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Compactness in LP spaces

Now we proceed to the question of compactness of the Sobolev
embeddings. But before stating the result, we first record a
criterion for compactness in L9 ().

Theorem (Kolmogorov-M.Riesz-Frechet)
Let F be a bounded subset of LP (R™) with 1 < p < oo such that
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Now we proceed to the question of compactness of the Sobolev
embeddings. But before stating the result, we first record a
criterion for compactness in L9 ().

Theorem (Kolmogorov-M.Riesz-Frechet)
Let F be a bounded subset of LP (R™) with 1 < p < oo such that

lim {|7hu — vl ooy = 0 uniformly in u € F.
|h|—0
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Now we proceed to the question of compactness of the Sobolev
embeddings. But before stating the result, we first record a
criterion for compactness in L9 ().

Theorem (Kolmogorov-M.Riesz-Frechet)
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Compactness in LP spaces

Now we proceed to the question of compactness of the Sobolev
embeddings. But before stating the result, we first record a
criterion for compactness in L9 ().

Theorem (Kolmogorov-M.Riesz-Frechet)

Let F be a bounded subset of LP (R™) with 1 < p < oo such that

lim {|7hu — vl ooy = 0 uniformly in u € F.
|h|—0

Then the closure of F|q is compact in LP () for any measurable
Q C R" with finite measure.
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Compactness in LP spaces

Now we proceed to the question of compactness of the Sobolev
embeddings. But before stating the result, we first record a
criterion for compactness in L9 ().

Theorem (Kolmogorov-M.Riesz-Frechet)
Let F be a bounded subset of LP (R™) with 1 < p < oo such that

lim {|7hu — vl ooy = 0 uniformly in u € F.
|h|—0

Then the closure of F|q is compact in LP () for any measurable
Q C R" with finite measure.

Remark
Here Ty, is the translation operator, i.e.

Thu (x) = u(x + h) for all x € R".
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Compactness in LP spaces

Now we proceed to the question of compactness of the Sobolev
embeddings. But before stating the result, we first record a
criterion for compactness in L9 ().

Theorem (Kolmogorov-M.Riesz-Frechet)
Let F be a bounded subset of LP (R™) with 1 < p < oo such that

lim {|7hu — vl ooy = 0 uniformly in u € F.
|h|—0

Then the closure of F|q is compact in LP () for any measurable
Q C R" with finite measure.

Remark
Here Ty, is the translation operator, i.e.

Thu (x) = u(x + h) for all x € R".

Since this result is often proved in measure and integral courses
while studying LP spaces, we omit the proof.
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Compactness in LP spaces

Now we proceed to the question of compactness of the Sobolev
embeddings. But before stating the result, we first record a
criterion for compactness in L9 ().

Theorem (Kolmogorov-M.Riesz-Frechet)

Let F be a bounded subset of LP (R™) with 1 < p < oo such that

lim {|7hu — vl ooy = 0 uniformly in u € F.
|h|—0

Then the closure of F|q is compact in LP () for any measurable
Q C R" with finite measure.

Remark
Here Ty, is the translation operator, i.e.

Thu (x) = u(x + h) for all x € R".

Since this result is often proved in measure and integral courses
while studying LP spaces, we omit the proof. The notes shall
include a complete proof.
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Now we state our main result.
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Rellich-Kondrachov compact embeddings

Now we state our main result.

Theorem (Rellich-Kondrachov compact embeddings)
Let Q C R" be open bounded and smooth.
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Rellich-Kondrachov compact embeddings

Now we state our main result.

Theorem (Rellich-Kondrachov compact embeddings)

Let Q C R" be open bounded and smooth. Then the following
injections are all compact
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Rellich-Kondrachov compact embeddings

Now we state our main result.

Theorem (Rellich-Kondrachov compact embeddings)

Let Q C R" be open bounded and smooth. Then the following
injections are all compact

WhP(Q) — L9(Q) foralll<qg<p* forl<p<n,
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Rellich-Kondrachov compact embeddings

Now we state our main result.

Theorem (Rellich-Kondrachov compact embeddings)

Let Q C R" be open bounded and smooth. Then the following
injections are all compact

WP (Q) < L9(Q) foralll<q<p* forl<p<n,
WP (Q) = L9(Q) foralll<qg<oo forp=n,
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Rellich-Kondrachov compact embeddings

Now we state our main result.

Theorem (Rellich-Kondrachov compact embeddings)
Let Q C R" be open bounded and smooth. Then the following

injections are all compact
WP (Q) — LI(Q) foralll<q<p* forl<p<n,
WP (Q) = L9(Q) foralll<qg<oo forp=n,
WP (Q) = C(Q) forn < p < oo.
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Rellich-Kondrachov compact embeddings

Now we state our main result.

Theorem (Rellich-Kondrachov compact embeddings)
Let Q C R" be open bounded and smooth. Then the following

injections are all compact
WP (Q) — LI(Q) foralll<q<p* forl<p<n,
WYP(Q) — L9(Q) foralll<q<oo forp=n,
WP (Q) = C(Q) forn < p < oo.

Remark
Note that the theorem does not claim
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Now we state our main result.

Theorem (Rellich-Kondrachov compact embeddings)

Let Q C R" be open bounded and smooth. Then the following
injections are all compact

WhP(Q) — L9(Q) foralll<qg<p* forl<p<n,

wtnp (Q) — L9(Q) foralll<gqg< oo for p = n, f:f;:;?:é.,’i;i:?;}s
WP (Q) = C(Q) forn < p < 0. Coe
Remark

Note that the theorem does not claim that the embedding of
WP into LP" in the case 1 < p < n is compact.



Rellich-Kondrachov compact embeddings

Now we state our main result.

Theorem (Rellich-Kondrachov compact embeddings)
Let Q C R" be open bounded and smooth. Then the following

injections are all compact
WP (Q) < L9(Q) foralll<q<p* forl<p<n,
WYP(Q) — L9(Q) foralll<q<oo forp=n,
WP (Q) = C(Q) for n < p < oco.

Remark

Note that the theorem does not claim that the embedding of
WLP into LP" in the case 1 < p < n is compact. In fact, this
injection, though continuous, is never compact.
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Rellich-Kondrachov compact embeddings

Now we state our main result.

Theorem (Rellich-Kondrachov compact embeddings)

Let Q C R" be open bounded and smooth. Then the following
injections are all compact

WP (Q) < L9(Q) foralll<q<p* forl<p<n,
WP (Q) < L9(Q) foralll<qg<oo forp=n,
WP (Q) = C(Q) for n < p < oco.

Remark

Note that the theorem does not claim that the embedding of
WLP into LP" in the case 1 < p < n is compact. In fact, this
injection, though continuous, is never compact. This can be easily
seen in the following example.
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Lack of compactness at the critical exponent norm

Example
Let u € WLP(B]), u#0,
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Lack of compactness at the critical exponent norm

Example
Let u € WYP(B]), u#0, suppu C B for some 1 < p < n.
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Example

Let u € WYP(B]), u#0, suppu C By for some 1 < p < n. Set

ue (x) :

Now ug, v. € WP (BY]) for every ¢ > 0.We compute
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Lack of compactness at the critical exponent norm

Example

Let u € WYP(B]), u#0, suppu C By for some 1 < p < n. Set

X

u: (x) = =u (f) and Ve (x) =

9

n—p

(i) " ().

Now ug, v. € WP (BY]) for every ¢ > 0.We compute

n—p

1 4 1_1
”Ve”[_q(B{') = (€> HUEHLq(Bf) = 5n(q

forany 1 < g < p*.

1

p n

Vo 7)
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Lack of compactness at the critical exponent norm

Example

Let u € WYP(B]), u#0, suppu C By for some 1 < p < n. Set

ug (x) := (f) and Ve (x) =

9

n—p

(i) " ().

Now ug, v. € WP (BY]) for every ¢ > 0.We compute

P

Ivell o(gp) = (i) z o) _ o

for any 1 < g < p*. Similarly, we have

q

Introduction to the
Calculus of Variations

Swarnendu Sil

Rellich-Kondrachov
compact embeddings



Introduction to the

Lack of compactness at the critical exponent norm e Ve

Swarnendu Sil

Example
Let u € WYP(B]), u#0, suppu C By for some 1 < p < n. Set
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Lack of compactness at the critical exponent norm

Example
Let u € WYP(B]), u#0, suppu C By for some 1 < p < n. Set

n—p

w=u(®) ee = (1) ww.

9 9

Now ug, v. € WP (BY]) for every ¢ > 0.We compute

n—p
1 1 1

”Ve”[_q(B{') = (i)p HUEHLq(Bf) = 5n(5_5_z) HUHLq(Bf) .

for any 1 < g < p*. Similarly, we have
||Vv€||LP(B{’) = HVUHLq(Bf)'

Thus, the sequence {v.}_ is uniformly bounded in W' (B]")
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Lack of compactness at the critical exponent norm

Example
Let u € WYP(B]), u#0, suppu C By for some 1 < p < n. Set

w=u(l)  amd ()= (1)n”P e ().

9 9

Now ug, v. € WP (BY]) for every ¢ > 0.We compute

n—p
1 1 1

HVe”[_q(B{') = (i)p HUEHLq(Bf) = 5n(5_5_z) HUHLq(Bf) .

for any 1 < g < p*. Similarly, we have
||Vv€||[_P(Bl") = HVUHLq(Bf)'

Thus, the sequence {v.}_ is uniformly bounded in W (B]") and
v. > 0ase —0in L9(B]) forany 1 < g < p*,
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Lack of compactness at the critical exponent norm

Example
Let u € WYP(B]), u#0, suppu C By for some 1 < p < n. Set

w=u(l)  amd ()= (1)n”P e ().

9 9

Now ug, v. € WP (BY]) for every ¢ > 0.We compute

n—p
1 1 1

HVe”[_q(B{') = (i)p HUEHLq(Bf) = 5n(5_5_z) HUHLq(Bf) .

for any 1 < g < p*. Similarly, we have
||Vv€||[_P(Bl") = HVUHLq(Bf)'

Thus, the sequence {v.}_ is uniformly bounded in W (B]") and
v. > 0ase—0in L9(B]) for any 1 < g < p*, but

Hv5||Lp*(Bln) = HUHLP*(B{’) #0 for every £ > 0.
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Proof of Rellich-Kondrachov

Proof.
The case p > n follows from Morrey's inequality and Ascoli-Arzela

theorem. The case p = n can be deduced from the case 1 < p < n
case. So we just prove this later case.
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Proof of Rellich-Kondrachov

Proof.

The case p > n follows from Morrey's inequality and Ascoli-Arzela
theorem. The case p = n can be deduced from the case 1 < p < n
case. So we just prove this later case. Also, since € is bounded,
clearly it is enough to prove the result for p < g < p*.
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Proof of Rellich-Kondrachov

Proof.

The case p > n follows from Morrey's inequality and Ascoli-Arzela
theorem. The case p = n can be deduced from the case 1 < p < n
case. So we just prove this later case. Also, since € is bounded,
clearly it is enough to prove the result for p < g < p*.

By using extension and the Kolmogororv-M.Riesz-Frechet
theorem,
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Proof of Rellich-Kondrachov

Proof.

The case p > n follows from Morrey's inequality and Ascoli-Arzela
theorem. The case p = n can be deduced from the case 1 < p < n
case. So we just prove this later case. Also, since € is bounded,
clearly it is enough to prove the result for p < g < p*.

By using extension and the Kolmogororv-M.Riesz-Frechet
theorem, we only need to show
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Proof of Rellich-Kondrachov

Proof.

The case p > n follows from Morrey's inequality and Ascoli-Arzela
theorem. The case p = n can be deduced from the case 1 < p < n
case. So we just prove this later case. Also, since € is bounded,

clearly it is enough to prove the result for p < g < p*.

By using extension and the Kolmogororv-M.Riesz-Frechet

theorem, we only need to show

dim it = ullouny = O

for any p < g < p*

uniformly in u € F,
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Proof of Rellich-Kondrachov

Proof.

The case p > n follows from Morrey's inequality and Ascoli-Arzela
theorem. The case p = n can be deduced from the case 1 < p < n
case. So we just prove this later case. Also, since € is bounded,
clearly it is enough to prove the result for p < g < p*.

By using extension and the Kolmogororv-M.Riesz-Frechet
theorem, we only need to show

|Ilvmo [Thu = ull jo(mmy = 0O uniformly in u € F,

for any p < g < p* and any bounded subset F C WP (R").
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Proof of Rellich-Kondrachov

Proof.

The case p > n follows from Morrey's inequality and Ascoli-Arzela
theorem. The case p = n can be deduced from the case 1 < p < n
case. So we just prove this later case. Also, since € is bounded,
clearly it is enough to prove the result for p < g < p*.

By using extension and the Kolmogororv-M.Riesz-Frechet
theorem, we only need to show

|Ilvmo [Thu = ull jo(mmy = 0O uniformly in u € F,

for any p < g < p* and any bounded subset 7 C W' (R") .But
we have, by interpolation,
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Proof of Rellich-Kondrachov

Proof.

The case p > n follows from Morrey's inequality and Ascoli-Arzela
theorem. The case p = n can be deduced from the case 1 < p < n
case. So we just prove this later case. Also, since € is bounded,
clearly it is enough to prove the result for p < g < p*.

By using extension and the Kolmogororv-M.Riesz-Frechet
theorem, we only need to show

|Ilvmo [Thu = ull jo(mmy = 0O uniformly in u € F,

for any p < g < p* and any bounded subset 7 C W' (R") .But
we have, by interpolation,

7h — ull o < |l7hu — ul|7s 1The — -
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Proof of Rellich-Kondrachov

Proof.

The case p > n follows from Morrey's inequality and Ascoli-Arzela
theorem. The case p = n can be deduced from the case 1 < p < n
case. So we just prove this later case. Also, since € is bounded,
clearly it is enough to prove the result for p < g < p*.

By using extension and the Kolmogororv-M.Riesz-Frechet
theorem, we only need to show

|Ilvmo [Thu = ull jo(mmy = 0O uniformly in u € F,

for any p < g < p* and any bounded subset 7 C W' (R") .But
we have, by interpolation,

7h — ull o < |l7hu — ul|7s 1The — -

1—
< c A IVl ull
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Proof.

The case p > n follows from Morrey's inequality and Ascoli-Arzela
theorem. The case p = n can be deduced from the case 1 < p < n
case. So we just prove this later case. Also, since € is bounded,
clearly it is enough to prove the result for p < g < p*.

By using extension and the Kolmogororv-M.Riesz-Frechet
theorem, we only need to show
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lim ||7hu — UHLQ(R") =0 uniformly in u € F, o s
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for any p < g < p* and any bounded subset 7 C W' (R") .But
we have, by interpolation,

I = ullya < [l = ullgo i — ull
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< clh[* [IVullf, ull"
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Let Q2 C R" be open bounded and smooth.

» If 1 < p < n, then the injections
WP (Q) — L9(Q)

are continuous

forall1<qg<p*
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Let Q2 C R" be open bounded and smooth.
» If 1 < p < n, then the injections

WP (Q) = L9(Q) forall1<q<p*

are continuous and are compact for 1 < g < p*.
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W (Q) — L9(Q) forall1<g<oo

are all continuous and compact.

» If n < p < oo,then the injections

WP (Q) < € (Q) forall0<a<1-——
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are continuous and are compact for 0 < a <1 — g.
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Theorem

Let n > 2,N > 1 be integers and let Q C R" be open bounded
and smooth. Let ug € W2 (Q; RN) be given. Then the following
problem

inf{D[u] = %/ \Vu|2 DU € U+ Wolﬁ2 (Q;RN)} =m
Q

admits an unique minimizer i € ug + Wol"2 (Q; RN) . Moreover, i
is a weak solution of the Dirichlet boundary value problem

Dirichlet Integral

Ad=0 in Q,
og=uy on Q.

i.e. satisfies the weak form of the Euler-Lagrange equation

/ (Vi,Ve) =0 for all ¢ € W2 (;RY).
Q
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Dlus] - m as s — 00.

Uniform bound for minimizing sequence
Since us — ug € Wol’2 (Q;RN) for every s > 1, by Poincaré
inequality, we have

lus = wollwrz < € [[Vus = Vo 2
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Thus, we have
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This proves that {us}, is uniformly bounded in W2 (Q; RV).



Since W2 (Q;RV) is reflexive,




Since W12 (Q; RN) is reflexive, the uniform bound implies that
there exists & € W12 (Q;RN)
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there exists & € W12 (Q;RN) such that up to the extraction of a
subsequence, which we do not relabel, we have

Introduction to the
Calculus of Variations

Swarnendu Sil

Definitions
Elementary properties

Approximation and

extension

v inequalities and

embeddings

ardo-Nirenberg:

Poinc

inequalities

Morrey's inequality

Rellich-K.

compact embeddings

Dirichlet Integral



Since W12 (Q; RN) is reflexive, the uniform bound implies that rsradneion i e
. _ i Calculus of Variations

there exists & € W12 (Q;RN) such that up to the extraction of a

subsequence, which we do not relabel, we have

us — @ weakly in W2 (Q;RV) . ot

mentary properties

Swarnendu Sil

imation and

on

equalities and

nbeddings

rdo-Nirenberg:

Rellich

compact embeddings

Dirichlet Integral



Since W12 (Q;RN) is reflexive, the uniform bound implies that
there exists & € W12 (Q;RN) such that up to the extraction of a
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Since W12 (Q;RN) is reflexive, the uniform bound implies that
there exists & € W12 (Q;RN) such that up to the extraction of a
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Now we wish to prove that
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We have,
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sequential weak lower semicontinuity
Now we wish to prove that

ILrl!)rlfD [us] > Dla].

We have,

Dirichlet Integral

2D [us] = / (Vus —Vi+Via,Vus — Vi+ Vi)
Q
= / (Vus — Vi,Vus — Vi) + 2/ (Vus — Vi, Vi)
Q Q

+ /Q (Vii, Vi)

> 2D [n]+2/ (Vu, — Vi, Vi) .
Q
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Since

us — i weakly in w2 (Q;RN) .
implies

Vus = Vi weakly in [2 (Q; ]RN) ,
we deduce that

lim [ (Vu, — Vi, Vi) = 0.
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Since

us — i weakly in w2 (Q;RN) .
implies

Vus = Vi weakly in [2 (Q; ]RN) ,
we deduce that

lim / (Vus — Vi, Vi) =0.
Q
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This proves the weak lower semicontinuity.
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us — il weakly in w2 (Q;RN) .
implies
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we deduce that

§—00

lim / (Vus — Vi, Vi) =0.
Q

This proves the weak lower semicontinuity.
Thus, we have

m < D[] <liminfD[us] = m.
$§—00
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Uniqueness
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Euler-Lagrange equations
Now if & is a minimizer,
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But the fact that Vi € L? and the density of C° functions in
Wol’2 implies that the identity holds for any ¢ € Wol’2 as well, i.e.

/ (Vo, Vi) =0 for any ¢ € Wol’2 (Q;RN) .
Q

This completes the proof. O
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