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To prove this inequality, we need a simple lemma.
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Let n>2 and let fy,...,f, € L"1 (R™!). For x € R" and
1<i<n, set
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I':(X17~-~7)/<\I'7"'5Xn) = (Xla"'aXI'—17XI'+17"'7Xn)-
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Then the function
FO)=]]f(%) forxeR"
i=1

is in L1 (R")
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Proof.

n=2

R2

is just Fubini with equality in fact. Indeed,

|f| XmdX2 = / / ‘fl (X2)| ‘fz (X1)| XmdXQ
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Proof.
n = 2 is just Fubini with equality in fact. Indeed,

/ |f| XmdXQ == / / ‘fl (X2)| ‘fz (X]_)| XmdX2
R2 —o0 J —o0

= ([ 1t aa) ([ 1acall an).

— 00

Now to prove by induction, we assume the result holds for some
n > 2 and show it for n + 1.
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Proof.
n = 2 is just Fubini with equality in fact. Indeed,

/ |f| XmdXQ == / / ‘fl (X2)| ‘fz (X]_)| XmdX2
R2 —o0 J —o0

= ([ 1t aa) ([ 1acall an).

— 00
Now to prove by induction, we assume the result holds for some
n > 2 and show it for n + 1.
Fix x,4+1 € R for now.
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Proof.
n = 2 is just Fubini with equality in fact. Indeed,

/ |f| XmdXQ == / / ‘fl (X2)| ‘fz (X]_)| XmdX2
R2 —oo0 J —o0

([ melan) ([ 160a) an).

Now to prove by induction, we assume the result holds for some
n > 2 and show it for n + 1.

Fix x,+1 € R for now. By Holder inequality and the induction
hypothesis,
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([ melan) ([ 160a) an).

Now to prove by induction, we assume the result holds for some
n > 2 and show it for n + 1.

Fix x,+1 € R for now. By Holder inequality and the induction
hypothesis,
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Now to prove by induction, we assume the result holds for some
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/ |f| XmdXQ == / / ‘fl (X2)| ‘fz (X1)| XmdX2
R2 —oo0 J —o0

= ([ 1t aa) ([ 1acall an).

Now to prove by induction, we assume the result holds for some
n > 2 and show it for n + 1.

Fix x,+1 € R for now. By Holder inequality and the induction
hypothesis,

Gagliardo-Nirenberg-
Sobolev.
inequalities

/ If| dxadxs...dx,
Rn

n—1
S an+1 Ln(Rn) (/R |f;[fn|"Tn1 dX]_dXQ...dX,,)
< ot liogan TT | by [ with o fixed]
i=1

Integrating w.r.t x,+1 and Holder inequality gives the result. O
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Proof. First we prove for p = 1.
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Now we choose f = |u|” for some v > 0
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Now we choose f = |u|” for some v > 0 and apply the inequality
for p =1 to f to deduce,
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Now we choose f = |u|” for some v > 0 and apply the inequality

for p =1 to f to deduce,
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Now we choose f = |u|” for some v > 0 and apply the inequality
for p =1 to f to deduce,

(L

n—1
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Theorem (Sobolev embedding in R” for p < n)
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We now discuss some consequences of the inequality.

Theorem (Sobolev embedding in R” for p < n)
Let 1 < p < n. Then WP (R™) continuously embeds into L9 (R")
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We now discuss some consequences of the inequality.

Theorem (Sobolev embedding in R” for p < n)

Let 1 < p < n. Then WP (R™) continuously embeds into L9 (R")
for every q € [p, p*].
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We now discuss some consequences of the inequality.

Theorem (Sobolev embedding in R” for p < n)
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We now discuss some consequences of the inequality.
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Let 1 < p < n. Then WP (R™) continuously embeds into L9 (R")
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We now discuss some consequences of the inequality.

Theorem (Sobolev embedding in R” for p < n)
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Sobolev.
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Proof.
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Our next result might seem surprising, since it concerns W1". But
this result is more of a corollary of the proof and not really of the
final result.
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Our next result might seem surprising, since it concerns W1". But
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Our next result might seem surprising, since it concerns W1". But
this result is more of a corollary of the proof and not really of the
final result.

Theorem (Sobolev embedding in R” for p = n)
W (R") continuously embeds into L9 (R") for every
g € [n, +00).
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final result.

Theorem (Sobolev embedding in R” for p = n)
W (R") continuously embeds into L9 (R") for every
g € [n, +00).

Proof.

As in the proof, we can easily establish, for any v > 0,
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Our next result might seem surprising, since it concerns W1". But
this result is more of a corollary of the proof and not really of the

final result.

Theorem (Sobolev embedding in R” for p = n)

W (R") continuously embeds into L9 (R") for every
g € [n, +00).

Proof.
As in the proof, we can easily establish, for any v > 0,
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Our next result might seem surprising, since it concerns W1". But
this result is more of a corollary of the proof and not really of the
final result.

Theorem (Sobolev embedding in R” for p = n)

W (R") continuously embeds into L9 (R") for every

Gagliardo-Nirenberg-
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Proof.
As in the proof, we can easily establish, for any v > 0,
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Note we really have not used the fact p < n up to that point
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Our next result might seem surprising, since it concerns W1". But
this result is more of a corollary of the proof and not really of the
final result.

Theorem (Sobolev embedding in R” for p = n)

W (R") continuously embeds into L9 (R") for every
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g € [n, +00). enutis

Proof.
As in the proof, we can easily establish, for any v > 0,

n n%l (y=Dn %1 n ’1'
|u| =1 dx <« |u] =T dx [Vul" dx | .
n n Rn

Note we really have not used the fact p < n up to that point and
so we can put p = n.
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Our next result might seem surprising, since it concerns W1". But
this result is more of a corollary of the proof and not really of the
final result.

Theorem (Sobolev embedding in R” for p = n)

W (R") continuously embeds into L9 (R") for every

Gagliardo-Nirenberg-

g € [n, +00). enutis

Proof.
As in the proof, we can easily establish, for any v > 0,

n n%l (y=Dn %1 n ’1'
|u| =1 dx <« |u] =T dx [Vul" dx | .
n n Rn

Note we really have not used the fact p < n up to that point and
so we can put p = n. Now let us chose v = n.
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Our next result might seem surprising, since it concerns W1". But
this result is more of a corollary of the proof and not really of the
final result.

Theorem (Sobolev embedding in R” for p = n)

W (R") continuously embeds into L9 (R") for every

g € [n, +00).

Gagliardo-Nirenberg-
Sobolev
inequalities

Proof.
As in the proof, we can easily establish, for any v > 0,

n n%l (y=Dn %1 n n
|u| =1 dx <« |u] =T dx [Vul" dx | .
n n Rn

Note we really have not used the fact p < n up to that point and
so we can put p = n. Now let us chose v = n. This will prove

lul e, < clellwe



Introduction to the

Consequences of the Gagliardo-Nirenberg-Sobolev e = e

Swarnendu Sil

Our next result might seem surprising, since it concerns W1". But
this result is more of a corollary of the proof and not really of the
final result.

Theorem (Sobolev embedding in R” for p = n)
W (R") continuously embeds into L9 (R") for every
g € [n, +00).

Proof.
As in the proof, we can easily establish, for any v > 0,
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But now we can iterate this process by choosing
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Our next result might seem surprising, since it concerns W1". But
this result is more of a corollary of the proof and not really of the
final result.

Theorem (Sobolev embedding in R” for p = n)
W (R") continuously embeds into L9 (R") for every
g € [n, +00).

Proof.
As in the proof, we can easily establish, for any v > 0,

n n%l (y=Dn %1 n n
|u| =1 dx <« |u] =T dx [Vul" dx | .
n n Rn

Note we really have not used the fact p < n up to that point and
so we can put p = n. Now let us chose v = n. This will prove

Gagliardo-Nirenberg-

Sobolev.
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lul e, < clellwe

But now we can iterate this process by choosing
¥y=n4+1,n+2,... and so on to keep pushing the exponent. [J
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Now we focus on bounded domains.

Theorem (Sobolev embedding in bounded domains for p < n)
Let Q C R" be open, bounded and smooth
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Now we focus on bounded domains.

Theorem (Sobolev embedding in bounded domains for p < n)
Let Q C R" be open, bounded and smooth and let 1 < p < n.
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Now we focus on bounded domains.

Theorem (Sobolev embedding in bounded domains for p < n)

Let Q C R" be open, bounded and smooth and let 1 < p < n.
Then WP (Q) continuously embeds into L9 () for every
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Theorem (Sobolev embedding in R” for p = n)
Let Q C R" be open, bounded and smooth.
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Now we focus on bounded domains.

Theorem (Sobolev embedding in bounded domains for p < n)

Gagliardo-Nirenberg-

Let Q C R" be open, bounded and smooth and let 1 < p < n. e e
Then WP (Q) continuously embeds into L9 () for every
1<qg<p"

Theorem (Sobolev embedding in R” for p = n)

Let Q C R" be open, bounded and smooth. Then W™ ()
continuously embeds into L9 (R") for every 1 < q < oc.
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Now we focus on bounded domains.

Theorem (Sobolev embedding in bounded domains for p < n)

Gagliardo-Nirenberg-

Let Q C R" be open, bounded and smooth and let 1 < p < n. e e
Then WP (Q) continuously embeds into L9 (Q) for every
1<g<p"

Theorem (Sobolev embedding in R” for p = n)

Let Q C R" be open, bounded and smooth. Then W™ ()
continuously embeds into L9 (R") for every 1 < q < oc.

Both results can be proved from the R" case
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Theorem (Sobolev embedding in bounded domains for p < n)
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Let Q C R" be open, bounded and smooth and let 1 < p < n. e e
Then WP (Q) continuously embeds into L9 (Q) for every
1<g<p"

Theorem (Sobolev embedding in R” for p = n)

Let Q C R" be open, bounded and smooth. Then W™ ()
continuously embeds into L9 (R") for every 1 < q < oc.

Both results can be proved from the R" case using extension
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Now we focus on bounded domains.

Theorem (Sobolev embedding in bounded domains for p < n)

Gagliardo-Nirenberg-

Let Q C R" be open, bounded and smooth and let 1 < p < n. e e
Then WP (Q) continuously embeds into L9 (Q) for every
1<g<p"

Theorem (Sobolev embedding in R” for p = n)

Let Q C R" be open, bounded and smooth. Then W™ ()
continuously embeds into L9 (R") for every 1 < q < oc.

Both results can be proved from the R” case using extension and
noting that Q has finite measure.
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Note that the Gagliardo-Nirenberg-Sobolev inequality actually says
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when 1 < p < n.
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Note that the Gagliardo-Nirenberg-Sobolev inequality actually says
HUHLP*(Rn) <c ||VUHLP(]R") when 1 < p <n.

However, the estimate in the result for the bounded, smooth
domain says something weaker,
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However, the estimate in the result for the bounded, smooth
domain says something weaker, namely,

[ull o @) < € llullwrnay when 1 < p <n.

Introduction to the
Calculus of Variations

Swarnendu Sil

Sol v
inequalities
Poincaré-Sobolev
inequalities
Morrey's inequal

embeddings



Poincaré-Sobolev inequalities

Note that the Gagliardo-Nirenberg-Sobolev inequality actually says
HUHLP*(Rn) <c ||VUHLP(]R") when 1 < p <n.

However, the estimate in the result for the bounded, smooth
domain says something weaker, namely,

[ull o @) < € llullwrnay when 1 < p <n.

It is in general not possible to improve this.

Introduction to the
Calculus of Variations

Swarnendu Sil

Sol

inequalities
Poincaré-Sobolev
inequalities

embeddings



Poincaré-Sobolev inequalities

Note that the Gagliardo-Nirenberg-Sobolev inequality actually says
HUHLP*(Rn) <c ||VUHLP(]R") when 1 < p <n.

However, the estimate in the result for the bounded, smooth
domain says something weaker, namely,

HUHLP*(Q) < cllullwre(e) when 1 < p <n.

It is in general not possible to improve this. But for functions in
WOLP (Q) ’
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Poincaré-Sobolev inequalities

Note that the Gagliardo-Nirenberg-Sobolev inequality actually says
HUHLP*(Rn) <c ||VUHLP(]R") when 1 < p <n.

However, the estimate in the result for the bounded, smooth
domain says something weaker, namely,

HUHLP*(Q) < cllullwre(e) when 1 < p <n.

It is in general not possible to improve this. But for functions in
W, P (Q), we can improve the inequality.
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Note that the Gagliardo-Nirenberg-Sobolev inequality actually says
HUHLP*(Rn) <c ||VUHLP(]R") when 1 < p <n.

However, the estimate in the result for the bounded, smooth
domain says something weaker, namely,

lullor @) < cllullwrngy ~ when 1< p<n.
inequalities

It is in general not possible to improve this. But for functions in
W, P (Q), we can improve the inequality.

Theorem (Poincaré-Sobolev inequality for Wol"p)
Let Q C R" be open
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Note that the Gagliardo-Nirenberg-Sobolev inequality actually says
HUHLP*(Rn) <c ||VUHLP(]R") when 1 < p <n.

However, the estimate in the result for the bounded, smooth
domain says something weaker, namely,

lullor @) < cllullwrngy ~ when 1< p<n.
inequalities

It is in general not possible to improve this. But for functions in
W, P (Q), we can improve the inequality.

Theorem (Poincaré-Sobolev inequality for Wol"p)
Let Q C R" be open and let 1 < p < n.
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Note that the Gagliardo-Nirenberg-Sobolev inequality actually says
HUHLP*(Rn) <c ||VUHLP(]R") when 1 < p <n.
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Note that the Gagliardo-Nirenberg-Sobolev inequality actually says
HUHLP*(Rn) <c ||VUHLP(]R") when 1 < p <n.

However, the estimate in the result for the bounded, smooth
domain says something weaker, namely,

[ull o @) < € llullwrnay when 1 < p <n. e
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It is in general not possible to improve this. But for functions in
W, P (Q), we can improve the inequality.

Theorem (Poincaré-Sobolev inequality for Wol’p)

Let Q C R" be open and let 1 < p < n. Then there exists a
constant ¢ > 0, depending only on Q, n and p such that we have
the estimate

[ull o= (@) < € IVull o for all u € Wy P ().

Remark
Q can be an arbitrary open set!
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The result follows from the GNS inequality by an extension, but
not the extension operator we constructed in the theorem.There is
a far simpler canonical extension operator for W, which is not
available for WP, This is the extension by zero. So the
Poincaré-Sobolev inequality would follow easily as soon as we show
the following simple lemma, whose proof is skipped.

Lemma
Let Q C R" be open and let 1 < p < oo. Then for any
ue W)P(Q), the function

7(x) = u(x) ifxeQ,
0 ifx ¢ Q.

is in WP (R") and obviously extends u to whole of R".

Remark

Note that this lemma needs no regularity of the boundary and also
does not need S to be bounded. However, if OS2 is not regular,
there may be no well-defined trace and the identification with
zero-trace functions might be meaningless.
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From the Poincaré-Sobolev inequality for Wol"P, we can now
deduce
Theorem (Poincaré inequality for W, )

Let Q C R" be open and bounded and let 1 < p < oo. Then there
exists a constant ¢ > 0, depending only on Q, n and p such that
we have the estimate

1l < VUl for all u € Wy (Q).

Remark
This shows that for any Q C R" open and bounded, ||Vul|,q) is

an equivalent norm on Wol’P (). It is also fairly straight forward
to establish that this implies that

(u, V>W01,2(Q) = (Vu, V) 2(q)

is an equivalent inner product on W,* ().
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