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Poincaré inequality on balls

Now we plan to derive a local version of a Poincaré inequality.
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Lemma (Local Poincaré inequality)
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Poincaré inequality on balls

Now we plan to derive a local version of a Poincaré inequality.

Lemma (Local Poincaré inequality)

For every 1 < p < o0, there exists a constant ¢ > 0, depending
only on n and p such that
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Poincaré inequality on balls

Now we plan to derive a local version of a Poincaré inequality.

Lemma (Local Poincaré inequality)
For every 1 < p < o0, there exists a constant ¢ > 0, depending
only on n and p such that

Vu)l®

/ () - u (@) dy < Pt / Va1
B(x,r) B(xr) |y — 2|
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Poincaré inequality on balls

Now we plan to derive a local version of a Poincaré inequality.

Lemma (Local Poincaré inequality)
For every 1 < p < o0, there exists a constant ¢ > 0, depending
only on n and p such that

P
/ () - u (@) dy < Pt / Va1
B(x,r) B(x.r) |y — 2|

for every ball B (x,r) C R", every z € B(x,r) and every
ue WhHp (R").
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Now we plan to derive a local version of a Poincaré inequality.

Lemma (Local Poincaré inequality)

For every 1 < p < o0, there exists a constant ¢ > 0, depending
only on n and p such that

/B( B0) - dygcr"ﬂ’*l/ Va1

n—1
B(x.r) |y — 2]

Poincaré-Sobolev
inequalities

for every ball B (x,r) C R", every z € B(x,r) and every
ue WhHp (R").

Remark
Note that like the Poincaré inequality, here also the estimate
controls certain integral related to u by integrals related to Vu.
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Introduction to the
Calculus of Variations

Swarnendu Sil
Proof. We can obviously assume u € C! (R"). For
y,z € B(x,r),

Sobolev spaces
Definitions
Elementary properties

Approximation and
extension

Traces

Sobolev inequalities and
Sobolev embeddings

Gagliardo-Nirenberg:
Sobolev
inequalities

Poincaré-Sobolev
inequalities
Morrey's inequality
Rellich-Kondrachov

compact embeddings

The End



Introduction to the
Calculus of Variations

Swarnendu Sil

Proof. We can obviously assume u € C! (R"). For ST
y,z € B(x,r), we have,

Definitions
Elementary properties

Approximation and
extension

Traces

Sobolev inequalities and
Sobolev embeddings

Gagliardo-Nirenberg:
Sobolev

inequalities

Poincaré-Sobolev
inequalities
Morrey's inequality
Rellich-Kondrachov

compact embeddings

The End



Proof. We can obviously assume u € C! (R"). For
y,z € B(x,r), we have,

u)-u(@) = [ Guleret-2) ar
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Proof. We can obviously assume u € C! (R"). For
y,z € B(x,r), we have,

u)-u(@) = [ Guleret-2) ar

z/ (Vu(z+t(y—2),y —z) dt

0
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Proof. We can obviously assume u € C! (R"). For
y,z € B(x,r), we have,

u)-u(@) = [ Guleret-2) ar

z/ (Vu(z+t(y—2),y —z) dt

0

Thus, we have,

Introduction to the
Calculus of Variations

Swarnendu Sil

Definitions

Elementary properties

equalities and

nbeddings

rdo-Nirenberg:

Poincaré-Sobolev
inequalities

Mc

nequality

Rellich

compact em




Introduction to the
Calculus of Variations

Swarnendu Sil

Proof. We can obviously assume u € C! (R"). For
y,z € B(x,r), we have,

u( / —u(z+t(y—2z2) dt
=/ (Vu(z+t(y—2)),y—2) dt

0
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IU(y)*U(Z)\pS\y*ZIP/O Vu(z+t(y—2))" dt.  (2)
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Proof. We can obviously assume u € C! (R"). For
y,z € B(x,r), we have,

u( /—u z4+t(y—2z)) dt
:/ (Vu(z+t(y—2)),y—2) dt

0

Thus, we have,
1
lu(y)—u(@)IP <ly- z|"/ Vu(z+t(y—2))P dt.  (2)
0

Let k > 0 be a number such that B (x,r) C B(z, kr) for any
z € B(x,r). Now we plan to integrate this over y € 9B (z,s) for
any s > 0 and then integrate w.r.t. s from O to kr.



Now, for any s > 0,




Now, for any s > 0, integrating (2) over y € 9B (z,s),




Now, for any s > 0, integrating (2) over y € 9B (z,s), we have,
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B(x,r)NoB(z,s)

Now, for any s > 0, integrating (2) over y € 9B (z,s), we have,

lu(y) —u(@)P dH"* (y)
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Now, for any s > 0, integrating (2) over y € 9B (z,s), we have,
/ u() = u (@) ()
B(x,r)NoB(z,s)

1
Ssp/ / IVu(z+t(y — 2))|P dH"* (y)dt.
0 JB(x,r)N0B(z,s)
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Now, for any s > 0, integrating (2) over y € 9B (z,s), we have,
/ u() = u (@) ()
B(x,r)NoB(z,s)

1
Ssp/ / IVu(z+t(y — 2))|P dH"* (y)dt.
0 JB(x,r)N0B(z,s)

Puttingw=z+t(y — 2)
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/ u() = u (@) ()
B(x,r)NoB(z,s)

1
SSP/ / \Vu(z+t(y —2))P dH" (y)dt.
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Putting w = z + t (y — z) and changing variables, this implies,

/ w() - v @ )
B(x,r)NoB(z,s)

1
Ss”/ H/ Vu(w)P dH" (w)dt
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Now, for any s > 0, integrating (2) over y € 9B (z,s), we have,
/ u() = u (@) ()
B(x,r)NoB(z,s)

1
SSP/ / \Vu(z+t(y —2))P dH" (y)dt.
0 B(x,r)NdB(z,s)

Putting w = z + t (y — z) and changing variables, this implies,

/ w() - v @ )
B(x,r)NoB(z,s)

1
Ss”/ H/ Vu(w)P dH" (w)dt
ot B(x,r)NdB(z,ts)
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The RHS of the last inequality is

S

n+p—1

L |

o (ts)" !

B(x,r)NOB(z,ts)

|Vu(w)P dH™ ! (w)dt
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The RHS of the last inequality is

L |
s"+P—1/ 77/ Vu(w)P dH™ (w) dt
0 (tS) B(x,r)NdB(z,ts)

P
_5n+p 1/ / |VU( )| ,anl (W)dt
B(x,)NdB(zts) |w — z|"”
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The RHS of the last inequality is

1
1
s"+P—1/ 77/ Vu(w)P dH™ (w) dt
0 (tS) B(x,r)NOB(z,ts)

— ghtpP— 1/ /
(x,r)NOB(z,ts)

- sn+P 2/ /
B(x,r)NoB(z,0)

Vu(w)” )Ip

w—z"
Ve
w— 2"

dH" (w)dt

dH" 1 (w)d
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The RHS of the last inequality is

t
st [ | [V (w)P A" (w) de
0 (tS) B(x,r)NdB(z,ts)

P
_ SI7+P 1/ / |VU( )| danl (W)dt
B(x,)NdB(z,ts) |w — z|""
p
7SH+P 2/ / ‘VU( )| danl(W)do
B(x,r)NoB(z,0) |W—Z|

p
St | Yo,
B(x,r)

n—
,r)NB(z,s) |W — Z‘



The RHS of the last inequality is

t
st [ | [V (w)P A" (w) de
0 (tS) B(x,r)NdB(z,ts)

_ grtoe 1/
,sn+p 2/

— sn-&—p—2 /
B(x,r)

< sn-‘,—p—2 /
B

(x,r) ‘W — Z|n_

Vu(w)” )Ip

/xrmaszts lw—z|""

IVu(w)” )Ip

/B(x r)NOB(z,0) |W — Z|

[Vu(w)?
NB(z,s) |W — Z‘n71

P
val’ g,

dw

dH" (w)dt

dH" 1 (w)d
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So we arrive at
/ uly) -~ v (@ )
B(x,r)NdB(z,s)

< 5n+p—2/ ‘VU(W)|p
N B

n—1
(xr) |w — 2]

[N

Integrating w.r.t s from 0 to kr and noticing that
B(x,r) C B(z,kr),

w.
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So we arrive at
/ uly) -~ v (@ )
B(x,r)NdB(z,s)

< 5n+p—2/ ‘VU(W)|p
N B

n—1
(xr) |w — 2]

[N

Integrating w.r.t s from 0 to kr and noticing that
B(x,r) C B(z,kr), we deduce

w.
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/ uly) -~ v (@ )
B(x,r)NdB(z,s)

P
S sn+p—2/ ‘VU(W)| dw
B

n—1
(xr) |w — 2]

Integrating w.r.t s from 0 to kr and noticing that
B(x,r) C B(z, kr), we deduce

u(y)—u(z)” d u(y)—u(2)” d
[ w0 s as | wl) -~ u@)P dy

B(x,r)NB(z,kr)
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/ u(y) = u ()P dH7(y)
B(x,r)NdB(z,s)

P
S sn+p—2/ ‘VU(W)| dw
B

n—1
(xr) |w — 2]

Integrating w.r.t s from 0 to kr and noticing that
B(x,r) C B(z, kr), we deduce

u(y)—u(z)” d u(y)—u(2)” d
[ w0 s as | wl) -~ u@)P dy

B(x,r)NB(z,kr)

r)
kr
-/ u(y) =~ u (P a2 (y)ds
0 B(x,r)NoB(z,s)



SO we arrive at Introduction to the

Calculus of Variations

Swarnendu Sil

/ u(y) = u ()P dH7(y)
B(x,r)NdB(z,s) Definitions
)
o[ T,
B

(xr) |w — 2]

Integrating w.r.t s from 0 to kr and noticing that
B(x,r) C B(z, kr), we deduce

u —u(2)P d u —u(2)P d
Awﬂ|w> () y</?,mzm() @I dy

/kr/xr)nas(zs u(y) —u (@) A" (y)ds

P
S/ st 2ds/ MW}L dw
0 B(x,r) |w — Z|



Introduction to the
Calculus of Variations

So we arrive at

Swarnendu Sil

/ u(y) = u ()P dH7(y)
B(x,r)NdB(z,s) Definitions
) .
T
B

(xr) |w — 2]

Integrating w.r.t s from 0 to kr and noticing that
B(x,r) C B(z, kr), we deduce

u —u(2)P d u —u(2)P d
Awﬂ|w> () y</?,mzm() @I dy

/kr/xr)nas(zs u(y) —u (@) A" (y)ds

P
S/ st 2ds/ MW}L dw
0 B(x,r) |w — Z|

P
<ot [ O

— n—1
B(x.r) |y — 2|



Introduction to the
Calculus of Variations

So we arrive at

/ u(y) = u ()P dH7(y)
B(x,r)NdB(z,s)
P
T
B

(xr) |w — 2]

Swarnendu Sil

Integrating w.r.t s from 0 to kr and noticing that
B(x,r) C B(z, kr), we deduce

u —u(2)P d u —u(2)P d
Awﬂ|w> () y</?,mzm() @I dy

/kr/xr)nas(zs u(y) —u (@) A" (y)ds

P
S/ st 2ds/ MW}L dw
0 B(x,r) |w — Z|

P
<ot [ O

— n—1
B(x.r) |y — 2|

This proves the lemma. O
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Theorem (Poincaré inequality with mean on balls)
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We now prove a Poincaré type inequality for W1 functions.
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Poincaré inequality with mean on balls

We now prove a Poincaré type inequality for W1 functions.

Theorem (Poincaré inequality with mean on balls)

For every 1 < p < oo, there exists a constant ¢ > 0, depending
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Poincaré inequality with mean on balls

We now prove a Poincaré type inequality for W1 functions.
Theorem (Poincaré inequality with mean on balls)

For every 1 < p < oo, there exists a constant ¢ > 0, depending
only on n and p such that

][B(X,r)

u (y) - (U)B(x,r)

P
dygar"][ Vu()l dy, (3)
B(x,r)
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Poincaré inequality with mean on balls

We now prove a Poincaré type inequality for W1 functions.

Theorem (Poincaré inequality with mean on balls)

For every 1 < p < oo, there exists a constant ¢ > 0, depending
only on n and p such that

][B(X,r)

for every ball B (x,r) C R" and every u € WP (R").

P
u(y) — () gpen dygar"]{;( u)P @y @)

Introduction to the
Calculus of Variations

Swarnendu Sil

Definitions

Poincaré-Sobolev
inequalities

compact embeddings



Poincaré inequality with mean on balls

We now prove a Poincaré type inequality for W1 functions.

Theorem (Poincaré inequality with mean on balls)

For every 1 < p < oo, there exists a constant ¢ > 0, depending
only on n and p such that

][B(X,r)

for every ball B (x,r) C R" and every u € WP (R").

P
u(y) — () gpen dygar"]{;( u)P @y @)

Remark
Here the integral mean is
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We now prove a Poincaré type inequality for W1 functions.
Theorem (Poincaré inequality with mean on balls)

For every 1 < p < oo, there exists a constant ¢ > 0, depending
only on n and p such that
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As a corollary, we derive the Poincaré-Sobolev inequality with
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As a corollary, we derive the Poincaré-Sobolev inequality with
mean on balls.
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For every 1 < p < n, there exists a constant ¢ > 0, depending
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As a corollary, we derive the Poincaré-Sobolev inequality with
mean on balls.
Theorem (Poincaré-Sobolev inequality with mean on balls)

For every 1 < p < n, there exists a constant ¢ > 0, depending
only on n and p such that
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As a corollary, we derive the Poincaré-Sobolev inequality with
mean on balls.

Theorem (Poincaré-Sobolev inequality with mean on balls)

Poincaré-Sobolev

For every 1 < p < n, there exists a constant ¢ > 0, depending Tt
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This proves the theorem.
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Morrey’s inequality

Now we prove an important inequality.

Theorem (Morrey’s inequality)
For every n < p < o0,
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Now we prove an important inequality.

Theorem (Morrey’s inequality)

For every n < p < oo, there exists a constant ¢ > 0, depending
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Now we prove an important inequality.

Theorem (Morrey’s inequality)

For every n < p < oo, there exists a constant ¢ > 0, depending
only on n and p such that
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Let Q C R" be open, bounded and smooth and let n < p < oco.
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As a consequence, we can deduce
Theorem (W = C01)
Let Q C R" be open, bounded and smooth. Then
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