Introduction to the Calculus of Variations: Lecture 15

Swarnendu Sil

Department of Mathematics Indian Institute of Science

Spring Semester 2021

Introduction to the

Swarnendu Sil

Sobolev spac

Definition:

Elementary propertie: Approximation and

xtension

Traces

Sobolev inequalities and Sobolev embeddings

> Sobolev inequalities

inequalities

Morrey's inequality

Morrey's inequality

Rellich-Kondrachov compact embeddings

Swarnendu Sil

Sobolev spaces

Definitions

Elementary propertie

extensi

Trace

Sobolev inequalities Sobolev embeddings

> agliardo-Nirei obolev

Poincaré-Sobole

inequalities

Morrey's inequality

Rellich-Kondrachov

ompact embedding

The End

Sobolev spaces

Definitions

Elementary properties

Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Now we plan to derive a local version of a Poincaré inequality.

Swarnendu Sil

obolev spaces

Delinitions

A-----

Traces

Sobolev inequalities and Sobolev embeddings

Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality Rellich-Kondrachov compact embedding

obolev spaces

Elementary propertie

xtension

races

Sobolev inequalities an Sobolev embeddings

Gagliardo-Nirer Sobolev

Poincaré-Sobolev inequalities

Morrey's inequality Rellich-Kondrachov compact embeddings

The End

Now we plan to derive a local version of a Poincaré inequality.

Lemma (Local Poincaré inequality)

For every $1 \le p < \infty$,

Sobolev

Poincaré-Soholey inequalities Morrey's inequality

Now we plan to derive a local version of a Poincaré inequality.

Lemma (Local Poincaré inequality)

For every $1 \le p < \infty$, there exists a constant c > 0,

obolev spaces

Elementary properties Approximation and

xtension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Niren Sobolev

Poincaré-Sobolev inequalities

Morrey's inequality Rellich-Kondrachov compact embeddings

The End

Now we plan to derive a local version of a Poincaré inequality.

Lemma (Local Poincaré inequality)

For every $1 \le p < \infty$, there exists a constant c > 0, depending only on n and p such that

Elementary propertie Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

agliardo-Nirenb Sobolev

Poincaré-Sobolev inequalities

Morrey's inequality Rellich-Kondrachov

rus musi

Now we plan to derive a local version of a Poincaré inequality.

Lemma (Local Poincaré inequality)

For every $1 \le p < \infty$, there exists a constant c > 0, depending only on n and p such that

$$\int_{B(x,r)} |u(y) - u(z)|^p dy \le cr^{n+p-1} \int_{B(x,r)} \frac{|\nabla u(y)|^p}{|y - z|^{n-1}} dy, \quad (1)$$

Sobolev inequalities and Sobolev embeddings

obolev equalities

Poincaré-Sobolev inequalities

Morrey's inequality Rellich-Kondrachov compact embeddings

The End

Now we plan to derive a local version of a Poincaré inequality.

Lemma (Local Poincaré inequality)

For every $1 \le p < \infty$, there exists a constant c > 0, depending only on n and p such that

$$\int_{B(x,r)} |u(y) - u(z)|^p dy \le cr^{n+p-1} \int_{B(x,r)} \frac{|\nabla u(y)|^p}{|y - z|^{n-1}} dy, \quad (1)$$

for every ball $B(x,r) \subset \mathbb{R}^n$, every $z \in B(x,r)$ and every $u \in W^{1,p}(\mathbb{R}^n)$.

bolev spaces

Elementary propertie

Traces

Traces

Sobolev inequalities and Sobolev embeddings

bolev

Poincaré-Sobolev inequalities

Morrey's inequality Rellich-Kondrachov

The End

Now we plan to derive a local version of a Poincaré inequality.

Lemma (Local Poincaré inequality)

For every $1 \le p < \infty$, there exists a constant c > 0, depending only on n and p such that

$$\int_{B(x,r)} |u(y) - u(z)|^p dy \le cr^{n+p-1} \int_{B(x,r)} \frac{|\nabla u(y)|^p}{|y - z|^{n-1}} dy, \quad (1)$$

for every ball $B(x,r) \subset \mathbb{R}^n$, every $z \in B(x,r)$ and every $u \in W^{1,p}(\mathbb{R}^n)$.

Remark

Note that like the Poincaré inequality,

Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

> igliardo-Nirenb bolev

Poincaré-Sobolev inequalities

Morrey's inequality Rellich-Kondrachov

The End

Now we plan to derive a local version of a Poincaré inequality.

Lemma (Local Poincaré inequality)

For every $1 \le p < \infty$, there exists a constant c > 0, depending only on n and p such that

$$\int_{B(x,r)} |u(y) - u(z)|^{p} dy \le cr^{n+p-1} \int_{B(x,r)} \frac{|\nabla u(y)|^{p}}{|y - z|^{n-1}} dy, \quad (1)$$

for every ball $B(x,r) \subset \mathbb{R}^n$, every $z \in B(x,r)$ and every $u \in W^{1,p}(\mathbb{R}^n)$.

Remark

Note that like the Poincaré inequality, here also the estimate controls certain integral related to u by integrals related to ∇u .

Proof.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space

Definition

Flementary propertie

Approximation and

Traces

Sobolev inequalities an Sobolev embeddings

Sobolev

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Proof. We can obviously assume $u \in C^1(\mathbb{R}^n)$.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space

Definition

Elementary propertie

Approximation and

Traces

Sobolev inequalities ar Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality Rellich-Kondrachov compact embedding

Introduction to the Calculus of Variations

Swarnendu Sil

sobolev space

Definitions

Elementary properties

Approximation and extension

Traces

Sobolev inequalities an Sobolev embeddings

Sobolev

Poincaré-Sobolev inequalities Morrey's inequality

Rellich-Kondrachov compact embedding

Introduction to the Calculus of Variations

Swarnendu Sil

sobolev space

Definitions

Approximation and

...

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev

Poincaré-Sobolev inequalities

Morrey's inequality Rellich-Kondrachov compact embedding

$$u(y) - u(z) = \int_0^1 \frac{d}{dt} u(z + t(y - z)) dt$$

Introduction to the

Swarnendu Sil

Sobolev space

Definitions

Approximation and

_

Traces

iobolev meduanties and

Sobolev

Poincaré-Sobolev inequalities

Morrey's inequality

$$u(y) - u(z) = \int_0^1 \frac{d}{dt} u(z + t(y - z)) dt$$
$$= \int_0^1 \langle \nabla u(z + t(y - z)), y - z \rangle dt$$

Introduction to the

Swarnendu Sil

Sobolev space

Definitions

Elementary propertie

approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Sobolev

Poincaré-Sobolev inequalities

Morrey's inequality

-- - -

$$u(y) - u(z) = \int_0^1 \frac{d}{dt} u(z + t(y - z)) dt$$
$$= \int_0^1 \langle \nabla u(z + t(y - z)), y - z \rangle dt$$

Thus, we have,

Introduction to the

Swarnendu Sil

Sobolev space

Definitions

Elementary propertie

pproximation and itension

Traces

Sobolev inequalities an Sobolev embeddings

Sobolev

Poincaré-Sobolev inequalities

Morrey's inequality Rellich-Kondrachov

$$u(y) - u(z) = \int_0^1 \frac{d}{dt} u(z + t(y - z)) dt$$
$$= \int_0^1 \langle \nabla u(z + t(y - z)), y - z \rangle dt$$

Thus, we have,

$$|u(y) - u(z)|^p \le |y - z|^p \int_0^1 |\nabla u(z + t(y - z))|^p dt.$$
 (2)

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Approximation and

Traces

iraces

Sobolev embeddings

Sobolev

Poincaré-Sobolev inequalities

Morrey's inequality Rellich-Kondrachov

Traces

Sobolev embeddings

Sobolev

Poincaré-Sobolev inequalities

Rellich-Kondrachov compact embedding

he End

Proof. We can obviously assume $u \in C^1(\mathbb{R}^n)$. For $y, z \in B(x, r)$, we have,

$$u(y) - u(z) = \int_0^1 \frac{d}{dt} u(z + t(y - z)) dt$$
$$= \int_0^1 \langle \nabla u(z + t(y - z)), y - z \rangle dt$$

Thus, we have,

$$|u(y) - u(z)|^p \le |y - z|^p \int_0^1 |\nabla u(z + t(y - z))|^p dt.$$
 (2)

Let k > 0 be a number such that $B(x, r) \subset B(z, kr)$ for any $z \in B(x, r)$.

Approximation and extension

Iraces

Sobolev embeddings

Sobolev inequalities

Poincaré-Sobolev inequalities Morrey's inequality

Rellich-Kondrachov compact embeddings

he End

Proof. We can obviously assume $u \in C^1(\mathbb{R}^n)$. For $y, z \in B(x, r)$, we have,

$$u(y) - u(z) = \int_0^1 \frac{d}{dt} u(z + t(y - z)) dt$$
$$= \int_0^1 \langle \nabla u(z + t(y - z)), y - z \rangle dt$$

Thus, we have,

$$|u(y) - u(z)|^p \le |y - z|^p \int_0^1 |\nabla u(z + t(y - z))|^p dt.$$
 (2)

Let k>0 be a number such that $B\left(x,r\right)\subset B\left(z,kr\right)$ for any $z\in B\left(x,r\right)$. Now we plan to integrate this over $y\in\partial B\left(z,s\right)$ for any s>0

Traces

Sobolev inequalities and Sobolev embeddings

Sobolev inequalities Poincaré-Sobolev

inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

he End

Proof. We can obviously assume $u \in C^1(\mathbb{R}^n)$. For $y, z \in B(x, r)$, we have,

$$u(y) - u(z) = \int_0^1 \frac{d}{dt} u(z + t(y - z)) dt$$
$$= \int_0^1 \langle \nabla u(z + t(y - z)), y - z \rangle dt$$

Thus, we have,

$$|u(y) - u(z)|^p \le |y - z|^p \int_0^1 |\nabla u(z + t(y - z))|^p dt.$$
 (2)

Let k>0 be a number such that $B(x,r)\subset B(z,kr)$ for any $z\in B(x,r)$. Now we plan to integrate this over $y\in\partial B(z,s)$ for any s>0 and then integrate w.r.t. s from 0 to kr.

Now, for any s > 0,

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

El------

Approximation and extension

Traces

Sobolev inequalities an Sobolev embeddings

Gagliardo-Nirenberg-Sobolev

Poincaré-Sobolev inequalities

Morrey's inequality
Rellich-Kondrachov

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space

Definitions

Elementary propertie

Approximation and extension

Trace

Sobolev inequalities as Sobolev embeddings

Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality Rellich-Kondrachov compact embeddings

Introduction to the Calculus of Variations

Swarnendu Sil

obolev spaces

Definitions

Elementary propertie

xtension

Traces

Sobolev inequalities an Sobolev embeddings

Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality Rellich-Kondrachov compact embeddings

$$\int_{B(x,r)\cap\partial B(z,s)}\left|u\left(y\right)-u\left(z\right)\right|^{p} \mathrm{d}\mathcal{H}^{n-1}\left(y\right)$$

Introduction to the Calculus of Variations

Swarnendu Sil

bolev spaces

Definitions

ciementary properties

pproximation and xtension

Traces

Sobolev inequalities and Sobolev embeddings

Sobolev

Poincaré-Sobolev inequalities Morrey's inequality

Rellich-Kondrachov compact embeddings

$$\begin{split} & \int_{B(x,r)\cap\partial B(z,s)} \left|u\left(y\right)-u\left(z\right)\right|^p \; \mathrm{d}\mathcal{H}^{n-1}\left(y\right) \\ & \leq s^p \int_0^1 \int_{B(x,r)\cap\partial B(z,s)} \left|\nabla u\left(z+t\left(y-z\right)\right)\right|^p \; \mathrm{d}\mathcal{H}^{n-1}\left(y\right) \mathrm{d}t. \end{split}$$

Introduction to the Calculus of Variations

Swarnendu Sil

obolev spaces

Definitions

Elementary properties

extension

Traces

Sobolev inequalities and Sobolev embeddings

obolev

Poincaré-Sobolev inequalities

Rellich-Kondrachov compact embeddings

$$\begin{split} & \int_{B(x,r)\cap\partial B(z,s)} \left|u\left(y\right)-u\left(z\right)\right|^p \; \mathrm{d}\mathcal{H}^{n-1}\left(y\right) \\ & \leq s^p \int_0^1 \int_{B(x,r)\cap\partial B(z,s)} \left|\nabla u\left(z+t\left(y-z\right)\right)\right|^p \; \mathrm{d}\mathcal{H}^{n-1}\left(y\right) \mathrm{d}t. \end{split}$$

Putting
$$w = z + t(y - z)$$

Introduction to the

Swarnendu Sil

obolev spaces

Definitions

A

extension

Traces

Sobolev inequalities and Sobolev embeddings

Sobolev

Poincaré-Sobolev inequalities

Rellich-Kondrachov compact embeddings

$$\begin{split} & \int_{B(x,r)\cap\partial B(z,s)} \left|u\left(y\right)-u\left(z\right)\right|^p \; \mathrm{d}\mathcal{H}^{n-1}\left(y\right) \\ & \leq s^p \int_0^1 \int_{B(x,r)\cap\partial B(z,s)} \left|\nabla u\left(z+t\left(y-z\right)\right)\right|^p \; \mathrm{d}\mathcal{H}^{n-1}\left(y\right) \mathrm{d}t. \end{split}$$

Putting w = z + t(y - z) and changing variables, this implies,

Introduction to the

Swarnendu Sil

obolev spaces

Definitions

Elementary properties

Approximation extension

Traces

Sobolev inequalities and Sobolev embeddings

> obolev nequalities

Poincaré-Sobolev inequalities Morrey's inequality

Rellich-Kondrachov

$$\begin{split} & \int_{B(x,r)\cap\partial B(z,s)} \left|u\left(y\right)-u\left(z\right)\right|^{p} \; \mathrm{d}\mathcal{H}^{n-1}\left(y\right) \\ & \leq s^{p} \int_{0}^{1} \int_{B(x,r)\cap\partial B(z,s)} \left|\nabla u\left(z+t\left(y-z\right)\right)\right|^{p} \; \mathrm{d}\mathcal{H}^{n-1}\left(y\right) \mathrm{d}t. \end{split}$$

Putting w = z + t(y - z) and changing variables, this implies,

$$\begin{split} \int_{B(x,r)\cap\partial B(z,s)} \left| u\left(y\right) - u\left(z\right) \right|^{p} \, \mathrm{d}\mathcal{H}^{n-1}\left(y\right) \\ &\leq s^{p} \int_{0}^{1} \frac{1}{t^{n-1}} \int_{B(x,r)\cap\partial B(z,ts)} \left| \nabla u\left(w\right) \right|^{p} \, \mathrm{d}\mathcal{H}^{n-1}\left(w\right) \mathrm{d}t \end{split}$$

Introduction to the

Swarnendu Sil

obboiev spaces

Delinitions

Approximation and

Traces

races

agliardo-Nirenberg-

Poincaré-Sobolev

inequalities

Rellich-Kondrachov

$$\begin{split} & \int_{B(x,r)\cap\partial B(z,s)} |u\left(y\right) - u\left(z\right)|^{p} \ \mathrm{d}\mathcal{H}^{n-1}\left(y\right) \\ & \leq s^{p} \int_{0}^{1} \int_{B(x,r)\cap\partial B(z,s)} \left|\nabla u\left(z + t\left(y - z\right)\right)\right|^{p} \ \mathrm{d}\mathcal{H}^{n-1}\left(y\right) \mathrm{d}t. \end{split}$$

Putting w = z + t(y - z) and changing variables, this implies,

$$\begin{split} \int_{B(x,r)\cap\partial B(z,s)} |u\left(y\right) - u\left(z\right)|^{p} \; \mathrm{d}\mathcal{H}^{n-1}\left(y\right) & \text{The End} \\ & \leq s^{p} \int_{0}^{1} \frac{1}{t^{n-1}} \int_{B(x,r)\cap\partial B(z,ts)} |\nabla u\left(w\right)|^{p} \; \mathrm{d}\mathcal{H}^{n-1}\left(w\right) \mathrm{d}t \\ & = s^{n+p-1} \int_{0}^{1} \frac{1}{\left(ts\right)^{n-1}} \int_{B(x,r)\cap\partial B(z,ts)} |\nabla u\left(w\right)|^{p} \; \mathrm{d}\mathcal{H}^{n-1}\left(w\right) \mathrm{d}t. \end{split}$$

Swarnendu Sil

Poincaré-Sobolev inequalities

$$\begin{split} & \int_{B(x,r)\cap\partial B(z,s)} |u\left(y\right) - u\left(z\right)|^{p} \ \mathrm{d}\mathcal{H}^{n-1}\left(y\right) \\ & \leq s^{p} \int_{0}^{1} \int_{B(x,r)\cap\partial B(z,s)} \left|\nabla u\left(z + t\left(y - z\right)\right)\right|^{p} \ \mathrm{d}\mathcal{H}^{n-1}\left(y\right) \mathrm{d}t. \end{split}$$

Putting w = z + t(y - z) and changing variables, this implies,

$$\begin{split} \int_{B(x,r)\cap\partial B(z,s)} |u\left(y\right) - u\left(z\right)|^{p} \; \mathrm{d}\mathcal{H}^{n-1}\left(y\right) & \text{The End} \\ & \leq s^{p} \int_{0}^{1} \frac{1}{t^{n-1}} \int_{B(x,r)\cap\partial B(z,ts)} |\nabla u\left(w\right)|^{p} \; \mathrm{d}\mathcal{H}^{n-1}\left(w\right) \mathrm{d}t \\ & = s^{n+p-1} \int_{0}^{1} \frac{1}{\left(ts\right)^{n-1}} \int_{B(x,r)\cap\partial B(z,ts)} |\nabla u\left(w\right)|^{p} \; \mathrm{d}\mathcal{H}^{n-1}\left(w\right) \mathrm{d}t. \end{split}$$

Swarnendu Sil

Poincaré-Sobolev inequalities

$$s^{n+\rho-1}\int_{0}^{1}\frac{1}{\left(ts\right)^{n-1}}\int_{B\left(x,r\right)\cap\partial B\left(z,ts\right)}\left|\nabla u\left(w\right)\right|^{\rho}\;\mathrm{d}\mathcal{H}^{n-1}\left(w\right)\mathrm{d}t$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space

Definitions

A

xtension

Traces

obolev inequalities and obolev embeddings

Sobolev

Poincaré-Sobolev inequalities Morrey's inequality

Rellich-Kondrachov compact embedding

$$s^{n+p-1} \int_0^1 \frac{1}{(ts)^{n-1}} \int_{B(x,r) \cap \partial B(z,ts)} |\nabla u(w)|^p d\mathcal{H}^{n-1}(w) dt$$

$$= s^{n+p-1} \int_0^1 \int_{B(x,r) \cap \partial B(z,ts)} \frac{|\nabla u(w)|^p}{|w-z|^{n-1}} d\mathcal{H}^{n-1}(w) dt$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space

Definitions

lementary properties

ctension

Traces

Sobolev inequalities and Sobolev embeddings

Sobolev

Poincaré-Sobolev inequalities

Rellich-Kondrachov

$$s^{n+p-1} \int_{0}^{1} \frac{1}{(ts)^{n-1}} \int_{B(x,r)\cap\partial B(z,ts)} |\nabla u(w)|^{p} d\mathcal{H}^{n-1}(w) dt$$

$$= s^{n+p-1} \int_{0}^{1} \int_{B(x,r)\cap\partial B(z,ts)} \frac{|\nabla u(w)|^{p}}{|w-z|^{n-1}} d\mathcal{H}^{n-1}(w) dt$$

$$= s^{n+p-2} \int_{0}^{s} \int_{B(x,r)\cap\partial B(z,\theta)} \frac{|\nabla u(w)|^{p}}{|w-z|^{n-1}} d\mathcal{H}^{n-1}(w) d\theta$$

Introduction to the

Swarnendu Sil

sobolev spaces

Definitions

Annrovimation and

xtension

Traces

Sobolev embeddings

obolev

Poincaré-Sobolev inequalities

Morrey's inequality Rellich-Kondrachov

$$s^{n+p-1} \int_{0}^{1} \frac{1}{(ts)^{n-1}} \int_{B(x,r) \cap \partial B(z,ts)} |\nabla u(w)|^{p} d\mathcal{H}^{n-1}(w) dt$$

$$= s^{n+p-1} \int_{0}^{1} \int_{B(x,r) \cap \partial B(z,ts)} \frac{|\nabla u(w)|^{p}}{|w-z|^{n-1}} d\mathcal{H}^{n-1}(w) dt$$

$$= s^{n+p-2} \int_{0}^{s} \int_{B(x,r) \cap \partial B(z,\theta)} \frac{|\nabla u(w)|^{p}}{|w-z|^{n-1}} d\mathcal{H}^{n-1}(w) d\theta$$

$$= s^{n+p-2} \int_{B(x,r) \cap B(z,s)} \frac{|\nabla u(w)|^{p}}{|w-z|^{n-1}} dw$$

Introduction to the

Swarnendu Sil

sobolev spaces

Definitions

Approximation and

races

obolev embeddings

bolev

Poincaré-Sobolev inequalities

Rellich-Kondrachov compact embeddings

$$\begin{split} s^{n+p-1} & \int_{0}^{1} \frac{1}{(ts)^{n-1}} \int_{B(x,r) \cap \partial B(z,ts)} |\nabla u(w)|^{p} \, d\mathcal{H}^{n-1}(w) \, dt \\ & = s^{n+p-1} \int_{0}^{1} \int_{B(x,r) \cap \partial B(z,ts)} \frac{|\nabla u(w)|^{p}}{|w-z|^{n-1}} \, d\mathcal{H}^{n-1}(w) \, dt \\ & = s^{n+p-2} \int_{0}^{s} \int_{B(x,r) \cap \partial B(z,ts)} \frac{|\nabla u(w)|^{p}}{|w-z|^{n-1}} \, d\mathcal{H}^{n-1}(w) \, d\theta \\ & = s^{n+p-2} \int_{B(x,r) \cap B(z,s)} \frac{|\nabla u(w)|^{p}}{|w-z|^{n-1}} \, dw \\ & \leq s^{n+p-2} \int_{B(x,r)} \frac{|\nabla u(w)|^{p}}{|w-z|^{n-1}} \, dw. \end{split}$$

Introduction to the

Swarnendu Sil

sobolev spaces

Definitions

Approximation and

.

races

Sobolev embeddings

giiardo-ivirent bolev

inequalities Poincaré-Sobolev

inequalities

Rellich-Kondrachov compact embeddings

Introduction to the Calculus of Variations

Swarnendu Sil

abatan aaaaa

Definitions

Elementary properties

Approximation and

Trace

Sobolev inequalities as Sobolev embeddings

Gagliardo-Nirenberg-Sobolev

Poincaré-Sobolev inequalities

Morrey's inequality Rellich-Kondrachov compact embeddings

$$\begin{split} \int_{B(x,r)\cap\partial B(z,s)} \left|u\left(y\right)-u\left(z\right)\right|^p \; \mathrm{d}\mathcal{H}^{n-1}\left(y\right) \\ &\leq s^{n+p-2} \int_{B(x,r)} \frac{\left|\nabla u\left(w\right)\right|^p}{\left|w-z\right|^{n-1}} \; \mathrm{d}w. \end{split}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space

Definition

Elementary properti

pproximation a ctension

Traces

Sobolev inequalities and Sobolev embeddings

Sobolev

Poincaré-Sobolev inequalities

Morrey's inequality Rellich-Kondrachov

$$\begin{split} \int_{B(x,r)\cap\partial B(z,s)} \left|u\left(y\right)-u\left(z\right)\right|^p \; \mathrm{d}\mathcal{H}^{n-1}\left(y\right) \\ &\leq s^{n+p-2} \int_{B(x,r)} \frac{\left|\nabla u\left(w\right)\right|^p}{\left|w-z\right|^{n-1}} \; \mathrm{d}w. \end{split}$$

Integrating w.r.t s from 0 to kr

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space

Definitions

Approximation and

Traces

Sobolev inequalities and

Sobolev

Poincaré-Sobolev inequalities

Morrey's inequality Rellich-Kondrachov

$$\begin{split} \int_{B(x,r)\cap\partial B(z,s)} \left|u\left(y\right)-u\left(z\right)\right|^p \; \mathrm{d}\mathcal{H}^{n-1}\left(y\right) \\ &\leq s^{n+p-2} \int_{B(x,r)} \frac{\left|\nabla u\left(w\right)\right|^p}{\left|w-z\right|^{n-1}} \; \mathrm{d}w. \end{split}$$

Integrating w.r.t s from 0 to kr and noticing that $B(x,r) \subset B(z,kr)$,

Introduction to the

Swarnendu Sil

Sobolev space

Definitions

Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Sobolev

Poincaré-Sobolev

inequalities

Morrev's inequality

Rellich-Kondrachov compact embeddings

$$\int_{B(x,r)\cap\partial B(z,s)} |u(y)-u(z)|^p d\mathcal{H}^{n-1}(y)$$

$$\leq s^{n+p-2} \int_{B(x,r)} \frac{|\nabla u(w)|^p}{|w-z|^{n-1}} dw.$$

Integrating w.r.t s from 0 to kr and noticing that $B(x,r) \subset B(z,kr)$, we deduce

Introduction to the

Swarnendu Sil

Sobolev space

El-----

Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

obolev

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov

$$\begin{split} \int_{B(x,r)\cap\partial B(z,s)} \left|u\left(y\right)-u\left(z\right)\right|^{p} \; \mathrm{d}\mathcal{H}^{n-1}\left(y\right) \\ &\leq s^{n+p-2} \int_{B(x,r)} \frac{\left|\nabla u\left(w\right)\right|^{p}}{\left|w-z\right|^{n-1}} \; \mathrm{d}w. \end{split}$$

Integrating w.r.t s from 0 to kr and noticing that $B(x,r) \subset B(z,kr)$, we deduce

$$\int_{B(x,r)} |u(y) - u(z)|^p dy \le \int_{B(x,r) \cap B(z,kr)} |u(y) - u(z)|^p dy$$

Introduction to the

Swarnendu Sil

Sobolev space

Deminions

Approximation and

Traces

obolev inequalities and obolev embeddings

agiiardo-ivirer iobolev

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

$$\int_{B(x,r)\cap\partial B(z,s)} |u(y) - u(z)|^p d\mathcal{H}^{n-1}(y)$$

$$\leq s^{n+p-2} \int_{B(x,r)} \frac{|\nabla u(w)|^p}{|w - z|^{n-1}} dw.$$

Integrating w.r.t s from 0 to kr and noticing that $B(x,r) \subset B(z,kr)$, we deduce

$$\int_{B(x,r)} |u(y) - u(z)|^p \, \mathrm{d}y \le \int_{B(x,r) \cap B(z,kr)} |u(y) - u(z)|^p \, \mathrm{d}y$$

$$= \int_0^{kr} \int_{B(x,r) \cap \partial B(z,s)} |u(y) - u(z)|^p \, \mathrm{d}\mathcal{H}^{n-1}(y) \, \mathrm{d}s$$

Poincaré-Sobolev inequalities

$$\begin{split} \int_{B(x,r)\cap\partial B(z,s)} \left|u\left(y\right)-u\left(z\right)\right|^p \; \mathrm{d}\mathcal{H}^{n-1}\left(y\right) \\ &\leq s^{n+p-2} \int_{B(x,r)} \frac{\left|\nabla u\left(w\right)\right|^p}{\left|w-z\right|^{n-1}} \; \mathrm{d}w. \end{split}$$

Integrating w.r.t s from 0 to kr and noticing that $B(x,r) \subset B(z,kr)$, we deduce

$$\begin{split} \int_{B(x,r)} |u(y) - u(z)|^p & \,\mathrm{d}y \leq \int_{B(x,r) \cap B(z,kr)} |u(y) - u(z)|^p & \,\mathrm{d}y \\ &= \int_0^{kr} \int_{B(x,r) \cap \partial B(z,s)} |u(y) - u(z)|^p & \,\mathrm{d}\mathcal{H}^{n-1}\left(y\right) \,\mathrm{d}s \\ &\leq \int_0^{kr} s^{n+p-2} \mathrm{d}s \int_{B(x,r)} \frac{|\nabla u(w)|^p}{|w-z|^{n-1}} & \,\mathrm{d}w \end{split}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Poincaré-Sobolev inequalities

Poincaré-Sobolev inequalities

$$\int_{B(x,r)\cap\partial B(z,s)} |u(y) - u(z)|^p d\mathcal{H}^{n-1}(y)$$

$$\leq s^{n+p-2} \int_{B(x,r)} \frac{|\nabla u(w)|^p}{|w-z|^{n-1}} dw.$$

Integrating w.r.t s from 0 to kr and noticing that $B(x,r) \subset B(z,kr)$, we deduce

$$\begin{split} \int_{B(x,r)} |u(y) - u(z)|^p & \,\mathrm{d}y \leq \int_{B(x,r) \cap B(z,kr)} |u(y) - u(z)|^p & \,\mathrm{d}y \\ &= \int_0^{kr} \int_{B(x,r) \cap \partial B(z,s)} |u(y) - u(z)|^p & \,\mathrm{d}\mathcal{H}^{n-1}\left(y\right) \,\mathrm{d}s \\ &\leq \int_0^{kr} s^{n+p-2} \mathrm{d}s \int_{B(x,r)} \frac{|\nabla u(w)|^p}{|w-z|^{n-1}} & \,\mathrm{d}w \\ &\leq cr^{n+p-1} \int_{B(x,r)} \frac{|\nabla u(y)|^p}{|y-z|^{n-1}} & \,\mathrm{d}y. \end{split}$$

Poincaré-Sobolev inequalities

$$\int_{B(x,r)\cap\partial B(z,s)} |u(y) - u(z)|^p d\mathcal{H}^{n-1}(y)$$

$$\leq s^{n+p-2} \int_{B(x,r)} \frac{|\nabla u(w)|^p}{|w - z|^{n-1}} dw.$$

Integrating w.r.t s from 0 to kr and noticing that $B(x,r) \subset B(z,kr)$, we deduce

$$\begin{split} \int_{B(x,r)} |u(y) - u(z)|^p & \,\mathrm{d}y \leq \int_{B(x,r) \cap B(z,kr)} |u(y) - u(z)|^p & \,\mathrm{d}y \\ &= \int_0^{kr} \int_{B(x,r) \cap \partial B(z,s)} |u(y) - u(z)|^p & \,\mathrm{d}\mathcal{H}^{n-1}\left(y\right) \,\mathrm{d}s \\ &\leq \int_0^{kr} s^{n+p-2} \mathrm{d}s \int_{B(x,r)} \frac{|\nabla u(w)|^p}{|w-z|^{n-1}} & \,\mathrm{d}w \\ &\leq cr^{n+p-1} \int_{B(x,r)} \frac{|\nabla u(y)|^p}{|y-z|^{n-1}} & \,\mathrm{d}y. \end{split}$$

This proves the lemma.

We now prove a Poincaré type inequality for $W^{1,p}$ functions.

Swarnendu Sil

Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Poincaré inequality with mean on balls

We now prove a Poincaré type inequality for $\mathcal{W}^{1,p}$ functions.

Theorem (Poincaré inequality with mean on balls)

For every $1 \le p < \infty$,

Introduction to the Calculus of Variations

Swarnendu Sil

obolev spaces

Definitions

Elementary propertie

Approximation extension

Traces

bolev inequalities and bolev embeddings

Sobolev inequalities

Poincaré-Sobolev inequalities Morrey's inequality

Rellich-Kondrachov compact embeddings

bolev spaces

Definitions

Elementary propertie

Approximation extension

Traces

obolev inequalities and obolev embeddings

Sobolev inequalities

Poincaré-Sobolev inequalities Morrey's inequality

Rellich-Kondrachov compact embeddings

The End

We now prove a Poincaré type inequality for $\mathcal{W}^{1,p}$ functions.

Theorem (Poincaré inequality with mean on balls)

For every $1 \le p < \infty$, there exists a constant c > 0,

obolev spaces

Definitions

Elementary propertie

Approximation and extension

Traces

bolev inequalities and bolev embeddings

Sobolev

Poincaré-Sobolev inequalities Morrey's inequality

Rellich-Kondrachov compact embeddings

The End

We now prove a Poincaré type inequality for $W^{1,p}$ functions.

Theorem (Poincaré inequality with mean on balls)

For every $1 \le p < \infty$, there exists a constant c > 0, depending only on n and p

obolev spaces

Definitions

Elementary propertie

Approximation a extension

Traces

bolev inequalities and bolev embeddings

Gagliardo-Nireni Sobolev

Poincaré-Sobolev inequalities

Morrey's inequality Rellich-Kondrachov compact embeddings

he End

We now prove a Poincaré type inequality for $W^{1,p}$ functions.

Theorem (Poincaré inequality with mean on balls)

For every $1 \le p < \infty$, there exists a constant c > 0, depending only on n and p such that

Poincaré-Soholey inequalities

We now prove a Poincaré type inequality for $W^{1,p}$ functions.

Theorem (Poincaré inequality with mean on balls)

For every $1 \le p < \infty$, there exists a constant c > 0, depending only on n and p such that

$$\int_{B(x,r)} \left| u(y) - (u)_{B(x,r)} \right|^p dy \le cr^p \int_{B(x,r)} \left| \nabla u(y) \right|^p dy, \quad (3)$$

Approximation and extension

Iraces

obolev inequalities and obolev embeddings

Sobolev inequalities Poincaré-Sobolev

inequalities
Morrey's inequality

Rellich-Kondrachov compact embeddings

The End

We now prove a Poincaré type inequality for $W^{1,p}$ functions.

Theorem (Poincaré inequality with mean on balls)

For every $1 \le p < \infty$, there exists a constant c > 0, depending only on n and p such that

$$\oint_{B(x,r)} \left| u(y) - (u)_{B(x,r)} \right|^p dy \le cr^p \oint_{B(x,r)} \left| \nabla u(y) \right|^p dy, \quad (3)$$

for every ball $B\left(x,r\right)\subset\mathbb{R}^{n}$ and every $u\in W^{1,p}\left(\mathbb{R}^{n}\right)$.

obolev inequalities an obolev embeddings

inequalities
Poincaré-Sobolev

inequalities

Morrey's inequality

Rellich-Kondrachov

Rellich-Kondrachov compact embedding

The End

We now prove a Poincaré type inequality for $W^{1,p}$ functions.

Theorem (Poincaré inequality with mean on balls)

For every $1 \le p < \infty$, there exists a constant c > 0, depending only on n and p such that

$$\int_{B(x,r)} \left| u(y) - (u)_{B(x,r)} \right|^p dy \le cr^p \int_{B(x,r)} \left| \nabla u(y) \right|^p dy, \quad (3)$$

for every ball $B(x,r) \subset \mathbb{R}^n$ and every $u \in W^{1,p}(\mathbb{R}^n)$.

Remark

Here the integral mean is

bolev spaces

Definitions

Elementary properti

extension

Traces

obolev inequalities and obolev embeddings

bolev equalities

Poincaré-Sobolev inequalities

Rellich-Kondrachov compact embedding

The End

We now prove a Poincaré type inequality for $W^{1,p}$ functions.

Theorem (Poincaré inequality with mean on balls)

For every $1 \le p < \infty$, there exists a constant c > 0, depending only on n and p such that

$$\int_{B(x,r)} \left| u(y) - (u)_{B(x,r)} \right|^{p} dy \le cr^{p} \int_{B(x,r)} \left| \nabla u(y) \right|^{p} dy, \quad (3)$$

for every ball $B(x,r) \subset \mathbb{R}^n$ and every $u \in W^{1,p}(\mathbb{R}^n)$.

Remark

Here the integral mean is

$$(u)_{B(x,r)} := \frac{1}{|B(x,r)|} \int_{B(x,r)} u(y) dy$$

bolev spaces

Definitions

Approximation and

Traces

obolev inequalities and obolev embeddings

Sobolev inequalities Poincaré-Sobolev

inequalities Morrey's inequality

Rellich-Kondrachov compact embedding

The End

We now prove a Poincaré type inequality for $W^{1,p}$ functions.

Theorem (Poincaré inequality with mean on balls)

For every $1 \le p < \infty$, there exists a constant c > 0, depending only on n and p such that

$$\oint_{B(x,r)} \left| u(y) - (u)_{B(x,r)} \right|^{p} dy \le cr^{p} \oint_{B(x,r)} \left| \nabla u(y) \right|^{p} dy, \quad (3)$$

for every ball $B(x,r) \subset \mathbb{R}^n$ and every $u \in W^{1,p}(\mathbb{R}^n)$.

Remark

Here the integral mean is

$$(u)_{B(x,r)} := \frac{1}{|B(x,r)|} \int_{B(x,r)} u(y) dy$$

and the notation for averaged integral is defined as

We now prove a Poincaré type inequality for $W^{1,p}$ functions.

Theorem (Poincaré inequality with mean on balls)

For every $1 \le p < \infty$, there exists a constant c > 0, depending only on n and p such that

$$\int_{B(x,r)} \left| u(y) - (u)_{B(x,r)} \right|^{p} dy \le cr^{p} \int_{B(x,r)} \left| \nabla u(y) \right|^{p} dy, \quad (3)$$

for every ball $B(x,r) \subset \mathbb{R}^n$ and every $u \in W^{1,p}(\mathbb{R}^n)$.

Remark

Here the integral mean is

$$(u)_{B(x,r)} := \frac{1}{|B\left(x,r\right)|} \int_{B(x,r)} u\left(y\right) \; \mathrm{d}y$$

and the notation for averaged integral is defined as

$$\int_{B(x,r)} f(y) \, \mathrm{d}y = \frac{1}{|B(x,r)|} \int_{B(x,r)} u(y) \, \mathrm{d}y.$$

Swarnendu Sil

polev spaces

Definitions

Approximation and

aces

bolev inequalities and bolev embeddings

Sobolev inequalities Poincaré-Sobolev

inequalities Morrey's inequality

Rellich-Kondrachov compact embeddings

Proof.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space:

Definition

Elementary properti

Approximation extension

Trac

Sobolev inequalities an Sobolev embeddings

Sobolev

Poincaré-Sobolev inequalities

Morrey's inequality Rellich-Kondrachov

Proof. As usual we can assume $u \in C^1(\mathbb{R}^n)$.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space

Definition:

Elementary properties

Approxima extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality
Rellich-Kondrachov

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space

Definition:

Elementary propertie

extension

Traces

Sobolev inequalities and Sobolev embeddings

Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality Rellich-Kondrachov compact embeddings

$$\begin{split} & \oint_{B(x,r)} \left| u\left(y\right) - \left(u\right)_{B(x,r)} \right|^p \, \mathrm{d}y \\ & = \oint_{B(x,r)} \left| \oint_{B(x,r)} \left(u\left(y\right) - u\left(z\right)\right) \, \mathrm{d}z \right|^p \, \mathrm{d}y \end{split}$$

Introduction to the Calculus of Variations

Swarnendu Sil

obolev space

Definitions

Approximation and

extension

Traces

obolev inequalities and obolev embeddings

agliardo-Nire Sobolev

Poincaré-Sobolev inequalities

Morrey's inequality Rellich-Kondrachov compact embedding

$$\begin{split} & \oint_{B(x,r)} \left| u(y) - (u)_{B(x,r)} \right|^p \, \mathrm{d}y \\ & = \oint_{B(x,r)} \left| \oint_{B(x,r)} \left(u(y) - u(z) \right) \, \, \mathrm{d}z \right|^p \, \mathrm{d}y \\ & \le \oint_{B(x,r)} \oint_{B(x,r)} \left| u(y) - u(z) \right|^p \, \, \mathrm{d}y \mathrm{d}z \end{split}$$

Introduction to the Calculus of Variations

Swarnendu Sil

obolev space

Definitions

Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Sobolev

Poincaré-Sobolev inequalities

Morrey's inequality Rellich-Kondrachov

$$\begin{split} & \oint_{B(x,r)} \left| u\left(y\right) - \left(u\right)_{B(x,r)} \right|^p \, \mathrm{d}y \\ & = \oint_{B(x,r)} \left| \oint_{B(x,r)} \left(u\left(y\right) - u\left(z\right)\right) \, \, \mathrm{d}z \right|^p \, \, \mathrm{d}y \\ & \leq \oint_{B(x,r)} \oint_{B(x,r)} \left| u\left(y\right) - u\left(z\right) \right|^p \, \, \mathrm{d}y \mathrm{d}z \end{split}$$

Now, applying Lemma 1 to estimate the RHS,

Introduction to the Calculus of Variations

Swarnendu Sil

obolev space

Delinitions

Approximation and extension

Traces

obolev inequalities and obolev embeddings

Sobolev

Poincaré-Sobolev inequalities

Morrey's inequality Rellich-Kondrachov

$$\begin{split} & \oint_{B(x,r)} \left| u\left(y\right) - \left(u\right)_{B(x,r)} \right|^{p} \, \mathrm{d}y \\ & = \oint_{B(x,r)} \left| \oint_{B(x,r)} \left(u\left(y\right) - u\left(z\right)\right) \, \, \mathrm{d}z \right|^{p} \, \, \mathrm{d}y \\ & \leq \oint_{B(x,r)} \oint_{B(x,r)} \left| u\left(y\right) - u\left(z\right) \right|^{p} \, \, \mathrm{d}y \mathrm{d}z \end{split}$$

Now, applying Lemma 1 to estimate the RHS, we deduce

Introduction to the Calculus of Variations

Swarnendu Sil

obolev spaces

Delilitions

Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Sobolev

Poincaré-Sobolev inequalities

Rellich-Kondrachov

$$\begin{split} & \oint_{B(x,r)} \left| u\left(y\right) - \left(u\right)_{B(x,r)} \right|^p \, \mathrm{d}y \\ & = \oint_{B(x,r)} \left| \oint_{B(x,r)} \left(u\left(y\right) - u\left(z\right) \right) \, \, \mathrm{d}z \right|^p \, \, \mathrm{d}y \\ & \le \oint_{B(x,r)} \oint_{B(x,r)} \left| u\left(y\right) - u\left(z\right) \right|^p \, \, \mathrm{d}y \mathrm{d}z \end{split}$$

Now, applying Lemma 1 to estimate the RHS, we deduce

$$\int_{B(x,r)} \left| u(y) - (u)_{B(x,r)} \right|^{p} dy$$

$$\leq c \int_{B(x,r)} r^{p-1} \int_{B(x,r)} \frac{\left| \nabla u(z) \right|^{p}}{\left| y - z \right|^{n-1}} dz dy$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Sobolev

Poincaré-Sobolev inequalities

Rellich-Kondrachov

$$\begin{split} & \oint_{B(x,r)} \left| u\left(y\right) - \left(u\right)_{B(x,r)} \right|^p \, \mathrm{d}y \\ & = \oint_{B(x,r)} \left| \oint_{B(x,r)} \left(u\left(y\right) - u\left(z\right) \right) \, \, \mathrm{d}z \right|^p \, \, \mathrm{d}y \\ & \le \oint_{B(x,r)} \oint_{B(x,r)} \left| u\left(y\right) - u\left(z\right) \right|^p \, \, \mathrm{d}y \mathrm{d}z \end{split}$$

Now, applying Lemma 1 to estimate the RHS, we deduce

$$\begin{split} & \oint_{B(x,r)} \left| u(y) - (u)_{B(x,r)} \right|^p \, \mathrm{d}y \\ & \leq c \oint_{B(x,r)} r^{p-1} \int_{B(x,r)} \frac{\left| \nabla u(z) \right|^p}{\left| y - z \right|^{n-1}} \, \mathrm{d}z \mathrm{d}y \\ & \leq c r^{p-1} \oint_{B(x,r)} \int_{B(x,r)} \frac{\left| \nabla u(z) \right|^p}{\left| y - z \right|^{n-1}} \, \mathrm{d}z \mathrm{d}y \end{split}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

.

Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Sobolev

Poincaré-Sobolev inequalities

Rellich-Kondrachov

$$\begin{split} & \oint_{B(x,r)} \left| u\left(y\right) - \left(u\right)_{B(x,r)} \right|^p \, \mathrm{d}y \\ & = \oint_{B(x,r)} \left| \oint_{B(x,r)} \left(u\left(y\right) - u\left(z\right) \right) \, \, \mathrm{d}z \right|^p \, \, \mathrm{d}y \\ & \le \oint_{B(x,r)} \oint_{B(x,r)} \left| u\left(y\right) - u\left(z\right) \right|^p \, \, \mathrm{d}y \mathrm{d}z \end{split}$$

Now, applying Lemma 1 to estimate the RHS, we deduce

$$\begin{split} & \oint_{B(x,r)} \left| u(y) - (u)_{B(x,r)} \right|^p \, \mathrm{d}y \\ & \leq c \oint_{B(x,r)} r^{p-1} \int_{B(x,r)} \frac{\left| \nabla u(z) \right|^p}{\left| y - z \right|^{n-1}} \, \mathrm{d}z \mathrm{d}y \\ & \leq c r^{p-1} \oint_{B(x,r)} \int_{B(x,r)} \frac{\left| \nabla u(z) \right|^p}{\left| y - z \right|^{n-1}} \, \mathrm{d}z \mathrm{d}y \end{split}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

.

Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Sobolev

Poincaré-Sobolev inequalities

Rellich-Kondrachov

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space

Definitions

El------

Approximation and

Traces

Sobolev inequalities an Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality Rellich-Kondrachov

$$\begin{split} & \oint_{B(x,r)} \left| u\left(y\right) - \left(u\right)_{B(x,r)} \right|^{p} \, \mathrm{d}y \\ & \leq c r^{p-1} \oint_{B(x,r)} \int_{B(x,r)} \frac{\left|\nabla u\left(z\right)\right|^{p}}{\left|y - z\right|^{n-1}} \, \mathrm{d}z \mathrm{d}y \end{split}$$

Introduction to the Calculus of Variations

Swarnendu Sil

obolev space

Definitions

Elementary properties

xtension

Traces

Sobolev inequalities an Sobolev embeddings

obolev

Poincaré-Sobolev inequalities

Morrey's inequality Rellich-Kondrachov

$$\begin{split} & \oint_{B(x,r)} \left| u\left(y\right) - \left(u\right)_{B(x,r)} \right|^{p} \, \mathrm{d}y \\ & \leq c r^{p-1} \oint_{B(x,r)} \int_{B(x,r)} \frac{\left|\nabla u\left(z\right)\right|^{p}}{\left|y - z\right|^{n-1}} \, \mathrm{d}z \mathrm{d}y \\ & = c r^{p-1} \int_{B(x,r)} \left|\nabla u\left(z\right)\right|^{p} \left(\oint_{B(x,r)} \frac{1}{\left|y - z\right|^{n-1}} \, \mathrm{d}y \right) \mathrm{d}z \end{split}$$

Introduction to the

Swarnendu Sil

obolev spaces

Definitions

Elementary propertie

Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

agiiardo-ivirei obolev

Poincaré-Sobolev

inequalities

Morrou's inequality

Rellich-Kondrachov compact embeddings

$$\begin{split} & \oint_{B(x,r)} \left| u(y) - (u)_{B(x,r)} \right|^{p} \, \mathrm{d}y \\ & \leq c r^{p-1} \oint_{B(x,r)} \int_{B(x,r)} \frac{\left| \nabla u(z) \right|^{p}}{\left| y - z \right|^{n-1}} \, \mathrm{d}z \mathrm{d}y \\ & = c r^{p-1} \int_{B(x,r)} \left| \nabla u(z) \right|^{p} \left(\oint_{B(x,r)} \frac{1}{\left| y - z \right|^{n-1}} \, \mathrm{d}y \right) \mathrm{d}z \\ & \leq c r^{p-1} \int_{B(x,r)} \left| \nabla u(z) \right|^{p} \left(\frac{1}{r^{n}} \int_{B(z,kr)} \frac{1}{\left| y - z \right|^{n-1}} \, \mathrm{d}y \right) \mathrm{d}z \end{split}$$

Introduction to the

Swarnendu Sil

sobolev spaces

Definitions

Approximation and

...

races

Sobolev embeddings

Sobolev

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

$$\begin{split} & \oint_{B(x,r)} \left| u\left(y\right) - \left(u\right)_{B(x,r)} \right|^{p} \, \mathrm{d}y \\ & \leq cr^{p-1} \oint_{B(x,r)} \int_{B(x,r)} \frac{\left|\nabla u\left(z\right)\right|^{p}}{\left|y - z\right|^{n-1}} \, \mathrm{d}z \mathrm{d}y \\ & = cr^{p-1} \int_{B(x,r)} \left|\nabla u\left(z\right)\right|^{p} \left(\oint_{B(x,r)} \frac{1}{\left|y - z\right|^{n-1}} \, \mathrm{d}y \right) \mathrm{d}z \\ & \leq cr^{p-1} \int_{B(x,r)} \left|\nabla u\left(z\right)\right|^{p} \left(\frac{1}{r^{n}} \int_{B(z,kr)} \frac{1}{\left|y - z\right|^{n-1}} \, \mathrm{d}y \right) \mathrm{d}z \\ & = c \frac{r^{p}}{r^{n}} \int_{B(x,r)} \left|\nabla u\left(z\right)\right|^{p} \mathrm{d}z \end{split}$$

Introduction to the

Swarnendu Sil

obolev spaces

Definitions

Approximation and

...

obolev inequalities a

agliardo-Nirenbe obolev

Poincaré-Sobolev inequalities

Morrey's inequality

. .

Now using Fubini, we deduce

$$\begin{split} & \oint_{B(x,r)} \left| u\left(y\right) - \left(u\right)_{B(x,r)} \right|^{p} \, \mathrm{d}y \\ & \leq c r^{p-1} \oint_{B(x,r)} \int_{B(x,r)} \frac{\left|\nabla u\left(z\right)\right|^{p}}{\left|y - z\right|^{n-1}} \, \mathrm{d}z \mathrm{d}y \\ & = c r^{p-1} \int_{B(x,r)} \left|\nabla u\left(z\right)\right|^{p} \left(\oint_{B(x,r)} \frac{1}{\left|y - z\right|^{n-1}} \, \mathrm{d}y \right) \mathrm{d}z \\ & \leq c r^{p-1} \int_{B(x,r)} \left|\nabla u\left(z\right)\right|^{p} \left(\frac{1}{r^{n}} \int_{B(z,kr)} \frac{1}{\left|y - z\right|^{n-1}} \, \mathrm{d}y \right) \mathrm{d}z \\ & = c \frac{r^{p}}{r^{n}} \int_{B(x,r)} \left|\nabla u\left(z\right)\right|^{p} \, \mathrm{d}z \\ & = c r^{p} \oint_{B(x,r)} \left|\nabla u\left(z\right)\right|^{p} \, \mathrm{d}z. \end{split}$$

Introduction to the

Swarnendu Sil

pobolev spaces

Definitions

Approximation and

.

Sobolev inequalities and Sobolev embeddings

> igliardo-Nirenb bolev

Poincaré-Sobolev inequalities

Morrey's inequality

Now using Fubini, we deduce

$$\begin{split} & \oint_{B(x,r)} \left| u\left(y\right) - \left(u\right)_{B(x,r)} \right|^{p} \, \mathrm{d}y \\ & \leq cr^{p-1} \oint_{B(x,r)} \int_{B(x,r)} \frac{\left|\nabla u\left(z\right)\right|^{p}}{\left|y-z\right|^{n-1}} \, \mathrm{d}z \mathrm{d}y \\ & = cr^{p-1} \int_{B(x,r)} \left|\nabla u\left(z\right)\right|^{p} \left(\oint_{B(x,r)} \frac{1}{\left|y-z\right|^{n-1}} \, \mathrm{d}y \right) \mathrm{d}z \\ & \leq cr^{p-1} \int_{B(x,r)} \left|\nabla u\left(z\right)\right|^{p} \left(\frac{1}{r^{n}} \int_{B(z,kr)} \frac{1}{\left|y-z\right|^{n-1}} \, \mathrm{d}y \right) \mathrm{d}z \\ & = c\frac{r^{p}}{r^{n}} \int_{B(x,r)} \left|\nabla u\left(z\right)\right|^{p} \mathrm{d}z \\ & = cr^{p} \oint_{B(x,r)} \left|\nabla u\left(z\right)\right|^{p} \, \mathrm{d}z. \end{split}$$

Introduction to the

Swarnendu Sil

obolev spaces

Definitions

Approximation and

_

races

Sobolev inequalities and Sobolev embeddings

obolev

Poincaré-Sobolev inequalities

Rellich-Kondrachov

Poincaré-Sobolev inequality with mean on balls

mean on balls.

As a corollary, we derive the Poincaré-Sobolev inequality with

Introduction to the Calculus of Variations

Swarnendu Sil

obolev spaces

Definitions

Elementary propertie

extension

Traces

obolev inequalities and obolev embeddings

Sobolev

Poincaré-Sobolev inequalities

Morrey's inequality Rellich-Kondrachov compact embeddings

obolev spaces

Definitions

Approximation and

Traces

obolev inequalities and

Gagliardo-Nirenl Sobolev

Poincaré-Sobolev inequalities

Morrey's inequality
Rellich-Kondrachov

The End

As a corollary, we derive the Poincaré-Sobolev inequality with mean on balls.

Theorem (Poincaré-Sobolev inequality with mean on balls)

For every $1 \le p < n$,

obolev spaces

Definitions

Elementary propertie Approximation and

CALCITATION

Traces

Sobolev inequalities and Sobolev embeddings

Sobolev

Poincaré-Sobolev inequalities

Morrey's inequality
Rellich-Kondrachov

The End

As a corollary, we derive the Poincaré-Sobolev inequality with mean on balls.

Theorem (Poincaré-Sobolev inequality with mean on balls)

For every $1 \le p < n$, there exists a constant c > 0,

obolev spaces

Definitions

Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirer Sobolev

Poincaré-Sobolev inequalities

Morrey's inequality
Rellich-Kondrachov

The End

As a corollary, we derive the Poincaré-Sobolev inequality with mean on balls.

Theorem (Poincaré-Sobolev inequality with mean on balls)

For every $1 \le p < n$, there exists a constant c > 0, depending only on n and p such that

Poincaré-Sobolev inequalities

Poincaré-Sobolev inequality with mean on balls

As a corollary, we derive the Poincaré-Sobolev inequality with mean on balls.

Theorem (Poincaré-Sobolev inequality with mean on balls)

For every $1 \le p < n$, there exists a constant c > 0, depending only on n and p such that

$$\left(\int_{B(x,r)} \left| u(y) - (u)_{B(x,r)} \right|^{p^*} dy \right)^{\frac{1}{p^*}} \le cr \left(\int_{B(x,r)} \left| \nabla u(y) \right|^{p} dy \right)^{\frac{1}{p}}, \tag{4}$$

Poincaré-Sobolev inequalities

Poincaré-Sobolev inequality with mean on balls

As a corollary, we derive the Poincaré-Sobolev inequality with mean on balls.

Theorem (Poincaré-Sobolev inequality with mean on balls)

For every $1 \le p < n$, there exists a constant c > 0, depending only on n and p such that

$$\left(\int_{B(x,r)} \left| u(y) - (u)_{B(x,r)} \right|^{p^*} dy \right)^{\frac{1}{p^*}} \le cr \left(\int_{B(x,r)} \left| \nabla u(y) \right|^{p} dy \right)^{\frac{1}{p}}, \tag{4}$$

for every ball $B(x,r) \subset \mathbb{R}^n$ and every $u \in W^{1,p}(\mathbb{R}^n)$.

Proof.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space

Definition

Elementary properties

Approximation and

Trace

Sobolev inequalities an Sobolev embeddings

Sobolev

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space

Definition

Elementary properties

Approximation and extension

Traces

Sobolev inequalities an Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality Rellich-Kondrachov

$$\left(\int_{B(x,r)} |v(y)|^{p^*} dy \right)^{\frac{1}{p^*}}$$

$$\leq c \left(r^p \int_{B(x,r)} |\nabla v(y)|^p dy + \int_{B(x,r)} |v(y)|^p dy \right)^{\frac{1}{p}},$$

Introduction to the

Swarnendu Sil

Sobolev spaces

Definitions

Elementary propertie

xtension

Traces

Sobolev inequalities and Sobolev embeddings

obolev

Poincaré-Soholev

inequalities

Morrev's inequality

Rellich-Kondrachov compact embedding

$$\begin{split} \left(f_{B(x,r)} \left| v\left(y\right) \right|^{p^*} \, \mathrm{d}y \right)^{\frac{1}{p^*}} \\ & \leq c \left(r^p \int_{B(x,r)} \left| \nabla v\left(y\right) \right|^p \, \mathrm{d}y + \int_{B(x,r)} \left| v\left(y\right) \right|^p \, \mathrm{d}y \right)^{\frac{1}{p}}, \end{split}$$

for every ball $B(x,r) \subset \mathbb{R}^n$ and for every $v \in W^{1,p}(\mathbb{R}^n)$ with $1 \leq p < n$.

Introduction to the

Swarnendu Sil

Sobolev spaces

Definitions

Elementary propertie

ctension

Traces

iobolev embeddings

obolev

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

$$\begin{split} \left(f_{B(x,r)} \left| v\left(y\right) \right|^{p^*} \, \mathrm{d}y \right)^{\frac{1}{p^*}} \\ & \leq c \left(r^p \int_{B(x,r)} \left| \nabla v\left(y\right) \right|^p \, \mathrm{d}y + \int_{B(x,r)} \left| v\left(y\right) \right|^p \, \mathrm{d}y \right)^{\frac{1}{p}}, \end{split}$$

for every ball $B(x,r) \subset \mathbb{R}^n$ and for every $v \in W^{1,p}(\mathbb{R}^n)$ with $1 \leq p < n$.

Note that replacing v by $\frac{1}{r}v(ry)$

Introduction to the

Swarnendu Sil

sobolev spaces

Definitions

Approximation and

.

Traces

Sobolev embeddings

bolev

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

$$\begin{split} \left(f_{B(x,r)} \left| v\left(y\right) \right|^{p^*} \, \mathrm{d}y \right)^{\frac{1}{p^*}} \\ & \leq c \left(r^p \int_{B(x,r)} \left| \nabla v\left(y\right) \right|^p \, \mathrm{d}y + \int_{B(x,r)} \left| v\left(y\right) \right|^p \, \mathrm{d}y \right)^{\frac{1}{p}}, \end{split}$$

for every ball $B(x,r) \subset \mathbb{R}^n$ and for every $v \in W^{1,p}(\mathbb{R}^n)$ with $1 \leq p < n$.

Note that replacing v by $\frac{1}{r}v(ry)$ and translation,

Introduction to the

Swarnendu Sil

Sobolev spaces

Definitions

Elementary propertie

pproximation xtension

Traces

Sobolev inequalities and Sobolev embeddings

obolev equalities

Poincaré-Sobolev inequalities

Rellich-Kondrachov

$$\begin{split} \left(f_{B(x,r)} \left| v\left(y\right) \right|^{p^*} \, \mathrm{d}y \right)^{\frac{1}{p^*}} \\ & \leq c \left(r^p \int_{B(x,r)} \left| \nabla v\left(y\right) \right|^p \, \mathrm{d}y + \int_{B(x,r)} \left| v\left(y\right) \right|^p \, \mathrm{d}y \right)^{\frac{1}{p}}, \end{split}$$

for every ball $B(x,r) \subset \mathbb{R}^n$ and for every $v \in W^{1,p}(\mathbb{R}^n)$ with $1 \leq p < n$.

Note that replacing v by $\frac{1}{r}v(ry)$ and translation, we can assume that x=0 and r=1.

Introduction to the

Swarnendu Sil

Sobolev spaces

Definitions

Approximation and

races

obolev embeddings

bolev gualities

Poincaré-Sobolev inequalities

orrey's inequality

compact embeddings

$$\begin{split} \left(\int_{B(x,r)} \left| v \left(y \right) \right|^{p^*} \, \mathrm{d}y \right)^{\frac{1}{p^*}} \\ & \leq c \left(r^p \int_{B(x,r)} \left| \nabla v \left(y \right) \right|^p \, \mathrm{d}y + \int_{B(x,r)} \left| v \left(y \right) \right|^p \, \mathrm{d}y \right)^{\frac{1}{p}}, \end{split}$$

for every ball $B(x,r) \subset \mathbb{R}^n$ and for every $v \in W^{1,p}(\mathbb{R}^n)$ with $1 \leq p < n$.

Note that replacing v by $\frac{1}{r}v(ry)$ and translation, we can assume that x=0 and r=1. But in this case, the inequality above is just the Poincaré-Sobolev inequality for the bounded domain

Introduction to the

Swarnendu Sil

obolev spaces

Definitions

Approximation and

Fraces

bolev inequalities ar bolev embeddings

bolev equalities

Poincaré-Sobolev inequalities Morrey's inequality

Rellich-Kondrachov compact embeddings

$$\begin{split} \left(f_{B(x,r)} \left| v\left(y\right) \right|^{p^*} \, \mathrm{d}y \right)^{\frac{1}{p^*}} \\ & \leq c \left(r^p \int_{B(x,r)} \left| \nabla v\left(y\right) \right|^p \, \mathrm{d}y + \int_{B(x,r)} \left| v\left(y\right) \right|^p \, \mathrm{d}y \right)^{\frac{1}{p}}, \end{split}$$

for every ball $B(x,r) \subset \mathbb{R}^n$ and for every $v \in W^{1,p}(\mathbb{R}^n)$ with $1 \leq p < n$.

Note that replacing v by $\frac{1}{r}v(ry)$ and translation, we can assume that x=0 and r=1. But in this case, the inequality above is just the Poincaré-Sobolev inequality for the bounded domain $B(0,1) \subset \mathbb{R}^n$.

Introduction to the

Swarnendu Sil

obolev spaces

Definitions

Approximation and

r...

ucco

Sobolev embeddings

Sobolev inequalities Poincaré-Sobolev

inequalities

Rellich-Kondrachov

$$\begin{split} \left(f_{B(x,r)} \left| v \left(y \right) \right|^{p^*} \, \mathrm{d}y \right)^{\frac{1}{p^*}} \\ & \leq c \left(r^p \int_{B(x,r)} \left| \nabla v \left(y \right) \right|^p \, \mathrm{d}y + \int_{B(x,r)} \left| v \left(y \right) \right|^p \, \mathrm{d}y \right)^{\frac{1}{p}}, \end{split}$$

for every ball $B(x,r) \subset \mathbb{R}^n$ and for every $v \in W^{1,p}(\mathbb{R}^n)$ with $1 \leq p < n$.

Note that replacing v by $\frac{1}{r}v(ry)$ and translation, we can assume that x=0 and r=1. But in this case, the inequality above is just the Poincaré-Sobolev inequality for the bounded domain $B(0,1) \subset \mathbb{R}^n$.

This proves the inequality.

Introduction to the

Swarnendu Sil

obolev spaces

Definitions

Approximation and

-

races

Sobolev embeddings

Sobolev inequalities Poincaré-Sobolev

inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Now we apply this inequality to the function $v := u - (u)_{B(x,r)}$.

Introduction to the Calculus of Variations

Swarnendu Sil

obolev spaces

Definitions

Elementary properties

Approximation an extension

Traces

Sobolev inequalities and Sobolev embeddings

Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality
Rellich-Kondrachov

Now we apply this inequality to the function $v := u - (u)_{B(x,r)}$. We obtain

Introduction to the Calculus of Variations

Swarnendu Sil

obolev spaces

Definitions

Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Sobolev

Poincaré-Sobolev inequalities

Morrey's inequality
Rellich-Kondrachov

Now we apply this inequality to the function $v:=u-(u)_{\mathcal{B}(\mathsf{x},r)}$. We obtain

$$\left(\int_{B(x,r)} \left| u - (u)_{B(x,r)} \right|^{p^*} \right)^{\frac{1}{p^*}}$$

$$\leq c \left(r^p \int_{B(x,r)} \left| \nabla u \right|^p + \int_{B(x,r)} \left| u - (u)_{B(x,r)} \right|^p \right)^{\frac{1}{p}}.$$

Introduction to the

Swarnendu Sil

obolev spaces

Definitions

ementary properties

tension

races

obolev inequalities and obolev embeddings

obolev

Poincaré-Sobolev

inequalities

Morrey's inequality

Rellich-Kondrachov

Now we apply this inequality to the function $v:=u-(u)_{B(x,r)}$. We obtain

$$\left(\int_{B(x,r)} \left| u - (u)_{B(x,r)} \right|^{p^*} \right)^{\frac{1}{p^*}} \\
\leq c \left(r^p \int_{B(x,r)} |\nabla u|^p + \int_{B(x,r)} \left| u - (u)_{B(x,r)} \right|^p \right)^{\frac{1}{p}}.$$

Now we use the Poincaré inequality with mean on balls

Introduction to the

Swarnendu Sil

obolev spaces

Definitions

pproximation and

Fraces

. . .

obolev embeddings

bolev

Poincaré-Sobolev inequalities

Morrey's inequality

Now we apply this inequality to the function $v:=u-(u)_{\mathcal{B}(\mathsf{x},r)}$. We obtain

$$\begin{split} \left(\int_{B(x,r)} \left| u - (u)_{B(x,r)} \right|^{p^*} \right)^{\frac{1}{p^*}} \\ & \leq c \left(r^p \int_{B(x,r)} |\nabla u|^p + \int_{B(x,r)} \left| u - (u)_{B(x,r)} \right|^p \right)^{\frac{1}{p}}. \end{split}$$

Now we use the Poincaré inequality with mean on balls to estimate the last term to obtain

$$\left(\int_{B(x,r)} \left| u - (u)_{B(x,r)} \right|^{p^*} \right)^{\frac{1}{p^*}} \leq c \left(r^p \int_{B(x,r)} \left| \nabla u \right|^p \right)^{\frac{1}{p}}.$$

Introduction to the

Swarnendu Sil

obolev spaces

Definitions

approximation and

races

Sobolev inequalities and Sobolev embeddings

obolev equalities

Poincaré-Sobolev inequalities

Rellich-Kondrachov

Now we apply this inequality to the function $v:=u-(u)_{B(\mathsf{x},r)}$. We obtain

$$\left(\int_{B(x,r)} \left| u - (u)_{B(x,r)} \right|^{p^*} \right)^{\frac{1}{p^*}} \\
\leq c \left(r^p \int_{B(x,r)} |\nabla u|^p + \int_{B(x,r)} \left| u - (u)_{B(x,r)} \right|^p \right)^{\frac{1}{p}}.$$

Now we use the Poincaré inequality with mean on balls to estimate the last term to obtain

$$\left(\int_{B(x,r)}\left|u-(u)_{B(x,r)}\right|^{p^*}\right)^{\frac{1}{p^*}}\leq c\left(r^p\int_{B(x,r)}\left|\nabla u\right|^p\right)^{\frac{1}{p}}.$$

This proves the theorem.

Introduction to the

Swarnendu Sil

Sobolev spaces

Elementary properties

approximation and

Fraces

Sobolev embeddings

obolev equalities

Poincaré-Sobolev inequalities

Rellich-Kondrachov

Morrey's inequality

Now we prove an important inequality.

Introduction to the Calculus of Variations

Swarnendu Sil

bolev spaces

Definitions

Elementary propertie

Approximatio extension

Traces

Sobolev inequalities an

Gagliardo-Nirer Sobolev

inequalities

inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

bolev spaces

Definitions

Elementary propertie

extension

Traces

Sobolev inequalities a

Gagliardo-Nire

Sobolev

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov

The End

Now we prove an important inequality.

Theorem (Morrey's inequality)

For every n ,

obolev spaces

Definitions

Approximation and

extension

Traces

Sobolev inequalities as

Gagliardo-Nire

Sobolev inequalities

oincare-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov

The End

Now we prove an important inequality.

Theorem (Morrey's inequality)

For every n , there exists a constant <math>c > 0,

obolev spaces

Definitions

Elementary properties Approximation and

Tracoc

Traces

Sobolev inequalities an Sobolev embeddings

Gagliardo-Niren Sobolev

inequalities

nequalities

Morrey's inequality

ellich-Kondrachov

The End

Now we prove an important inequality.

Theorem (Morrey's inequality)

For every n , there exists a constant <math>c > 0, depending only on n and p such that

obolev spaces

Definitions

Approximation and

Traces

iobolev inequalities ar iobolev embeddings

Sobolev

inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

The End

Now we prove an important inequality.

Theorem (Morrey's inequality)

For every n , there exists a constant <math>c > 0, depending only on n and p such that

$$|u(y) - u(z)| \le cr \left(\int_{B(x,r)} |\nabla u(y)|^p \, dy \right)^{\frac{1}{p}}, \tag{5}$$

obolev spaces

Elementary properties

Traces

Traces

Sobolev inequalities and Sobolev embeddings

Sobolev

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

The End

Now we prove an important inequality.

Theorem (Morrey's inequality)

For every n , there exists a constant <math>c > 0, depending only on n and p such that

$$|u(y) - u(z)| \le cr \left(\int_{B(x,r)} |\nabla u(y)|^p \, dy \right)^{\frac{1}{p}}, \tag{5}$$

for a.e. $y, z \in B(x, r)$ for every ball $B(x, r) \subset \mathbb{R}^n$ and for every $u \in W^{1,p}(\mathbb{R}^n)$.

We use the local Poincaré inequality lemma with p=1

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space

Definition

m .

Approximation an extension

Traco

Sobolev inequalities an Sobolev embeddings

Gagliardo-Niren Sobolev inequalities

Poincaré-Sobolev

Morrey's inequality

Rellich-Kondrachov

We use the local Poincaré inequality lemma with p=1 to deduce

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary propertie

Approximation and extension

Traces

bolev inequalities ar bolev embeddings

Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings We use the local Poincaré inequality lemma with p=1 to deduce

$$|u(y)-u(z)|$$

$$\leq \int_{B(x,r)} (|u(y) - u(w)| + |u(w) - u(z)|) dw$$

Introduction to the Calculus of Variations

Sobolev spaces

Definitions

Approximation and

_

races obolev inequalities an obolev embeddings

gliardo-Nirenb bolev qualities

nequalities

Morrey's inequality
Rellich-Kondrachov

I he End

We use the local Poincaré inequality lemma with p=1 to deduce

$$|u(y)-u(z)|$$

$$\leq \int_{B(x,r)} (|u(y) - u(w)| + |u(w) - u(z)|) dw
\leq c \int_{B(x,r)} |\nabla u(w)| (|y - w|^{1-n} + |z - w|^{1-n}) dw$$

Introduction to the Calculus of Variations

Swarnendu Sil

Morrey's inequality

 $\overset{\mathsf{H\"{o}lder}}{\leq} c \left(\int_{B(x,r)} \left(|y-w|^{1-n} + |z-w|^{1-n} \right)^{\frac{p}{p-1}} \, \mathrm{d} w \right)^{\frac{p-1}{p}} \left(\int_{B(x,r)} |\nabla u|^{\frac{\mathsf{captardo} \, \mathsf{Nrewberg}}{\mathsf{captardo} \, \mathsf{Nrewberg}}} \right)^{\frac{\mathsf{captardo} \, \mathsf{Nrewberg}}{\mathsf{captardo} \, \mathsf{Nrewberg}}} \left(\int_{B(x,r)} |\nabla u|^{\frac{\mathsf{captardo} \, \mathsf{Nrewberg}}{\mathsf{captardo} \, \mathsf{Nrewberg}}} \right)^{\frac{p}{p-1}} \, \mathrm{d} w \right)^{\frac{p-1}{p}} \left(\int_{B(x,r)} |\nabla u|^{\frac{\mathsf{captardo} \, \mathsf{Nrewberg}}{\mathsf{captardo} \, \mathsf{Nrewberg}}} \right)^{\frac{p}{p-1}} \, \mathrm{d} w \right)^{\frac{p-1}{p}} \left(\int_{B(x,r)} |\nabla u|^{\frac{\mathsf{captardo} \, \mathsf{Nrewberg}}{\mathsf{captardo} \, \mathsf{Nrewberg}}} \right)^{\frac{p}{p-1}} \, \mathrm{d} w \right)^{\frac{p-1}{p}} \left(\int_{B(x,r)} |\nabla u|^{\frac{\mathsf{captardo} \, \mathsf{Nrewberg}}{\mathsf{captardo} \, \mathsf{Nrewberg}}} \right)^{\frac{p}{p-1}} \, \mathrm{d} w \right)^{\frac{p-1}{p}} \left(\int_{B(x,r)} |\nabla u|^{\frac{\mathsf{captardo} \, \mathsf{Nrewberg}}{\mathsf{captardo} \, \mathsf{Nrewberg}}} \right)^{\frac{p}{p-1}} \, \mathrm{d} w \right)^{\frac{p-1}{p}} \left(\int_{B(x,r)} |\nabla u|^{\frac{\mathsf{captardo} \, \mathsf{Nrewberg}}{\mathsf{captardo} \, \mathsf{Nrewberg}}} \right)^{\frac{p}{p-1}} \, \mathrm{d} w \right)^{\frac{p-1}{p}} \left(\int_{B(x,r)} |\nabla u|^{\frac{\mathsf{captardo} \, \mathsf{Nrewberg}}{\mathsf{captardo} \, \mathsf{Nrewberg}}} \right)^{\frac{p}{p-1}} \, \mathrm{d} w \right)^{\frac{p-1}{p}} \left(\int_{B(x,r)} |\nabla u|^{\frac{\mathsf{captardo} \, \mathsf{Nrewberg}}{\mathsf{captardo} \, \mathsf{Nrewberg}}} \right)^{\frac{p}{p-1}} \, \mathrm{d} w \right)^{\frac{p-1}{p}} \left(\int_{B(x,r)} |\nabla u|^{\frac{\mathsf{captardo} \, \mathsf{Nrewberg}}{\mathsf{captardo} \, \mathsf{Nrewberg}}} \right)^{\frac{p}{p-1}} \, \mathrm{d} w \right)^{\frac{p-1}{p}} \left(\int_{B(x,r)} |\nabla u|^{\frac{\mathsf{captardo} \, \mathsf{Nrewberg}}{\mathsf{captardo} \, \mathsf{Nrewberg}}} \right)^{\frac{p}{p-1}} \, \mathrm{d} w \right)^{\frac{p-1}{p}} \left(\int_{B(x,r)} |\nabla u|^{\frac{\mathsf{captardo} \, \mathsf{Nrewberg}}{\mathsf{captardo} \, \mathsf{Nrewberg}}} \right)^{\frac{p}{p-1}} \, \mathrm{d} w \right)^{\frac{p-1}{p}} \left(\int_{B(x,r)} |\nabla u|^{\frac{\mathsf{captardo} \, \mathsf{Nrewberg}}{\mathsf{captardo} \, \mathsf{Nrewberg}}} \right)^{\frac{p}{p-1}} \, \mathrm{d} w \right)^{\frac{p}{p-1}} \, \mathrm{d} w$

$$\leq \int_{B(x,r)} (|u(y) - u(w)| + |u(w) - u(z)|) dw
\leq c \int_{B(x,r)} |\nabla u(w)| (|y - w|^{1-n} + |z - w|^{1-n}) dw$$

|u(y) - u(z)|

 $\stackrel{\text{H\"older}}{\leq} c \left(\int_{B(x,r)} \left(|y-w|^{1-n} + |z-w|^{1-n} \right)^{\frac{p}{p-1}} \, \mathrm{d}w \right)^{\frac{p-1}{p}} \left(\int_{B(x,r)} |\nabla u|^{\frac{2p-1}{p}} \, \mathrm{d}v \right)^{\frac{p-1}{p}} dv$

 $\leq cr^{1-\frac{n}{p}}\left(\int_{B(x,r)}|\nabla u(w)|^p dw\right)^{\frac{1}{p}}.$

 $\leq \int_{B(x,r)} (|u(y) - u(w)| + |u(w) - u(z)|) dw$

 $\leq c\int_{B(x,r)}\left|\nabla u\left(w\right)\right|\left(\left|y-w\right|^{1-n}+\left|z-w\right|^{1-n}\right)\;\mathrm{d}w$

|u(y) - u(z)|

|u(y) - u(z)|

$$\leq \int_{B(x,r)} \left(|u(y) - u(w)| + |u(w) - u(z)| \right) dw$$

$$\leq c \int_{B(x,r)} \left| \nabla u(w) \right| \left(\left| y - w \right|^{1-n} + \left| z - w \right|^{1-n} \right) dw$$

Hölder
$$\leq c \left(\int_{B(x,r)} \left(|y-w|^{1-n} + |z-w|^{1-n} \right)^{\frac{p}{p-1}} \, \mathrm{d}w \right)^{\frac{p-1}{p}} \left(\int_{B(x,r)} |\nabla u \begin{pmatrix} w \end{pmatrix}^{1-p} \, \mathrm{d}w \end{pmatrix}^{\frac{p-1}{p}} \, \mathrm{d}w \right)^{\frac{p-1}{p}} \, \mathrm{d}w$$

$$\leq c r^{1-\frac{n}{p}} \left(\int_{B(x,r)} |\nabla u (w)|^p \, \mathrm{d}w \right)^{\frac{1}{p}} \, .$$
The End

This proves the inequality.

Definitions

Elementary propertie

Traces

Sobolev inequalities and Sobolev embeddings

 $\stackrel{\text{H\"{o}lder}}{\leq} c \left(\int_{B(x,r)} \left(|y-w|^{1-n} + |z-w|^{1-n} \right)^{\frac{p}{p-1}} \, \mathrm{d}w \right)^{\frac{p-1}{p}} \left(\int_{B(x,r)} |\nabla u|^{\frac{2p-1}{p}} \, \mathrm{d}w \right)^{\frac{2p-1}{p}} \left(\int_{B(x,r)} |\nabla u|^{\frac{2p-1}{p}} \, \mathrm{d}w \right)^{\frac{2p-1}{p}} \, \mathrm{d}w$

Morrey's inequality

Rellich-Kondrachov

The En

$$|u(y)-u(z)|$$

$$\leq \int_{B(x,r)} \left(|u(y) - u(w)| + |u(w) - u(z)| \right) dw$$

$$\leq c \int_{B(x,r)} \left| \nabla u(w) \right| \left(\left| y - w \right|^{1-n} + \left| z - w \right|^{1-n} \right) dw$$

$$\leq cr^{1-\frac{n}{p}}\left(\int_{B(x,r)}|\nabla u(w)|^p dw\right)^{\frac{1}{p}}.$$

This proves the inequality.

Note that in the last line above,

 $\overset{\mathsf{H\"{o}lder}}{\leq} c \left(\int_{B(x,r)} \left(|y-w|^{1-n} + |z-w|^{1-n} \right)^{\frac{p}{p-1}} \, \mathrm{d}w \right)^{\frac{p-1}{p}} \left(\int_{B(x,r)} |\nabla u|^{\frac{\mathsf{constrainty}}{\mathsf{constrainty}}} |\nabla u|^{\frac{\mathsf{constrainty}}{\mathsf{constrainty}}} \right)^{\frac{p-1}{p-1}} \, \mathrm{d}w \right)^{\frac{p-1}{p-1}} \left(\int_{B(x,r)} |\nabla u|^{\frac{\mathsf{constrainty}}{\mathsf{constrainty}}} |\nabla u|^{\frac{\mathsf{constrainty}}{\mathsf{constrainty}}} \right)^{\frac{p-1}{p-1}} \, \mathrm{d}w \right)^{\frac{p-1}{p-1}} \left(\int_{B(x,r)} |\nabla u|^{\frac{\mathsf{constrainty}}{\mathsf{constrainty}}} |\nabla u|^{\frac{\mathsf{constrainty}}{\mathsf{constrainty}}} \right)^{\frac{p-1}{p-1}} \, \mathrm{d}w \right)^{\frac{p-1}{p-1}} \left(\int_{B(x,r)} |\nabla u|^{\frac{\mathsf{constrainty}}{\mathsf{constrainty}}} |\nabla u|^{\frac{\mathsf{constrainty}}{\mathsf{constrainty}}} \right)^{\frac{p-1}{p-1}} \, \mathrm{d}w \right)^{\frac{p-1}{p-1}} \left(\int_{B(x,r)} |\nabla u|^{\frac{\mathsf{constrainty}}{\mathsf{constrainty}}} |\nabla u|^{\frac{\mathsf{constrainty}}{\mathsf{constrainty}}} \right)^{\frac{p-1}{p-1}} \, \mathrm{d}w \right)^{\frac{p-1}{p-1}} \left(\int_{B(x,r)} |\nabla u|^{\frac{\mathsf{constrainty}}{\mathsf{constrainty}}} |\nabla u|^{\frac{\mathsf{constrainty}}{\mathsf{constrainty}}} \right)^{\frac{p-1}{p-1}} \, \mathrm{d}w \right)^{\frac{p-1}{p-1}} \left(\int_{B(x,r)} |\nabla u|^{\frac{\mathsf{constrainty}}{\mathsf{constrainty}}} |\nabla u|^{\frac{\mathsf{constrainty}}{\mathsf{constrainty}}} \right)^{\frac{p-1}{p-1}} \, \mathrm{d}w \right)^{\frac{p-1}{p-1}} \left(\int_{B(x,r)} |\nabla u|^{\frac{\mathsf{constrainty}}{\mathsf{constrainty}}} |\nabla u|^{\frac{\mathsf{constrainty}}{\mathsf{constrainty}}} \right)^{\frac{p-1}{p-1}} \, \mathrm{d}w \right)^{\frac{\mathsf{constrainty}}{\mathsf{constrainty}}} \left(\int_{B(x,r)} |\nabla u|^{\frac{\mathsf{constrainty}}{\mathsf{constrainty}}} |\nabla u|^{\frac{\mathsf{constrainty}}{\mathsf{constrainty}}} \right)^{\frac{p-1}{p-1}} \, \mathrm{d}w \right)^{\frac{\mathsf{constrainty}}{\mathsf{constrainty}}} \left(\int_{B(x,r)} |\nabla u|^{\frac{\mathsf{constrainty}}{\mathsf{constrainty}}} |\nabla u|^{\frac{\mathsf{constrainty}}{\mathsf{constrainty}}} |\nabla u|^{\frac{\mathsf{constrainty}}{\mathsf{constrainty}}} \right)^{\frac{\mathsf{constrainty}}{\mathsf{constrainty}} \left(\int_{B(x,r)} |\nabla u|^{\frac{\mathsf{constrainty}}{\mathsf{constrainty}}} |\nabla u|^{\frac{\mathsf{constrainty}}{\mathsf{constrainty}}} \right)^{\frac{\mathsf{constrainty}}{\mathsf{constrainty}}$

|u(y) - u(z)|

$$\leq \int_{B(x,r)} \left(\left| u(y) - u(w) \right| + \left| u(w) - u(z) \right| \right) dw$$

$$\leq c \int_{B(x,r)} \left| \nabla u(w) \right| \left(\left| y - w \right|^{1-n} + \left| z - w \right|^{1-n} \right) dw$$

$$\leq cr^{1-\frac{n}{p}}\left(\int_{B(x,r)} |\nabla u(w)|^p \, \mathrm{d}w\right)^{\frac{1}{p}}.$$

This proves the inequality.

Note that in the last line above, we used the convexity of the function $t \mapsto t^{\frac{p}{p-1}}$

|u(y) - u(z)|

$$\leq \int_{B(x,r)} (|u(y) - u(w)| + |u(w) - u(z)|) dw$$

$$\leq c\int_{B(x,r)}\left|\nabla u\left(w\right)\right|\left(\left|y-w\right|^{1-n}+\left|z-w\right|^{1-n}\right)\;\mathrm{d}w$$

$$\overset{\mathsf{H\"{o}lder}}{\leq} c \left(\int_{\mathcal{B}(x,r)} \left(|y-w|^{1-n} + |z-w|^{1-n} \right)^{\frac{p}{p-1}} \, \mathrm{d}w \right)^{\frac{p-1}{p}} \left(\int_{\mathcal{B}(x,r)} |\nabla u \left(\underbrace{w} \right)|^{\frac{2}{p} + \frac{2}{p} + \frac{2}{p}}_{\mathsf{d}} \right)^{\frac{2}{p} + \frac{2}{p}} \left(\int_{\mathcal{B}(x,r)} |\nabla u \left(w \right)|^{p} \, \mathrm{d}w \right)^{\frac{1}{p}} \, \mathrm{d}w$$

This proves the inequality.

Note that in the last line above, we used the convexity of the function $t \mapsto t^{\frac{p}{p-1}}$ and the estimate

Calculus of Variations

$$|u(y)-u(z)|$$

$$\leq \int_{B(x,r)} \left(\left| u\left(y\right) - u\left(w\right) \right| + \left| u\left(w\right) - u\left(z\right) \right| \right) \, \mathrm{d}w$$

$$\leq c \int_{B(x,r)} \left| \nabla u\left(w\right) \right| \left(\left| y - w \right|^{1-n} + \left| z - w \right|^{1-n} \right) \, \mathrm{d}w$$

$$\overset{\text{H\"{o}lder}}{\leq} c \left(\int_{\mathcal{B}(x,r)} \left(|y-w|^{1-n} + |z-w|^{1-n} \right)^{\frac{p}{p-1}} \, \mathrm{d}w \right)^{\frac{p-1}{p}} \left(\int_{\mathcal{B}(x,r)} |\nabla u \begin{pmatrix} u \\ u \end{pmatrix}^{1-n} \, \mathrm{d}v \end{pmatrix}^{\frac{1}{p}}$$

$$\overset{\text{Lagrano-virenberg-Sobolev inequalities}}{\leq c r^{1-\frac{n}{p}}} \left(\int_{\mathcal{B}(x,r)} |\nabla u (w)|^p \, \mathrm{d}w \right)^{\frac{1}{p}} .$$

$$\overset{\text{Lagrano-virenberg-Sobolev inequalities}}{\leq c r^{1-\frac{n}{p}}} \left(\int_{\mathcal{B}(x,r)} |\nabla u (w)|^p \, \mathrm{d}w \right)^{\frac{1}{p}} .$$

$$\overset{\text{The End}}{\leq c r^{1-\frac{n}{p}}} \left(\int_{\mathcal{B}(x,r)} |\nabla u (w)|^p \, \mathrm{d}w \right)^{\frac{1}{p}} .$$

This proves the inequality.

Note that in the last line above, we used the convexity of the function $t \mapsto t^{\frac{p}{p-1}}$ and the estimate

$$\int_{B(x,r)} |y - w|^{\frac{\rho(1-n)}{\rho-1}} \, \mathrm{d} w \le \int_{B(y,kr)} |y - w|^{\frac{\rho(1-n)}{\rho-1}} \, \mathrm{d} w$$

 $\stackrel{\text{H\"{o}lder}}{\leq} c \left(\int_{B(x,r)} \left(|y-w|^{1-n} + |z-w|^{1-n} \right)^{\frac{p}{p-1}} \, \mathrm{d}w \right)^{\frac{p-1}{p}} \left(\int_{B(x,r)} |\nabla u \begin{pmatrix} v \\ w \end{pmatrix} \right)^{\frac{p-1}{p-1}} \, \mathrm{d}w$

We use the local Poincaré inequality lemma with p=1 to deduce

$$|u(y) - u(z)|$$

$$\leq \int_{B(x,r)} (|u(y) - u(w)| + |u(w) - u(z)|) dw$$

$$\leq c \int_{B(x,r)} |\nabla u(w)| \left(|y-w|^{1-n} + |z-w|^{1-n} \right) dw$$

$$\leq cr^{1-\frac{n}{p}}\left(\int_{B(x,r)}\left|\nabla u\left(w\right)\right|^{p} \mathrm{d}w\right)^{\frac{1}{p}}.$$

This proves the inequality.

Note that in the last line above, we used the convexity of the function $t \mapsto t^{\frac{p}{p-1}}$ and the estimate

$$\int_{B(x,r)} |y - w|^{\frac{\rho(1-n)}{\rho-1}} dw \le \int_{B(y,kr)} |y - w|^{\frac{\rho(1-n)}{\rho-1}} dw$$

$$= \int_{0}^{kr} \int_{\mathbb{S}^{n-1}} \rho^{(n-1)\left(1 - \frac{\rho}{\rho-1}\right)} d\rho d\theta = cr^{\frac{\rho-n}{\rho-1}}.$$

Swarnendu Sil

Hölder continuous with exponent $\alpha = 1 - \frac{n}{n}$.

Morrey's inequality implies that $W^{1,p}$ functions with p > n are

Swarnendu Sil

Sobolev spaces

Definitions

lementary properti

....

bolev inequalities an

Sobolev ...

inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

obolev spaces

Delilitions

Approximation and

Traces

Sobolev inequalities an Sobolev embeddings

Sobolev inequalities

inequalities

Morrey's inequality

compact en

Morrey's inequality implies that $W^{1,p}$ functions with p>n are Hölder continuous with exponent $\alpha=1-\frac{n}{p}$.

Theorem (Sobolev embedding in \mathbb{R}^n for p > n)

Let n .

obolev spaces

Definitions

Approximation and

Traces

bolev inequalities an bolev embeddings

Sobolev inequalities

inequalities

Morrey's inequality

Rellich-Kondrachov

The End

Morrey's inequality implies that $W^{1,p}$ functions with p>n are Hölder continuous with exponent $\alpha=1-\frac{n}{p}$.

Theorem (Sobolev embedding in \mathbb{R}^n for p > n)

Let $n . Then <math>W^{1,p}(\mathbb{R}^n)$ continuously embeds into $C^{0,1-\frac{n}{p}}(\mathbb{R}^n)$.

obolev spaces

Delilitions

Approximation and

Traces

obolev inequalities an obolev embeddings

Sobolev inequalities

inequalities

Morrey's inequality Rellich-Kondrachov

The End

Morrey's inequality implies that $W^{1,p}$ functions with p > n are Hölder continuous with exponent $\alpha = 1 - \frac{n}{p}$.

Theorem (Sobolev embedding in \mathbb{R}^n for p > n)

Let $n . Then <math>W^{1,p}(\mathbb{R}^n)$ continuously embeds into $C^{0,1-\frac{n}{p}}(\mathbb{R}^n)$.

Proof.

By Morrey's inequality,

obolev spaces

Flementary propert

Approximation and extension

Traces

obolev inequalities and obolev embeddings

nequalities

inequalities

Morrey's inequality

Rellich-Kondrachov

The End

Morrey's inequality implies that $W^{1,p}$ functions with p > n are Hölder continuous with exponent $\alpha = 1 - \frac{n}{p}$.

Theorem (Sobolev embedding in \mathbb{R}^n for p > n)

Let $n . Then <math>W^{1,p}(\mathbb{R}^n)$ continuously embeds into $C^{0,1-\frac{n}{p}}(\mathbb{R}^n)$.

Proof.

obolev spaces

Delillitions

Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

inequalities

inequalities

Morrey's inequality

Rellich-Kondrachov

The End

Morrey's inequality implies that $W^{1,p}$ functions with p > n are Hölder continuous with exponent $\alpha = 1 - \frac{n}{n}$.

Theorem (Sobolev embedding in \mathbb{R}^n for p > n)

Let $n . Then <math>W^{1,p}(\mathbb{R}^n)$ continuously embeds into $C^{0,1-\frac{n}{p}}(\mathbb{R}^n)$.

Proof.

$$|u(x) - u(y)| \le cr^{1-\frac{n}{\rho}} \left(\int_{B(x,2r)} |\nabla u(w)|^{\rho} dw \right)^{\frac{1}{\rho}}$$

obolev spaces

Delinitions

Approximation and extension

Tracoc

Sobolev inequalities and Sobolev embeddings

> obolev iequalities

inequalities

Morrey's inequality Rellich-Kondrachov

The End

Morrey's inequality implies that $W^{1,p}$ functions with p > n are Hölder continuous with exponent $\alpha = 1 - \frac{n}{n}$.

Theorem (Sobolev embedding in \mathbb{R}^n for p > n)

Let $n . Then <math>W^{1,p}(\mathbb{R}^n)$ continuously embeds into $C^{0,1-\frac{n}{p}}(\mathbb{R}^n)$.

Proof.

$$|u(x) - u(y)| \le cr^{1-\frac{n}{p}} \left(\int_{B(x,2r)} |\nabla u(w)|^p \, dw \right)^{\frac{1}{p}}$$
$$= c|x - y|^{1-\frac{n}{p}} \left(\int_{B(x,2r)} |\nabla u(w)|^p \, dw \right)^{\frac{1}{p}}$$

Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

> agnardo-ivirenber obolev equalities

Poincaré-Sobolev inequalities

Morrey's inequality
Rellich-Kondrachov

The End

Morrey's inequality implies that $W^{1,p}$ functions with p > n are Hölder continuous with exponent $\alpha = 1 - \frac{n}{n}$.

Theorem (Sobolev embedding in \mathbb{R}^n for p > n)

Let $n . Then <math>W^{1,p}(\mathbb{R}^n)$ continuously embeds into $C^{0,1-\frac{n}{p}}(\mathbb{R}^n)$.

Proof.

$$|u(x) - u(y)| \le cr^{1-\frac{n}{p}} \left(\int_{B(x,2r)} |\nabla u(w)|^p \, dw \right)^{\frac{1}{p}}$$

$$= c |x - y|^{1-\frac{n}{p}} \left(\int_{B(x,2r)} |\nabla u(w)|^p \, dw \right)^{\frac{1}{p}}$$

$$\le c |x - y|^{1-\frac{n}{p}} \left\| \nabla u \right\|_{L^p(\mathbb{R}^n)}.$$

Morrey's inequality implies that $W^{1,p}$ functions with p>n are Hölder continuous with exponent $\alpha=1-\frac{n}{p}$.

Theorem (Sobolev embedding in \mathbb{R}^n for p > n)

Let $n . Then <math>W^{1,p}(\mathbb{R}^n)$ continuously embeds into $C^{0,1-\frac{n}{p}}(\mathbb{R}^n)$.

Proof.

By Morrey's inequality, for a.e. $x,y\in\mathbb{R}^n$ with |x-y|=r, we have,

$$|u(x) - u(y)| \le cr^{1-\frac{n}{p}} \left(\int_{B(x,2r)} |\nabla u(w)|^p \, dw \right)^{\frac{1}{p}}$$

$$= c |x - y|^{1-\frac{n}{p}} \left(\int_{B(x,2r)} |\nabla u(w)|^p \, dw \right)^{\frac{1}{p}}$$

$$\le c |x - y|^{1-\frac{n}{p}} \|\nabla u\|_{L^p(\mathbb{R}^n)}.$$

Hölder continuity follows (See Lecture notes for details).

initions

Elementary properti

oproximation and tension

races

olev inequalities a olev embeddings

obolev equalities

inequalities

Morrey's inequality

ompact em

Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth

Theorem (Sobolev embedding in bounded domains for p > n)

Sobolev

Morrey's inequality

Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth and let n .

bolev spaces

Definitions

Elementary properties

approximation and xtension

Traces

bolev inequalities and bolev embeddings

Sobolev inequalities

nequalities

Morrey's inequality

ellich-Kondrachov ompact embeddings

obolev spaces

Elementary proportion

Approximation and

Traces

obolev inequalities and obolev embeddings

Sobolev inequalities

inequalities

Morrey's inequality

orrey's inequality

...,

The End

Theorem (Sobolev embedding in bounded domains for p > n)

Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth and let n . $Then <math>W^{1,p}(\Omega)$ continuously embeds into $C^{0,\alpha}(\overline{\Omega})$

Let
$$\Omega \subset \mathbb{R}^n$$
 be open, bounded and smooth and let $n .Then $W^{1,p}\left(\Omega\right)$ continuously embeds into $C^{0,\alpha}\left(\overline{\Omega}\right)$ for every $0 \le \alpha \le 1 - \frac{n}{p}$.$

obolev spaces

Flementary propertie

Approximation and extension

Traces

bolev inequalities and bolev embeddings

Sobolev inequalities

nequalities

Morrey's inequality

ellich-Kondrachov ompact embeddings

Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth and let n . $Then <math>W^{1,p}\left(\Omega\right)$ continuously embeds into $C^{0,\alpha}\left(\overline{\Omega}\right)$ for every $0 \le \alpha \le 1 - \frac{n}{n}$.

As a consequence, we can deduce

obolev space

Definitions

Elementary propertie

xtension

Traces

obolev inequalities an obolev embeddings

obolev equalities

nequalities

Morrey's inequality

ellich-Kondrachov ompact embeddings

Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth and let n . $Then <math>W^{1,p}(\Omega)$ continuously embeds into $C^{0,\alpha}(\overline{\Omega})$ for every

$$0 \le \alpha \le 1 - \frac{n}{p}$$
.

As a consequence, we can deduce

Theorem (
$$W^{1,\infty} = C^{0,1}$$
)

Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth.

polev spaces

El---------

Approximation and extension

Traces

obolev inequalities and obolev embeddings

obolev nequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov

Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth and let n .

Then $W^{1,p}\left(\Omega\right)$ continuously embeds into $C^{0,\alpha}\left(\overline{\Omega}\right)$ for every $0\leq \alpha\leq 1-\frac{n}{p}.$

As a consequence, we can deduce

Theorem (
$$W^{1,\infty} = C^{0,1}$$
)

Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth. Then

$$W^{1,\infty}(\Omega) = C^{0,1}(\overline{\Omega})$$
 (with equivalent norms).

bolev space

Definitions

Elementary properties

Approximation and extension

Iraces

bolev inequalities and bolev embeddings

inequalities

nequalities

Morrey's inequality

ellich-Kondrachov ompact embeddings

Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth and let n .

Then $W^{1,p}\left(\Omega\right)$ continuously embeds into $C^{0,\alpha}\left(\overline{\Omega}\right)$ for every $0 \leq \alpha \leq 1 - \frac{n}{p}$.

As a consequence, we can deduce

Theorem (
$$W^{1,\infty} = C^{0,1}$$
)

Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth. Then

$$W^{1,\infty}\left(\Omega\right)=C^{0,1}\left(\overline{\Omega}\right)$$
 (with equivalent norms).

Proof.

Since $W^{1,\infty}(\Omega) \subset W^{1,p}(\Omega)$

bolev spaces

El--------

Approximation and extension

Traces

bolev embeddings

iobolev nequalities

nequalities

Morrey's inequality Rellich-Kondrachov

Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth and let n . $Then <math>W^{1,p}(\Omega)$ continuously embeds into $C^{0,\alpha}(\overline{\Omega})$ for every

$$0 \le \alpha \le 1 - \frac{n}{p}$$
.

As a consequence, we can deduce

Theorem (
$$W^{1,\infty} = C^{0,1}$$
)

Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth. Then

$$W^{1,\infty}(\Omega) = C^{0,1}(\overline{\Omega})$$
 (with equivalent norms).

Proof.

Since $W^{1,\infty}(\Omega) \subset W^{1,p}(\Omega)$ for any n ,

obolev spaces

Elementary proportio

Approximation and

Traces

bolev inequalities bolev embedding

iobolev nequalities

oncare-Sobolev nequalities

Morrey's inequality

Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth and let n . $Then <math>W^{1,p}(\Omega)$ continuously embeds into $C^{0,\alpha}(\overline{\Omega})$ for every

$$0 \le \alpha \le 1 - \frac{n}{p}$$
.

As a consequence, we can deduce

Theorem (
$$W^{1,\infty} = C^{0,1}$$
)

Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth. Then

$$W^{1,\infty}\left(\Omega
ight)=\mathit{C}^{0,1}\left(\overline{\Omega}
ight)$$
 (with equivalent norms).

Proof.

Since $W^{1,\infty}(\Omega) \subset W^{1,p}(\Omega)$ for any n , by the last theorem,

bolev spaces

El-----ti-

Approximation and extension

Traces

obolev inequalities obolev embeddings

inequalities

inequalities

Morrey's inequality

Rellich-Kondrachov

Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth and let n . $Then <math>W^{1,p}(\Omega)$ continuously embeds into $C^{0,\alpha}(\overline{\Omega})$ for every

As a consequence, we can deduce

Theorem (
$$W^{1,\infty} = C^{0,1}$$
)

 $0 \leq \alpha \leq 1 - \frac{n}{n}$.

Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth. Then

$$W^{1,\infty}\left(\Omega\right)=C^{0,1}\left(\overline{\Omega}\right)$$
 (with equivalent norms).

Proof.

Since $W^{1,\infty}(\Omega) \subset W^{1,p}(\Omega)$ for any $n , by the last theorem, for any <math>x, y \in \overline{\Omega}$, we obtain

bolev spaces

C1--------

Approximation and

Traces

bolev inequali bolev embedd

Sobolev inequalities

oincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth and let n . $Then <math>W^{1,p}(\Omega)$ continuously embeds into $C^{0,\alpha}(\overline{\Omega})$ for every

 $0 \le \alpha \le 1 - \frac{n}{p}$.

As a consequence, we can deduce

Theorem ($W^{1,\infty} = C^{0,1}$)

Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth. Then

$$W^{1,\infty}\left(\Omega\right)=C^{0,1}\left(\overline{\Omega}\right)$$
 (with equivalent norms).

Proof.

Since $W^{1,\infty}(\Omega) \subset W^{1,p}(\Omega)$ for any $n , by the last theorem, for any <math>x, y \in \overline{\Omega}$, we obtain

$$|u(x) - u(y)| \le c |x - y|^{1 - \frac{n}{p}} ||u||_{W^{1,p}(\Omega)}.$$

obolev spaces

Flementary propertie

Approximation and extension

Traces

obolev inequalitie obolev embeddin_i

nequalities

Poincare-Sobolev nequalities

Morrey's inequality Rellich-Kondrachov

Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth and let n . $Then <math>W^{1,p}(\Omega)$ continuously embeds into $C^{0,\alpha}(\overline{\Omega})$ for every

$$0 \le \alpha \le 1 - \frac{n}{p}$$
.

As a consequence, we can deduce

Theorem (
$$W^{1,\infty} = C^{0,1}$$
)

Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth. Then

$$W^{1,\infty}\left(\Omega\right)=C^{0,1}\left(\overline{\Omega}\right)$$
 (with equivalent norms).

Proof.

Since $W^{1,\infty}(\Omega) \subset W^{1,p}(\Omega)$ for any $n , by the last theorem, for any <math>x,y \in \overline{\Omega}$, we obtain

$$|u(x) - u(y)| \le c |x - y|^{1 - \frac{n}{p}} ||u||_{W^{1,p}(\Omega)}.$$

Letting $p \to \infty$,

obolev spaces

Elementary propertie

Approximation and

races

obolev inequalit obolev embeddi

obolev nagualities

oincaré-Sobolev equalities

Morrey's inequality

Rellich-Kondrachov

Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth and let n .

Then $W^{1,p}\left(\Omega\right)$ continuously embeds into $C^{0,\alpha}\left(\overline{\Omega}\right)$ for every $0 \leq \alpha \leq 1 - \frac{n}{p}$.

As a consequence, we can deduce

Theorem (
$$W^{1,\infty} = C^{0,1}$$
)

Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth. Then

$$W^{1,\infty}\left(\Omega\right)=C^{0,1}\left(\overline{\Omega}\right)$$
 (with equivalent norms).

Proof.

Since $W^{1,\infty}(\Omega) \subset W^{1,p}(\Omega)$ for any $n , by the last theorem, for any <math>x, y \in \overline{\Omega}$, we obtain

$$|u(x) - u(y)| \le c |x - y|^{1 - \frac{n}{p}} ||u||_{W^{1,p}(\Omega)}.$$

Letting $p \to \infty$, we obtain $W^{1,\infty}\left(\Omega\right) \subset C^{0,1}\left(\overline{\Omega}\right)$.

polev spaces

Elementary propertie

Approximation and

Fraces

bolev inequali

igiiardo-ivirend bolev equalities

oincaré-Sobolev

Morrey's inequality

Rellich-Kondrachov compact embeddings

Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth and let n .

Then $W^{1,p}\left(\Omega\right)$ continuously embeds into $C^{0,\alpha}\left(\overline{\Omega}\right)$ for every $0 \leq \alpha \leq 1 - \frac{n}{p}$.

As a consequence, we can deduce

Theorem (
$$W^{1,\infty} = C^{0,1}$$
)

Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth. Then

$$W^{1,\infty}\left(\Omega\right)=C^{0,1}\left(\overline{\Omega}\right)$$
 (with equivalent norms).

Proof.

Since $W^{1,\infty}\left(\Omega\right) \subset W^{1,p}\left(\Omega\right)$ for any $n , by the last theorem, for any <math>x,y \in \overline{\Omega}$, we obtain

$$|u(x) - u(y)| \le c |x - y|^{1 - \frac{n}{p}} ||u||_{W^{1,p}(\Omega)}.$$

Letting $p \to \infty$, we obtain $W^{1,\infty}\left(\Omega\right) \subset C^{0,1}\left(\overline{\Omega}\right)$. The other inclusion is easy and was proved earlier in this chapter.

Pefinitions

pproximation and stension

aces

gliardo-Nirenberg bolev equalities

inequalities

Morrey's inequality

ompact emb

ne End

Thank you Questions?

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space

Definitions

Approximation and

Traces

Trace

Sobolev embeddings

Sobolev

nequalities

Poincare-Sobo inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings