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Poincaré-Sobolev
inequalities

Morrey’s inequality

Rellich-Kondrachov
compact embeddings

Direct methods

Dirichlet Integral

The End

Introduction to the Calculus of
Variations: Lecture 16

Swarnendu Sil

Department of Mathematics
Indian Institute of Science

Spring Semester 2021



Introduction to the
Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties

Approximation and
extension

Traces

Sobolev inequalities and
Sobolev embeddings

Gagliardo-Nirenberg-
Sobolev
inequalities

Poincaré-Sobolev
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Compactness in Lp spaces

Now we proceed to the question of compactness of the Sobolev
embeddings. But before stating the result, we first record a
criterion for compactness in Lq (Ω) .

Theorem (Kolmogorov-M.Riesz-Frechet)

Let F be a bounded subset of Lp (Rn) with 1 ≤ p <∞ such that

lim
|h|→0

‖τhu − u‖Lp(Rn) = 0 uniformly in u ∈ F .

Then the closure of F|Ω is compact in Lp (Ω) for any measurable
Ω ⊂ Rn with finite measure.

Remark
Here τh is the translation operator, i.e.

τhu (x) := u (x + h) for all x ∈ Rn.

Since this result is often proved in measure and integral courses
while studying Lp spaces, we omit the proof. The notes shall
include a complete proof.
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Rellich-Kondrachov compact embeddings

Now we state our main result.

Theorem (Rellich-Kondrachov compact embeddings)

Let Ω ⊂ Rn be open bounded and smooth. Then the following
injections are all compact

W 1,p (Ω) ↪→ Lq (Ω) for all 1 ≤ q < p∗ for 1 ≤ p < n,

W 1,p (Ω) ↪→ Lq (Ω) for all 1 ≤ q <∞ for p = n,

W 1,p (Ω) ↪→ C
(
Ω
)

for n < p <∞.

Remark
Note that the theorem does not claim that the embedding of
W 1,p into Lp

∗
in the case 1 ≤ p < n is compact. In fact, this

injection, though continuous, is never compact. This can be easily
seen in the following example.
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Poincaré-Sobolev
inequalities

Morrey’s inequality

Rellich-Kondrachov
compact embeddings

Direct methods

Dirichlet Integral

The End

Lack of compactness at the critical exponent norm

Example

Let u ∈W 1,p (Bn
1 ) ,

u 6≡ 0, supp u ⊂ Bn
1 for some 1 ≤ p < n. Set

uε (x) := u
(x
ε

)
and vε (x) :=

(
1

ε

) n−p
p

uε (x) .

Now uε, vε ∈W 1,p (Bn
1 ) for every ε > 0.We compute

‖vε‖Lq(Bn
1 ) =

(
1

ε

) n−p
p

‖uε‖Lq(Bn
1 ) = εn( 1

q−
1
p−

1
n ) ‖u‖Lq(Bn

1 ) .

for any 1 ≤ q ≤ p∗. Similarly, we have

‖∇vε‖Lp(Bn
1 ) = ‖∇u‖Lq(Bn

1 ) .

Thus, the sequence {vε}ε is uniformly bounded in W 1,p (Bn
1 ) and

vε → 0 as ε→ 0 in Lq (Bn
1 ) for any 1 ≤ q < p∗, but

‖vε‖Lp∗(Bn
1 ) = ‖u‖Lp∗(Bn

1 ) 6= 0 for every ε > 0.
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Proof of Rellich-Kondrachov

Proof.
The case p > n follows from Morrey’s inequality and Ascoli-Arzela
theorem.

The case p = n can be deduced from the case 1 ≤ p < n
case. So we just prove this later case. Also, since Ω is bounded,
clearly it is enough to prove the result for p ≤ q < p∗.

By using extension and the Kolmogororv-M.Riesz-Frechet
theorem, we only need to show

lim
|h|→0

‖τhu − u‖Lq(Rn) = 0 uniformly in u ∈ F ,

for any p ≤ q < p∗ and any bounded subset F ⊂W 1,p (Rn) .But
we have, by interpolation,

‖τhu − u‖Lq ≤ ‖τhu − u‖αLp ‖τhu − u‖1−α
Lp∗

≤ c |h|α ‖∇u‖αLp ‖u‖1−α
Lp∗

≤ cM |h|α .

This proves the theorem.
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Poincaré-Sobolev
inequalities

Morrey’s inequality

Rellich-Kondrachov
compact embeddings

Direct methods

Dirichlet Integral

The End

Summary of Sobolev embeddings

Let Ω ⊂ Rn be open bounded and smooth.

I If 1 ≤ p < n, then the injections

W 1,p (Ω) ↪→ Lq (Ω) for all 1 ≤ q ≤ p∗

are continuous and are compact for 1 ≤ q < p∗.

I The injections

W 1,n (Ω) ↪→ Lq (Ω) for all 1 ≤ q <∞

are all continuous and compact.

I If n < p <∞,then the injections

W 1,p (Ω) ↪→ C 0,α
(
Ω
)

for all 0 ≤ α ≤ 1− n

p

are continuous and are compact for 0 ≤ α < 1− n
p .
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Dirichlet integral

Now we are ready to begin our study of the modern direct
methods in the calculus of variations.

Dirichlet integral

Let n ≥ 2,N ≥ 1 be integers and let Ω ⊂ Rn be open bounded
and smooth. Let u ∈W 1,2

(
Ω;RN

)
.Then the functional

D [u] :=
1

2

ˆ
Ω

|∇u|2

is called the Dirichlet integral of u. Note that for any
u ∈W 1,2

(
Ω;RN

)
, we have

D [u] <∞.

Now we want to minimize the Dirichlet integral with a given
Dirichlet boundary value.
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Poincaré-Sobolev
inequalities

Morrey’s inequality

Rellich-Kondrachov
compact embeddings

Direct methods

Dirichlet Integral

The End

Dirichlet integral

Now we are ready to begin our study of the modern direct
methods in the calculus of variations.

Dirichlet integral

Let n ≥ 2,N ≥ 1 be integers and let Ω ⊂ Rn be open bounded
and smooth. Let u ∈W 1,2

(
Ω;RN

)
.Then the functional

D [u] :=
1

2

ˆ
Ω

|∇u|2

is called the Dirichlet integral of u. Note that for any
u ∈W 1,2

(
Ω;RN

)
, we have

D [u] <∞.

Now we want to minimize the Dirichlet integral with a given
Dirichlet boundary value.



Introduction to the
Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties

Approximation and
extension

Traces

Sobolev inequalities and
Sobolev embeddings

Gagliardo-Nirenberg-
Sobolev
inequalities

Poincaré-Sobolev
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Minimizing the Dirichlet integral

Theorem
Let n ≥ 2,N ≥ 1 be integers and let Ω ⊂ Rn be open bounded
and smooth.

Let u0 ∈W 1,2
(
Ω;RN

)
be given. Then the following

problem

inf

{
D [u] :=

1

2

ˆ
Ω

|∇u|2 : u ∈ u0 + W 1,2
0

(
Ω;RN

)}
= m

admits an unique minimizer ū ∈ u0 + W 1,2
0

(
Ω;RN

)
. Moreover, ū

is a weak solution of the Dirichlet boundary value problem{
∆ū = 0 in Ω,

ū = u0 on ∂Ω.

i.e. satisfies the weak form of the Euler-Lagrange equation

ˆ
Ω

〈∇ū,∇φ〉 = 0 for all φ ∈W 1,2
0

(
Ω;RN

)
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Poincaré-Sobolev
inequalities

Morrey’s inequality

Rellich-Kondrachov
compact embeddings

Direct methods

Dirichlet Integral

The End

Minimizing the Dirichlet integral

Theorem
Let n ≥ 2,N ≥ 1 be integers and let Ω ⊂ Rn be open bounded
and smooth. Let u0 ∈W 1,2

(
Ω;RN

)
be given.

Then the following
problem

inf

{
D [u] :=

1

2

ˆ
Ω

|∇u|2 : u ∈ u0 + W 1,2
0

(
Ω;RN

)}
= m

admits an unique minimizer ū ∈ u0 + W 1,2
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is a weak solution of the Dirichlet boundary value problem

{
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Proof.

Let {us}s≥1 ⊂ u0 + W 1,2
0

(
Ω;RN

)
be a minimizing

sequence, i.e
D [us ]→ m as s →∞.

Uniform bound for minimizing sequence

Since us − u0 ∈W 1,2
0

(
Ω;RN

)
for every s ≥ 1, by Poincaré

inequality, we have

‖us − u0‖W 1,2 ≤ c ‖∇us −∇u0‖L2

≤ c
√
D [us ] + c ‖∇u0‖L2

≤ c
√
m + 1 + c ‖∇u0‖L2 .

Thus, we have

‖us‖W 1,2 ≤ ‖us − u0‖W 1,2 + ‖u0‖W 1,2 ≤ c
√
m + 1 + c ‖u0‖W 1,2 .

This proves that {us}s≥1 is uniformly bounded in W 1,2
(
Ω;RN

)
.
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The End

Proof. Let {us}s≥1 ⊂ u0 + W 1,2
0

(
Ω;RN

)
be a minimizing

sequence, i.e
D [us ]→ m as s →∞.

Uniform bound for minimizing sequence

Since us − u0 ∈W 1,2
0

(
Ω;RN

)
for every s ≥ 1, by Poincaré

inequality, we have

‖us − u0‖W 1,2 ≤ c ‖∇us −∇u0‖L2

≤ c
√
D [us ] + c ‖∇u0‖L2

≤ c
√
m + 1 + c ‖∇u0‖L2 .

Thus, we have

‖us‖W 1,2 ≤ ‖us − u0‖W 1,2 + ‖u0‖W 1,2 ≤ c
√
m + 1 + c ‖u0‖W 1,2 .

This proves that {us}s≥1 is uniformly bounded in W 1,2
(
Ω;RN

)
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The End

Since W 1,2
(
Ω;RN

)
is reflexive,

the uniform bound implies that

there exists ū ∈W 1,2
(
Ω;RN

)
such that up to the extraction of a

subsequence, which we do not relabel, we have

us ⇀ ū weakly in W 1,2
(
Ω;RN

)
.

sequential weak lower semicontinuity

Now we wish to prove that

lim inf
s→∞

D [us ] ≥ D [ū] .

We have,

2D [us ] =

ˆ
Ω

〈∇us −∇ū +∇ū,∇us −∇ū +∇ū〉

=

ˆ
Ω

〈∇us −∇ū,∇us −∇ū〉+ 2

ˆ
Ω

〈∇us −∇ū,∇ū〉

+

ˆ
Ω

〈∇ū,∇ū〉

≥ 2D [ū] + 2

ˆ
Ω

〈∇us −∇ū,∇ū〉 .
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Poincaré-Sobolev
inequalities

Morrey’s inequality

Rellich-Kondrachov
compact embeddings

Direct methods

Dirichlet Integral

The End

Since W 1,2
(
Ω;RN

)
is reflexive, the uniform bound implies that

there exists ū ∈W 1,2
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Introduction to the
Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties

Approximation and
extension

Traces

Sobolev inequalities and
Sobolev embeddings

Gagliardo-Nirenberg-
Sobolev
inequalities

Poincaré-Sobolev
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〈∇ū,∇ū〉
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The End

Since

us ⇀ ū weakly in W 1,2
(
Ω;RN

)
.

implies

∇us ⇀ ∇ū weakly in L2
(
Ω;RN

)
,

we deduce that

lim
s→∞

ˆ
Ω

〈∇us −∇ū,∇ū〉 = 0.

This proves the weak lower semicontinuity.
Thus, we have

m ≤ D [ū] ≤ lim inf
s→∞

D [us ] = m.

Hence ū is a minimzer.
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m ≤ D [ū] ≤ lim inf
s→∞

D [us ] = m.
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Poincaré-Sobolev
inequalities

Morrey’s inequality

Rellich-Kondrachov
compact embeddings

Direct methods

Dirichlet Integral

The End

Since
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Uniqueness

Suppose ū and v̄ are both minimizers.

Then let w̄ := 1
2 (ū + v̄) .

Then we can see

m ≤ D [w̄ ] ≤ 1

2
D [ū] +

1

2
D [v̄ ] ≤ m.

So w̄ is also a minimizer and hence we obtain,

ˆ
Ω

(
1

2
|∇ū|2 +

1

2
|∇ū|2 −

∣∣∣∣∇ū +∇v̄
2

∣∣∣∣2
)

= 0.

But this implies

1

2
|∇ū|2 +

1

2
|∇ū|2 −

∣∣∣∣∇ū +∇v̄
2

∣∣∣∣2 = 0 a.e.

But this is impossible unless u = v by the strict convexity of the
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2 (ū + v̄) .

Then we can see

m ≤ D [w̄ ] ≤ 1

2
D [ū] +
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Poincaré-Sobolev
inequalities

Morrey’s inequality

Rellich-Kondrachov
compact embeddings

Direct methods

Dirichlet Integral

The End

Uniqueness
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|∇ū|2 +

1

2
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Now if ū is a minimizer,

we must have

d

dt
(D [ū + tφ])

∣∣∣∣
t=0

= 0

for any φ ∈ C∞c
(
Ω;RN

)
. Thus we compute

0 = lim
t→0

1

2t

ˆ
Ω

[
|∇ū + t∇φ|2 − |∇ū|2

]
= lim

t→0

1

2t

ˆ
Ω

[
t 〈∇φ,∇ū〉+ t2 |φ|2

]
=

ˆ
Ω

〈∇φ,∇ū〉 .

But the fact that ∇ū ∈ L2 and the density of C∞c functions in
W 1,2

0 implies that the identity holds for any φ ∈W 1,2
0 as well, i.e.

ˆ
Ω

〈∇φ,∇ū〉 = 0 for any φ ∈W 1,2
0

(
Ω;RN

)
.

This completes the proof.
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Now if ū is a minimizer, we must have

d

dt
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t 〈∇φ,∇ū〉+ t2 |φ|2

]
=

ˆ
Ω

〈∇φ,∇ū〉 .
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t 〈∇φ,∇ū〉+ t2 |φ|2

]
=

ˆ
Ω

〈∇φ,∇ū〉 .
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〈∇φ,∇ū〉 = 0 for any φ ∈W 1,2
0

(
Ω;RN

)
.

This completes the proof.



Introduction to the
Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties

Approximation and
extension

Traces

Sobolev inequalities and
Sobolev embeddings

Gagliardo-Nirenberg-
Sobolev
inequalities

Poincaré-Sobolev
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Poincaré-Sobolev
inequalities

Morrey’s inequality

Rellich-Kondrachov
compact embeddings

Direct methods

Dirichlet Integral

The End

Thank you
Questions?


	Sobolev spaces
	Definitions
	Elementary properties
	Approximation and extension
	Traces
	Sobolev inequalities and Sobolev embeddings

	Direct methods
	Dirichlet Integral

	The End

