Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

extension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

The End

Introduction to the Calculus of Variations: Lecture 16

Swarnendu Sil

Department of Mathematics Indian Institute of Science

Spring Semester 2021

Outline

Sobolev spaces

Definitions Elementary properties Approximation and extension Traces Sobolev inequalities and Sobolev embeddings Gagliardo-Nirenberg-Sobolev inequalities Poincaré-Sobolev inequalities Morrey's inequality Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

Now we proceed to the question of compactness of the Sobolev embeddings. But before stating the result, we first record a criterion for compactness in $L^{q}(\Omega)$.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition:

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

Now we proceed to the question of compactness of the Sobolev embeddings. But before stating the result, we first record a criterion for compactness in $L^{q}(\Omega)$.

Theorem (Kolmogorov-M.Riesz-Frechet)

Let \mathcal{F} be a bounded subset of $L^p(\mathbb{R}^n)$ with $1 \leq p < \infty$ such that

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

Now we proceed to the question of compactness of the Sobolev embeddings. But before stating the result, we first record a criterion for compactness in $L^{q}(\Omega)$.

Theorem (Kolmogorov-M.Riesz-Frechet)

Let \mathcal{F} be a bounded subset of $L^{p}\left(\mathbb{R}^{n}\right)$ with $1\leq p<\infty$ such that

 $\lim_{|h|\to 0} \|\tau_h u - u\|_{L^p(\mathbb{R}^n)} = 0 \qquad \text{uniformly in } u \in \mathcal{F}.$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

Now we proceed to the question of compactness of the Sobolev embeddings. But before stating the result, we first record a criterion for compactness in $L^{q}(\Omega)$.

Theorem (Kolmogorov-M.Riesz-Frechet)

Let \mathcal{F} be a bounded subset of $L^{p}(\mathbb{R}^{n})$ with $1 \leq p < \infty$ such that

 $\lim_{|h|\to 0} \|\tau_h u - u\|_{L^p(\mathbb{R}^n)} = 0 \qquad \text{uniformly in } u \in \mathcal{F}.$

Then the closure of $\mathcal{F}|_{\Omega}$ is **compact** in $L^{p}(\Omega)$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Now we proceed to the question of compactness of the Sobolev embeddings. But before stating the result, we first record a criterion for compactness in $L^{q}(\Omega)$.

Theorem (Kolmogorov-M.Riesz-Frechet)

Let \mathcal{F} be a bounded subset of $L^{p}(\mathbb{R}^{n})$ with $1 \leq p < \infty$ such that

 $\lim_{|h|\to 0} \|\tau_h u - u\|_{L^p(\mathbb{R}^n)} = 0 \qquad \text{uniformly in } u \in \mathcal{F}.$

Then the closure of $\mathcal{F}|_{\Omega}$ is **compact** in $L^{p}(\Omega)$ for any measurable $\Omega \subset \mathbb{R}^{n}$ with finite measure.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods Dirichlet Integral

Now we proceed to the question of compactness of the Sobolev embeddings. But before stating the result, we first record a criterion for compactness in $L^{q}(\Omega)$.

Theorem (Kolmogorov-M.Riesz-Frechet)

Let \mathcal{F} be a bounded subset of $L^{p}(\mathbb{R}^{n})$ with $1 \leq p < \infty$ such that

 $\lim_{|h|\to 0} \|\tau_h u - u\|_{L^p(\mathbb{R}^n)} = 0 \qquad \text{uniformly in } u \in \mathcal{F}.$

Then the closure of $\mathcal{F}|_{\Omega}$ is **compact** in $L^{p}(\Omega)$ for any measurable $\Omega \subset \mathbb{R}^{n}$ with finite measure.

Remark

Here τ_h is the translation operator, i.e.

 $au_h u(x) := u(x+h)$ for all $x \in \mathbb{R}^n$.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods Dirichlet Integral

Now we proceed to the question of compactness of the Sobolev embeddings. But before stating the result, we first record a criterion for compactness in $L^{q}(\Omega)$.

Theorem (Kolmogorov-M.Riesz-Frechet)

Let \mathcal{F} be a bounded subset of $L^{p}(\mathbb{R}^{n})$ with $1 \leq p < \infty$ such that

 $\lim_{|h|\to 0} \|\tau_h u - u\|_{L^p(\mathbb{R}^n)} = 0 \qquad \text{uniformly in } u \in \mathcal{F}.$

Then the closure of $\mathcal{F}|_{\Omega}$ is **compact** in $L^{p}(\Omega)$ for any measurable $\Omega \subset \mathbb{R}^{n}$ with finite measure.

Remark

Here τ_h is the translation operator, i.e.

 $au_h u(x) := u(x+h)$ for all $x \in \mathbb{R}^n$.

Since this result is often proved in measure and integral courses while studying L^p spaces, we omit the proof.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods Dirichlet Integral

Now we proceed to the question of compactness of the Sobolev embeddings. But before stating the result, we first record a criterion for compactness in $L^{q}(\Omega)$.

Theorem (Kolmogorov-M.Riesz-Frechet)

Let \mathcal{F} be a bounded subset of $L^{p}(\mathbb{R}^{n})$ with $1 \leq p < \infty$ such that

 $\lim_{|h|\to 0} \|\tau_h u - u\|_{L^p(\mathbb{R}^n)} = 0 \qquad \text{uniformly in } u \in \mathcal{F}.$

Then the closure of $\mathcal{F}|_{\Omega}$ is **compact** in $L^{p}(\Omega)$ for any measurable $\Omega \subset \mathbb{R}^{n}$ with finite measure.

Remark

Here τ_h is the translation operator, i.e.

 $au_h u(x) := u(x+h)$ for all $x \in \mathbb{R}^n$.

Since this result is often proved in measure and integral courses while studying L^p spaces, we omit the proof. The notes shall include a complete proof.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods Dirichlet Integral

Rellich-Kondrachov compact embeddings

Now we state our main result.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space

Definition

Elementary properties

xtension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

Theorem (Rellich-Kondrachov compact embeddings) Let $\Omega \subset \mathbb{R}^n$ be open bounded and smooth. Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties

extension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

Theorem (Rellich-Kondrachov compact embeddings)

Let $\Omega \subset \mathbb{R}^n$ be open bounded and smooth. Then the following injections are all **compact**

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

Theorem (Rellich-Kondrachov compact embeddings)

Let $\Omega \subset \mathbb{R}^n$ be open bounded and smooth. Then the following injections are all **compact**

 $W^{1,p}\left(\Omega\right) \hookrightarrow L^{q}\left(\Omega\right) \quad \text{ for all } 1 \leq q < p^{*} \quad \text{ for } 1 \leq p < n,$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods Dirichlet Integral

Theorem (Rellich-Kondrachov compact embeddings) Let $\Omega \subset \mathbb{R}^n$ be open bounded and smooth. Then the following

injections are all compact

$$\begin{split} & \mathcal{W}^{1,p}\left(\Omega\right) \hookrightarrow \mathcal{L}^{q}\left(\Omega\right) \quad \text{ for all } 1 \leq q < p^{*} \quad \text{ for } 1 \leq p < n, \\ & \mathcal{W}^{1,p}\left(\Omega\right) \hookrightarrow \mathcal{L}^{q}\left(\Omega\right) \quad \text{ for all } 1 \leq q < \infty \quad \text{ for } p = n, \end{split}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods Dirichlet Integral

Theorem (Rellich-Kondrachov compact embeddings) Let $\Omega \subset \mathbb{R}^n$ be open bounded and smooth. Then the following injections are all compact

$$\begin{split} W^{1,p}\left(\Omega\right) &\hookrightarrow L^{q}\left(\Omega\right) \quad \text{ for all } 1 \leq q < p^{*} \quad \text{ for } 1 \leq p < n, \\ W^{1,p}\left(\Omega\right) &\hookrightarrow L^{q}\left(\Omega\right) \quad \text{ for all } 1 \leq q < \infty \quad \text{ for } p = n, \\ W^{1,p}\left(\Omega\right) &\hookrightarrow C\left(\overline{\Omega}\right) \quad \text{ for } n < p < \infty. \end{split}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods Dirichlet Integral

Theorem (Rellich-Kondrachov compact embeddings) Let $\Omega \subset \mathbb{R}^n$ be open bounded and smooth. Then the following injections are all compact

$$\begin{split} & W^{1,p}\left(\Omega\right) \hookrightarrow L^{q}\left(\Omega\right) \quad \text{ for all } 1 \leq q < p^{*} \quad \text{ for } 1 \leq p < n, \\ & W^{1,p}\left(\Omega\right) \hookrightarrow L^{q}\left(\Omega\right) \quad \text{ for all } 1 \leq q < \infty \quad \text{ for } p = n, \\ & W^{1,p}\left(\Omega\right) \hookrightarrow C\left(\overline{\Omega}\right) \quad \text{ for } n < p < \infty. \end{split}$$

Remark

Note that the theorem does not claim

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods Dirichlet Integral

Theorem (Rellich-Kondrachov compact embeddings) Let $\Omega \subset \mathbb{R}^n$ be open bounded and smooth. Then the following injections are all compact

$$\begin{split} & W^{1,p}\left(\Omega\right) \hookrightarrow L^{q}\left(\Omega\right) \quad \text{ for all } 1 \leq q < p^{*} \quad \text{ for } 1 \leq p < n, \\ & W^{1,p}\left(\Omega\right) \hookrightarrow L^{q}\left(\Omega\right) \quad \text{ for all } 1 \leq q < \infty \quad \text{ for } p = n, \\ & W^{1,p}\left(\Omega\right) \hookrightarrow C\left(\overline{\Omega}\right) \quad \text{ for } n < p < \infty. \end{split}$$

Remark

Note that the theorem **does not claim** that the embedding of $W^{1,p}$ into L^{p^*} in the case $1 \le p < n$ is compact.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods Dirichlet Integral

Theorem (Rellich-Kondrachov compact embeddings) Let $\Omega \subset \mathbb{R}^n$ be open bounded and smooth. Then the following injections are all compact

$$\begin{split} & W^{1,p}\left(\Omega\right) \hookrightarrow L^{q}\left(\Omega\right) \quad \text{ for all } 1 \leq q < p^{*} \quad \text{ for } 1 \leq p < n, \\ & W^{1,p}\left(\Omega\right) \hookrightarrow L^{q}\left(\Omega\right) \quad \text{ for all } 1 \leq q < \infty \quad \text{ for } p = n, \\ & W^{1,p}\left(\Omega\right) \hookrightarrow C\left(\overline{\Omega}\right) \quad \text{ for } n < p < \infty. \end{split}$$

Remark

Note that the theorem **does not claim** that the embedding of $W^{1,p}$ into L^{p^*} in the case $1 \le p < n$ is compact. In fact, this injection, though continuous, is never compact.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods Dirichlet Integral

Theorem (Rellich-Kondrachov compact embeddings) Let $\Omega \subset \mathbb{R}^n$ be open bounded and smooth. Then the following injections are all compact

$$\begin{split} & W^{1,p}\left(\Omega\right) \hookrightarrow L^{q}\left(\Omega\right) \quad \text{ for all } 1 \leq q < p^{*} \quad \text{ for } 1 \leq p < n, \\ & W^{1,p}\left(\Omega\right) \hookrightarrow L^{q}\left(\Omega\right) \quad \text{ for all } 1 \leq q < \infty \quad \text{ for } p = n, \\ & W^{1,p}\left(\Omega\right) \hookrightarrow C\left(\overline{\Omega}\right) \quad \text{ for } n < p < \infty. \end{split}$$

Remark

Note that the theorem **does not claim** that the embedding of $W^{1,p}$ into L^{p^*} in the case $1 \le p < n$ is compact. In fact, this injection, though continuous, is never compact. This can be easily seen in the following example.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods Dirichlet Integral

Lack of compactness at the critical exponent norm

Example

Let $u \in W^{1,p}(B_1^n)$,

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space

Definition

Elementary properties

extension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

Lack of compactness at the critical exponent norm

Example

Let $u \in W^{1,p}(B_1^n)$, $u \not\equiv 0$,

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space

Definition

Elementary properties

Approximation and extension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

Lack of compactness at the critical exponent norm

Example

Let $u \in W^{1,p}(B_1^n)$, $u \not\equiv 0$, supp $u \subset B_1^n$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space

Definition

Elementary properties

Approximation and extension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

Let $u \in W^{1,p}(B_1^n)$, $u \neq 0$, supp $u \subset B_1^n$ for some $1 \leq p < n$.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties

Approximation and extension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

Let $u \in W^{1,p}(B_1^n)$, $u \not\equiv 0$, supp $u \subset B_1^n$ for some $1 \leq p < n$. Set

$$u_{\varepsilon}(x) := u\left(rac{x}{arepsilon}
ight) \qquad ext{and} \qquad v_{arepsilon}(x) := \left(rac{1}{arepsilon}
ight)^{rac{n-arphi}{arphi}} u_{arepsilon}(x) \,.$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

Let $u \in W^{1,p}(B_1^n)$, $u \not\equiv 0$, supp $u \subset B_1^n$ for some $1 \le p < n$. Set

$$u_{\varepsilon}(x) := u\left(rac{x}{arepsilon}
ight) \qquad ext{and} \qquad v_{arepsilon}(x) := \left(rac{1}{arepsilon}
ight)^{rac{n-
ho}{
ho}} u_{arepsilon}(x) \,.$$

Now $u_{\varepsilon}, v_{\varepsilon} \in W^{1,p}(B_1^n)$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition:

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

Let $u \in W^{1,p}(B_1^n)$, $u \not\equiv 0$, supp $u \subset B_1^n$ for some $1 \leq p < n$. Set

$$u_{arepsilon}\left(x
ight):=u\left(rac{x}{arepsilon}
ight)\qquad ext{and}\qquad v_{arepsilon}\left(x
ight):=\left(rac{1}{arepsilon}
ight)^{rac{n-arphi}{arphi}}u_{arepsilon}\left(x
ight).$$

Now $u_{\varepsilon}, v_{\varepsilon} \in W^{1,p}(B_1^n)$ for every $\varepsilon > 0$.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

Let $u \in W^{1,p}(B_1^n)$, $u \not\equiv 0$, supp $u \subset B_1^n$ for some $1 \leq p < n$. Set

$$u_{arepsilon}\left(x
ight):=u\left(rac{x}{arepsilon}
ight)\qquad ext{and}\qquad v_{arepsilon}\left(x
ight):=\left(rac{1}{arepsilon}
ight)^{rac{n-arphi}{p}}u_{arepsilon}\left(x
ight).$$

Now $u_{\varepsilon}, v_{\varepsilon} \in W^{1,p}(B_1^n)$ for every $\varepsilon > 0$. We compute

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition:

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

Let $u \in W^{1,p}(B_1^n)$, $u \not\equiv 0$, supp $u \subset B_1^n$ for some $1 \le p < n$. Set

$$u_{\varepsilon}(x) := u\left(rac{x}{arepsilon}
ight) \qquad ext{and} \qquad v_{arepsilon}(x) := \left(rac{1}{arepsilon}
ight)^{rac{n-arphi}{arphi}} u_{arepsilon}(x) \,.$$

Now $u_{\varepsilon}, v_{\varepsilon} \in W^{1,p}(B_{1}^{n})$ for every $\varepsilon > 0$. We compute

$$\|\mathbf{v}_{\varepsilon}\|_{L^{q}\left(B_{1}^{n}\right)}=\left(\frac{1}{\varepsilon}\right)^{\frac{n-p}{p}}\|u_{\varepsilon}\|_{L^{q}\left(B_{1}^{n}\right)}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

Let $u \in W^{1,p}(B_1^n)$, $u \not\equiv 0$, supp $u \subset B_1^n$ for some $1 \le p < n$. Set

$$u_{\varepsilon}(x) := u\left(rac{x}{arepsilon}
ight) \qquad ext{and} \qquad v_{arepsilon}(x) := \left(rac{1}{arepsilon}
ight)^{rac{n-arphi}{p}} u_{arepsilon}(x) \,.$$

Now $u_{\varepsilon}, v_{\varepsilon} \in W^{1,p}\left(B_{1}^{n}\right)$ for every $\varepsilon > 0$. We compute

$$\|v_{\varepsilon}\|_{L^{q}(B_{1}^{n})}=\left(\frac{1}{\varepsilon}\right)^{\frac{n-p}{p}}\|u_{\varepsilon}\|_{L^{q}(B_{1}^{n})}=\varepsilon^{n\left(\frac{1}{q}-\frac{1}{p}-\frac{1}{n}\right)}\|u\|_{L^{q}(B_{1}^{n})}.$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

Let $u \in W^{1,p}\left(B_1^n\right), u \not\equiv 0$, supp $u \subset B_1^n$ for some $1 \leq p < n$. Set

$$u_{\varepsilon}(x) := u\left(rac{x}{arepsilon}
ight) \qquad ext{and} \qquad v_{arepsilon}(x) := \left(rac{1}{arepsilon}
ight)^{rac{n-arphi}{arphi}} u_{arepsilon}(x) \,.$$

Now $u_{\varepsilon}, v_{\varepsilon} \in W^{1,p}\left(B_{1}^{n}\right)$ for every $\varepsilon > 0$.We compute

$$\|v_{\varepsilon}\|_{L^{q}(B_{1}^{n})}=\left(\frac{1}{\varepsilon}\right)^{\frac{n-p}{p}}\|u_{\varepsilon}\|_{L^{q}(B_{1}^{n})}=\varepsilon^{n\left(\frac{1}{q}-\frac{1}{p}-\frac{1}{n}\right)}\|u\|_{L^{q}(B_{1}^{n})}.$$

for any $1 \leq q \leq p^*$.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

Let $u \in W^{1,p}\left(B_1^n\right), u \not\equiv 0$, supp $u \subset B_1^n$ for some $1 \leq p < n$. Set

$$u_{\varepsilon}(x) := u\left(rac{x}{arepsilon}
ight) \qquad ext{and} \qquad v_{arepsilon}(x) := \left(rac{1}{arepsilon}
ight)^{rac{n-arphi}{arphi}} u_{arepsilon}(x) \,.$$

Now $u_{\varepsilon}, v_{\varepsilon} \in W^{1,p}\left(B_{1}^{n}\right)$ for every $\varepsilon > 0$.We compute

$$\|v_{\varepsilon}\|_{L^{q}\left(B_{1}^{n}\right)}=\left(\frac{1}{\varepsilon}\right)^{\frac{n-p}{p}}\|u_{\varepsilon}\|_{L^{q}\left(B_{1}^{n}\right)}=\varepsilon^{n\left(\frac{1}{q}-\frac{1}{p}-\frac{1}{n}\right)}\|u\|_{L^{q}\left(B_{1}^{n}\right)}.$$

for any $1 \leq q \leq p^*$. Similarly, we have

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

Let $u \in W^{1,p}\left(B_1^n\right), u \not\equiv 0$, supp $u \subset B_1^n$ for some $1 \leq p < n$. Set

$$u_{\varepsilon}(x) := u\left(rac{x}{arepsilon}
ight) \qquad ext{and} \qquad v_{arepsilon}(x) := \left(rac{1}{arepsilon}
ight)^{rac{n-arphi}{arphi}} u_{arepsilon}(x) \,.$$

Now $u_{\varepsilon}, v_{\varepsilon} \in W^{1,p}\left(B_{1}^{n}\right)$ for every $\varepsilon > 0$.We compute

$$\|v_{\varepsilon}\|_{L^{q}\left(B_{1}^{n}\right)}=\left(\frac{1}{\varepsilon}\right)^{\frac{n-p}{p}}\|u_{\varepsilon}\|_{L^{q}\left(B_{1}^{n}\right)}=\varepsilon^{n\left(\frac{1}{q}-\frac{1}{p}-\frac{1}{n}\right)}\|u\|_{L^{q}\left(B_{1}^{n}\right)}.$$

for any $1 \leq q \leq p^*$. Similarly, we have

$$\left\|\nabla v_{\varepsilon}\right\|_{L^{p}\left(B_{1}^{n}\right)}=\left\|\nabla u\right\|_{L^{q}\left(B_{1}^{n}\right)}.$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

Let $u \in W^{1,p}\left(B_1^n\right), u \not\equiv 0$, supp $u \subset B_1^n$ for some $1 \leq p < n$. Set

$$u_{\varepsilon}(x) := u\left(rac{x}{arepsilon}
ight) \qquad ext{and} \qquad v_{arepsilon}(x) := \left(rac{1}{arepsilon}
ight)^{rac{n-arphi}{arphi}} u_{arepsilon}(x) \,.$$

Now $u_{\varepsilon}, v_{\varepsilon} \in W^{1,p}\left(B_{1}^{n}\right)$ for every $\varepsilon > 0$.We compute

$$\|v_{\varepsilon}\|_{L^{q}\left(B_{1}^{n}\right)}=\left(\frac{1}{\varepsilon}\right)^{\frac{n-p}{p}}\|u_{\varepsilon}\|_{L^{q}\left(B_{1}^{n}\right)}=\varepsilon^{n\left(\frac{1}{q}-\frac{1}{p}-\frac{1}{n}\right)}\|u\|_{L^{q}\left(B_{1}^{n}\right)}.$$

for any $1 \leq q \leq p^*$. Similarly, we have

$$\left\|\nabla v_{\varepsilon}\right\|_{L^{p}\left(B_{1}^{n}\right)}=\left\|\nabla u\right\|_{L^{q}\left(B_{1}^{n}\right)}.$$

Thus, the sequence $\{v_{\varepsilon}\}_{\varepsilon}$ is uniformly bounded in $W^{1,p}(B_1^n)$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

Let $u \in W^{1,p}(B_1^n)$, $u \not\equiv 0$, supp $u \subset B_1^n$ for some $1 \le p < n$. Set

$$u_{\varepsilon}(x) := u\left(rac{x}{arepsilon}
ight) \qquad ext{and} \qquad v_{arepsilon}(x) := \left(rac{1}{arepsilon}
ight)^{rac{n-arphi}{arphi}} u_{arepsilon}(x) \,.$$

Now $u_{\varepsilon}, v_{\varepsilon} \in W^{1,p}(B_{1}^{n})$ for every $\varepsilon > 0$. We compute

$$\|v_{\varepsilon}\|_{L^{q}(B_{1}^{n})}=\left(\frac{1}{\varepsilon}\right)^{\frac{n-p}{p}}\|u_{\varepsilon}\|_{L^{q}(B_{1}^{n})}=\varepsilon^{n\left(\frac{1}{q}-\frac{1}{p}-\frac{1}{n}\right)}\|u\|_{L^{q}(B_{1}^{n})}.$$

for any $1 \leq q \leq p^*$. Similarly, we have

$$\left\|\nabla v_{\varepsilon}\right\|_{L^{p}\left(B_{1}^{n}\right)}=\left\|\nabla u\right\|_{L^{q}\left(B_{1}^{n}\right)}$$

Thus, the sequence $\{v_{\varepsilon}\}_{\varepsilon}$ is uniformly bounded in $W^{1,p}(B_1^n)$ and $v_{\varepsilon} \to 0$ as $\varepsilon \to 0$ in $L^q(B_1^n)$ for any $1 \le q < p^*$,

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Jinchiet integra

Let $u \in W^{1,p}(B_1^n)$, $u \not\equiv 0$, supp $u \subset B_1^n$ for some $1 \le p < n$. Set

$$u_{\varepsilon}(x) := u\left(rac{x}{arepsilon}
ight) \qquad ext{and} \qquad v_{arepsilon}(x) := \left(rac{1}{arepsilon}
ight)^{rac{n-arphi}{arphi}} u_{arepsilon}(x) \,.$$

Now $u_{\varepsilon}, v_{\varepsilon} \in W^{1,p}(B_1^n)$ for every $\varepsilon > 0$. We compute

$$\|v_{\varepsilon}\|_{L^{q}(B_{1}^{n})}=\left(\frac{1}{\varepsilon}\right)^{\frac{n-p}{p}}\|u_{\varepsilon}\|_{L^{q}(B_{1}^{n})}=\varepsilon^{n\left(\frac{1}{q}-\frac{1}{p}-\frac{1}{n}\right)}\|u\|_{L^{q}(B_{1}^{n})}.$$

for any $1 \leq q \leq p^*$. Similarly, we have

$$\left\|\nabla v_{\varepsilon}\right\|_{L^{p}\left(B_{1}^{n}\right)}=\left\|\nabla u\right\|_{L^{q}\left(B_{1}^{n}\right)}$$

Thus, the sequence $\{v_{\varepsilon}\}_{\varepsilon}$ is uniformly bounded in $W^{1,p}(B_1^n)$ and $v_{\varepsilon} \to 0$ as $\varepsilon \to 0$ in $L^q(B_1^n)$ for any $1 \le q < p^*$, but

$$\|v_{\varepsilon}\|_{L^{p^*}\left(B_1^n
ight)}=\|u\|_{L^{p^*}\left(B_1^n
ight)}
eq 0 \qquad ext{ for every } arepsilon>0.$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Differner integr

The case p > n follows from Morrey's inequality and Ascoli-Arzela theorem.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition:

Elementary properties Approximation and

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

The case p > n follows from Morrey's inequality and Ascoli-Arzela theorem. The case p = n can be deduced from the case $1 \le p < n$ case.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

The case p > n follows from Morrey's inequality and Ascoli-Arzela theorem. The case p = n can be deduced from the case $1 \le p < n$ case. So we just prove this later case.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

The case p > n follows from Morrey's inequality and Ascoli-Arzela theorem. The case p = n can be deduced from the case $1 \le p < n$ case. So we just prove this later case. Also, since Ω is bounded, clearly it is enough to prove the result for $p \le q < p^*$.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

The case p > n follows from Morrey's inequality and Ascoli-Arzela theorem. The case p = n can be deduced from the case $1 \le p < n$ case. So we just prove this later case. Also, since Ω is bounded, clearly it is enough to prove the result for $p \le q < p^*$.

By using extension and the Kolmogororv-M.Riesz-Frechet theorem,

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

The case p > n follows from Morrey's inequality and Ascoli-Arzela theorem. The case p = n can be deduced from the case $1 \le p < n$ case. So we just prove this later case. Also, since Ω is bounded, clearly it is enough to prove the result for $p \le q < p^*$.

By using extension and the Kolmogororv-M.Riesz-Frechet theorem, we only need to show

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

The case p > n follows from Morrey's inequality and Ascoli-Arzela theorem. The case p = n can be deduced from the case $1 \le p < n$ case. So we just prove this later case. Also, since Ω is bounded, clearly it is enough to prove the result for $p \le q < p^*$.

By using extension and the Kolmogororv-M.Riesz-Frechet theorem, we only need to show

$$\lim_{|h|\to 0} \|\tau_h u - u\|_{L^q(\mathbb{R}^n)} = 0 \qquad \text{uniformly in } u \in \mathcal{F},$$

for any $p \leq q < p^*$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

The case p > n follows from Morrey's inequality and Ascoli-Arzela theorem. The case p = n can be deduced from the case $1 \le p < n$ case. So we just prove this later case. Also, since Ω is bounded, clearly it is enough to prove the result for $p \le q < p^*$.

By using extension and the Kolmogororv-M.Riesz-Frechet theorem, we only need to show

 $\lim_{|h|\to 0} \|\tau_h u - u\|_{L^q(\mathbb{R}^n)} = 0 \qquad \text{uniformly in } u \in \mathcal{F},$

for any $p \leq q < p^*$ and any bounded subset $\mathcal{F} \subset W^{1,p}(\mathbb{R}^n)$.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

The case p > n follows from Morrey's inequality and Ascoli-Arzela theorem. The case p = n can be deduced from the case $1 \le p < n$ case. So we just prove this later case. Also, since Ω is bounded, clearly it is enough to prove the result for $p \le q < p^*$.

By using extension and the Kolmogororv-M.Riesz-Frechet theorem, we only need to show

 $\lim_{|h|\to 0} \|\tau_h u - u\|_{L^q(\mathbb{R}^n)} = 0 \qquad \text{uniformly in } u \in \mathcal{F},$

for any $p \leq q < p^*$ and any bounded subset $\mathcal{F} \subset W^{1,p}(\mathbb{R}^n)$.But we have, by interpolation,

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

The case p > n follows from Morrey's inequality and Ascoli-Arzela theorem. The case p = n can be deduced from the case $1 \le p < n$ case. So we just prove this later case. Also, since Ω is bounded, clearly it is enough to prove the result for $p \le q < p^*$.

By using extension and the Kolmogororv-M.Riesz-Frechet theorem, we only need to show

 $\lim_{|h|\to 0} \|\tau_h u - u\|_{L^q(\mathbb{R}^n)} = 0 \qquad \text{uniformly in } u \in \mathcal{F},$

for any $p \leq q < p^*$ and any bounded subset $\mathcal{F} \subset W^{1,p}(\mathbb{R}^n)$.But we have, by interpolation,

$$\|\tau_h u - u\|_{L^q} \le \|\tau_h u - u\|_{L^p}^{\alpha} \|\tau_h u - u\|_{L^{p*}}^{1-\alpha}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

The case p > n follows from Morrey's inequality and Ascoli-Arzela theorem. The case p = n can be deduced from the case $1 \le p < n$ case. So we just prove this later case. Also, since Ω is bounded, clearly it is enough to prove the result for $p \le q < p^*$.

By using extension and the Kolmogororv-M.Riesz-Frechet theorem, we only need to show

 $\lim_{|h|\to 0} \|\tau_h u - u\|_{L^q(\mathbb{R}^n)} = 0 \qquad \text{uniformly in } u \in \mathcal{F},$

for any $p \leq q < p^*$ and any bounded subset $\mathcal{F} \subset W^{1,p}(\mathbb{R}^n)$.But we have, by interpolation,

$$\begin{aligned} \|\tau_h u - u\|_{L^q} &\leq \|\tau_h u - u\|_{L^p}^{\alpha} \|\tau_h u - u\|_{L^{p^*}}^{1-\alpha} \\ &\leq c \, |h|^{\alpha} \, \|\nabla u\|_{L^p}^{\alpha} \, \|u\|_{L^{p^*}}^{1-\alpha} \end{aligned}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

The case p > n follows from Morrey's inequality and Ascoli-Arzela theorem. The case p = n can be deduced from the case $1 \le p < n$ case. So we just prove this later case. Also, since Ω is bounded, clearly it is enough to prove the result for $p \le q < p^*$.

By using extension and the Kolmogororv-M.Riesz-Frechet theorem, we only need to show

 $\lim_{|h|\to 0} \|\tau_h u - u\|_{L^q(\mathbb{R}^n)} = 0 \qquad \text{uniformly in } u \in \mathcal{F},$

for any $p \leq q < p^*$ and any bounded subset $\mathcal{F} \subset W^{1,p}(\mathbb{R}^n)$.But we have, by interpolation,

$$\begin{aligned} \|\tau_{h}u - u\|_{L^{q}} &\leq \|\tau_{h}u - u\|_{L^{p}}^{\alpha} \|\tau_{h}u - u\|_{L^{p^{*}}}^{1-\alpha} \\ &\leq c \|h\|^{\alpha} \|\nabla u\|_{L^{p}}^{\alpha} \|u\|_{L^{p^{*}}}^{1-\alpha} \\ &\leq c M \|h\|^{\alpha} \,. \end{aligned}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

The case p > n follows from Morrey's inequality and Ascoli-Arzela theorem. The case p = n can be deduced from the case $1 \le p < n$ case. So we just prove this later case. Also, since Ω is bounded, clearly it is enough to prove the result for $p \le q < p^*$.

By using extension and the Kolmogororv-M.Riesz-Frechet theorem, we only need to show

 $\lim_{|h|\to 0} \|\tau_h u - u\|_{L^q(\mathbb{R}^n)} = 0 \qquad \text{uniformly in } u \in \mathcal{F},$

for any $p \leq q < p^*$ and any bounded subset $\mathcal{F} \subset W^{1,p}(\mathbb{R}^n)$.But we have, by interpolation,

$$\begin{aligned} \|\tau_{h}u - u\|_{L^{q}} &\leq \|\tau_{h}u - u\|_{L^{p}}^{\alpha} \|\tau_{h}u - u\|_{L^{p^{*}}}^{1-\alpha} \\ &\leq c \|h\|^{\alpha} \|\nabla u\|_{L^{p}}^{\alpha} \|u\|_{L^{p^{*}}}^{1-\alpha} \\ &\leq c M \|h\|^{\alpha} \,. \end{aligned}$$

This proves the theorem.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties

xtension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

Let $\Omega \subset \mathbb{R}^n$ be open bounded and smooth.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties

xtension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

Let $\Omega \subset \mathbb{R}^n$ be open bounded and smooth. • If $1 \le p < n$,

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties

xtension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

Let $\Omega \subset \mathbb{R}^n$ be open bounded and smooth.

• If $1 \le p < n$, then the injections

 $W^{1,p}\left(\Omega
ight) \hookrightarrow L^{q}\left(\Omega
ight) \quad ext{ for all } 1 \leq q \leq p^{*}$

are continuous

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties

Approximation and extension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

Let $\Omega \subset \mathbb{R}^n$ be open bounded and smooth.

• If $1 \le p < n$, then the injections

 $W^{1,p}\left(\Omega
ight) \hookrightarrow L^{q}\left(\Omega
ight) \quad ext{ for all } 1 \leq q \leq p^{*}$

are **continuous** and are **compact** for $1 \le q < p^*$.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties

xtension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

Let $\Omega \subset \mathbb{R}^n$ be open bounded and smooth.

• If $1 \le p < n$, then the injections

 $W^{1,p}\left(\Omega
ight) \hookrightarrow L^{q}\left(\Omega
ight) \quad ext{ for all } 1 \leq q \leq p^{*}$

are **continuous** and are **compact** for $1 \le q < p^*$.

The injections

 $W^{1,n}\left(\Omega
ight) \hookrightarrow L^{q}\left(\Omega
ight) \quad ext{ for all } 1 \leq q < \infty$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties

xtension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

• If $1 \le p < n$, then the injections

 $W^{1,p}\left(\Omega
ight) \hookrightarrow L^{q}\left(\Omega
ight) \quad ext{ for all } 1 \leq q \leq p^{*}$

are **continuous** and are **compact** for $1 \le q < p^*$.

The injections

 $W^{1,n}\left(\Omega
ight) \hookrightarrow L^{q}\left(\Omega
ight) \quad ext{ for all } 1 \leq q < \infty$

are all continuous

Swarnendu Sil

Sobolev space

Definition

Elementary properties

tension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

• If $1 \le p < n$, then the injections

 $W^{1,p}\left(\Omega
ight) \hookrightarrow L^{q}\left(\Omega
ight) \quad ext{ for all } 1 \leq q \leq p^{*}$

are **continuous** and are **compact** for $1 \le q < p^*$.

The injections

 $W^{1,n}(\Omega) \hookrightarrow L^{q}(\Omega)$ for all $1 \le q < \infty$

are all continuous and compact.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space

Definition

Elementary properties

tension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

• If $1 \le p < n$, then the injections

 $W^{1,p}\left(\Omega
ight) \hookrightarrow L^{q}\left(\Omega
ight) \quad ext{ for all } 1 \leq q \leq p^{*}$

are **continuous** and are **compact** for $1 \le q < p^*$.

The injections

 $W^{1,n}\left(\Omega
ight) \hookrightarrow L^{q}\left(\Omega
ight) \quad ext{ for all } 1 \leq q < \infty$

are all continuous and compact.

▶ If n ,

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space

Definition

Elementary properties

tension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

• If $1 \le p < n$, then the injections

 $W^{1,p}\left(\Omega
ight) \hookrightarrow L^{q}\left(\Omega
ight) \quad ext{ for all } 1 \leq q \leq p^{*}$

are **continuous** and are **compact** for $1 \le q < p^*$.

The injections

 $W^{1,n}(\Omega) \hookrightarrow L^{q}(\Omega)$ for all $1 \le q < \infty$

are all continuous and compact.

• If n , then the injections

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space

Definition

Elementary properties

tension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

• If $1 \le p < n$, then the injections

 $W^{1,p}\left(\Omega
ight) \hookrightarrow L^{q}\left(\Omega
ight) \quad ext{ for all } 1 \leq q \leq p^{*}$

are continuous and are compact for $1 \le q < p^*$.

The injections

 $W^{1,n}\left(\Omega
ight) \hookrightarrow L^{q}\left(\Omega
ight) \quad ext{ for all } 1 \leq q < \infty$

are all continuous and compact.

▶ If n , then the injections

 $W^{1,p}\left(\Omega
ight) \hookrightarrow C^{0,lpha}\left(\overline{\Omega}
ight) \quad ext{ for all } 0 \leq lpha \leq 1 - rac{n}{p}$

are continuous

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space

Definition

Elementary properties

xtension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

• If $1 \le p < n$, then the injections

 $W^{1,p}\left(\Omega
ight) \hookrightarrow L^{q}\left(\Omega
ight) \quad ext{ for all } 1 \leq q \leq p^{*}$

are continuous and are compact for $1 \le q < p^*$.

The injections

 $W^{1,n}\left(\Omega
ight) \hookrightarrow L^{q}\left(\Omega
ight) \quad ext{ for all } 1 \leq q < \infty$

are all continuous and compact.

▶ If n , then the injections

$$W^{1,p}\left(\Omega
ight) \hookrightarrow C^{0,lpha}\left(\overline{\Omega}
ight) \hspace{0.5cm} ext{ for all } 0 \leq lpha \leq 1-rac{n}{p}$$

are continuous and are compact for $0 \le \alpha < 1 - \frac{n}{p}$.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space

Definition

Elementary properties

tension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition:

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

Dirichlet integral

Let $n \ge 2, N \ge 1$ be integers

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

Dirichlet integral

Let $n \ge 2, N \ge 1$ be integers and let $\Omega \subset \mathbb{R}^n$ be open bounded and smooth.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

Dirichlet integral

Let $n \geq 2, N \geq 1$ be integers and let $\Omega \subset \mathbb{R}^n$ be open bounded and smooth. Let $u \in W^{1,2}(\Omega; \mathbb{R}^N)$.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

Dirichlet integral

Let $n \geq 2, N \geq 1$ be integers and let $\Omega \subset \mathbb{R}^n$ be open bounded and smooth. Let $u \in W^{1,2}(\Omega; \mathbb{R}^N)$. Then the functional

$$\mathcal{D}\left[u\right] := \frac{1}{2} \int_{\Omega} \left|\nabla u\right|^2$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

Dirichlet integral

Let $n \geq 2, N \geq 1$ be integers and let $\Omega \subset \mathbb{R}^n$ be open bounded and smooth. Let $u \in W^{1,2}(\Omega; \mathbb{R}^N)$. Then the functional

$$\mathcal{D}\left[u
ight] := rac{1}{2} \int_{\Omega} \left|
abla u
ight|^2$$

is called the **Dirichlet integral** of u.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev nequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

Dirichlet integral

Let $n \geq 2, N \geq 1$ be integers and let $\Omega \subset \mathbb{R}^n$ be open bounded and smooth. Let $u \in W^{1,2}(\Omega; \mathbb{R}^N)$. Then the functional

$$\mathcal{D}\left[u
ight] := rac{1}{2} \int_{\Omega} \left|
abla u
ight|^2$$

is called the **Dirichlet integral** of u. Note that for any $u \in W^{1,2}(\Omega; \mathbb{R}^N)$, we have

$$\mathcal{D}[u] < \infty.$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

Dirichlet integral

Let $n \geq 2, N \geq 1$ be integers and let $\Omega \subset \mathbb{R}^n$ be open bounded and smooth. Let $u \in W^{1,2}(\Omega; \mathbb{R}^N)$. Then the functional

$$\mathcal{D}\left[u
ight] := rac{1}{2} \int_{\Omega} \left|
abla u
ight|^2$$

is called the **Dirichlet integral** of u. Note that for any $u \in W^{1,2}(\Omega; \mathbb{R}^N)$, we have

$$\mathcal{D}[u] < \infty.$$

Now we want to minimize the Dirichlet integral with a given Dirichlet boundary value.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev nequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

Dirichlet integral

Let $n \geq 2, N \geq 1$ be integers and let $\Omega \subset \mathbb{R}^n$ be open bounded and smooth. Let $u \in W^{1,2}(\Omega; \mathbb{R}^N)$. Then the functional

$$\mathcal{D}\left[u
ight] := rac{1}{2} \int_{\Omega} \left|
abla u
ight|^2$$

is called the **Dirichlet integral** of u. Note that for any $u \in W^{1,2}(\Omega; \mathbb{R}^N)$, we have

$$\mathcal{D}[u] < \infty.$$

Now we want to minimize the Dirichlet integral with a given Dirichlet boundary value.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev nequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

Theorem

Let $n \ge 2, N \ge 1$ be integers and let $\Omega \subset \mathbb{R}^n$ be open bounded and smooth.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition:

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

Theorem

Let $n \ge 2, N \ge 1$ be integers and let $\Omega \subset \mathbb{R}^n$ be open bounded and smooth. Let $u_0 \in W^{1,2}(\Omega; \mathbb{R}^N)$ be given.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition:

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

Let $n \ge 2, N \ge 1$ be integers and let $\Omega \subset \mathbb{R}^n$ be open bounded and smooth. Let $u_0 \in W^{1,2}(\Omega; \mathbb{R}^N)$ be given. Then the following problem

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

Let $n \ge 2, N \ge 1$ be integers and let $\Omega \subset \mathbb{R}^n$ be open bounded and smooth. Let $u_0 \in W^{1,2}(\Omega; \mathbb{R}^N)$ be given. Then the following problem

$$\inf\left\{\mathcal{D}\left[u\right] := \frac{1}{2}\int_{\Omega} \left|\nabla u\right|^{2} : u \in u_{0} + W_{0}^{1,2}\left(\Omega; \mathbb{R}^{N}\right)\right\} = m$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

Let $n \ge 2, N \ge 1$ be integers and let $\Omega \subset \mathbb{R}^n$ be open bounded and smooth. Let $u_0 \in W^{1,2}(\Omega; \mathbb{R}^N)$ be given. Then the following problem

$$\inf\left\{\mathcal{D}\left[u\right] := \frac{1}{2}\int_{\Omega}\left|\nabla u\right|^{2} : u \in u_{0} + W_{0}^{1,2}\left(\Omega; \mathbb{R}^{N}\right)\right\} = m$$

admits an unique minimizer $\bar{u} \in u_0 + W_0^{1,2}\left(\Omega; \mathbb{R}^N\right)$.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

Let $n \ge 2, N \ge 1$ be integers and let $\Omega \subset \mathbb{R}^n$ be open bounded and smooth. Let $u_0 \in W^{1,2}(\Omega; \mathbb{R}^N)$ be given. Then the following problem

$$\inf\left\{\mathcal{D}\left[u\right] := \frac{1}{2}\int_{\Omega} \left|\nabla u\right|^{2} : u \in u_{0} + W_{0}^{1,2}\left(\Omega; \mathbb{R}^{N}\right)\right\} = m$$

admits an unique minimizer $\bar{u} \in u_0 + W_0^{1,2}(\Omega; \mathbb{R}^N)$. Moreover, \bar{u} is a weak solution of the Dirichlet boundary value problem

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

Let $n \ge 2, N \ge 1$ be integers and let $\Omega \subset \mathbb{R}^n$ be open bounded and smooth. Let $u_0 \in W^{1,2}(\Omega; \mathbb{R}^N)$ be given. Then the following problem

$$\inf\left\{\mathcal{D}\left[u\right] := \frac{1}{2}\int_{\Omega} \left|\nabla u\right|^{2} : u \in u_{0} + W_{0}^{1,2}\left(\Omega; \mathbb{R}^{N}\right)\right\} = m$$

admits an unique minimizer $\bar{u} \in u_0 + W_0^{1,2}(\Omega; \mathbb{R}^N)$. Moreover, \bar{u} is a weak solution of the Dirichlet boundary value problem

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

oincaré-Sobolev requalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

Let $n \ge 2, N \ge 1$ be integers and let $\Omega \subset \mathbb{R}^n$ be open bounded and smooth. Let $u_0 \in W^{1,2}(\Omega; \mathbb{R}^N)$ be given. Then the following problem

$$\inf\left\{\mathcal{D}\left[u\right] := \frac{1}{2}\int_{\Omega} |\nabla u|^{2} : u \in u_{0} + W_{0}^{1,2}\left(\Omega; \mathbb{R}^{N}\right)\right\} = m$$

admits an unique minimizer $\bar{u} \in u_0 + W_0^{1,2}(\Omega; \mathbb{R}^N)$. Moreover, \bar{u} is a weak solution of the Dirichlet boundary value problem

$$egin{cases} \Delta ar{u} = 0 & ext{ in } \Omega, \ ar{u} = u_0 & ext{ on } \partial \Omega \end{cases}$$

i.e. satisfies the weak form of the Euler-Lagrange equation

<

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

oincaré-Sobolev requalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

Let $n \ge 2, N \ge 1$ be integers and let $\Omega \subset \mathbb{R}^n$ be open bounded and smooth. Let $u_0 \in W^{1,2}(\Omega; \mathbb{R}^N)$ be given. Then the following problem

$$\inf\left\{\mathcal{D}\left[u\right] := \frac{1}{2}\int_{\Omega} |\nabla u|^{2} : u \in u_{0} + W_{0}^{1,2}\left(\Omega; \mathbb{R}^{N}\right)\right\} = m$$

admits an unique minimizer $\bar{u} \in u_0 + W_0^{1,2}(\Omega; \mathbb{R}^N)$. Moreover, \bar{u} is a weak solution of the Dirichlet boundary value problem

$$\begin{cases} \Delta \bar{u} = 0 & \text{ in } \Omega, \\ \bar{u} = u_0 & \text{ on } \partial \Omega \end{cases}$$

i.e. satisfies the weak form of the Euler-Lagrange equation

$$\int_{\Omega} \left\langle \nabla \bar{u}, \nabla \phi \right\rangle = 0 \qquad \text{for all } \phi \in W_0^{1,2}\left(\Omega; \mathbb{R}^N\right).$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

Proof.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties

extension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space

Definition

Elementary properties

extension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space

Definition

Elementary properties

extension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

$$\mathcal{D}\left[u_{s}
ight]
ightarrow m$$
 as $s
ightarrow\infty$.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties

extension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

$$\mathcal{D}\left[u_{s}
ight]
ightarrow m$$
 as $s
ightarrow\infty$

Uniform bound for minimizing sequence Since $u_s - u_0 \in W_0^{1,2}(\Omega; \mathbb{R}^N)$ for every $s \ge 1$,

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition:

Elementary properties

xtension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

$$\mathcal{D}\left[u_{s}
ight]
ightarrow m$$
 as $s
ightarrow\infty$.

Uniform bound for minimizing sequence

Since $u_s - u_0 \in W_0^{1,2}(\Omega; \mathbb{R}^N)$ for every $s \ge 1$, by Poincaré inequality, we have

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties

tension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

$$\mathcal{D}\left[u_{s}
ight]
ightarrow m$$
 as $s
ightarrow\infty$.

Uniform bound for minimizing sequence

Since $u_s - u_0 \in W_0^{1,2}(\Omega; \mathbb{R}^N)$ for every $s \ge 1$, by Poincaré inequality, we have

$$\begin{split} \|u_{s} - u_{0}\|_{W^{1,2}} &\leq c \, \|\nabla u_{s} - \nabla u_{0}\|_{L^{2}} \\ &\leq c \sqrt{\mathcal{D}[u_{s}]} + c \, \|\nabla u_{0}\|_{L^{2}} \\ &\leq c \sqrt{m+1} + c \, \|\nabla u_{0}\|_{L^{2}} \, . \end{split}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties

tension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

^ooincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

$$\mathcal{D}\left[u_{s}
ight]
ightarrow m$$
 as $s
ightarrow\infty$.

Uniform bound for minimizing sequence

Since $u_s - u_0 \in W_0^{1,2}(\Omega; \mathbb{R}^N)$ for every $s \ge 1$, by Poincaré inequality, we have

$$\begin{split} \|u_{s} - u_{0}\|_{W^{1,2}} &\leq c \, \|\nabla u_{s} - \nabla u_{0}\|_{L^{2}} \\ &\leq c \sqrt{\mathcal{D}[u_{s}]} + c \, \|\nabla u_{0}\|_{L^{2}} \\ &\leq c \sqrt{m+1} + c \, \|\nabla u_{0}\|_{L^{2}} \, . \end{split}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties

tension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

The End

Thus, we have

$$\mathcal{D}\left[u_{s}
ight]
ightarrow m$$
 as $s
ightarrow\infty$.

Uniform bound for minimizing sequence

Since $u_s - u_0 \in W_0^{1,2}(\Omega; \mathbb{R}^N)$ for every $s \ge 1$, by Poincaré inequality, we have

$$\begin{split} \|u_{s} - u_{0}\|_{W^{1,2}} &\leq c \, \|\nabla u_{s} - \nabla u_{0}\|_{L^{2}} \\ &\leq c \sqrt{\mathcal{D}[u_{s}]} + c \, \|\nabla u_{0}\|_{L^{2}} \\ &\leq c \sqrt{m+1} + c \, \|\nabla u_{0}\|_{L^{2}} \, . \end{split}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties

tension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

The End

Thus, we have

$$||u_s||_{W^{1,2}} \le ||u_s - u_0||_{W^{1,2}} + ||u_0||_{W^{1,2}} \le c\sqrt{m+1} + c ||u_0||_{W^{1,2}}.$$

$$\mathcal{D}\left[u_{s}
ight]
ightarrow m$$
 as $s
ightarrow\infty$.

Uniform bound for minimizing sequence

Since $u_s - u_0 \in W_0^{1,2}(\Omega; \mathbb{R}^N)$ for every $s \ge 1$, by Poincaré inequality, we have

$$\begin{split} \|u_{s} - u_{0}\|_{W^{1,2}} &\leq c \, \|\nabla u_{s} - \nabla u_{0}\|_{L^{2}} \\ &\leq c \sqrt{\mathcal{D}[u_{s}]} + c \, \|\nabla u_{0}\|_{L^{2}} \\ &\leq c \sqrt{m+1} + c \, \|\nabla u_{0}\|_{L^{2}} \, . \end{split}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties

tension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

The End

Thus, we have

$$||u_s||_{W^{1,2}} \le ||u_s - u_0||_{W^{1,2}} + ||u_0||_{W^{1,2}} \le c\sqrt{m+1} + c ||u_0||_{W^{1,2}}.$$

This proves that $\{u_s\}_{s>1}$ is uniformly bounded in $W^{1,2}(\Omega; \mathbb{R}^N)$.

Since $W^{1,2}(\Omega; \mathbb{R}^N)$ is reflexive,

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

tension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

Since $W^{1,2}(\Omega; \mathbb{R}^N)$ is reflexive, the uniform bound implies that there exists $\bar{u} \in W^{1,2}(\Omega; \mathbb{R}^N)$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties

extension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties

extension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

$$u_s
ightarrow \overline{u}$$
 weakly in $W^{1,2}\left(\Omega; \mathbb{R}^N\right)$.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

tension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

$$u_{s}
ightarrow \overline{u}$$
 weakly in $W^{1,2}\left(\Omega; \mathbb{R}^{N}\right)$.

sequential weak lower semicontinuity

Now we wish to prove that

$$\liminf_{s\to\infty}\mathcal{D}\left[u_s\right]\geq\mathcal{D}\left[\bar{u}\right].$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

$$u_{s}
ightarrow \overline{u}$$
 weakly in $W^{1,2}\left(\Omega; \mathbb{R}^{N}\right)$.

sequential weak lower semicontinuity

Now we wish to prove that

$$\liminf_{s\to\infty}\mathcal{D}\left[u_s\right]\geq\mathcal{D}\left[\bar{u}\right].$$

We have,

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

$$u_s
ightarrow \overline{u}$$
 weakly in $W^{1,2}\left(\Omega; \mathbb{R}^N\right)$.

sequential weak lower semicontinuity

Now we wish to prove that

$$\liminf_{s\to\infty}\mathcal{D}\left[u_s\right]\geq\mathcal{D}\left[\bar{u}\right].$$

We have,

$$2\mathcal{D}\left[u_{s}\right] = \int_{\Omega} \left\langle \nabla u_{s} - \nabla \bar{u} + \nabla \bar{u}, \nabla u_{s} - \nabla \bar{u} + \nabla \bar{u} \right\rangle$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

$$u_{s}
ightarrow \overline{u}$$
 weakly in $W^{1,2}\left(\Omega; \mathbb{R}^{N}\right)$.

sequential weak lower semicontinuity

Now we wish to prove that

•

$$\liminf_{s \to \infty} \mathcal{D}\left[u_s\right] \geq \mathcal{D}\left[\overline{u}\right]$$
 .

We have,

$$2\mathcal{D}\left[u_{s}\right] = \int_{\Omega} \left\langle \nabla u_{s} - \nabla \bar{u} + \nabla \bar{u}, \nabla u_{s} - \nabla \bar{u} + \nabla \bar{u} \right\rangle$$
$$= \int_{\Omega} \left\langle \nabla u_{s} - \nabla \bar{u}, \nabla u_{s} - \nabla \bar{u} \right\rangle + 2 \int_{\Omega} \left\langle \nabla u_{s} - \nabla \bar{u}, \nabla \bar{u} \right\rangle$$
$$+ \int_{\Omega} \left\langle \nabla \bar{u}, \nabla \bar{u} \right\rangle$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

.

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

$$u_s
ightarrow \overline{u}$$
 weakly in $W^{1,2}\left(\Omega; \mathbb{R}^N\right)$.

sequential weak lower semicontinuity

Now we wish to prove that

$$\liminf_{s \to \infty} \mathcal{D}\left[u_s\right] \geq \mathcal{D}\left[\overline{u}\right]$$
 .

We have,

$$\begin{aligned} 2\mathcal{D}\left[u_{s}\right] &= \int_{\Omega}\left\langle \nabla u_{s} - \nabla \bar{u} + \nabla \bar{u}, \nabla u_{s} - \nabla \bar{u} + \nabla \bar{u} \right\rangle \\ &= \int_{\Omega}\left\langle \nabla u_{s} - \nabla \bar{u}, \nabla u_{s} - \nabla \bar{u} \right\rangle + 2\int_{\Omega}\left\langle \nabla u_{s} - \nabla \bar{u}, \nabla \bar{u} \right\rangle \\ &+ \int_{\Omega}\left\langle \nabla \bar{u}, \nabla \bar{u} \right\rangle \\ &\geq 2\mathcal{D}\left[\bar{u}\right] + 2\int_{\Omega}\left\langle \nabla u_{s} - \nabla \bar{u}, \nabla \bar{u} \right\rangle. \end{aligned}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

.

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

$$u_s
ightarrow \overline{u}$$
 weakly in $W^{1,2}\left(\Omega; \mathbb{R}^N\right)$.

implies

$$\nabla u_{s}
ightarrow \nabla \overline{u}$$
 weakly in $L^{2}(\Omega; \mathbb{R}^{N})$,

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Fraces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

$$u_s
ightarrow \overline{u}$$
 weakly in $W^{1,2}\left(\Omega; \mathbb{R}^N\right)$.

implies

$$\nabla u_s
ightarrow \nabla \overline{u}$$
 weakly in $L^2(\Omega; \mathbb{R}^N)$,

we deduce that

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties

xtension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

$$u_s
ightarrow \overline{u}$$
 weakly in $W^{1,2}\left(\Omega; \mathbb{R}^N\right)$.

implies

$$\nabla u_{s}
ightarrow \nabla \overline{u}$$
 weakly in $L^{2}(\Omega; \mathbb{R}^{N})$,

we deduce that

$$\lim_{s\to\infty}\int_{\Omega}\langle\nabla u_s-\nabla\bar{u},\nabla\bar{u}\rangle=0.$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties

tension

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

$$u_s
ightarrow \overline{u}$$
 weakly in $W^{1,2}\left(\Omega; \mathbb{R}^N\right)$.

implies

$$\nabla u_{s}
ightarrow \nabla \overline{u}$$
 weakly in $L^{2}(\Omega; \mathbb{R}^{N})$,

we deduce that

$$\lim_{s\to\infty}\int_{\Omega}\left\langle \nabla u_s-\nabla \bar{u},\nabla \bar{u}\right\rangle =0.$$

This proves the weak lower semicontinuity.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties

tension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

$$u_s
ightarrow \overline{u}$$
 weakly in $W^{1,2}\left(\Omega; \mathbb{R}^N\right)$.

implies

$$\nabla u_{s}
ightarrow \nabla \overline{u}$$
 weakly in $L^{2}(\Omega; \mathbb{R}^{N})$,

we deduce that

$$\lim_{s\to\infty}\int_{\Omega}\left\langle \nabla u_s-\nabla \bar{u},\nabla \bar{u}\right\rangle =0.$$

This proves the weak lower semicontinuity. Thus, we have

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties

xtension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

$$u_s
ightarrow \overline{u}$$
 weakly in $W^{1,2}\left(\Omega; \mathbb{R}^N\right)$.

implies

$$\nabla u_{s}
ightarrow \nabla \overline{u}$$
 weakly in $L^{2}(\Omega; \mathbb{R}^{N})$,

we deduce that

$$\lim_{s\to\infty}\int_{\Omega}\left\langle \nabla u_s-\nabla \bar{u},\nabla \bar{u}\right\rangle =0.$$

This proves the weak lower semicontinuity. Thus, we have

$$m \leq \mathcal{D}\left[\bar{u}\right] \leq \liminf_{s \to \infty} \mathcal{D}\left[u_s\right] = m.$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties

xtension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

$$u_s
ightarrow \overline{u}$$
 weakly in $W^{1,2}\left(\Omega; \mathbb{R}^N\right)$.

implies

$$\nabla u_{s}
ightarrow \nabla \overline{u}$$
 weakly in $L^{2}(\Omega; \mathbb{R}^{N})$,

we deduce that

$$\lim_{s\to\infty}\int_{\Omega}\left\langle \nabla u_s-\nabla \bar{u},\nabla \bar{u}\right\rangle =0.$$

This proves the weak lower semicontinuity. Thus, we have

$$m \leq \mathcal{D}\left[\bar{u}\right] \leq \liminf_{s \to \infty} \mathcal{D}\left[u_s\right] = m.$$

Hence \bar{u} is a minimzer.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties

tension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

Uniqueness

Suppose \bar{u} and \bar{v} are both minimizers.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space

Definition

Elementary properties Approximation and

.

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

Uniqueness

Suppose \bar{u} and \bar{v} are both minimizers. Then let $\bar{w} := \frac{1}{2} (\bar{u} + \bar{v})$.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

Uniqueness

Suppose \bar{u} and \bar{v} are both minimizers. Then let $\bar{w} := \frac{1}{2} (\bar{u} + \bar{v})$. Then we can see

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

Suppose \bar{u} and \bar{v} are both minimizers. Then let $\bar{w} := \frac{1}{2} (\bar{u} + \bar{v})$. Then we can see

$$m \leq \mathcal{D}\left[\bar{w}\right] \leq \frac{1}{2}\mathcal{D}\left[\bar{u}\right] + \frac{1}{2}\mathcal{D}\left[\bar{v}\right] \leq m.$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

Suppose \bar{u} and \bar{v} are both minimizers. Then let $\bar{w} := \frac{1}{2} \left(\bar{u} + \bar{v} \right)$. Then we can see

$$m \leq \mathcal{D}\left[\bar{w}\right] \leq \frac{1}{2}\mathcal{D}\left[\bar{u}\right] + \frac{1}{2}\mathcal{D}\left[\bar{v}\right] \leq m.$$

So \bar{w} is also a minimizer

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

Suppose \bar{u} and \bar{v} are both minimizers. Then let $\bar{w} := \frac{1}{2} (\bar{u} + \bar{v})$. Then we can see

$$m \leq \mathcal{D}\left[\bar{w}\right] \leq \frac{1}{2}\mathcal{D}\left[\bar{u}\right] + \frac{1}{2}\mathcal{D}\left[\bar{v}\right] \leq m.$$

So \bar{w} is also a minimizer and hence we obtain,

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

Suppose \bar{u} and \bar{v} are both minimizers. Then let $\bar{w} := \frac{1}{2} (\bar{u} + \bar{v})$. Then we can see

$$m \leq \mathcal{D}\left[\bar{w}\right] \leq \frac{1}{2}\mathcal{D}\left[\bar{u}\right] + \frac{1}{2}\mathcal{D}\left[\bar{v}\right] \leq m.$$

So \bar{w} is also a minimizer and hence we obtain,

$$\int_{\Omega} \left(\frac{1}{2} \left| \nabla \bar{u} \right|^2 + \frac{1}{2} \left| \nabla \bar{u} \right|^2 - \left| \frac{\nabla \bar{u} + \nabla \bar{v}}{2} \right|^2 \right) = 0.$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

Suppose \bar{u} and \bar{v} are both minimizers. Then let $\bar{w} := \frac{1}{2} (\bar{u} + \bar{v})$. Then we can see

$$m \leq \mathcal{D}\left[\bar{w}\right] \leq \frac{1}{2}\mathcal{D}\left[\bar{u}\right] + \frac{1}{2}\mathcal{D}\left[\bar{v}\right] \leq m.$$

So \bar{w} is also a minimizer and hence we obtain,

$$\int_{\Omega} \left(\frac{1}{2} \left| \nabla \bar{u} \right|^2 + \frac{1}{2} \left| \nabla \bar{u} \right|^2 - \left| \frac{\nabla \bar{u} + \nabla \bar{v}}{2} \right|^2 \right) = 0.$$

But this implies

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

Suppose \bar{u} and \bar{v} are both minimizers. Then let $\bar{w} := \frac{1}{2} (\bar{u} + \bar{v})$. Then we can see

$$m \leq \mathcal{D}\left[\bar{w}\right] \leq \frac{1}{2}\mathcal{D}\left[\bar{u}\right] + \frac{1}{2}\mathcal{D}\left[\bar{v}\right] \leq m.$$

So \bar{w} is also a minimizer and hence we obtain,

$$\int_{\Omega} \left(\frac{1}{2} \left| \nabla \bar{u} \right|^2 + \frac{1}{2} \left| \nabla \bar{u} \right|^2 - \left| \frac{\nabla \bar{u} + \nabla \bar{v}}{2} \right|^2 \right) = 0.$$

But this implies

$$\frac{1}{2}\left|\nabla\bar{u}\right|^{2}+\frac{1}{2}\left|\nabla\bar{u}\right|^{2}-\left|\frac{\nabla\bar{u}+\nabla\bar{v}}{2}\right|^{2}=0 \quad \text{a.e.}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

Suppose \bar{u} and \bar{v} are both minimizers. Then let $\bar{w} := \frac{1}{2} \left(\bar{u} + \bar{v} \right)$. Then we can see

$$m \leq \mathcal{D}\left[\bar{w}\right] \leq \frac{1}{2}\mathcal{D}\left[\bar{u}\right] + \frac{1}{2}\mathcal{D}\left[\bar{v}\right] \leq m.$$

So \bar{w} is also a minimizer and hence we obtain,

$$\int_{\Omega} \left(\frac{1}{2} \left| \nabla \bar{u} \right|^2 + \frac{1}{2} \left| \nabla \bar{u} \right|^2 - \left| \frac{\nabla \bar{u} + \nabla \bar{v}}{2} \right|^2 \right) = 0.$$

But this implies

$$\frac{1}{2}\left|\nabla\bar{u}\right|^2 + \frac{1}{2}\left|\nabla\bar{u}\right|^2 - \left|\frac{\nabla\bar{u} + \nabla\bar{v}}{2}\right|^2 = 0 \quad \text{a.e.}$$

But this is impossible unless u = v

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

Suppose \bar{u} and \bar{v} are both minimizers. Then let $\bar{w} := \frac{1}{2} (\bar{u} + \bar{v})$. Then we can see

$$m \leq \mathcal{D}\left[\bar{w}\right] \leq \frac{1}{2}\mathcal{D}\left[\bar{u}\right] + \frac{1}{2}\mathcal{D}\left[\bar{v}\right] \leq m.$$

So \bar{w} is also a minimizer and hence we obtain,

$$\int_{\Omega} \left(\frac{1}{2} \left| \nabla \bar{u} \right|^2 + \frac{1}{2} \left| \nabla \bar{u} \right|^2 - \left| \frac{\nabla \bar{u} + \nabla \bar{v}}{2} \right|^2 \right) = 0.$$

But this implies

$$\frac{1}{2}\left|\nabla \bar{u}\right|^{2}+\frac{1}{2}\left|\nabla \bar{u}\right|^{2}-\left|\frac{\nabla \bar{u}+\nabla \bar{v}}{2}\right|^{2}=0 \quad \text{a.e.}$$

But this is impossible unless u = v by the strict convexity of the function $\xi \mapsto |\xi|^2$.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

Now if \bar{u} is a minimizer,

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

xtension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

Now if \bar{u} is a minimizer, we must have

$$\left.\frac{d}{dt}\left(\mathcal{D}\left[\bar{u}+t\phi\right]\right)\right|_{t=0}=0$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties

tension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

Now if \bar{u} is a minimizer, we must have

$$\left.\frac{d}{dt}\left(\mathcal{D}\left[\bar{u}+t\phi\right]\right)\right|_{t=0}=0$$

for any $\phi \in \mathit{C}^{\infty}_{c}\left(\Omega;\mathbb{R}^{\mathit{N}}
ight)$.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties

tension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

Now if \bar{u} is a minimizer, we must have

$$\left. rac{d}{dt} \left(\mathcal{D}\left[ar{u} + t\phi
ight]
ight)
ight|_{t=0} = 0$$

for any $\phi\in\mathit{C}^{\infty}_{c}\left(\Omega;\mathbb{R}^{N}
ight)$. Thus we compute

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties

xtension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

Now if \bar{u} is a minimizer, we must have

$$\left. rac{d}{dt} \left(\mathcal{D}\left[ar{u} + t \phi
ight]
ight)
ight|_{t=0} = 0$$

for any $\phi\in \mathit{C}^{\infty}_{c}\left(\Omega;\mathbb{R}^{\mathit{N}}
ight)$. Thus we compute

$$0 = \lim_{t \to 0} \frac{1}{2t} \int_{\Omega} \left[\left| \nabla \bar{u} + t \nabla \phi \right|^2 - \left| \nabla \bar{u} \right|^2 \right]$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties

xtension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

Now if \bar{u} is a minimizer, we must have

$$\left.\frac{d}{dt}\left(\mathcal{D}\left[\bar{u}+t\phi\right]\right)\right|_{t=0}=0$$

for any $\phi\in \mathit{C}^{\infty}_{c}\left(\Omega;\mathbb{R}^{\mathit{N}}
ight)$. Thus we compute

$$\begin{split} 0 &= \lim_{t \to 0} \frac{1}{2t} \int_{\Omega} \left[|\nabla \bar{u} + t \nabla \phi|^2 - |\nabla \bar{u}|^2 \right] \\ &= \lim_{t \to 0} \frac{1}{2t} \int_{\Omega} \left[t \left\langle \nabla \phi, \nabla \bar{u} \right\rangle + t^2 \left| \phi \right|^2 \right] \end{split}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties

xtension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

Now if \bar{u} is a minimizer, we must have

$$\left.\frac{d}{dt}\left(\mathcal{D}\left[\bar{u}+t\phi\right]\right)\right|_{t=0}=0$$

for any $\phi\in \mathit{C}^{\infty}_{c}\left(\Omega;\mathbb{R}^{\mathit{N}}
ight)$. Thus we compute

$$\begin{split} 0 &= \lim_{t \to 0} \frac{1}{2t} \int_{\Omega} \left[\left| \nabla \bar{u} + t \nabla \phi \right|^{2} - \left| \nabla \bar{u} \right|^{2} \right] \\ &= \lim_{t \to 0} \frac{1}{2t} \int_{\Omega} \left[t \left\langle \nabla \phi, \nabla \bar{u} \right\rangle + t^{2} \left| \phi \right|^{2} \right] \\ &= \int_{\Omega} \left\langle \nabla \phi, \nabla \bar{u} \right\rangle. \end{split}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties

xtension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

Now if \bar{u} is a minimizer, we must have

$$\left. rac{d}{dt} \left(\mathcal{D}\left[ar{u} + t\phi
ight]
ight)
ight|_{t=0} = 0$$

for any $\phi\in\mathit{C}^{\infty}_{c}\left(\Omega;\mathbb{R}^{N}
ight)$. Thus we compute

$$\begin{split} 0 &= \lim_{t \to 0} \frac{1}{2t} \int_{\Omega} \left[|\nabla \bar{u} + t \nabla \phi|^2 - |\nabla \bar{u}|^2 \right] \\ &= \lim_{t \to 0} \frac{1}{2t} \int_{\Omega} \left[t \left\langle \nabla \phi, \nabla \bar{u} \right\rangle + t^2 \left| \phi \right|^2 \right] \\ &= \int_{\Omega} \left\langle \nabla \phi, \nabla \bar{u} \right\rangle. \end{split}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties

xtension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

The End

But the fact that $abla ar{u} \in L^2$

Now if \bar{u} is a minimizer, we must have

$$\left. rac{d}{dt} \left(\mathcal{D}\left[ar{u} + t\phi
ight]
ight)
ight|_{t=0} = 0$$

for any $\phi\in \mathit{C}^{\infty}_{c}\left(\Omega;\mathbb{R}^{\mathit{N}}
ight)$. Thus we compute

$$\begin{split} 0 &= \lim_{t \to 0} \frac{1}{2t} \int_{\Omega} \left[\left| \nabla \bar{u} + t \nabla \phi \right|^{2} - \left| \nabla \bar{u} \right|^{2} \right] \\ &= \lim_{t \to 0} \frac{1}{2t} \int_{\Omega} \left[t \left\langle \nabla \phi, \nabla \bar{u} \right\rangle + t^{2} \left| \phi \right|^{2} \right] \\ &= \int_{\Omega} \left\langle \nabla \phi, \nabla \bar{u} \right\rangle. \end{split}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties

xtension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

The End

But the fact that $\nabla \bar{u} \in L^2$ and the density of C_c^{∞} functions in $W_0^{1,2}$

Now if \bar{u} is a minimizer, we must have

$$\left. \frac{d}{dt} \left(\mathcal{D} \left[\bar{u} + t \phi \right] \right) \right|_{t=0} = 0$$

for any $\phi\in \mathit{C}^{\infty}_{c}\left(\Omega;\mathbb{R}^{\mathit{N}}
ight)$. Thus we compute

$$\begin{split} 0 &= \lim_{t \to 0} \frac{1}{2t} \int_{\Omega} \left[\left| \nabla \bar{u} + t \nabla \phi \right|^{2} - \left| \nabla \bar{u} \right|^{2} \right] \\ &= \lim_{t \to 0} \frac{1}{2t} \int_{\Omega} \left[t \left\langle \nabla \phi, \nabla \bar{u} \right\rangle + t^{2} \left| \phi \right|^{2} \right] \\ &= \int_{\Omega} \left\langle \nabla \phi, \nabla \bar{u} \right\rangle. \end{split}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space

Definition

Elementary properties

xtension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

The End

But the fact that $\nabla \bar{u} \in L^2$ and the density of C_c^{∞} functions in $W_0^{1,2}$ implies that the identity holds for any $\phi \in W_0^{1,2}$ as well,

Now if \bar{u} is a minimizer, we must have

$$\left. \frac{d}{dt} \left(\mathcal{D} \left[\bar{u} + t \phi \right] \right) \right|_{t=0} = 0$$

for any $\phi\in \mathit{C}^{\infty}_{c}\left(\Omega;\mathbb{R}^{\mathit{N}}
ight)$. Thus we compute

$$\begin{split} 0 &= \lim_{t \to 0} \frac{1}{2t} \int_{\Omega} \left[\left| \nabla \bar{u} + t \nabla \phi \right|^{2} - \left| \nabla \bar{u} \right|^{2} \right] \\ &= \lim_{t \to 0} \frac{1}{2t} \int_{\Omega} \left[t \left\langle \nabla \phi, \nabla \bar{u} \right\rangle + t^{2} \left| \phi \right|^{2} \right] \\ &= \int_{\Omega} \left\langle \nabla \phi, \nabla \bar{u} \right\rangle. \end{split}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space

Definition

Elementary properties

xtension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

The End

But the fact that $\nabla \bar{u} \in L^2$ and the density of C_c^{∞} functions in $W_0^{1,2}$ implies that the identity holds for any $\phi \in W_0^{1,2}$ as well, i.e.

Now if \bar{u} is a minimizer, we must have

$$\left. \frac{d}{dt} \left(\mathcal{D} \left[\bar{u} + t \phi \right] \right) \right|_{t=0} = 0$$

for any $\phi\in \mathit{C}^{\infty}_{c}\left(\Omega;\mathbb{R}^{\mathit{N}}
ight)$. Thus we compute

$$\begin{split} 0 &= \lim_{t \to 0} \frac{1}{2t} \int_{\Omega} \left[\left| \nabla \bar{u} + t \nabla \phi \right|^{2} - \left| \nabla \bar{u} \right|^{2} \right] \\ &= \lim_{t \to 0} \frac{1}{2t} \int_{\Omega} \left[t \left\langle \nabla \phi, \nabla \bar{u} \right\rangle + t^{2} \left| \phi \right|^{2} \right] \\ &= \int_{\Omega} \left\langle \nabla \phi, \nabla \bar{u} \right\rangle. \end{split}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space

Definition

Elementary properties

xtension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

The End

But the fact that $\nabla \bar{u} \in L^2$ and the density of C_c^{∞} functions in $W_0^{1,2}$ implies that the identity holds for any $\phi \in W_0^{1,2}$ as well, i.e.

$$\int_{\Omega} \left\langle \nabla \phi, \nabla \bar{u} \right\rangle = 0 \qquad \text{ for any } \phi \in W^{1,2}_0\left(\Omega; \mathbb{R}^N\right).$$

Now if \bar{u} is a minimizer, we must have

$$\left. \frac{d}{dt} \left(\mathcal{D} \left[\bar{u} + t \phi \right] \right) \right|_{t=0} = 0$$

for any $\phi\in \mathit{C}^{\infty}_{c}\left(\Omega;\mathbb{R}^{\mathit{N}}
ight)$. Thus we compute

$$\begin{split} 0 &= \lim_{t \to 0} \frac{1}{2t} \int_{\Omega} \left[\left| \nabla \bar{u} + t \nabla \phi \right|^{2} - \left| \nabla \bar{u} \right|^{2} \right] \\ &= \lim_{t \to 0} \frac{1}{2t} \int_{\Omega} \left[t \left\langle \nabla \phi, \nabla \bar{u} \right\rangle + t^{2} \left| \phi \right|^{2} \right] \\ &= \int_{\Omega} \left\langle \nabla \phi, \nabla \bar{u} \right\rangle. \end{split}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space

Definition

Elementary properties

xtension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Direct methods

Dirichlet Integral

The End

But the fact that $\nabla \bar{u} \in L^2$ and the density of C_c^{∞} functions in $W_0^{1,2}$ implies that the identity holds for any $\phi \in W_0^{1,2}$ as well, i.e.

$$\int_{\Omega} \left\langle \nabla \phi, \nabla \bar{u} \right\rangle = 0 \qquad \text{ for any } \phi \in W_0^{1,2}\left(\Omega; \mathbb{R}^N\right)$$

This completes the proof.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Direct methods

Dirichlet Integral

The End

Thank you *Questions?*