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Approximation and extension

In this section we are going to study two results.
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Approximation and extension

In this section we are going to study two results.

» The extension of Sobolev functions from a bounded smooth
domain to the whole of R" while keeping control over the
Sobolev norm.
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Approximation and extension

In this section we are going to study two results.

» The extension of Sobolev functions from a bounded smooth
domain to the whole of R" while keeping control over the
Sobolev norm.

» The approximation of a Sobolev function in a bounded
smooth domain, in the Sobolev norm, by functions which are
smooth up to the boundary.
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Approximation and extension

In this section we are going to study two results.

» The extension of Sobolev functions from a bounded smooth
domain to the whole of R" while keeping control over the
Sobolev norm.

» The approximation of a Sobolev function in a bounded
smooth domain, in the Sobolev norm, by functions which are
smooth up to the boundary.

Both the results can be proved for Lipschitz domains, but here we
shall be content with smooth domains.
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Approximation and extension

In this section we are going to study two results.

» The extension of Sobolev functions from a bounded smooth
domain to the whole of R" while keeping control over the
Sobolev norm.

» The approximation of a Sobolev function in a bounded
smooth domain, in the Sobolev norm, by functions which are
smooth up to the boundary.

Both the results can be proved for Lipschitz domains, but here we

shall be content with smooth domains.

The approximation result actually follows from the extension
result.
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Approximation and extension

In this section we are going to study two results.

» The extension of Sobolev functions from a bounded smooth
domain to the whole of R" while keeping control over the
Sobolev norm.

» The approximation of a Sobolev function in a bounded
smooth domain, in the Sobolev norm, by functions which are
smooth up to the boundary.

Both the results can be proved for Lipschitz domains, but here we
shall be content with smooth domains.

The approximation result actually follows from the extension
result. Also we are going to explain the ideas involved for the
proof of the extension result. The details can be and should be
filled in easily.
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Approximation and extension

In this section we are going to study two results.

» The extension of Sobolev functions from a bounded smooth
domain to the whole of R" while keeping control over the
Sobolev norm.

» The approximation of a Sobolev function in a bounded
smooth domain, in the Sobolev norm, by functions which are
smooth up to the boundary.

Both the results can be proved for Lipschitz domains, but here we
shall be content with smooth domains.

The approximation result actually follows from the extension
result. Also we are going to explain the ideas involved for the
proof of the extension result. The details can be and should be
filled in easily. But first we state the results.
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Extension

Theorem (Extension operator)

Let Q C R" be open, bounded with smooth boundary.
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Extension

Theorem (Extension operator)

Let Q C R" be open, bounded with smooth boundary. Then for
any 1 < p < oo,
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Extension

Theorem (Extension operator)

Let Q C R" be open, bounded with smooth boundary. Then for
any 1 < p < oo, there exists a linear extension operator
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Extension

Theorem (Extension operator)

Let Q C R" be open, bounded with smooth boundary. Then for
any 1 < p < oo, there exists a linear extension operator

P: WP (Q) — WP (R")

such that for all u € W1 (Q),
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Extension

Theorem (Extension operator)

Let Q C R" be open, bounded with smooth boundary. Then for
any 1 < p < oo, there exists a linear extension operator

P: WP (Q) — WP (R")

such that for all u € WP (Q), we have
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Extension

Theorem (Extension operator)

Let Q C R" be open, bounded with smooth boundary. Then for
any 1 < p < oo, there exists a linear extension operator

P: WP (Q) — WP (R")
such that for all u € WP (Q), we have

Pulq = u, (1)
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Extension

Theorem (Extension operator)
Let Q C R" be open, bounded with smooth boundary. Then for

any 1 < p < oo, there exists a linear extension operator

such that for all u € WP (Q), we have

P: WP (Q) — WP (R")

Pulq = u,

1Pull oy < cllullpay
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Extension

Theorem (Extension operator)

Let Q C R" be open, bounded with smooth boundary. Then for

any 1 < p < oo, there exists a linear extension operator
P: WP (Q) — WP (R")
such that for all u € WP (Q), we have
Pulq = u,

1Pull oy < cllullpay

1Pulwsogary < € lullwroey -
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Definitions
Elementary properties
Approximation and

Theorem (Extension operator) exenion

Let Q C R" be open, bounded with smooth boundary. Then for
any 1 < p < oo, there exists a linear extension operator

qualities and

P: WP (Q) — WP (R")

such that for all u € WP (Q), we have

Pulq = u, (1)
1Pulpgaoy < lelrcay 2)
1Pl sy < €16l yamey 3)

where the constant ¢ > 0 depends only on Q.



Global approximation by smooth functions

Theorem (Global approximation by smooth functions)
Let Q C R" be open, bounded with smooth boundary.
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Global approximation by smooth functions

Theorem (Global approximation by smooth functions)

Let Q C R" be open, bounded with smooth boundary. Let
u € WYP(Q) for some 1 < p < oo.
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Global approximation by smooth functions

Theorem (Global approximation by smooth functions)

Let Q C R" be open, bounded with smooth boundary. Let
u e WP (Q) for some 1 < p < co. Then there exists a sequence
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Global approximation by smooth functions

Theorem (Global approximation by smooth functions)

Let Q C R" be open, bounded with smooth boundary. Let
u e WP (Q) for some 1 < p < co. Then there exists a sequence

{us}2 c WP (@) n €* (Q)
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Global approximation by smooth functions

Theorem (Global approximation by smooth functions)

Let Q C R" be open, bounded with smooth boundary. Let
u e WP (Q) for some 1 < p < co. Then there exists a sequence

{us}2 c WP (@) n €* (Q)

such that
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Global approximation by smooth functions

Theorem (Global approximation by smooth functions)

Let Q C R" be open, bounded with smooth boundary. Let
u e WP (Q) for some 1 < p < co. Then there exists a sequence

{us}2 c WP (@) n €* (Q)

such that
us — u in WHP (Q).
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Global approximation by smooth functions

Theorem (Global approximation by smooth functions)

Let Q C R" be open, bounded with smooth boundary. Let
u e WP (Q) for some 1 < p < co. Then there exists a sequence

{us}2 c WP (@) n €* (Q)

such that
us — u in WHP (Q).

Remark
The result is false for p = oco.
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Theorem (Global approximation by smooth functions) O e

Let Q C R" be open, bounded with smooth boundary. Let
u e WP (Q) for some 1 < p < co. Then there exists a sequence

Traces

{us}2 c WP (@) n €* (Q)

such that
us — u in WHP (Q).

Remark
The result is false for p = oco.

Clearly, this result follows from the extension result by
mollification.



Flattening the boundary

The first idea is that as the boundary 9% is smooth,
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Flattening the boundary

The first idea is that as the boundary 9% is smooth, it is possible
to locally ‘flatten’ the boundary.
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Flattening the boundary

The first idea is that as the boundary 9% is smooth, it is possible
to locally ‘flatten’ the boundary.In precise terms, if xg € 0%,
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Flattening the boundary

The first idea is that as the boundary 9% is smooth, it is possible
to locally ‘flatten’ the boundary.In precise terms, if xg € 0%,
there exists a neighborhood Uy, C R" of xg
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Flattening the boundary

The first idea is that as the boundary 9% is smooth, it is possible
to locally ‘flatten’ the boundary.In precise terms, if xg € 0%,
there exists a neighborhood U,, C R” of xp such that
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Flattening the boundary

The first idea is that as the boundary 9% is smooth, it is possible
to locally ‘flatten’ the boundary.In precise terms, if xg € 0%,

there exists a neighborhood U, C R" of xq such that there exists
a smooth diffeomorphism

d):Bl(O)*}UiXD

satisfying
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Flattening the boundary

The first idea is that as the boundary 9% is smooth, it is possible
to locally ‘flatten’ the boundary.In precise terms, if xg € 0%,

there exists a neighborhood U, C R" of xq such that there exists
a smooth diffeomorphism

d):Bl(O)*}UiXD

satisfying
> o (0) = Xp-
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Flattening the boundary

The first idea is that as the boundary 9% is smooth, it is possible
to locally ‘flatten’ the boundary.In precise terms, if xg € 0%,
there exists a neighborhood U, C R" of xq such that there exists
a smooth diffeomorphism

q):Bl(O)%UX

0
satisfying

> ¢ (0) = Xp-

> & (B (0) = Q0N Uy
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Flattening the boundary

The first idea is that as the boundary 9% is smooth, it is possible
to locally ‘flatten’ the boundary.In precise terms, if xg € 0%,
there exists a neighborhood U, C R" of xq such that there exists
a smooth diffeomorphism

(O Bl (0) — UXo

satisfying
> & (0) = xp.
> & (Bf (0) = QN Uy
> (B (0)N{x, =0}) =9QN Uy,
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The first idea is that as the boundary 02 is smooth, it is possible e
to locally ‘flatten’ the boundary.In precise terms, if xg € 0%, A

there exists a neighborhood U,, C R" of xp such that there exists e
a smooth diffeomorphism :

(O Bl (0) — UXo

satisfying
> & (0) = xp.
> & (Bf (0) = QN Uy
> (B (0)N{x, =0}) =9QN Uy,

This basically is the coordinate change that maps the point xp to
the origin,
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The first idea is that as the boundary 9% is smooth, it is possible
to locally ‘flatten’ the boundary.In precise terms, if xg € 0XQ, Pt e
there exists a neighborhood U,, C R" of xp such that there exists B

a smooth diffeomorphism

o Bl (0) — UXo

satisfying
> & (0) = xp.
> (B (0) = Q0 Uy,
> (B (0)N{x, =0}) =9QN Uy,
This basically is the coordinate change that maps the point xp to

the origin, maps the portion of Q in U, to the upper half ball
By (0),




Flattening the boundary

The first idea is that as the boundary 9% is smooth, it is possible
to locally ‘flatten’ the boundary.In precise terms, if xg € 0XQ,
there exists a neighborhood U,, C R" of xp such that there exists
a smooth diffeomorphism

o B (0) = Uy,
satisfying
> & (0) = xp.
> (B (0) = Q0 Uy,
> (B (0)N{x, =0}) =9QN Uy,
This basically is the coordinate change that maps the point xp to
the origin, maps the portion of Q in U, to the upper half ball

B;" (0), maps the portion of 9 in U,, to the portion of the
equatorial hyperplane in the unit ball
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The first idea is that as the boundary 9% is smooth, it is possible Definiens

Elementary properties

to locally ‘flatten’ the boundary.In precise terms, if xg € 09, A

extension

there exists a neighborhood U,, C R" of xp such that there exists
a smooth diffeomorphism

o Bl (0) — UXo

satisfying
> & (0) = xp.
> & (Bf (0) = QN Uy
> (B (0)N{x, =0}) =9QN Uy,

This basically is the coordinate change that maps the point xp to
the origin, maps the portion of Q in U, to the upper half ball

B;" (0), maps the portion of 9 in U,, to the portion of the
equatorial hyperplane in the unit ball and takes the inward normal
to 0L to the postive direction of the x, coordinate.



Covering the boundary by local patches

Thus, if we care only about a small neighborhood of a boundary
point,
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Covering the boundary by local patches

Thus, if we care only about a small neighborhood of a boundary
point, we can transfer our problem to extending from the upper
half-ball to the whole ball
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Covering the boundary by local patches

Thus, if we care only about a small neighborhood of a boundary
point, we can transfer our problem to extending from the upper
half-ball to the whole ball and then transfer back.
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Thus, if we care only about a small neighborhood of a boundary
point, we can transfer our problem to extending from the upper o
half-ball to the whole ball and then transfer back. D

Now the question is, can we somehow ‘cut’ u into pieces near the
boundary, work with each piece separately and then finally patch
them up?
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Thus, if we care only about a small neighborhood of a boundary
point, we can transfer our problem to extending from the upper o
half-ball to the whole ball and then transfer back.

Now the question is, can we somehow ‘cut’ u into pieces near the
boundary, work with each piece separately and then finally patch
them up?

We can!
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Thus, if we care only about a small neighborhood of a boundary
point, we can transfer our problem to extending from the upper o
half-ball to the whole ball and then transfer back. -

Now the question is, can we somehow ‘cut’ u into pieces near the
boundary, work with each piece separately and then finally patch
them up?

We can! But first we ‘cut’ the boundary into pieces.
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Thus, if we care only about a small neighborhood of a boundary
point, we can transfer our problem to extending from the upper e
half-ball to the whole ball and then transfer back.

Now the question is, can we somehow ‘cut’ u into pieces near the
boundary, work with each piece separately and then finally patch
them up?

We can! But first we ‘cut’ the boundary into pieces.
Note that by compactness of 0%,
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Thus, if we care only about a small neighborhood of a boundary
point, we can transfer our problem to extending from the upper o
half-ball to the whole ball and then transfer back. -

Now the question is, can we somehow ‘cut’ u into pieces near the
boundary, work with each piece separately and then finally patch
them up?

We can! But first we ‘cut’ the boundary into pieces.

Note that by compactness of 010, it is possible to cover 992 by
finitely many such neighborhoods,
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Thus, if we care only about a small neighborhood of a boundary
point, we can transfer our problem to extending from the upper o
half-ball to the whole ball and then transfer back. -

Now the question is, can we somehow ‘cut’ u into pieces near the
boundary, work with each piece separately and then finally patch
them up?

We can! But first we ‘cut’ the boundary into pieces.

Note that by compactness of 010, it is possible to cover 992 by
finitely many such neighborhoods, i.e.

M
o c Uy,

i=1
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Thus, if we care only about a small neighborhood of a boundary
point, we can transfer our problem to extending from the upper e
half-ball to the whole ball and then transfer back. o

Now the question is, can we somehow ‘cut’ u into pieces near the
boundary, work with each piece separately and then finally patch
them up?

We can! But first we ‘cut’ the boundary into pieces.
Note that by compactness of 010, it is possible to cover 992 by
finitely many such neighborhoods, i.e.

M
o c Uy,

i=1

for some integer M > 0
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Thus, if we care only about a small neighborhood of a boundary
point, we can transfer our problem to extending from the upper e
half-ball to the whole ball and then transfer back.

Now the question is, can we somehow ‘cut’ u into pieces near the
boundary, work with each piece separately and then finally patch
them up?

We can! But first we ‘cut’ the boundary into pieces.

Note that by compactness of 010, it is possible to cover 992 by
finitely many such neighborhoods, i.e.

M
o c Uy,
i=1
for some integer M > 0 and some neighborhoods U, of the
boundary points xq, ..., xy € 0.



To ‘cut’ u into pieces,




Localizing and patching them up

To ‘cut’ u into pieces, we use an extremely useful device known as
a partition of unity.
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Localizing and patching them up
To ‘cut’ u into pieces, we use an extremely useful device known as
a partition of unity.

Proposition (partition of unity)
Let I be a compact subset of R"
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To ‘cut’ u into pieces, we use an extremely useful device known as
a partition of unity.

Proposition (partition of unity) pomsmin s
Let I be a compact subset of R" and let Uy, ..., Uy be a finite o
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Localizing and patching them up

To ‘cut’ u into pieces, we use an extremely useful device known as
a partition of unity.
Proposition (partition of unity)

Let I be a compact subset of R" and let U, ..., Uy be a finite
open covering of . Then there exist functions
CO?CI) s 7CM €C™ (Rn)
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Localizing and patching them up

To ‘cut’ u into pieces, we use an extremely useful device known as
a partition of unity.
Proposition (partition of unity)

Let I be a compact subset of R" and let U, ..., Uy be a finite
open covering of . Then there exist functions
CosC1y---5Cm € C°°(R™) such that
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Localizing and patching them up

To ‘cut’ u into pieces, we use an extremely useful device known as
a partition of unity.

Proposition (partition of unity)

Let I be a compact subset of R" and let U, ..., Uy be a finite
open covering of . Then there exist functions
CosC1y---5Cm € C°°(R™) such that

> 0<(<1lforall0<i<Mand

Gi

M=

|
o
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To ‘cut’ u into pieces, we use an extremely useful device known as
a partition of unity.
Proposition (partition of unity)

Let I be a compact subset of R" and let U, ..., Uy be a finite
open covering of . Then there exist functions
CosC1y---5Cm € C°°(R™) such that

> 0<(<1lforall0<i<Mand

» supp(p C R"\ T and
» supp(; is compact and supp (; C U; for every 1 < i < M.

Moreover, if Q C R" is an open bounded set such that I = 0%,
then we can in addition arrange that
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How do we use this to ‘cut’ u into pieces?

Introduction to the
Calculus of Variations

Swarnendu Sil

Definitions
Elementary properties

Approximation and
extension

Traces

Sobolev inequalities and
Sobolev embeddings

Gagliardo-Nirenberg:
Sobolev

inequalities
Poincaré-Sobolev
inequalities

Morrey's inequality

Rellich-K
compact embeddings

chov



Localizing and patching them up

Localizing or cutting into pieces
How do we use this to ‘cut’ u into pieces?
Note that we have

Introduction to the
Calculus of Variations

Swarnendu Sil

Definitions
Elementary properties

Approximation and
extension

inequalities and

nbeddings

rdo-Nirenberg:

Sobolev

inequalities
Morrey's inequality

Rellich-Kondrachov

compact embeddings



Localizing and patching them up

Localizing or cutting into pieces
How do we use this to ‘cut’ u into pieces?
Note that we have

M
u= Z Ciu in Q.
i=0

Introduction to the
Calculus of Variations

Swarnendu Sil

Definitions

Approximation and
extension

inequalities and

nbeddings
Sagliardo-Nirenberg:
Sobolev
inequalities
Po
inequalities

aré-Sobolev

Mc nequality

Rellich rachov

compact embeddings



Localizing and patching them up

Localizing or cutting into pieces
How do we use this to ‘cut’ u into pieces?
Note that we have

M
u= Z Ciu in Q.
i=0

Thus,
uj == (ju for0 < i< M,

Introduction to the
Calculus of Variations

Swarnendu Sil

Definitions

Approximation and
extension

Traces

equalities and
nbeddings

rdo-Nirenberg:

Poincaré-Sobolev

inequalities

Mc nequality

Rellich

compact em




Localizing and patching them up

Localizing or cutting into pieces

How do we use this to ‘cut’ u into pieces?

Note that we have

M
u= Z Ciu in Q.
i=0

Thus,

are the pieces of u.

for 0 < i< M,

Introduction to the
Calculus of Variations

Swarnendu Sil

Definitions

Approximation and
extension

Traces

equalities and

nbeddings

Rellich

compact embeddings



Localizing and patching them up

Localizing or cutting into pieces
How do we use this to ‘cut’ u into pieces?
Note that we have

M
u= Z Ciu in Q.
i=0

Thus,
uj == (ju for0 < i< M,
are the pieces of u.

Patching up the pieces
On the other hand, if we are given functions v; € WP (U;)

Introduction to the
Calculus of Variations

Swarnendu Sil

Definitions
Elementary properties

Approximation and

extension

Traces

Sob qualities and
Sobolev embeddings

rdo-Nirenberg:

inequalities

P

inequalities

Sobolev

lich

compact embeddings



Localizing and patching them up

Localizing or cutting into pieces
How do we use this to ‘cut’ u into pieces?
Note that we have

M
u= Z Ciu in Q.
i=0

Thus,
uj == (ju for0 < i< M,

are the pieces of u.

Patching up the pieces

On the other hand, if we are given functions v; € WP (U;) for

every 0 <7 < M,

Introduction to the
Calculus of Variations

Swarnendu Sil

Definitions
Elementary properties

Approximation and
extension

inequalities

Poincaré-Sobolev

inequalities

lich

compact embeddings



Localizing and patching them up

Localizing or cutting into pieces
How do we use this to ‘cut’ u into pieces?
Note that we have

M
u= Z Ciu in Q.
i=0

Thus,
uj == (ju for0 < i< M,

are the pieces of u.

Patching up the pieces

On the other hand, if we are given functions v; € WP (U;) for

every 0 <7 < M, then

M
V= ZC,-V,- € WhP (R").
i=0
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Sketch of the proof of the extension result

Now hopefully it is clear what we want to do.
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cut u into pieces as discussed,
locally flatten the boundary, i.e. compose each piece of u

near the boundary with the respective diffemorphisms to
obtain Sobolev functions defined on the upper half ball,

extend those Sobolev functions to the whole ball,

compose those extensions with the inverse of the
diffeomorphisms to get Sobolev extensions to whole of the
neighborhoods U;s and finally

patch all these pieces together to obtain a Sobolev function
on the whole of R”".
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Sketch of the proof of the extension result

Now hopefully it is clear what we want to do. Our plan is
» cut v into pieces as discussed,

» locally flatten the boundary, i.e. compose each piece of u
near the boundary with the respective diffemorphisms to
obtain Sobolev functions defined on the upper half ball,

» extend those Sobolev functions to the whole ball,

» compose those extensions with the inverse of the
diffeomorphisms to get Sobolev extensions to whole of the
neighborhoods U;s and finally

» patch all these pieces together to obtain a Sobolev function
on the whole of R”".

Note that the up piece lives in the interior of €, so we can just
extend it by zero.

To carry out the plan, all that remains is to figure out how to
extend a Sobolev function on the upper half ball which vanishes
near the curved part of the boundary from the upper half ball
to the whole ball.
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Extension by reflection

At the level of WP it is hardly surprising or difficult. We just use
reflection across the flat part of the boundary of the upper half
ball.
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At the level of WP it is hardly surprising or difficult. We just use

reflection across the flat part of the boundary of the upper half
ball.

Lemma
Let u e Wbr (Bfr (0))
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near the curved part of the boundary,
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near the curved part of the boundary, i.e. 0By (0) N {x, > 0}.
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Lemma

Let u € WP (B (0)), where 1 < p < oo be such that it vanishes
near the curved part of the boundary, i.e. 0By (0) N {x, > 0}.
Then the function defined as

i(x',xp) = {U(XI’X”) if xo > 0,

u(x',—xp)  ifx, <O.
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ball Approximation and
° extension

Lemma

Let u € WP (B (0)), where 1 < p < oo be such that it vanishes
near the curved part of the boundary, i.e. 0By (0) N {x, > 0}.
Then the function defined as

i(x',xp) = {U(XI’X”) if xo > 0,

u(x',—xp)  ifx, <O.

belongs to WP (By (0)),
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reflection across the flat part of the boundary of the upper half

ball Approximation and
° extension

Lemma

Let u € WP (B (0)), where 1 < p < oo be such that it vanishes
near the curved part of the boundary, i.e. 0By (0) N {x, > 0}.
Then the function defined as

i(x',xp) = {U(XI’X”) if xo > 0,

u(x',—xp)  ifx, <O.

belongs to WP (B; (0)), extends u to By (0)
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At the level of WP it is hardly surprising or difficult. We just use
reflection across the flat part of the boundary of the upper half
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° extension
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Lemma

Let u € WP (B (0)), where 1 < p < oo be such that it vanishes
near the curved part of the boundary, i.e. 0By (0) N {x, > 0}.
Then the function defined as

3 x0) = u(x',xn) if x, > 0,
A Xn) = u(x',—xp)  ifx, <O.

belongs to WP (B; (0)), extends u to By (0) and vanishes near
0B (0).
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Let u € WP (B (0)), where 1 < p < oo be such that it vanishes
near the curved part of the boundary, i.e. 0By (0) N {x, > 0}.
Then the function defined as

i(x',xp) = {U(XI’X”) if xo > 0,
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belongs to WP (B; (0)), extends u to By (0) and vanishes near
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The value of the function obviously matches and perhaps slightly
less obviously,
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At the level of WP it is hardly surprising or difficult. We just use
reflection across the flat part of the boundary of the upper half
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° extension

Lemma

Let u € WP (B (0)), where 1 < p < oo be such that it vanishes
near the curved part of the boundary, i.e. 0By (0) N {x, > 0}.
Then the function defined as

i(x',xp) = {U(XI’X”) if xo > 0,

!

u(x',—xn) ifx, <O0.

belongs to WP (B; (0)), extends u to By (0) and vanishes near
0B (0).

The value of the function obviously matches and perhaps slightly
less obviously, the tangential derivatives along the equatorial
hyperplane match too.
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At the level of WP it is hardly surprising or difficult. We just use
reflection across the flat part of the boundary of the upper half

Elementary properties

ball Approximation and
° extension

Lemma

Let u € WP (B (0)), where 1 < p < oo be such that it vanishes
near the curved part of the boundary, i.e. 9B (0) N {x, > 0}.
Then the function defined as

!

L u(x',xn) if x, >0,
i(x', %) = ]
u(x',—xn) ifx, <O0.
belongs to WP (B; (0)), extends u to By (0) and vanishes near
0B1(0).

The value of the function obviously matches and perhaps slightly
less obviously, the tangential derivatives along the equatorial
hyperplane match too. So the only thing to check is whether the
normal derivative matches across the equatorial hyperplane

{xn =0}.
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At the level of WP it is hardly surprising or difficult. We just use
reflection across the flat part of the boundary of the upper half

Elementary properties

ball Approximation and
° extension

Lemma

Let u € WP (B (0)), where 1 < p < oo be such that it vanishes
near the curved part of the boundary, i.e. 9B (0) N {x, > 0}.
Then the function defined as

!

L u(x',xn) if x, >0,
i(x', %) = ]
u(x',—xn) ifx, <O0.
belongs to WP (B; (0)), extends u to By (0) and vanishes near
0B1(0).

The value of the function obviously matches and perhaps slightly
less obviously, the tangential derivatives along the equatorial
hyperplane match too. So the only thing to check is whether the
normal derivative matches across the equatorial hyperplane

{xn = 0} . You are asked to prove this in the problem sheets.
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Now we want to tackle the problem of defining ‘boundary values'
of a WP function. Note that 9 has zero n-dimensional
Lebesgue measure and so it is meaningless of talk about the
‘value’ of an LP function on 9f2. However, we shall see that unlike
the case of a general LP function, there is a precise sense in which
we can define ‘values’ of a WP function on 0.

Theorem (Existence of Trace operator)
Let Q C R" be open, bounded with smooth boundary
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of a WP function. Note that 9 has zero n-dimensional
Lebesgue measure and so it is meaningless of talk about the
‘value’ of an LP function on 9f2. However, we shall see that unlike
the case of a general LP function, there is a precise sense in which
we can define ‘values’ of a WP function on 0.

Theorem (Existence of Trace operator)

Let Q C R" be open, bounded with smooth boundary and let
1< p<oo.
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Now we want to tackle the problem of defining ‘boundary values'
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Now we want to tackle the problem of defining ‘boundary values'
of a WP function. Note that 9 has zero n-dimensional
Lebesgue measure and so it is meaningless of talk about the
‘value’ of an LP function on 9f2. However, we shall see that unlike
the case of a general LP function, there is a precise sense in which
we can define ‘values’ of a WP function on 99.

Theorem (Existence of Trace operator)

Let Q C R" be open, bounded with smooth boundary and let
1 < p < co. There exists a bounded linear operator

To: WHP(Q) — LP (09)
such that
Tou = U‘QQ
for any u € WHP (Q)N C> (Q).

For any u € WP (Q), we call Tou as the zeroth order Dirichlet
trace on the boundary and is often denoted simply as u|ggq.
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» Note that LP (0Q) is defined with respect to the surface
measure do on 0N). If you are familiar with Hausdorff

measure, then you would have no difficulty understanding

that this is essentially the (n — 1)-dimensional Hausdorff
measure H" =1 restricted to O9).

> Although we prove the theorem for 1 < p < oo, this does
not mean that WH*° functions have no bounded trace. In
fact, as we shall see later, W (Q) = C% (Q) . Thus, being
Lipschitz, these functions have boundary values in the usual
sense and those are clearly bounded on the compact set 0S2.

> In fact, Tou = ulapq for any u € WHP (Q)N C°(Q).
» As before, smooth boundary is not really necessary and the

result holds for Lipschitz boundaries as well. But some
regularity of the boundary is essential.
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» One can now easily figure out the kernel of the trace map.

Ker (To) = W, P (Q).

» Figuring out the exact image of the trace map is delicate.
They are however known, but requires the notion of Sobolev
spaces of fractional order. For example,
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» Figuring out the exact image of the trace map is delicate.
They are however known, but requires the notion of Sobolev
spaces of fractional order. For example,

To (WP (Q)) = WP (09).

» Higher order traces can be defined similarly and requires more
Sobolev regularity for those traces to be in LP (09).
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» One can now easily figure out the kernel of the trace map.

Ker (To) = W, P (Q).

Traces
» Figuring out the exact image of the trace map is delicate.
They are however known, but requires the notion of Sobolev
spaces of fractional order. For example,

To (WP (Q)) = WP (09).

» Higher order traces can be defined similarly and requires more
Sobolev regularity for those traces to be in LP (092). For
example, for u € W?P (Q), there is a bounded linear operator

Ty WP (Q) — LP(0Q)
such that
ou
O0%n | 50

forany u € W27 (Q)Nn C>(Q).
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Now we are going to study an extremely important topic in the
theory of Sobolev spaces, called the Sobolev embeddings.

Sobolev inequalities and
Sobolev embeddings

A WP function is apriori only in LP. Now we ask the question if
the additional information that the weak derivative is also in LP
implies that the function enjoys better integrability, i.e. actually is
in L9 for some g > p?

There are three different regimes in this discussion, depending on
what n and p is.

» Sobolev inequality The case 1 < p < n.
» Morrey’s inequality The case n < p < cc.
» The borderline case p = n.

We begin our discussion with the case 1 < p < n.
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Remark
Note that we always have p* > p.
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We shall prove this inequality in the next lecture.
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