity Now we finish the proof using the
strong lower semicontinuity. Let

L := lim inf
s→∞

ˆ
Ω

f (∇us (x)) dx

and passing to a subsequence if necessary, we can assume

L := lim
s→∞
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Fix ε > 0. Thus, there exists s0 = s0 (ε) ∈ N such that for every
s ≥ s0, we have ˆ
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The End

Now, for every sequence

us ⇀ u in W 1,p
(
Ω;RN

)
,

applying Mazur’s lemma, we know there exists a sequence
{vµ}µ≥1 such that for every µ, there exist an integer mµ ≥ s0 and

αi
µ > 0 with

mµ∑
i=s0

αi
µ = 1

such that

vµ =

mµ∑
i=s0

αs
µui and vµ → u in W 1,p

(
Ω;RN

)
.

Now, since f is convex, for every µ ≥ 1, we have

f (∇vµ) = f

( mµ∑
i=s0

αi
µ∇ui

)
≤

mµ∑
i=s0

αi
µf (∇ui ) .
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we get

ˆ
Ω

f (∇vµ (x)) dx ≤
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αi
µ

ˆ
Ω

f (∇ui (x)) dx

≤
mµ∑
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µ (L + ε) = L + ε.

So finally, we deduce

ˆ
Ω

f (∇u (x)) dx ≤ lim inf
µ→∞

ˆ
Ω

f (∇vµ (x)) dx ≤ L + ε.

Since ε > 0 is arbitrary, we obtain

ˆ
Ω

f (∇u (x)) dx ≤ lim inf
s→∞

ˆ
Ω

f (∇us (x)) dx .

This completes the proof.
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Existence of minimizer

Once the sequential w.l.s.c is established, it is now a routine
exercise to prove the following.

Theorem
Let n ≥ 2,N ≥ 1 be integers, 1 < p <∞ and let Ω ⊂ Rn be open
bounded and smooth. Let u0 ∈W 1,p

(
Ω;RN

)
be given. Let

f : RN×n → R ∪ {+∞} be continuous, convex and satisfies

f (ξ) ≥ c |ξ|p for all ξ ∈ RN×n

for some c > 0. Let

I [u] :=

ˆ
Ω

f (∇u (x)) dx .

If I [u0] <∞, then the following problem

inf
{
I [u] : u ∈ u0 + W 1,p

0

(
Ω;RN

)}
= m

admits a minimizer. If f is strictly convex, then the minimizer is
unique.
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Of course, the simplest and also the prototype example for the last
theorem is the p-Dirichlet integral.

Dp [u] :=
1

p

ˆ
Ω

|∇u (x)|p dx .

The Euler-Lagrange equation is the p-Laplacian

∆pu := div
(
|∇u|p−2∇u

)
= 0.

The associated boundary value problem is{
∆pu = 0 in Ω

u = u0 on ∂Ω.

For p = 2, this is the Laplace equation as we have already seen.
This partial differential operator is also second order and elliptic,
but not uniformly elliptic if p 6= 2. It is degenerate elliptic for
2 < p <∞ and is singular elliptic for 1 < p < 2.
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Integrands with x dependence

The result we have established so far is a basic one,

but it is too
special to be of much use. As an example, suppose we want to
solve the Dirichlet boundary value problem for the following PDE
using variational method.

div (A (x)∇u) = 0 in Ω,

where A is a bounded and measurable, symmetric, uniformly
positive-definite non-constant matrix-field. The associated energy
functional is

I [u] :=
1

2

ˆ
Ω

〈A (x)∇u (x) ,∇u (x)〉 dx .

This does not fall into the category covered by our theorem since
here f depends on x and ξ, and not just ξ.
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Weak lower semicontinuity with x dependence

As we have already seen in the last example, we want to allow
merely measurable dependece on x .

Definition (Carathéodory functions)

Let Ω ⊂ Rn be open and let f : Ω×RM → R ∪ {+∞} . f is called
a Carathéodory function if

I ζ 7→ f (x , ζ) is continuous for a.e. x ∈ Ω,

I x 7→ (x , ζ) is measurable for every ζ ∈ RM .

Remark
Roughly, f = f (x , ξ) is a Carathéodory function when it depends
measurably on x for every ξ and continuously on ξ for a.e. x ∈ Ω.

Similarly, f = f (x , u, ξ) is a Carathéodory function when it
depends measurably on x for every (u, ξ) and continuously on
(u, ξ) for a.e. x ∈ Ω.
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measurably on x for every ξ and continuously on ξ for a.e. x ∈ Ω.

Similarly, f = f (x , u, ξ) is a Carathéodory function when it
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Let Ω ⊂ Rn be open and let f : Ω×RM → R ∪ {+∞} . f is called
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Let Ω ⊂ Rn be open and let f : Ω×RM → R ∪ {+∞} . f is called
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measurably on x for every ξ and continuously on ξ for a.e. x ∈ Ω.

Similarly,

f = f (x , u, ξ) is a Carathéodory function when it
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measurably on x for every ξ and continuously on ξ for a.e. x ∈ Ω.

Similarly, f = f (x , u, ξ) is a Carathéodory function when it
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The proof is exactly similar to the last weak lower semicontinuity
theorem.

The changes are just cosmetic. The moral of the story
here is that if there is no explicit u dependence, even measurable
dependence on x can be handled easily. This would change
considerably when we shall deal with functions with both x and u
dependence.
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Existence of minimizer with x dependence

Theorem
Let n ≥ 2,N ≥ 1 be integers,

1 < p <∞ and let Ω ⊂ Rn be open
bounded and smooth. Let u0 ∈W 1,p

(
Ω;RN

)
be given. Let

f : Ω× RN×n → R ∪ {+∞} be a Carathéodory function satisfying

f (x , ξ) ≥ c |ξ|p + b (x)

for a.e. x ∈ Ω, for every ξ ∈ RN×n for some c > 0 and some
b ∈ L1 (Ω) . Assume ξ 7→ f (x , ξ) be convex for a.e. x ∈ Ω. Let

I [u] :=

ˆ
Ω

f (∇u (x)) dx .

If I [u0] <∞, then the following problem

inf
{
I [u] : u ∈ u0 + W 1,p

0

(
Ω;RN

)}
= m

admits a minimizer. If ξ 7→ f (x , ξ) is strictly convex for a.e.
x ∈ Ω, then the minimizer is unique.
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The proof once again is routine.

The only thing that might puzzle
you is how to show the inequality

f (x , ξ) ≥ 〈a (x) , ξ〉+ b (x)

for a.e. x ∈ Ω, for every ξ ∈ RN×n for some a ∈ Lp
′ (

Ω;RN×n)
and some b ∈ L1 (Ω) . By hypothesis, we have the inequality

f (x , ξ) ≥ c |ξ|p + b (x)

for a.e. x ∈ Ω, for every ξ ∈ RN×n for some c > 0 and some
b ∈ L1 (Ω) .

Any ideas?

Take a ≡ 0!!

Do not be embarrassed if you did not get this lemon. Most of us
have been there. :)
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The proof once again is routine. The only thing that might puzzle
you is how to show the inequality

f (x , ξ) ≥ 〈a (x) , ξ〉+ b (x)

for a.e. x ∈ Ω, for every ξ ∈ RN×n for some a ∈ Lp
′ (

Ω;RN×n)
and some b ∈ L1 (Ω) . By hypothesis, we have the inequality

f (x , ξ) ≥ c |ξ|p + b (x)

for a.e. x ∈ Ω, for every ξ ∈ RN×n for some c > 0 and some
b ∈ L1 (Ω) .

Any ideas?

Take a ≡ 0!!

Do not be embarrassed if you did not get this lemon. Most of us
have been there. :)
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Integrands with x and u dependence

Unfortunately, our hypotheses still leave out important problems.

For example, the PDE

∆u = f in Ω

where f 6≡ 0. Indeed, the energy functional is

I [u] =

ˆ
Ω

[
1

2
|∇u (x)|2 + 〈f (x) , u (x)〉

]
dx .

This depends not only on x , but also explicitly on u. However,
here at least the dependence on u is linear. The functional

I [u] =

ˆ
Ω

[
1

2
|∇u (x)|2 +

λ

2
|u (x)|2

]
dx ,

which corresponds to the eigenvalue problem

∆u = λu in Ω

is a more general important example.
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Thank you
Questions?
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