Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

extension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov

The End

Introduction to the Calculus of Variations: Lecture 14

Swarnendu Sil

Department of Mathematics Indian Institute of Science

Spring Semester 2021

Outline

Sobolev spaces

Definitions

Elementary properties

Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings Gagliardo-Nirenberg-Sobolev inequalities Poincaré-Sobolev inequalities Morrey's inequality Rellich-Kondrachov compact embeddings

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space

Definition

Elementary properties Approximation and

xtension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Theorem (Gagliardo-Nirenberg-Sobolev inequality) Let $1 \le p < n$.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Theorem (Gagliardo-Nirenberg-Sobolev inequality) Let $1 \le p < n$. Then there exists a constant c > 0,

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Theorem (Gagliardo-Nirenberg-Sobolev inequality) Let $1 \le p < n$. Then there exists a constant c > 0, depending only on n and p

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

$$\left(\int_{\mathbb{R}^n} |u|^{p^*}\right)^{\frac{1}{p^*}} \leq c \left(\int_{\mathbb{R}^n} |\nabla u|^p\right)^{\frac{1}{p}}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

The End

(1)

$$\left(\int_{\mathbb{R}^n} |u|^{p^*}\right)^{\frac{1}{p^*}} \leq c \left(\int_{\mathbb{R}^n} |\nabla u|^p\right)^{\frac{1}{p}}$$

for every $u \in W^{1,p}(\mathbb{R}^n)$.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

The End

(1)

$$\left(\int_{\mathbb{R}^n} |u|^{p^*}\right)^{\frac{1}{p^*}} \leq c \left(\int_{\mathbb{R}^n} |\nabla u|^p\right)^{\frac{1}{p}}$$

for every $u \in W^{1,p}(\mathbb{R}^n)$.

To prove this inequality, we need a simple lemma.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

The End

(1)

Lemma Let $n \ge 2$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

xtension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

The End

Lemma Let $n \ge 2$ and let $f_1, \ldots, f_n \in L^{n-1}(\mathbb{R}^{n-1})$.

Let $n \ge 2$ and let $f_1, \ldots, f_n \in L^{n-1}(\mathbb{R}^{n-1})$. For $x \in \mathbb{R}^n$ and $1 \le i \le n$, set

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition:

Elementary properties

clension

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Let $n \ge 2$ and let $f_1, \ldots, f_n \in L^{n-1}(\mathbb{R}^{n-1})$. For $x \in \mathbb{R}^n$ and $1 \le i \le n$, set

$$\hat{x}_i = (x_1, \ldots, \widehat{x_i}, \ldots, x_n) := (x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n).$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Let $n \ge 2$ and let $f_1, \ldots, f_n \in L^{n-1}(\mathbb{R}^{n-1})$. For $x \in \mathbb{R}^n$ and $1 \le i \le n$, set

$$\hat{x}_i = (x_1, \ldots, \widehat{x_i}, \ldots, x_n) := (x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n).$$

Then the function

$$f(x) := \prod_{i=1}^{n} f_i(\hat{x}_i) \quad \text{ for } x \in \mathbb{R}^n$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Let $n \ge 2$ and let $f_1, \ldots, f_n \in L^{n-1}(\mathbb{R}^{n-1})$. For $x \in \mathbb{R}^n$ and $1 \le i \le n$, set

$$\hat{x}_i = (x_1, \ldots, \widehat{x_i}, \ldots, x_n) := (x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n).$$

Then the function

$$f(x) := \prod_{i=1}^{n} f_i(\hat{x}_i) \quad \text{ for } x \in \mathbb{R}^n$$

is in $L^1(\mathbb{R}^n)$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Let $n \ge 2$ and let $f_1, \ldots, f_n \in L^{n-1}(\mathbb{R}^{n-1})$. For $x \in \mathbb{R}^n$ and $1 \le i \le n$, set

$$\hat{x}_i = (x_1, \ldots, \widehat{x_i}, \ldots, x_n) := (x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n).$$

Then the function

$$f(x) := \prod_{i=1}^{n} f_i(\hat{x}_i) \quad \text{ for } x \in \mathbb{R}^n$$

is in $L^1(\mathbb{R}^n)$ and we have the estimate

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Let $n \ge 2$ and let $f_1, \ldots, f_n \in L^{n-1}(\mathbb{R}^{n-1})$. For $x \in \mathbb{R}^n$ and $1 \le i \le n$, set

$$\hat{x}_i = (x_1, \ldots, \widehat{x_i}, \ldots, x_n) := (x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n).$$

Then the function

$$f(x) := \prod_{i=1}^{n} f_i(\hat{x}_i) \quad \text{ for } x \in \mathbb{R}^n$$

is in $L^1(\mathbb{R}^n)$ and we have the estimate

$$\|f\|_{L^1(\mathbb{R}^n)} \leq \prod_{i=1}^n \|f_i\|_{L^{n-1}(\mathbb{R}^{n-1})}.$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Proof. n = 2 is just Fubini

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

tension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Proof. n = 2 is just Fubini with equality in fact.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

xtension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Proof. n = 2 is just Fubini with equality in fact. Indeed,

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties

extension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

n = 2 is just Fubini with equality in fact. Indeed,

$$\int_{\mathbb{R}^{2}}\left|f\right| \, \mathrm{d}x_{1} \mathrm{d}x_{2} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left|f_{1}\left(x_{2}\right)\right| \left|f_{2}\left(x_{1}\right)\right| \, \mathrm{d}x_{1} \mathrm{d}x_{2}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

n = 2 is just Fubini with equality in fact. Indeed,

$$\begin{split} \int_{\mathbb{R}^2} |f| \ \mathrm{d}x_1 \mathrm{d}x_2 &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |f_1(x_2)| \left| f_2(x_1) \right| \ \mathrm{d}x_1 \mathrm{d}x_2 \\ &= \left(\int_{-\infty}^{\infty} |f_2(x_1)| \ \mathrm{d}x_1 \right) \left(\int_{-\infty}^{\infty} |f_1(x_2)| \ \mathrm{d}x_2 \right) \end{split}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

.

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

n = 2 is just Fubini with equality in fact. Indeed,

$$\begin{split} \int_{\mathbb{R}^2} |f| \ \mathrm{d}x_1 \mathrm{d}x_2 &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |f_1(x_2)| \left| f_2(x_1) \right| \ \mathrm{d}x_1 \mathrm{d}x_2 \\ &= \left(\int_{-\infty}^{\infty} |f_2(x_1)| \ \mathrm{d}x_1 \right) \left(\int_{-\infty}^{\infty} |f_1(x_2)| \ \mathrm{d}x_2 \right) \end{split}$$

Now to prove by induction,

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

n = 2 is just Fubini with equality in fact. Indeed,

$$\begin{split} \int_{\mathbb{R}^2} |f| \ \mathrm{d}x_1 \mathrm{d}x_2 &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |f_1(x_2)| \left| f_2(x_1) \right| \ \mathrm{d}x_1 \mathrm{d}x_2 \\ &= \left(\int_{-\infty}^{\infty} |f_2(x_1)| \ \mathrm{d}x_1 \right) \left(\int_{-\infty}^{\infty} |f_1(x_2)| \ \mathrm{d}x_2 \right) \end{split}$$

Now to prove by induction, we assume the result holds for some $n \ge 2$ and show it for n + 1.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

n = 2 is just Fubini with equality in fact. Indeed,

$$\begin{split} \int_{\mathbb{R}^2} \left| f \right| \ \mathrm{d}x_1 \mathrm{d}x_2 &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left| f_1\left(x_2\right) \right| \left| f_2\left(x_1\right) \right| \ \mathrm{d}x_1 \mathrm{d}x_2 \\ &= \left(\int_{-\infty}^{\infty} \left| f_2\left(x_1\right) \right| \ \mathrm{d}x_1 \right) \left(\int_{-\infty}^{\infty} \left| f_1\left(x_2\right) \right| \ \mathrm{d}x_2 \right) \end{split}$$

Now to prove by induction, we assume the result holds for some $n \ge 2$ and show it for n + 1. Fix $x_{n+1} \in \mathbb{R}$ for now.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

n = 2 is just Fubini with equality in fact. Indeed,

$$\begin{split} \int_{\mathbb{R}^2} \left| f \right| \ \mathrm{d}x_1 \mathrm{d}x_2 &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left| f_1 \left(x_2 \right) \right| \left| f_2 \left(x_1 \right) \right| \ \mathrm{d}x_1 \mathrm{d}x_2 \\ &= \left(\int_{-\infty}^{\infty} \left| f_2 \left(x_1 \right) \right| \ \mathrm{d}x_1 \right) \left(\int_{-\infty}^{\infty} \left| f_1 \left(x_2 \right) \right| \ \mathrm{d}x_2 \right) \end{split}$$

Now to prove by induction, we assume the result holds for some $n \ge 2$ and show it for n + 1.

Fix $x_{n+1} \in \mathbb{R}$ for now. By Hölder inequality and the induction hypothesis,

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

n = 2 is just Fubini with equality in fact. Indeed,

$$\begin{split} \int_{\mathbb{R}^2} \left| f \right| \ \mathrm{d}x_1 \mathrm{d}x_2 &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left| f_1 \left(x_2 \right) \right| \left| f_2 \left(x_1 \right) \right| \ \mathrm{d}x_1 \mathrm{d}x_2 \\ &= \left(\int_{-\infty}^{\infty} \left| f_2 \left(x_1 \right) \right| \ \mathrm{d}x_1 \right) \left(\int_{-\infty}^{\infty} \left| f_1 \left(x_2 \right) \right| \ \mathrm{d}x_2 \right) \end{split}$$

Now to prove by induction, we assume the result holds for some $n \ge 2$ and show it for n + 1.

Fix $x_{n+1} \in \mathbb{R}$ for now. By Hölder inequality and the induction hypothesis,

$$\int_{\mathbb{R}^n} |f| \, \mathrm{d}x_1 \mathrm{d}x_2 \dots \mathrm{d}x_n$$
$$\leq \|f_{n+1}\|_{L^n(\mathbb{R}^n)} \left(\int_{\mathbb{R}^n} |f_1 \dots f_n|^{\frac{n}{n-1}} \, \mathrm{d}x_1 \mathrm{d}x_2 \dots \mathrm{d}x_n \right)^{\frac{n-1}{n}}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

n = 2 is just Fubini with equality in fact. Indeed,

$$\begin{split} \int_{\mathbb{R}^2} |f| \ \mathrm{d}x_1 \mathrm{d}x_2 &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |f_1(x_2)| \left| f_2(x_1) \right| \ \mathrm{d}x_1 \mathrm{d}x_2 \\ &= \left(\int_{-\infty}^{\infty} |f_2(x_1)| \ \mathrm{d}x_1 \right) \left(\int_{-\infty}^{\infty} |f_1(x_2)| \ \mathrm{d}x_2 \right) \end{split}$$

Now to prove by induction, we assume the result holds for some $n \ge 2$ and show it for n + 1.

Fix $x_{n+1} \in \mathbb{R}$ for now. By Hölder inequality and the induction hypothesis,

$$\begin{split} \int_{\mathbb{R}^n} |f| \, \mathrm{d}x_1 \mathrm{d}x_2 \dots \mathrm{d}x_n \\ &\leq \|f_{n+1}\|_{L^n(\mathbb{R}^n)} \left(\int_{\mathbb{R}^n} |f_1 \dots f_n|^{\frac{n}{n-1}} \, \mathrm{d}x_1 \mathrm{d}x_2 \dots \mathrm{d}x_n \right)^{\frac{n-1}{n}} \\ &\leq \|f_{n+1}\|_{L^n(\mathbb{R}^n)} \prod_{i=1}^n \left\| \tilde{f}_i \right\|_{L^n(\mathbb{R}^{n-1})} \end{split}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

n = 2 is just Fubini with equality in fact. Indeed,

$$\begin{split} \int_{\mathbb{R}^2} |f| \ \mathrm{d}x_1 \mathrm{d}x_2 &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |f_1(x_2)| \left| f_2(x_1) \right| \ \mathrm{d}x_1 \mathrm{d}x_2 \\ &= \left(\int_{-\infty}^{\infty} |f_2(x_1)| \ \mathrm{d}x_1 \right) \left(\int_{-\infty}^{\infty} |f_1(x_2)| \ \mathrm{d}x_2 \right) \end{split}$$

Now to prove by induction, we assume the result holds for some $n \ge 2$ and show it for n + 1.

Fix $x_{n+1} \in \mathbb{R}$ for now. By Hölder inequality and the induction hypothesis,

$$\begin{split} \int_{\mathbb{R}^n} |f| & \mathrm{d}x_1 \mathrm{d}x_2 \dots \mathrm{d}x_n \\ & \leq \|f_{n+1}\|_{L^n(\mathbb{R}^n)} \left(\int_{\mathbb{R}^n} |f_1 \dots f_n|^{\frac{n}{n-1}} & \mathrm{d}x_1 \mathrm{d}x_2 \dots \mathrm{d}x_n \right)^{\frac{n-1}{n}} \\ & \leq \|f_{n+1}\|_{L^n(\mathbb{R}^n)} \prod_{i=1}^n \left\| \tilde{f}_i \right\|_{L^n(\mathbb{R}^{n-1})} \qquad [\tilde{f}_i \text{ is } f_i \text{ with } x_{n+1} \text{ fixed} \end{split}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

n = 2 is just Fubini with equality in fact. Indeed,

$$\begin{split} \int_{\mathbb{R}^2} \left| f \right| \ \mathrm{d}x_1 \mathrm{d}x_2 &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left| f_1\left(x_2\right) \right| \left| f_2\left(x_1\right) \right| \ \mathrm{d}x_1 \mathrm{d}x_2 \\ &= \left(\int_{-\infty}^{\infty} \left| f_2\left(x_1\right) \right| \ \mathrm{d}x_1 \right) \left(\int_{-\infty}^{\infty} \left| f_1\left(x_2\right) \right| \ \mathrm{d}x_2 \right) \end{split}$$

Now to prove by induction, we assume the result holds for some $n \ge 2$ and show it for n + 1.

Fix $x_{n+1} \in \mathbb{R}$ for now. By Hölder inequality and the induction hypothesis,

$$\begin{split} \int_{\mathbb{R}^n} |f| & \mathrm{d}x_1 \mathrm{d}x_2 \dots \mathrm{d}x_n \\ & \leq \|f_{n+1}\|_{L^n(\mathbb{R}^n)} \left(\int_{\mathbb{R}^n} |f_1 \dots f_n|^{\frac{n}{n-1}} & \mathrm{d}x_1 \mathrm{d}x_2 \dots \mathrm{d}x_n \right)^{\frac{n-1}{n}} \\ & \leq \|f_{n+1}\|_{L^n(\mathbb{R}^n)} \prod_{i=1}^n \left\| \tilde{f}_i \right\|_{L^n(\mathbb{R}^{n-1})} \quad [\tilde{f}_i \text{ is } f_i \text{ with } x_{n+1} \text{ fixed}] \end{split}$$

Integrating w.r.t x_{n+1} and Hölder inequality gives the result.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Proof.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space

Definition

Elementary properties

extension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Proof. First we prove for p = 1.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties

xtension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Proof. First we prove for p = 1. We can assume $u \in C_c^{\infty}(\mathbb{R}^n)$. Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space

Definition

Elementary properties

tension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Proof. First we prove for p = 1.

We can assume $u \in C_c^{\infty}(\mathbb{R}^n)$. We have, for each $1 \leq i \leq n$,

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties

.

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Proof. First we prove for p = 1. We can assume $u \in C_c^{\infty}(\mathbb{R}^n)$. We have, for each $1 \le i \le n$,

$$\left|u\left(x_{1},\ldots,x_{n}\right)\right| \leq \int_{-\infty}^{\infty} \left|\frac{\partial u}{\partial x_{i}}\left(x_{1},\ldots,x_{i-1},t,x_{i+1},\ldots,x_{n}\right)\right| \mathrm{d}t := f_{i}\left(\hat{x}_{i}\right).$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Proof. First we prove for p = 1. We can assume $u \in C_c^{\infty}(\mathbb{R}^n)$. We have, for each $1 \le i \le n$,

$$\left|u\left(x_{1},\ldots,x_{n}\right)\right| \leq \int_{-\infty}^{\infty} \left|\frac{\partial u}{\partial x_{i}}\left(x_{1},\ldots,x_{i-1},t,x_{i+1},\ldots,x_{n}\right)\right| \mathrm{d}t := f_{i}\left(\hat{x}_{i}\right).$$

Thus, we have

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding
Proof. First we prove for p = 1. We can assume $u \in C_c^{\infty}(\mathbb{R}^n)$. We have, for each $1 \le i \le n$,

$$\left|u\left(x_{1},\ldots,x_{n}\right)\right| \leq \int_{-\infty}^{\infty} \left|\frac{\partial u}{\partial x_{i}}\left(x_{1},\ldots,x_{i-1},t,x_{i+1},\ldots,x_{n}\right)\right| \mathrm{d}t := f_{i}\left(\hat{x}_{i}\right).$$

Thus, we have

$$|u(x_1,...,x_n)|^{\frac{n}{n-1}} \leq \prod_{i=1}^n |f_i(\hat{x}_i)|^{\frac{1}{n-1}}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Proof. First we prove for p = 1. We can assume $u \in C_c^{\infty}(\mathbb{R}^n)$. We have, for each $1 \le i \le n$,

$$\left|u\left(x_{1},\ldots,x_{n}\right)\right| \leq \int_{-\infty}^{\infty} \left|\frac{\partial u}{\partial x_{i}}\left(x_{1},\ldots,x_{i-1},t,x_{i+1},\ldots,x_{n}\right)\right| \mathrm{d}t := f_{i}\left(\hat{x}_{i}\right).$$

Thus, we have

$$|u(x_1,...,x_n)|^{\frac{n}{n-1}} \leq \prod_{i=1}^n |f_i(\hat{x}_i)|^{\frac{1}{n-1}}$$

Integrating and using the lemma, we deduce

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Proof. First we prove for p = 1. We can assume $u \in C_c^{\infty}(\mathbb{R}^n)$. We have, for each $1 \le i \le n$,

$$\left|u\left(x_{1},\ldots,x_{n}\right)\right| \leq \int_{-\infty}^{\infty} \left|\frac{\partial u}{\partial x_{i}}\left(x_{1},\ldots,x_{i-1},t,x_{i+1},\ldots,x_{n}\right)\right| \, \mathrm{d}t := f_{i}\left(\hat{x}_{i}\right).$$

Thus, we have

$$|u(x_1,...,x_n)|^{\frac{n}{n-1}} \leq \prod_{i=1}^n |f_i(\hat{x}_i)|^{\frac{1}{n-1}}$$

Integrating and using the lemma, we deduce

$$\int_{\mathbb{R}^n} |u(x)|^{\frac{n}{n-1}} \, \mathrm{d} x \leq \prod_{i=1}^n \left\| |f_i(\hat{x}_i)|^{\frac{1}{n-1}} \right\|_{L^{n-1}(\mathbb{R}^{n-1})}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Proof. First we prove for p = 1. We can assume $u \in C_c^{\infty}(\mathbb{R}^n)$. We have, for each $1 \le i \le n$,

$$\left|u\left(x_{1},\ldots,x_{n}\right)\right| \leq \int_{-\infty}^{\infty} \left|\frac{\partial u}{\partial x_{i}}\left(x_{1},\ldots,x_{i-1},t,x_{i+1},\ldots,x_{n}\right)\right| \mathrm{d}t := f_{i}\left(\hat{x}_{i}\right).$$

Thus, we have

$$|u(x_1,...,x_n)|^{\frac{n}{n-1}} \leq \prod_{i=1}^n |f_i(\hat{x}_i)|^{\frac{1}{n-1}}$$

Integrating and using the lemma, we deduce

$$\int_{\mathbb{R}^n} |u(\mathbf{x})|^{\frac{n}{n-1}} \, \mathrm{d}\mathbf{x} \leq \prod_{i=1}^n \left\| |f_i(\hat{x}_i)|^{\frac{1}{n-1}} \right\|_{L^{n-1}(\mathbb{R}^{n-1})} \leq \prod_{i=1}^n \left\| \frac{\partial u}{\partial x_i} \right\|_{L^1(\mathbb{R}^n)}^{\frac{1}{n-1}}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Proof. First we prove for p = 1. We can assume $u \in C_c^{\infty}(\mathbb{R}^n)$. We have, for each $1 \le i \le n$,

$$\left|u\left(x_{1},\ldots,x_{n}\right)\right| \leq \int_{-\infty}^{\infty} \left|\frac{\partial u}{\partial x_{i}}\left(x_{1},\ldots,x_{i-1},t,x_{i+1},\ldots,x_{n}\right)\right| \mathrm{d}t := f_{i}\left(\hat{x}_{i}\right).$$

Thus, we have

$$|u(x_1,...,x_n)|^{\frac{n}{n-1}} \leq \prod_{i=1}^n |f_i(\hat{x}_i)|^{\frac{1}{n-1}}$$

Integrating and using the lemma, we deduce

$$\int_{\mathbb{R}^{n}} |u(x)|^{\frac{n}{n-1}} \, \mathrm{d}x \leq \prod_{i=1}^{n} \left\| |f_{i}(\hat{x}_{i})|^{\frac{1}{n-1}} \right\|_{L^{n-1}(\mathbb{R}^{n-1})} \leq \prod_{i=1}^{n} \left\| \frac{\partial u}{\partial x_{i}} \right\|_{L^{1}(\mathbb{R}^{n})}^{\frac{1}{n-1}}$$

Thus,

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Proof. First we prove for p = 1. We can assume $u \in C_c^{\infty}(\mathbb{R}^n)$. We have, for each $1 \le i \le n$,

$$\left|u\left(x_{1},\ldots,x_{n}\right)\right| \leq \int_{-\infty}^{\infty} \left|\frac{\partial u}{\partial x_{i}}\left(x_{1},\ldots,x_{i-1},t,x_{i+1},\ldots,x_{n}\right)\right| \mathrm{d}t := f_{i}\left(\hat{x}_{i}\right).$$

Thus, we have

$$|u(x_1,...,x_n)|^{\frac{n}{n-1}} \leq \prod_{i=1}^n |f_i(\hat{x}_i)|^{\frac{1}{n-1}}$$

Integrating and using the lemma, we deduce

$$\int_{\mathbb{R}^{n}} |u(x)|^{\frac{n}{n-1}} \, \mathrm{d}x \leq \prod_{i=1}^{n} \left\| |f_{i}(\hat{x}_{i})|^{\frac{1}{n-1}} \right\|_{L^{n-1}(\mathbb{R}^{n-1})} \leq \prod_{i=1}^{n} \left\| \frac{\partial u}{\partial x_{i}} \right\|_{L^{1}(\mathbb{R}^{n})}^{\frac{1}{n-1}}$$

Thus,

$$\|u\|_{L^{\frac{n}{n-1}}(\mathbb{R}^n)} \leq \prod_{i=1}^n \left\|\frac{\partial u}{\partial x_i}\right\|_{L^1(\mathbb{R}^n)}^{\frac{1}{n}}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

^ooincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Proof. First we prove for p = 1. We can assume $u \in C_c^{\infty}(\mathbb{R}^n)$. We have, for each $1 \le i \le n$,

$$\left|u\left(x_{1},\ldots,x_{n}\right)\right| \leq \int_{-\infty}^{\infty} \left|\frac{\partial u}{\partial x_{i}}\left(x_{1},\ldots,x_{i-1},t,x_{i+1},\ldots,x_{n}\right)\right| \mathrm{d}t := f_{i}\left(\hat{x}_{i}\right).$$

Thus, we have

$$|u(x_1,...,x_n)|^{\frac{n}{n-1}} \leq \prod_{i=1}^n |f_i(\hat{x}_i)|^{\frac{1}{n-1}}$$

Integrating and using the lemma, we deduce

$$\int_{\mathbb{R}^{n}} |u(x)|^{\frac{n}{n-1}} \, \mathrm{d}x \leq \prod_{i=1}^{n} \left\| |f_{i}(\hat{x}_{i})|^{\frac{1}{n-1}} \right\|_{L^{n-1}(\mathbb{R}^{n-1})} \leq \prod_{i=1}^{n} \left\| \frac{\partial u}{\partial x_{i}} \right\|_{L^{1}(\mathbb{R}^{n})}^{\frac{1}{n-1}}$$

Thus,

$$\left\|u\right\|_{L^{\frac{n}{n-1}}(\mathbb{R}^n)} \leq \prod_{i=1}^n \left\|\frac{\partial u}{\partial x_i}\right\|_{L^{1}(\mathbb{R}^n)}^{\frac{1}{n}} \leq c \sum_i^n \left\|\frac{\partial u}{\partial x_i}\right\|_{L^{1}(\mathbb{R}^n)}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

^ooincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Proof. First we prove for p = 1. We can assume $u \in C_c^{\infty}(\mathbb{R}^n)$. We have, for each $1 \le i \le n$,

$$\left|u\left(x_{1},\ldots,x_{n}\right)\right| \leq \int_{-\infty}^{\infty} \left|\frac{\partial u}{\partial x_{i}}\left(x_{1},\ldots,x_{i-1},t,x_{i+1},\ldots,x_{n}\right)\right| \mathrm{d}t := f_{i}\left(\hat{x}_{i}\right)$$

Thus, we have

$$|u(x_1,...,x_n)|^{\frac{n}{n-1}} \leq \prod_{i=1}^n |f_i(\hat{x}_i)|^{\frac{1}{n-1}}$$

Integrating and using the lemma, we deduce

$$\int_{\mathbb{R}^{n}} |u(x)|^{\frac{n}{n-1}} \, \mathrm{d}x \leq \prod_{i=1}^{n} \left\| |f_{i}(\hat{x}_{i})|^{\frac{1}{n-1}} \right\|_{L^{n-1}(\mathbb{R}^{n-1})} \leq \prod_{i=1}^{n} \left\| \frac{\partial u}{\partial x_{i}} \right\|_{L^{1}(\mathbb{R}^{n})}^{\frac{1}{n-1}}$$

Thus,

$$\left\|u\right\|_{L^{\frac{n}{n-1}}(\mathbb{R}^n)} \leq \prod_{i=1}^n \left\|\frac{\partial u}{\partial x_i}\right\|_{L^1(\mathbb{R}^n)}^{\frac{1}{n}} \leq c \sum_i^n \left\|\frac{\partial u}{\partial x_i}\right\|_{L^1(\mathbb{R}^n)} = c \left\|\nabla u\right\|_{L^1(\mathbb{R}^n)}.$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

^ooincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Now we choose $f = |u|^{\gamma}$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space

Definition

Elementary properties

xtension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Now we choose $f = |u|^{\gamma}$ for some $\gamma > 0$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties

xtension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Now we choose $f = |u|^{\gamma}$ for some $\gamma > 0$ and apply the inequality for p = 1

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Now we choose $f = |u|^{\gamma}$ for some $\gamma > 0$ and apply the inequality for p = 1 to f to deduce,

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Now we choose $f = |u|^{\gamma}$ for some $\gamma > 0$ and apply the inequality for p = 1 to f to deduce,

$$\left(\int_{\mathbb{R}^n} |u|^{\frac{\gamma n}{n-1}}\right)^{\frac{n-1}{n}} \, \mathrm{d} x \leq \gamma \int_{\mathbb{R}^n} |u|^{\gamma-1} \left| \nabla u \right| \, \, \mathrm{d} x$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Now we choose $f = |u|^{\gamma}$ for some $\gamma > 0$ and apply the inequality for p = 1 to f to deduce,

$$\begin{pmatrix} \int_{\mathbb{R}^n} |u|^{\frac{\gamma n}{n-1}} \end{pmatrix}^{\frac{n-1}{n}} dx \leq \gamma \int_{\mathbb{R}^n} |u|^{\gamma-1} |\nabla u| dx \\ \stackrel{\text{Hölder}}{\leq} \gamma \left(\int_{\mathbb{R}^n} |u|^{\frac{(\gamma-1)p}{p-1}} dx \right)^{\frac{p-1}{p}} \left(\int_{\mathbb{R}^n} |\nabla u|^p dx \right)^{\frac{1}{p}}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition:

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

 Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Now we choose $f = |u|^{\gamma}$ for some $\gamma > 0$ and apply the inequality for p = 1 to f to deduce,

$$\begin{pmatrix} \int_{\mathbb{R}^n} |u|^{\frac{\gamma n}{n-1}} \end{pmatrix}^{\frac{n-1}{n}} dx \leq \gamma \int_{\mathbb{R}^n} |u|^{\gamma-1} |\nabla u| dx \\ \stackrel{\text{Hölder}}{\leq} \gamma \left(\int_{\mathbb{R}^n} |u|^{\frac{(\gamma-1)p}{p-1}} dx \right)^{\frac{p-1}{p}} \left(\int_{\mathbb{R}^n} |\nabla u|^p dx \right)^{\frac{1}{p}}$$

Now choose $\gamma > 0$ such that

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

 Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Now we choose $f = |u|^{\gamma}$ for some $\gamma > 0$ and apply the inequality for p = 1 to f to deduce,

$$\begin{pmatrix} \int_{\mathbb{R}^n} |u|^{\frac{\gamma n}{n-1}} \end{pmatrix}^{\frac{n-1}{n}} \, \mathrm{d} x \leq \gamma \int_{\mathbb{R}^n} |u|^{\gamma-1} |\nabla u| \, \mathrm{d} x \\ \overset{\text{H\"older}}{\leq} \gamma \left(\int_{\mathbb{R}^n} |u|^{\frac{(\gamma-1)p}{p-1}} \, \mathrm{d} x \right)^{\frac{p-1}{p}} \left(\int_{\mathbb{R}^n} |\nabla u|^p \, \mathrm{d} x \right)^{\frac{1}{p}}$$

Now choose $\gamma > 0$ such that

$$\frac{\gamma n}{n-1} = \frac{(\gamma - 1)p}{p-1}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

 Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Now we choose $f = |u|^{\gamma}$ for some $\gamma > 0$ and apply the inequality for p = 1 to f to deduce,

$$\begin{pmatrix} \int_{\mathbb{R}^n} |u|^{\frac{\gamma n}{n-1}} \end{pmatrix}^{\frac{n-1}{n}} dx \leq \gamma \int_{\mathbb{R}^n} |u|^{\gamma-1} |\nabla u| dx \\ \overset{\text{H\"older}}{\leq} \gamma \left(\int_{\mathbb{R}^n} |u|^{\frac{(\gamma-1)p}{p-1}} dx \right)^{\frac{p-1}{p}} \left(\int_{\mathbb{R}^n} |\nabla u|^p dx \right)^{\frac{1}{p}}$$

Now choose $\gamma > 0$ such that

$$\frac{\gamma n}{n-1} = \frac{(\gamma - 1)p}{p-1}$$

and watch the exponents almost magically fall into place

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

 Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Now we choose $f = |u|^{\gamma}$ for some $\gamma > 0$ and apply the inequality for p = 1 to f to deduce,

$$\begin{pmatrix} \int_{\mathbb{R}^n} |u|^{\frac{\gamma n}{n-1}} \end{pmatrix}^{\frac{n-1}{n}} dx \leq \gamma \int_{\mathbb{R}^n} |u|^{\gamma-1} |\nabla u| dx \\ \overset{\text{H\"older}}{\leq} \gamma \left(\int_{\mathbb{R}^n} |u|^{\frac{(\gamma-1)p}{p-1}} dx \right)^{\frac{p-1}{p}} \left(\int_{\mathbb{R}^n} |\nabla u|^p dx \right)^{\frac{1}{p}}$$

Now choose $\gamma > 0$ such that

$$\frac{\gamma n}{n-1} = \frac{(\gamma - 1)p}{p-1}$$

and watch the exponents almost magically fall into place for 1 to establish

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

 Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Now we choose $f = |u|^{\gamma}$ for some $\gamma > 0$ and apply the inequality for p = 1 to f to deduce,

$$\begin{pmatrix} \int_{\mathbb{R}^n} |u|^{\frac{\gamma n}{n-1}} \end{pmatrix}^{\frac{n-1}{n}} dx \leq \gamma \int_{\mathbb{R}^n} |u|^{\gamma-1} |\nabla u| dx \\ \overset{\text{Hölder}}{\leq} \gamma \left(\int_{\mathbb{R}^n} |u|^{\frac{(\gamma-1)p}{p-1}} dx \right)^{\frac{p-1}{p}} \left(\int_{\mathbb{R}^n} |\nabla u|^p dx \right)^{\frac{1}{p}}$$

Now choose $\gamma > 0$ such that

$$\frac{\gamma n}{n-1} = \frac{(\gamma - 1)p}{p-1}$$

and watch the exponents almost magically fall into place for 1 to establish

$$\left(\int_{\mathbb{R}^n} |u|^{\frac{np}{n-p}}\right)^{\frac{n-p}{np}} \, \mathrm{d} x \leq c \left(\int_{\mathbb{R}^n} |\nabla u|^p \, \mathrm{d} x\right)^{\frac{1}{p}}.$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

 Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Now we choose $f = |u|^{\gamma}$ for some $\gamma > 0$ and apply the inequality for p = 1 to f to deduce,

$$\begin{pmatrix} \int_{\mathbb{R}^n} |u|^{\frac{\gamma n}{n-1}} \end{pmatrix}^{\frac{n-1}{n}} \, \mathrm{d} x \leq \gamma \int_{\mathbb{R}^n} |u|^{\gamma-1} |\nabla u| \, \mathrm{d} x \\ \overset{\text{H\"older}}{\leq} \gamma \left(\int_{\mathbb{R}^n} |u|^{\frac{(\gamma-1)p}{p-1}} \, \mathrm{d} x \right)^{\frac{p-1}{p}} \left(\int_{\mathbb{R}^n} |\nabla u|^p \, \mathrm{d} x \right)^{\frac{1}{p}}$$

Now choose $\gamma > 0$ such that

$$\frac{\gamma n}{n-1} = \frac{(\gamma - 1)p}{p-1}$$

and watch the exponents almost magically fall into place for 1 to establish

$$\left(\int_{\mathbb{R}^n}|u|^{\frac{np}{n-p}}\right)^{\frac{n-p}{np}}\,\mathrm{d} x\leq c\left(\int_{\mathbb{R}^n}|\nabla u|^p\,\mathrm{d} x\right)^{\frac{1}{p}}.$$

This proves the theorem.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

 Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

We now discuss some consequences of the inequality.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties

xtension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Theorem (Sobolev embedding in \mathbb{R}^n for p < n) Let $1 \le p < n$.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

xtension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Theorem (Sobolev embedding in \mathbb{R}^n for p < n) Let $1 \le p < n$. Then $W^{1,p}(\mathbb{R}^n)$ continuously embeds into $L^q(\mathbb{R}^n)$ Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Theorem (Sobolev embedding in \mathbb{R}^n for p < n) Let $1 \le p < n$. Then $W^{1,p}(\mathbb{R}^n)$ continuously embeds into $L^q(\mathbb{R}^n)$ for every $q \in [p, p^*]$. Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Theorem (Sobolev embedding in \mathbb{R}^n for p < n) Let $1 \le p < n$. Then $W^{1,p}(\mathbb{R}^n)$ continuously embeds into $L^q(\mathbb{R}^n)$ for every $q \in [p, p^*]$.

Proof. Since $q \in [p, p^*]$,

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Theorem (Sobolev embedding in \mathbb{R}^n for p < n) Let $1 \le p < n$. Then $W^{1,p}(\mathbb{R}^n)$ continuously embeds into $L^q(\mathbb{R}^n)$ for every $q \in [p, p^*]$.

Proof.

Since $q \in [p, p^*]$, we have

$$rac{1}{q} = rac{lpha}{p} + rac{1-lpha}{p^*} \qquad ext{for some } lpha \in [0,1].$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Theorem (Sobolev embedding in \mathbb{R}^n for p < n) Let $1 \le p < n$. Then $W^{1,p}(\mathbb{R}^n)$ continuously embeds into $L^q(\mathbb{R}^n)$ for every $q \in [p, p^*]$.

Proof.

Since $q \in [p, p^*]$, we have

$$rac{1}{q} = rac{lpha}{p} + rac{1-lpha}{p^*} \qquad ext{for some } lpha \in [0,1].$$

Thus, we have, by interpolation inequality

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Theorem (Sobolev embedding in \mathbb{R}^n for p < n) Let $1 \le p < n$. Then $W^{1,p}(\mathbb{R}^n)$ continuously embeds into $L^q(\mathbb{R}^n)$ for every $q \in [p, p^*]$.

Proof.

Since $q \in [p, p^*]$, we have

$$rac{1}{q} = rac{lpha}{p} + rac{1-lpha}{p^*} \qquad ext{for some } lpha \in [0,1].$$

Thus, we have, by interpolation inequality and Youngs inequality,

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Theorem (Sobolev embedding in \mathbb{R}^n for p < n) Let $1 \le p < n$. Then $W^{1,p}(\mathbb{R}^n)$ continuously embeds into $L^q(\mathbb{R}^n)$ for every $q \in [p, p^*]$.

Proof.

Since $q \in [p, p^*]$, we have

 $\frac{1}{q} = \frac{\alpha}{p} + \frac{1-\alpha}{p^*}$ for some $\alpha \in [0,1]$.

Thus, we have, by interpolation inequality and Youngs inequality,

 $\|u\|_{L^{q}} \leq \|u\|_{L^{p}}^{\alpha} \|u\|_{L^{p^{*}}}^{1-\alpha}$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Theorem (Sobolev embedding in \mathbb{R}^n for p < n) Let $1 \le p < n$. Then $W^{1,p}(\mathbb{R}^n)$ continuously embeds into $L^q(\mathbb{R}^n)$ for every $q \in [p, p^*]$.

Proof.

Since $q \in [p, p^*]$, we have

 $rac{1}{q} = rac{lpha}{p} + rac{1-lpha}{p^*}$ for some $lpha \in [0,1].$

Thus, we have, by interpolation inequality and Youngs inequality,

 $\|u\|_{L^{q}} \leq \|u\|_{L^{p}}^{\alpha} \|u\|_{L^{p^{*}}}^{1-\alpha} \leq \|u\|_{L^{p}} + \|u\|_{L^{p^{*}}} \leq c \|u\|_{W^{1,p}}.$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Our next result might seem surprising,

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space

Definition

Elementary properties

xtension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Our next result might seem surprising, since it concerns $W^{1,n}$.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties

extension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Our next result might seem surprising, since it concerns $W^{1,n}$. But this result is more of a corollary of the proof and not really of the final result.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Our next result might seem surprising, since it concerns $W^{1,n}$. But this result is more of a corollary of the proof and not really of the final result.

Theorem (Sobolev embedding in \mathbb{R}^n for p = n) $W^{1,n}(\mathbb{R}^n)$ continuously embeds into $L^q(\mathbb{R}^n)$ Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Our next result might seem surprising, since it concerns $W^{1,n}$. But this result is more of a corollary of the proof and not really of the final result.

Theorem (Sobolev embedding in \mathbb{R}^n for p = n) $W^{1,n}(\mathbb{R}^n)$ continuously embeds into $L^q(\mathbb{R}^n)$ for every $q \in [n, +\infty)$. Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Our next result might seem surprising, since it concerns $W^{1,n}$. But this result is more of a corollary of the proof and not really of the final result.

Theorem (Sobolev embedding in \mathbb{R}^n for p = n) $W^{1,n}(\mathbb{R}^n)$ continuously embeds into $L^q(\mathbb{R}^n)$ for every $q \in [n, +\infty)$.

Proof.

As in the proof, we can easily establish, for any $\gamma > 0$,

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding
Our next result might seem surprising, since it concerns $W^{1,n}$. But this result is more of a corollary of the proof and not really of the final result.

Theorem (Sobolev embedding in \mathbb{R}^n for p = n) $W^{1,n}(\mathbb{R}^n)$ continuously embeds into $L^q(\mathbb{R}^n)$ for every $q \in [n, +\infty)$.

Proof.

As in the proof, we can easily establish, for any $\gamma > 0$,

$$\left(\int_{\mathbb{R}^n} |u|^{\frac{\gamma n}{n-1}}\right)^{\frac{n-1}{n}} \, \mathrm{d} x \leq \gamma \left(\int_{\mathbb{R}^n} |u|^{\frac{(\gamma-1)n}{n-1}} \, \mathrm{d} x\right)^{\frac{n-1}{n}} \left(\int_{\mathbb{R}^n} \left|\nabla u\right|^n \, \mathrm{d} x\right)^{\frac{1}{n}}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Our next result might seem surprising, since it concerns $W^{1,n}$. But this result is more of a corollary of the proof and not really of the final result.

Theorem (Sobolev embedding in \mathbb{R}^n for p = n) $W^{1,n}(\mathbb{R}^n)$ continuously embeds into $L^q(\mathbb{R}^n)$ for every $q \in [n, +\infty)$.

Proof.

As in the proof, we can easily establish, for any $\gamma > 0$,

$$\left(\int_{\mathbb{R}^n} |u|^{\frac{\gamma n}{n-1}}\right)^{\frac{n-1}{n}} \, \mathrm{d} x \leq \gamma \left(\int_{\mathbb{R}^n} |u|^{\frac{(\gamma-1)n}{n-1}} \, \mathrm{d} x\right)^{\frac{n-1}{n}} \left(\int_{\mathbb{R}^n} \left|\nabla u\right|^n \, \mathrm{d} x\right)^{\frac{1}{n}}$$

Note we really have not used the fact p < n up to that point

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and outprocion

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Our next result might seem surprising, since it concerns $W^{1,n}$. But this result is more of a corollary of the proof and not really of the final result.

Theorem (Sobolev embedding in \mathbb{R}^n for p = n) $W^{1,n}(\mathbb{R}^n)$ continuously embeds into $L^q(\mathbb{R}^n)$ for every $q \in [n, +\infty)$.

Proof.

As in the proof, we can easily establish, for any $\gamma > 0$,

$$\left(\int_{\mathbb{R}^n} |u|^{\frac{\gamma n}{n-1}}\right)^{\frac{n-1}{n}} \, \mathrm{d} x \leq \gamma \left(\int_{\mathbb{R}^n} |u|^{\frac{(\gamma-1)n}{n-1}} \, \mathrm{d} x\right)^{\frac{n-1}{n}} \left(\int_{\mathbb{R}^n} \left|\nabla u\right|^n \, \mathrm{d} x\right)^{\frac{1}{n}}$$

Note we really have not used the fact p < n up to that point and so we can put p = n.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Our next result might seem surprising, since it concerns $W^{1,n}$. But this result is more of a corollary of the proof and not really of the final result.

Theorem (Sobolev embedding in \mathbb{R}^n for p = n) $W^{1,n}(\mathbb{R}^n)$ continuously embeds into $L^q(\mathbb{R}^n)$ for every $q \in [n, +\infty)$.

Proof.

As in the proof, we can easily establish, for any $\gamma > 0$,

$$\left(\int_{\mathbb{R}^n} |u|^{\frac{\gamma n}{n-1}}\right)^{\frac{n-1}{n}} \, \mathrm{d} x \leq \gamma \left(\int_{\mathbb{R}^n} |u|^{\frac{(\gamma-1)n}{n-1}} \, \mathrm{d} x\right)^{\frac{n-1}{n}} \left(\int_{\mathbb{R}^n} \left|\nabla u\right|^n \, \mathrm{d} x\right)^{\frac{1}{n}}$$

Note we really have not used the fact p < n up to that point and so we can put p = n. Now let us chose $\gamma = n$.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and outprocion

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

^ooincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Our next result might seem surprising, since it concerns $W^{1,n}$. But this result is more of a corollary of the proof and not really of the final result.

Theorem (Sobolev embedding in \mathbb{R}^n for p = n) $W^{1,n}(\mathbb{R}^n)$ continuously embeds into $L^q(\mathbb{R}^n)$ for every $q \in [n, +\infty)$.

Proof.

As in the proof, we can easily establish, for any $\gamma > 0$,

$$\left(\int_{\mathbb{R}^n} |u|^{\frac{\gamma n}{n-1}}\right)^{\frac{n-1}{n}} \, \mathrm{d} x \leq \gamma \left(\int_{\mathbb{R}^n} |u|^{\frac{(\gamma-1)n}{n-1}} \, \mathrm{d} x\right)^{\frac{n-1}{n}} \left(\int_{\mathbb{R}^n} \left|\nabla u\right|^n \, \mathrm{d} x\right)^{\frac{1}{n}}$$

Note we really have not used the fact p < n up to that point and so we can put p = n. Now let us chose $\gamma = n$. This will prove

$$||u||_{L^{\frac{n^2}{n-1}}} \leq c ||u||_{W^{1,n}}.$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and outprocion

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Our next result might seem surprising, since it concerns $W^{1,n}$. But this result is more of a corollary of the proof and not really of the final result.

Theorem (Sobolev embedding in \mathbb{R}^n for p = n) $W^{1,n}(\mathbb{R}^n)$ continuously embeds into $L^q(\mathbb{R}^n)$ for every $q \in [n, +\infty)$.

Proof.

As in the proof, we can easily establish, for any $\gamma > 0$,

$$\left(\int_{\mathbb{R}^n} |u|^{\frac{\gamma n}{n-1}}\right)^{\frac{n-1}{n}} \, \mathrm{d} x \leq \gamma \left(\int_{\mathbb{R}^n} |u|^{\frac{(\gamma-1)n}{n-1}} \, \mathrm{d} x\right)^{\frac{n-1}{n}} \left(\int_{\mathbb{R}^n} \left|\nabla u\right|^n \, \mathrm{d} x\right)^{\frac{1}{n}}$$

Note we really have not used the fact p < n up to that point and so we can put p = n. Now let us chose $\gamma = n$. This will prove

$$||u||_{L^{\frac{n^2}{n-1}}} \leq c ||u||_{W^{1,n}}.$$

But now we can iterate this process by choosing $\gamma = n + 1, n + 2, ...$ and so on

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Our next result might seem surprising, since it concerns $W^{1,n}$. But this result is more of a corollary of the proof and not really of the final result.

Theorem (Sobolev embedding in \mathbb{R}^n for p = n) $W^{1,n}(\mathbb{R}^n)$ continuously embeds into $L^q(\mathbb{R}^n)$ for every $q \in [n, +\infty)$.

Proof.

As in the proof, we can easily establish, for any $\gamma > 0$,

$$\left(\int_{\mathbb{R}^n} |u|^{\frac{\gamma n}{n-1}}\right)^{\frac{n-1}{n}} \, \mathrm{d} x \leq \gamma \left(\int_{\mathbb{R}^n} |u|^{\frac{(\gamma-1)n}{n-1}} \, \mathrm{d} x\right)^{\frac{n-1}{n}} \left(\int_{\mathbb{R}^n} \left|\nabla u\right|^n \, \mathrm{d} x\right)^{\frac{1}{n}}$$

Note we really have not used the fact p < n up to that point and so we can put p = n. Now let us chose $\gamma = n$. This will prove

$$\|u\|_{L^{\frac{n^2}{n-1}}} \leq c \|u\|_{W^{1,n}}.$$

But now we can iterate this process by choosing $\gamma = n + 1, n + 2, ...$ and so on to keep pushing the exponent.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and outprocion

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

^ooincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embeddings

Now we focus on bounded domains.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev space

Definition

Elementary properties

tension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Theorem (Sobolev embedding in bounded domains for p < n**)** Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Theorem (Sobolev embedding in bounded domains for p < n**)** Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth and let $1 \le p < n$. Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

r .

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Theorem (Sobolev embedding in bounded domains for p < n) Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth and let $1 \le p < n$. Then $W^{1,p}(\Omega)$ continuously embeds into $L^q(\Omega)$ for every $1 \le q \le p^*$. Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Theorem (Sobolev embedding in bounded domains for p < n) Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth and let $1 \le p < n$. Then $W^{1,p}(\Omega)$ continuously embeds into $L^q(\Omega)$ for every $1 \le q \le p^*$.

Theorem (Sobolev embedding in \mathbb{R}^n for p = n) Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth. Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Theorem (Sobolev embedding in bounded domains for p < n) Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth and let $1 \le p < n$. Then $W^{1,p}(\Omega)$ continuously embeds into $L^q(\Omega)$ for every $1 \le q \le p^*$.

Theorem (Sobolev embedding in \mathbb{R}^n for p = n)

Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth. Then $W^{1,n}(\Omega)$ continuously embeds into $L^q(\mathbb{R}^n)$ for every $1 \leq q < \infty$.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

xtension

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Theorem (Sobolev embedding in bounded domains for p < n) Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth and let $1 \le p < n$. Then $W^{1,p}(\Omega)$ continuously embeds into $L^q(\Omega)$ for every $1 \le q \le p^*$.

Theorem (Sobolev embedding in \mathbb{R}^n for p = n)

Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth. Then $W^{1,n}(\Omega)$ continuously embeds into $L^q(\mathbb{R}^n)$ for every $1 \leq q < \infty$.

Both results can be proved from the \mathbb{R}^n case

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

tension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Theorem (Sobolev embedding in bounded domains for p < n) Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth and let $1 \le p < n$. Then $W^{1,p}(\Omega)$ continuously embeds into $L^q(\Omega)$ for every $1 \le q \le p^*$.

Theorem (Sobolev embedding in \mathbb{R}^n for p = n)

Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth. Then $W^{1,n}(\Omega)$ continuously embeds into $L^q(\mathbb{R}^n)$ for every $1 \leq q < \infty$.

Both results can be proved from the \mathbb{R}^n case using extension

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Theorem (Sobolev embedding in bounded domains for p < n) Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth and let $1 \le p < n$. Then $W^{1,p}(\Omega)$ continuously embeds into $L^q(\Omega)$ for every $1 \le q \le p^*$.

Theorem (Sobolev embedding in \mathbb{R}^n for p = n)

Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth. Then $W^{1,n}(\Omega)$ continuously embeds into $L^q(\mathbb{R}^n)$ for every $1 \leq q < \infty$.

Both results can be proved from the \mathbb{R}^n case using extension and noting that Ω has finite measure.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

tension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev nequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Note that the Gagliardo-Nirenberg-Sobolev inequality actually says

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov

Note that the Gagliardo-Nirenberg-Sobolev inequality actually says

 $\|u\|_{L^{p^*}(\mathbb{R}^n)} \leq c \|\nabla u\|_{L^p(\mathbb{R}^n)}$ when $1 \leq p < n$.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov

Note that the Gagliardo-Nirenberg-Sobolev inequality actually says

 $\|u\|_{L^{p^*}(\mathbb{R}^n)} \leq c \|\nabla u\|_{L^p(\mathbb{R}^n)}$ when $1 \leq p < n$.

However, the estimate in the result for the bounded, smooth domain says something weaker,

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondracho compact embeddir

Note that the Gagliardo-Nirenberg-Sobolev inequality actually says

 $\|u\|_{L^{p^*}(\mathbb{R}^n)} \le c \|\nabla u\|_{L^p(\mathbb{R}^n)}$ when $1 \le p < n$.

However, the estimate in the result for the bounded, smooth domain says something weaker, namely,

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddin

Note that the Gagliardo-Nirenberg-Sobolev inequality actually says

 $\|u\|_{L^{p^*}(\mathbb{R}^n)} \leq c \|\nabla u\|_{L^p(\mathbb{R}^n)}$ when $1 \leq p < n$.

However, the estimate in the result for the bounded, smooth domain says something weaker, namely,

$$\|u\|_{L^{p^*}(\Omega)} \leq c \|u\|_{W^{1,p}(\Omega)}$$
 when $1 \leq p < n$.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondracho compact embeddir

Note that the Gagliardo-Nirenberg-Sobolev inequality actually says

 $\|u\|_{L^{p^*}(\mathbb{R}^n)} \le c \|\nabla u\|_{L^p(\mathbb{R}^n)}$ when $1 \le p < n$.

However, the estimate in the result for the bounded, smooth domain says something weaker, namely,

 $\|u\|_{L^{p^*}(\Omega)} \leq c \, \|u\|_{W^{1,p}(\Omega)} \qquad \text{when } 1 \leq p < n.$

It is in general not possible to improve this.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondracho compact embeddii

Note that the Gagliardo-Nirenberg-Sobolev inequality actually says

 $\|u\|_{L^{p^*}(\mathbb{R}^n)} \le c \|\nabla u\|_{L^p(\mathbb{R}^n)}$ when $1 \le p < n$.

However, the estimate in the result for the bounded, smooth domain says something weaker, namely,

 $\|u\|_{L^{p^*}(\Omega)} \leq c \, \|u\|_{W^{1,p}(\Omega)} \qquad ext{when } 1 \leq p < n.$

It is in general not possible to improve this. But for functions in $W_{0}^{1,p}\left(\Omega\right)$,

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondracho compact embeddi

Note that the Gagliardo-Nirenberg-Sobolev inequality actually says

 $\|u\|_{L^{p^*}(\mathbb{R}^n)} \le c \|\nabla u\|_{L^p(\mathbb{R}^n)}$ when $1 \le p < n$.

However, the estimate in the result for the bounded, smooth domain says something weaker, namely,

 $\|u\|_{L^{p^*}(\Omega)} \leq c \|u\|_{W^{1,p}(\Omega)}$ when $1 \leq p < n$.

It is in general not possible to improve this. But for functions in $W_0^{1,p}(\Omega)$, we can improve the inequality.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondracho compact embeddi

Note that the Gagliardo-Nirenberg-Sobolev inequality actually says

 $\|u\|_{L^{p^*}(\mathbb{R}^n)} \leq c \|\nabla u\|_{L^p(\mathbb{R}^n)}$ when $1 \leq p < n$.

However, the estimate in the result for the bounded, smooth domain says something weaker, namely,

 $\|u\|_{L^{p^*}(\Omega)} \leq c \|u\|_{W^{1,p}(\Omega)}$ when $1 \leq p < n$.

It is in general not possible to improve this. But for functions in $W_0^{1,p}(\Omega)$, we can improve the inequality.

Theorem (Poincaré-Sobolev inequality for $W_0^{1,p}$) Let $\Omega \subset \mathbb{R}^n$ be open

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrach compact embeddi

Note that the Gagliardo-Nirenberg-Sobolev inequality actually says

 $\|u\|_{L^{p^*}(\mathbb{R}^n)} \leq c \|\nabla u\|_{L^p(\mathbb{R}^n)}$ when $1 \leq p < n$.

However, the estimate in the result for the bounded, smooth domain says something weaker, namely,

 $\|u\|_{L^{p^*}(\Omega)} \leq c \|u\|_{W^{1,p}(\Omega)}$ when $1 \leq p < n$.

It is in general not possible to improve this. But for functions in $W_0^{1,p}(\Omega)$, we can improve the inequality.

Theorem (Poincaré-Sobolev inequality for $W_0^{1,p}$) Let $\Omega \subset \mathbb{R}^n$ be open and let $1 \le p < n$.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrach compact embeddi

 $\|u\|_{L^{p^*}(\mathbb{R}^n)} \leq c \|\nabla u\|_{L^p(\mathbb{R}^n)}$ when $1 \leq p < n$.

However, the estimate in the result for the bounded, smooth domain says something weaker, namely,

 $\|u\|_{L^{p^*}(\Omega)} \leq c \|u\|_{W^{1,p}(\Omega)}$ when $1 \leq p < n$.

It is in general not possible to improve this. But for functions in $W_0^{1,p}(\Omega)$, we can improve the inequality.

Theorem (Poincaré-Sobolev inequality for $W_0^{1,p}$) Let $\Omega \subset \mathbb{R}^n$ be open and let $1 \le p < n$. Then there exists a constant c > 0,

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrach compact embeddi

 $\|u\|_{L^{p^*}(\mathbb{R}^n)} \leq c \|\nabla u\|_{L^p(\mathbb{R}^n)}$ when $1 \leq p < n$.

However, the estimate in the result for the bounded, smooth domain says something weaker, namely,

 $\|u\|_{L^{p^*}(\Omega)} \leq c \|u\|_{W^{1,p}(\Omega)}$ when $1 \leq p < n$.

It is in general not possible to improve this. But for functions in $W_0^{1,p}(\Omega)$, we can improve the inequality.

Theorem (Poincaré-Sobolev inequality for $W_0^{1,p}$) Let $\Omega \subset \mathbb{R}^n$ be open and let $1 \le p < n$. Then there exists a constant c > 0, depending only on Ω , n and p

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondracho compact embeddi

 $\|u\|_{L^{p^*}(\mathbb{R}^n)} \le c \|\nabla u\|_{L^p(\mathbb{R}^n)}$ when $1 \le p < n$.

However, the estimate in the result for the bounded, smooth domain says something weaker, namely,

 $\|u\|_{L^{p^*}(\Omega)} \leq c \|u\|_{W^{1,p}(\Omega)}$ when $1 \leq p < n$.

It is in general not possible to improve this. But for functions in $W_0^{1,p}(\Omega)$, we can improve the inequality.

Theorem (Poincaré-Sobolev inequality for $W_0^{1,p}$)

Let $\Omega \subset \mathbb{R}^n$ be open and let $1 \leq p < n$. Then there exists a constant c > 0, depending only on Ω , n and p such that we have the estimate

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact_embeddin

 $\|u\|_{L^{p^*}(\mathbb{R}^n)} \leq c \|\nabla u\|_{L^p(\mathbb{R}^n)} \qquad ext{when } 1 \leq p < n.$

However, the estimate in the result for the bounded, smooth domain says something weaker, namely,

 $\|u\|_{L^{p^*}(\Omega)} \leq c \|u\|_{W^{1,p}(\Omega)}$ when $1 \leq p < n$.

It is in general not possible to improve this. But for functions in $W_0^{1,p}(\Omega)$, we can improve the inequality.

Theorem (Poincaré-Sobolev inequality for $W_0^{1,p}$) Let $\Omega \subset \mathbb{R}^n$ be open and let $1 \leq p < n$. Then there exists a constant c > 0, depending only on Ω , n and p such that we have the estimate

 $\|u\|_{L^{p^*}(\Omega)} \leq c \|\nabla u\|_{L^p(\Omega)}$ for all $u \in W^{1,p}_0(\Omega)$.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondracho compact embeddir

 $\|u\|_{L^{p^*}(\mathbb{R}^n)} \leq c \|\nabla u\|_{L^p(\mathbb{R}^n)} \qquad ext{when } 1 \leq p < n.$

However, the estimate in the result for the bounded, smooth domain says something weaker, namely,

 $\|u\|_{L^{p^*}(\Omega)} \leq c \|u\|_{W^{1,p}(\Omega)}$ when $1 \leq p < n$.

It is in general not possible to improve this. But for functions in $W_0^{1,p}(\Omega)$, we can improve the inequality.

Theorem (Poincaré-Sobolev inequality for $W_0^{1,p}$) Let $\Omega \subset \mathbb{R}^n$ be open and let $1 \leq p < n$. Then there exists a constant c > 0, depending only on Ω , n and p such that we have the estimate

 $\left\|u\right\|_{L^{p^{*}}\left(\Omega
ight)}\leq c\left\|
abla u
ight\|_{L^{p}\left(\Omega
ight)}\qquad ext{ for all }u\in W^{1,p}_{0}\left(\Omega
ight).$

Remark

 Ω can be an arbitrary open set!

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondracho compact embeddii

The result follows from the GNS inequality by an extension,

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition:

Elementary properties

extension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov

The result follows from the GNS inequality by an extension, but not the extension operator we constructed in the theorem.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact_embeddin

The result follows from the GNS inequality by an extension, but not the extension operator we constructed in the theorem. There is a far simpler canonical extension operator for $W_0^{1,p}$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition:

Elementary properties Approximation and

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddin

The result follows from the GNS inequality by an extension, but not the extension operator we constructed in the theorem. There is a far simpler canonical extension operator for $W_0^{1,p}$ which is not available for $W^{1,p}$.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov

The result follows from the GNS inequality by an extension, but not the extension operator we constructed in the theorem. There is a far simpler canonical extension operator for $W_0^{1,p}$ which is not available for $W^{1,p}$. This is the *extension by zero*.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondracho compact_embeddin
The result follows from the GNS inequality by an extension, but not the extension operator we constructed in the theorem. There is a far simpler canonical extension operator for $W_0^{1,p}$ which is not available for $W^{1,p}$. This is the *extension by zero*. So the Poincaré-Sobolev inequality would follow easily as soon as we show the following simple lemma,

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddin

The result follows from the GNS inequality by an extension, but not the extension operator we constructed in the theorem. There is a far simpler canonical extension operator for $W_0^{1,p}$ which is not available for $W^{1,p}$. This is the *extension by zero*. So the Poincaré-Sobolev inequality would follow easily as soon as we show the following simple lemma, whose proof is skipped.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition:

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondracho compact embeddir

The result follows from the GNS inequality by an extension, but not the extension operator we constructed in the theorem. There is a far simpler canonical extension operator for $W_0^{1,p}$ which is not available for $W^{1,p}$. This is the *extension by zero*. So the Poincaré-Sobolev inequality would follow easily as soon as we show the following simple lemma, whose proof is skipped.

Lemma

Let $\Omega \subset \mathbb{R}^n$ be open

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition:

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddin

The result follows from the GNS inequality by an extension, but not the extension operator we constructed in the theorem. There is a far simpler canonical extension operator for $W_0^{1,p}$ which is not available for $W^{1,p}$. This is the *extension by zero*. So the Poincaré-Sobolev inequality would follow easily as soon as we show the following simple lemma, whose proof is skipped.

Lemma

Let $\Omega \subset \mathbb{R}^n$ be open and let $1 \leq p < \infty$.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov

The result follows from the GNS inequality by an extension, but not the extension operator we constructed in the theorem. There is a far simpler canonical extension operator for $W_0^{1,p}$ which is not available for $W^{1,p}$. This is the *extension by zero*. So the Poincaré-Sobolev inequality would follow easily as soon as we show the following simple lemma, whose proof is skipped.

Lemma

Let $\Omega \subset \mathbb{R}^n$ be open and let $1 \leq p < \infty$. Then for any $u \in W_0^{1,p}(\Omega)$,

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov

The result follows from the GNS inequality by an extension, but not the extension operator we constructed in the theorem. There is a far simpler canonical extension operator for $W_0^{1,p}$ which is not available for $W^{1,p}$. This is the *extension by zero*. So the Poincaré-Sobolev inequality would follow easily as soon as we show the following simple lemma, whose proof is skipped.

Lemma

Let $\Omega \subset \mathbb{R}^n$ be open and let $1 \leq p < \infty$. Then for any $u \in W_0^{1,p}(\Omega)$, the function

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov

The result follows from the GNS inequality by an extension, but not the extension operator we constructed in the theorem. There is a far simpler canonical extension operator for $W_0^{1,p}$ which is not available for $W^{1,p}$. This is the *extension by zero*. So the Poincaré-Sobolev inequality would follow easily as soon as we show the following simple lemma, whose proof is skipped.

Lemma

Let $\Omega \subset \mathbb{R}^n$ be open and let $1 \leq p < \infty$. Then for any $u \in W_0^{1,p}(\Omega)$, the function

$$\tilde{u}(x) := \begin{cases} u(x) & \text{ if } x \in \Omega, \\ 0 & \text{ if } x \notin \Omega. \end{cases}$$

is in $W^{1,p}(\mathbb{R}^n)$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov

The result follows from the GNS inequality by an extension, but not the extension operator we constructed in the theorem. There is a far simpler canonical extension operator for $W_0^{1,p}$ which is not available for $W^{1,p}$. This is the *extension by zero*. So the Poincaré-Sobolev inequality would follow easily as soon as we show the following simple lemma, whose proof is skipped.

Lemma

Let $\Omega \subset \mathbb{R}^n$ be open and let $1 \leq p < \infty$. Then for any $u \in W_0^{1,p}(\Omega)$, the function

$$\tilde{u}(x) := \begin{cases} u(x) & \text{if } x \in \Omega, \\ 0 & \text{if } x \notin \Omega. \end{cases}$$

is in $W^{1,p}(\mathbb{R}^n)$ and obviously extends u to whole of \mathbb{R}^n .

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddin

The result follows from the GNS inequality by an extension, but not the extension operator we constructed in the theorem. There is a far simpler canonical extension operator for $W_0^{1,p}$ which is not available for $W^{1,p}$. This is the *extension by zero*. So the Poincaré-Sobolev inequality would follow easily as soon as we show the following simple lemma, whose proof is skipped.

Lemma

Let $\Omega \subset \mathbb{R}^n$ be open and let $1 \leq p < \infty$. Then for any $u \in W_0^{1,p}(\Omega)$, the function

$$\tilde{u}(x) := \begin{cases} u(x) & \text{if } x \in \Omega, \\ 0 & \text{if } x \notin \Omega. \end{cases}$$

is in $W^{1,p}(\mathbb{R}^n)$ and obviously extends u to whole of \mathbb{R}^n .

Remark

Note that this lemma needs no regularity of the boundary

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddin

The result follows from the GNS inequality by an extension, but not the extension operator we constructed in the theorem. There is a far simpler canonical extension operator for $W_0^{1,p}$ which is not available for $W^{1,p}$. This is the *extension by zero*. So the Poincaré-Sobolev inequality would follow easily as soon as we show the following simple lemma, whose proof is skipped.

Lemma

Let $\Omega \subset \mathbb{R}^n$ be open and let $1 \leq p < \infty$. Then for any $u \in W_0^{1,p}(\Omega)$, the function

$$\tilde{u}(x) := \begin{cases} u(x) & \text{if } x \in \Omega, \\ 0 & \text{if } x \notin \Omega. \end{cases}$$

is in $W^{1,p}(\mathbb{R}^n)$ and obviously extends u to whole of \mathbb{R}^n .

Remark

Note that this lemma needs no regularity of the boundary and also does not need Ω to be bounded.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddin

The result follows from the GNS inequality by an extension, but not the extension operator we constructed in the theorem. There is a far simpler canonical extension operator for $W_0^{1,p}$ which is not available for $W^{1,p}$. This is the *extension by zero*. So the Poincaré-Sobolev inequality would follow easily as soon as we show the following simple lemma, whose proof is skipped.

Lemma

Let $\Omega \subset \mathbb{R}^n$ be open and let $1 \leq p < \infty$. Then for any $u \in W_0^{1,p}(\Omega)$, the function

$$\tilde{u}(x) := \begin{cases} u(x) & \text{if } x \in \Omega, \\ 0 & \text{if } x \notin \Omega. \end{cases}$$

is in $W^{1,p}(\mathbb{R}^n)$ and obviously extends u to whole of \mathbb{R}^n .

Remark

Note that this lemma needs no regularity of the boundary and also does not need Ω to be bounded. However, if $\partial \Omega$ is not regular,

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

The result follows from the GNS inequality by an extension, but not the extension operator we constructed in the theorem. There is a far simpler canonical extension operator for $W_0^{1,p}$ which is not available for $W^{1,p}$. This is the *extension by zero*. So the Poincaré-Sobolev inequality would follow easily as soon as we show the following simple lemma, whose proof is skipped.

Lemma

Let $\Omega \subset \mathbb{R}^n$ be open and let $1 \leq p < \infty$. Then for any $u \in W_0^{1,p}(\Omega)$, the function

$$\tilde{u}(x) := \begin{cases} u(x) & \text{if } x \in \Omega, \\ 0 & \text{if } x \notin \Omega. \end{cases}$$

is in $W^{1,p}(\mathbb{R}^n)$ and obviously extends u to whole of \mathbb{R}^n .

Remark

Note that this lemma needs no regularity of the boundary and also does not need Ω to be bounded. However, if $\partial \Omega$ is not regular, there may be no well-defined trace

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddin

The result follows from the GNS inequality by an extension, but not the extension operator we constructed in the theorem. There is a far simpler canonical extension operator for $W_0^{1,p}$ which is not available for $W^{1,p}$. This is the *extension by zero*. So the Poincaré-Sobolev inequality would follow easily as soon as we show the following simple lemma, whose proof is skipped.

Lemma

Let $\Omega \subset \mathbb{R}^n$ be open and let $1 \leq p < \infty$. Then for any $u \in W_0^{1,p}(\Omega)$, the function

$$\tilde{u}(x) := \begin{cases} u(x) & \text{if } x \in \Omega, \\ 0 & \text{if } x \notin \Omega. \end{cases}$$

is in $W^{1,p}(\mathbb{R}^n)$ and obviously extends u to whole of \mathbb{R}^n .

Remark

Note that this lemma needs no regularity of the boundary and also does not need Ω to be bounded. However, if $\partial \Omega$ is not regular, there may be no well-defined trace and the identification with zero-trace functions might be meaningless.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and extension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddin

From the Poincaré-Sobolev inequality for $W_0^{1,p}$,

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

......

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov

From the Poincaré-Sobolev inequality for $W_0^{1,p}$, we can now deduce

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition:

Elementary properties

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov

From the Poincaré-Sobolev inequality for $W_0^{1,p}$, we can now deduce

Theorem (Poincaré inequality for $W_0^{1,p}$)

Let $\Omega \subset \mathbb{R}^n$ be open and bounded

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddin

From the Poincaré-Sobolev inequality for $W_0^{1,p}$, we can now deduce

Theorem (Poincaré inequality for $W_0^{1,p}$ **)**

Let $\Omega \subset \mathbb{R}^n$ be open and bounded and let $1 \leq p < \infty$.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties

tension

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddin

From the Poincaré-Sobolev inequality for $W_0^{1,p}$, we can now deduce

Theorem (Poincaré inequality for $W_0^{1,p}$ **)**

Let $\Omega \subset \mathbb{R}^n$ be open and bounded and let $1 \leq p < \infty$. Then there exists a constant c > 0,

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddin

From the Poincaré-Sobolev inequality for $W_0^{1,p}$, we can now deduce

Theorem (Poincaré inequality for $W_0^{1,p}$)

Let $\Omega \subset \mathbb{R}^n$ be open and bounded and let $1 \leq p < \infty$. Then there exists a constant c > 0, depending only on Ω , n and p

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov

Theorem (Poincaré inequality for $W_0^{1,p}$)

Let $\Omega \subset \mathbb{R}^n$ be open and bounded and let $1 \leq p < \infty$. Then there exists a constant c > 0, depending only on Ω , n and p such that we have the estimate

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddin

Theorem (Poincaré inequality for $W_0^{1,p}$)

Let $\Omega \subset \mathbb{R}^n$ be open and bounded and let $1 \leq p < \infty$. Then there exists a constant c > 0, depending only on Ω , n and p such that we have the estimate

 $\|u\|_{L^{p}(\Omega)} \leq c \|\nabla u\|_{L^{p}(\Omega)}$ for all $u \in W_{0}^{1,p}(\Omega)$.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embeddin

Theorem (Poincaré inequality for $W_0^{1,p}$)

Let $\Omega \subset \mathbb{R}^n$ be open and bounded and let $1 \leq p < \infty$. Then there exists a constant c > 0, depending only on Ω , n and p such that we have the estimate

$$\|u\|_{L^{p}(\Omega)} \leq c \|\nabla u\|_{L^{p}(\Omega)}$$
 for all $u \in W_{0}^{1,p}(\Omega)$.

Remark

This shows that for any $\Omega \subset \mathbb{R}^n$ open and bounded,

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Theorem (Poincaré inequality for $W_0^{1,p}$)

Let $\Omega \subset \mathbb{R}^n$ be open and bounded and let $1 \leq p < \infty$. Then there exists a constant c > 0, depending only on Ω , n and p such that we have the estimate

 $\left\|u\right\|_{L^{p}\left(\Omega
ight)}\leq c\left\|
abla u
ight\|_{L^{p}\left(\Omega
ight)}\qquad ext{ for all }u\in W^{1,p}_{0}\left(\Omega
ight).$

Remark

This shows that for any $\Omega \subset \mathbb{R}^n$ open and bounded, $\|\nabla u\|_{L^p(\Omega)}$ is an equivalent norm on $W_0^{1,p}(\Omega)$.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Theorem (Poincaré inequality for $W_0^{1,p}$)

Let $\Omega \subset \mathbb{R}^n$ be open and bounded and let $1 \leq p < \infty$. Then there exists a constant c > 0, depending only on Ω , n and p such that we have the estimate

 $\left\|u\right\|_{L^{p}\left(\Omega
ight)}\leq c\left\|
abla u
ight\|_{L^{p}\left(\Omega
ight)}\qquad ext{ for all }u\in W^{1,p}_{0}\left(\Omega
ight).$

Remark

This shows that for any $\Omega \subset \mathbb{R}^n$ open and bounded, $\|\nabla u\|_{L^p(\Omega)}$ is an equivalent norm on $W_0^{1,p}(\Omega)$. It is also fairly straight forward to establish that this implies that

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Theorem (Poincaré inequality for $W_0^{1,p}$)

Let $\Omega \subset \mathbb{R}^n$ be open and bounded and let $1 \leq p < \infty$. Then there exists a constant c > 0, depending only on Ω , n and p such that we have the estimate

$$\|u\|_{L^{p}(\Omega)} \leq c \|\nabla u\|_{L^{p}(\Omega)}$$
 for all $u \in W_{0}^{1,p}(\Omega)$.

Remark

This shows that for any $\Omega \subset \mathbb{R}^n$ open and bounded, $\|\nabla u\|_{L^p(\Omega)}$ is an equivalent norm on $W_0^{1,p}(\Omega)$. It is also fairly straight forward to establish that this implies that

$$\langle u, v \rangle_{W_0^{1,2}(\Omega)} := \langle \nabla u, \nabla v \rangle_{L^2(\Omega)}$$

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Theorem (Poincaré inequality for $W_0^{1,p}$)

Let $\Omega \subset \mathbb{R}^n$ be open and bounded and let $1 \leq p < \infty$. Then there exists a constant c > 0, depending only on Ω , n and p such that we have the estimate

 $\left\|u\right\|_{L^{p}\left(\Omega\right)}\leq c\left\|
abla u
ight\|_{L^{p}\left(\Omega
ight)}\qquad ext{ for all }u\in W^{1,p}_{0}\left(\Omega
ight).$

Remark

This shows that for any $\Omega \subset \mathbb{R}^n$ open and bounded, $\|\nabla u\|_{L^p(\Omega)}$ is an equivalent norm on $W_0^{1,p}(\Omega)$. It is also fairly straight forward to establish that this implies that

 $\langle u, v \rangle_{W_0^{1,2}(\Omega)} := \langle \nabla u, \nabla v \rangle_{L^2(\Omega)}$

is an equivalent inner product on $W_0^{1,2}(\Omega)$.

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties Approximation and

Traces

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

Introduction to the Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definition

Elementary properties Approximation and

extension

Trace

Sobolev inequalities and Sobolev embeddings

Gagliardo-Nirenberg-Sobolev inequalities

Poincaré-Sobolev inequalities

Morrey's inequality

Rellich-Kondrachov compact embedding

The End

Thank you *Questions?*