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Poincaré-Sobolev inequalities
Morrey’s inequality
Rellich-Kondrachov compact embeddings



Introduction to the
Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties

Approximation and
extension

Traces

Sobolev inequalities and
Sobolev embeddings

Gagliardo-Nirenberg-
Sobolev
inequalities

Poincaré-Sobolev
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Gagliardo-Nirenberg-Sobolev inequality

Theorem (Gagliardo-Nirenberg-Sobolev inequality)

Let 1 ≤ p < n.

Then there exists a constant c > 0, depending
only on n and p such that we have the estimate(ˆ

Rn

|u|p
∗
) 1

p∗

≤ c

(ˆ
Rn

|∇u|p
) 1

p

(1)

for every u ∈W 1,p (Rn) .

To prove this inequality, we need a simple lemma.
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Lemma
Let n ≥ 2

and let f1, . . . , fn ∈ Ln−1
(
Rn−1

)
. For x ∈ Rn and

1 ≤ i ≤ n, set

x̂i = (x1, . . . , x̂i , . . . , xn) := (x1, . . . , xi−1, xi+1, . . . , xn) .

Then the function

f (x) :=
n∏

i=1

fi (x̂i ) for x ∈ Rn

is in L1 (Rn) and we have the estimate

‖f ‖L1(Rn) ≤
n∏

i=1

‖fi‖Ln−1(Rn−1) .
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Proof.
n = 2 is just Fubini

with equality in fact. Indeed,

ˆ
R2

|f | dx1dx2 =

ˆ ∞
−∞

ˆ ∞
−∞
|f1 (x2)| |f2 (x1)| dx1dx2

=

(ˆ ∞
−∞
|f2 (x1)| dx1

)(ˆ ∞
−∞
|f1 (x2)| dx2

)
.

Now to prove by induction, we assume the result holds for some
n ≥ 2 and show it for n + 1.
Fix xn+1 ∈ R for now. By Hölder inequality and the induction
hypothesis,

ˆ
Rn

|f | dx1dx2 . . . dxn

≤ ‖fn+1‖Ln(Rn)

(ˆ
Rn

|f1 . . . fn|
n

n−1 dx1dx2 . . . dxn

) n−1
n

≤ ‖fn+1‖Ln(Rn)

n∏
i=1

∥∥∥f̃i∥∥∥
Ln(Rn−1)

[f̃i is fi with xn+1 fixed]

Integrating w.r.t xn+1 and Hölder inequality gives the result.
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Poincaré-Sobolev
inequalities

Morrey’s inequality

Rellich-Kondrachov
compact embeddings

The End

Proof.
n = 2 is just Fubini with equality in fact. Indeed,

ˆ
R2

|f | dx1dx2 =

ˆ ∞
−∞

ˆ ∞
−∞
|f1 (x2)| |f2 (x1)| dx1dx2

=

(ˆ ∞
−∞
|f2 (x1)| dx1

)(ˆ ∞
−∞
|f1 (x2)| dx2

)
.

Now to prove by induction, we assume the result holds for some
n ≥ 2 and show it for n + 1.
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Integrating w.r.t xn+1 and Hölder inequality gives the result.



Introduction to the
Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties

Approximation and
extension

Traces

Sobolev inequalities and
Sobolev embeddings

Gagliardo-Nirenberg-
Sobolev
inequalities

Poincaré-Sobolev
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n ≥ 2 and show it for n + 1.
Fix xn+1 ∈ R for now.
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[f̃i is fi with xn+1 fixed]

Integrating w.r.t xn+1 and Hölder inequality gives the result.
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∣∣∣∣ dt := fi (x̂i ) .
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Poincaré-Sobolev
inequalities

Morrey’s inequality

Rellich-Kondrachov
compact embeddings

The End

Proof of Gagliardo-Nirenberg-Sobolev inequality

Proof. First we prove for p = 1.

We can assume u ∈ C∞c (Rn) .

We have, for each 1 ≤ i ≤ n,

|u (x1, . . . , xn)| ≤
ˆ ∞
−∞

∣∣∣∣ ∂u∂xi (x1, . . . , xi−1, t, xi+1, . . . , xn)

∣∣∣∣ dt := fi (x̂i ) .

Thus, we have

|u (x1, . . . , xn)|
n

n−1 ≤
n∏

i=1

|fi (x̂i )|
1

n−1

Integrating and using the lemma, we deduce

ˆ
Rn

|u (x)|
n

n−1 dx ≤
n∏

i=1

∥∥∥|fi (x̂i )|
1

n−1

∥∥∥
Ln−1(Rn−1)

≤
n∏

i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥ 1

n−1

L1(Rn)

Thus,

‖u‖
L

n
n−1 (Rn)

≤
n∏

i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥ 1

n

L1(Rn)

≤ c
n∑
i

∥∥∥∥ ∂u∂xi
∥∥∥∥
L1(Rn)

= c ‖∇u‖L1(Rn) .



Introduction to the
Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties

Approximation and
extension

Traces

Sobolev inequalities and
Sobolev embeddings

Gagliardo-Nirenberg-
Sobolev
inequalities

Poincaré-Sobolev
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for some γ > 0 and apply the inequality
for p = 1 to f to deduce,(ˆ

Rn

|u|
γn
n−1

) n−1
n

dx ≤ γ
ˆ
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|∇u|p dx

) 1
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.

Now choose γ > 0 such that

γn

n − 1
=

(γ − 1)p

p − 1

and watch the exponents almost magically fall into place for
1 < p < n to establish(ˆ

Rn

|u|
np

n−p

) n−p
np

dx ≤ c

(ˆ
Rn

|∇u|p dx

) 1
p

.

This proves the theorem.
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Poincaré-Sobolev
inequalities

Morrey’s inequality

Rellich-Kondrachov
compact embeddings

The End

Proof of Gagliardo-Nirenberg-Sobolev inequality

Now we choose f = |u|γ for some γ > 0

and apply the inequality
for p = 1 to f to deduce,(ˆ

Rn

|u|
γn
n−1

) n−1
n

dx ≤ γ
ˆ
Rn

|u|γ−1 |∇u| dx
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The End

Consequences of the Gagliardo-Nirenberg-Sobolev

We now discuss some consequences of the inequality.

Theorem (Sobolev embedding in Rn for p < n)

Let 1 ≤ p < n. Then W 1,p (Rn) continuously embeds into Lq (Rn)
for every q ∈ [p, p∗].

Proof.
Since q ∈ [p, p∗], we have

1

q
=
α

p
+

1− α
p∗

for some α ∈ [0, 1].

Thus, we have, by interpolation inequality and Youngs inequality,

‖u‖Lq ≤ ‖u‖αLp ‖u‖1−α
Lp∗ ≤ ‖u‖Lp + ‖u‖Lp∗ ≤ c ‖u‖W 1,p .
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Poincaré-Sobolev
inequalities

Morrey’s inequality

Rellich-Kondrachov
compact embeddings

The End

Consequences of the Gagliardo-Nirenberg-Sobolev

We now discuss some consequences of the inequality.

Theorem (Sobolev embedding in Rn for p < n)

Let 1 ≤ p < n. Then W 1,p (Rn) continuously embeds into Lq (Rn)
for every q ∈ [p, p∗].

Proof.
Since q ∈ [p, p∗], we have

1

q
=
α

p
+

1− α
p∗

for some α ∈ [0, 1].

Thus, we have, by interpolation inequality and Youngs inequality,

‖u‖Lq ≤ ‖u‖αLp ‖u‖1−α
Lp∗ ≤ ‖u‖Lp + ‖u‖Lp∗ ≤ c ‖u‖W 1,p .



Introduction to the
Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties

Approximation and
extension

Traces

Sobolev inequalities and
Sobolev embeddings

Gagliardo-Nirenberg-
Sobolev
inequalities

Poincaré-Sobolev
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Our next result might seem surprising,

since it concerns W 1,n. But
this result is more of a corollary of the proof and not really of the
final result.

Theorem (Sobolev embedding in Rn for p = n)

W 1,n (Rn) continuously embeds into Lq (Rn) for every
q ∈ [n,+∞).

Proof.
As in the proof, we can easily establish, for any γ > 0,(ˆ

Rn

|u|
γn
n−1

) n−1
n

dx ≤ γ
(ˆ

Rn

|u|
(γ−1)n
n−1 dx

) n−1
n
(ˆ

Rn

|∇u|n dx

) 1
n

.

Note we really have not used the fact p < n up to that point and
so we can put p = n. Now let us chose γ = n. This will prove

‖u‖
L

n2
n−1
≤ c ‖u‖W 1,n .

But now we can iterate this process by choosing
γ = n + 1, n + 2, . . . and so on to keep pushing the exponent.
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|u|
(γ−1)n
n−1 dx

) n−1
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(ˆ
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|∇u|n dx

) 1
n

.

Note we really have not used the fact p < n up to that point and
so we can put p = n. Now let us chose γ = n. This will prove

‖u‖
L

n2
n−1
≤ c ‖u‖W 1,n .

But now we can iterate this process by choosing
γ = n + 1, n + 2, . . . and so on

to keep pushing the exponent.
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Consequences of the Gagliardo-Nirenberg-Sobolev

Now we focus on bounded domains.

Theorem (Sobolev embedding in bounded domains for p < n)

Let Ω ⊂ Rn be open, bounded and smooth and let 1 ≤ p < n.
Then W 1,p (Ω) continuously embeds into Lq (Ω) for every
1 ≤ q ≤ p∗.

Theorem (Sobolev embedding in Rn for p = n)

Let Ω ⊂ Rn be open, bounded and smooth. Then W 1,n (Ω)
continuously embeds into Lq (Rn) for every 1 ≤ q <∞.

Both results can be proved from the Rn case using extension and
noting that Ω has finite measure.
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Poincaré-Sobolev inequalities

Note that the Gagliardo-Nirenberg-Sobolev inequality actually says

‖u‖Lp∗ (Rn) ≤ c ‖∇u‖Lp(Rn) when 1 ≤ p < n.

However, the estimate in the result for the bounded, smooth
domain says something weaker, namely,

‖u‖Lp∗ (Ω) ≤ c ‖u‖W 1,p(Ω) when 1 ≤ p < n.

It is in general not possible to improve this. But for functions in
W 1,p

0 (Ω) , we can improve the inequality.

Theorem (Poincaré-Sobolev inequality for W 1,p
0 )

Let Ω ⊂ Rn be open and let 1 ≤ p < n. Then there exists a
constant c > 0, depending only on Ω, n and p such that we have
the estimate

‖u‖Lp∗ (Ω) ≤ c ‖∇u‖Lp(Ω) for all u ∈W 1,p
0 (Ω) .

Remark
Ω can be an arbitrary open set!
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Theorem (Poincaré-Sobolev inequality for W 1,p
0 )

Let Ω ⊂ Rn be open and let 1 ≤ p < n. Then there exists a
constant c > 0, depending only on Ω, n and p such that we have
the estimate

‖u‖Lp∗ (Ω) ≤ c ‖∇u‖Lp(Ω) for all u ∈W 1,p
0 (Ω) .

Remark
Ω can be an arbitrary open set!



Introduction to the
Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties

Approximation and
extension

Traces

Sobolev inequalities and
Sobolev embeddings

Gagliardo-Nirenberg-
Sobolev
inequalities

Poincaré-Sobolev
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Poincaré-Sobolev
inequalities

Morrey’s inequality

Rellich-Kondrachov
compact embeddings

The End
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Poincaré-Sobolev
inequalities

Morrey’s inequality

Rellich-Kondrachov
compact embeddings

The End
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Poincaré-Sobolev inequalities

Note that the Gagliardo-Nirenberg-Sobolev inequality actually says

‖u‖Lp∗ (Rn) ≤ c ‖∇u‖Lp(Rn) when 1 ≤ p < n.

However, the estimate in the result for the bounded, smooth
domain says something weaker, namely,

‖u‖Lp∗ (Ω) ≤ c ‖u‖W 1,p(Ω) when 1 ≤ p < n.

It is in general not possible to improve this. But for functions in
W 1,p

0 (Ω) , we can improve the inequality.
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0 )

Let Ω ⊂ Rn be open and let 1 ≤ p < n. Then there exists a
constant c > 0, depending only on Ω, n and p

such that we have
the estimate

‖u‖Lp∗ (Ω) ≤ c ‖∇u‖Lp(Ω) for all u ∈W 1,p
0 (Ω) .

Remark
Ω can be an arbitrary open set!
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Poincaré-Sobolev
inequalities

Morrey’s inequality

Rellich-Kondrachov
compact embeddings

The End
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The result follows from the GNS inequality by an extension,

but
not the extension operator we constructed in the theorem.There is
a far simpler canonical extension operator for W 1,p

0 which is not
available for W 1,p. This is the extension by zero. So the
Poincaré-Sobolev inequality would follow easily as soon as we show
the following simple lemma, whose proof is skipped.

Lemma
Let Ω ⊂ Rn be open and let 1 ≤ p <∞. Then for any
u ∈W 1,p

0 (Ω) , the function

ũ (x) :=

{
u (x) if x ∈ Ω,

0 if x /∈ Ω.

is in W 1,p (Rn) and obviously extends u to whole of Rn.

Remark
Note that this lemma needs no regularity of the boundary and also
does not need Ω to be bounded. However, if ∂Ω is not regular,
there may be no well-defined trace and the identification with
zero-trace functions might be meaningless.
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Poincaré-Sobolev inequalities

The result follows from the GNS inequality by an extension, but
not the extension operator we constructed in the theorem.There is
a far simpler canonical extension operator for W 1,p

0 which is not
available for W 1,p. This is the extension by zero. So the
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Poincaré-Sobolev inequalities

The result follows from the GNS inequality by an extension, but
not the extension operator we constructed in the theorem.There is
a far simpler canonical extension operator for W 1,p

0 which is not
available for W 1,p. This is the extension by zero. So the
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ũ (x) :=

{
u (x) if x ∈ Ω,

0 if x /∈ Ω.

is in W 1,p (Rn) and obviously extends u to whole of Rn.

Remark
Note that this lemma needs no regularity of the boundary and also
does not need Ω to be bounded. However, if ∂Ω is not regular,

there may be no well-defined trace and the identification with
zero-trace functions might be meaningless.



Introduction to the
Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties

Approximation and
extension

Traces

Sobolev inequalities and
Sobolev embeddings

Gagliardo-Nirenberg-
Sobolev
inequalities

Poincaré-Sobolev
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Poincaré-Sobolev inequality would follow easily as soon as we show
the following simple lemma, whose proof is skipped.

Lemma
Let Ω ⊂ Rn be open and let 1 ≤ p <∞. Then for any
u ∈W 1,p

0 (Ω) , the function
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u ∈W 1,p

0 (Ω) , the function

ũ (x) :=

{
u (x) if x ∈ Ω,

0 if x /∈ Ω.

is in W 1,p (Rn) and obviously extends u to whole of Rn.

Remark
Note that this lemma needs no regularity of the boundary and also
does not need Ω to be bounded. However, if ∂Ω is not regular,
there may be no well-defined trace and the identification with
zero-trace functions might be meaningless.



Introduction to the
Calculus of Variations

Swarnendu Sil

Sobolev spaces

Definitions

Elementary properties

Approximation and
extension

Traces

Sobolev inequalities and
Sobolev embeddings

Gagliardo-Nirenberg-
Sobolev
inequalities

Poincaré-Sobolev
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Poincaré-Sobolev inequalities

From the Poincaré-Sobolev inequality for W 1,p
0 ,

we can now
deduce

Theorem (Poincaré inequality for W 1,p
0 )

Let Ω ⊂ Rn be open and bounded and let 1 ≤ p <∞. Then there
exists a constant c > 0, depending only on Ω, n and p such that
we have the estimate

‖u‖Lp(Ω) ≤ c ‖∇u‖Lp(Ω) for all u ∈W 1,p
0 (Ω) .

Remark
This shows that for any Ω ⊂ Rn open and bounded, ‖∇u‖Lp(Ω) is

an equivalent norm on W 1,p
0 (Ω) . It is also fairly straight forward

to establish that this implies that

〈u, v〉W 1,2
0 (Ω) := 〈∇u,∇v〉L2(Ω)

is an equivalent inner product on W 1,2
0 (Ω) .
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Poincaré-Sobolev
inequalities

Morrey’s inequality

Rellich-Kondrachov
compact embeddings

The End
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