Introduction to the Calculus of Variations: Lecture 11

Prelude to Direct

Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Swarnendu Sil
Department of Mathematics
Indian Institute of Science

Spring Semester 2021

Outline

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Poincaré inequality in $W_{0}^{1, p}$

Now we can show an important inequality known as the Poincaré inequality.

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Poincaré inequality in $W_{0}^{1, p}$

Now we can show an important inequality known as the Poincaré inequality.

Theorem (Poincaré inequality)
Let (a, b) be a bounded interval

Prelude to Direct
Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces

Existence of geodesics
Regularity questions

Poincaré inequality in $W_{0}^{1, p}$

Now we can show an important inequality known as the Poincaré inequality.

Theorem (Poincaré inequality)
Let (a, b) be a bounded interval and let $u \in W_{0}^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$ for $1 \leq p<\infty$.

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Poincaré inequality in $W_{0}^{1, p}$

Now we can show an important inequality known as the Poincaré inequality.

Theorem (Poincaré inequality)
Let (a, b) be a bounded interval and let $u \in W_{0}^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$ for $1 \leq p<\infty$. Then we have

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Poincaré inequality in $W_{0}^{1, p}$

Now we can show an important inequality known as the Poincaré inequality.

Theorem (Poincaré inequality)
Let (a, b) be a bounded interval and let $u \in W_{0}^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$ for $1 \leq p<\infty$. Then we have

$$
\int_{a}^{b}|u(t)|^{p} \mathrm{~d} t \leq(b-a)^{p} \int_{a}^{b}|\dot{u}(t)|^{p} \mathrm{~d} t
$$

Poincaré inequality in $W_{0}^{1, p}$

 Calculus of VariationsNow we can show an important inequality known as the Poincaré inequality.

Theorem (Poincaré inequality)
Let (a, b) be a bounded interval and let $u \in W_{0}^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$ for $1 \leq p<\infty$. Then we have

$$
\int_{a}^{b}|u(t)|^{p} \mathrm{~d} t \leq(b-a)^{p} \int_{a}^{b}|\dot{u}(t)|^{p} \mathrm{~d} t
$$

In particular, the expression

Prelude to Direct
Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Poincaré inequality in $W_{0}^{1, p}$

Now we can show an important inequality known as the Poincaré inequality.

Theorem (Poincaré inequality)
Let (a, b) be a bounded interval and let $u \in W_{0}^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$ for $1 \leq p<\infty$. Then we have

$$
\int_{a}^{b}|u(t)|^{p} \mathrm{~d} t \leq(b-a)^{p} \int_{a}^{b}|\dot{u}(t)|^{p} \mathrm{~d} t
$$

In particular, the expression

$$
\left(\int_{a}^{b}|\dot{u}(t)|^{p} \mathrm{~d} t\right)^{\frac{1}{p}}
$$

Poincaré inequality in $W_{0}^{1, p}$

Now we can show an important inequality known as the Poincaré inequality.

Theorem (Poincaré inequality)

Let (a, b) be a bounded interval and let $u \in W_{0}^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$ for $1 \leq p<\infty$. Then we have

$$
\int_{a}^{b}|u(t)|^{p} \mathrm{~d} t \leq(b-a)^{p} \int_{a}^{b}|\dot{u}(t)|^{p} \mathrm{~d} t
$$

In particular, the expression

$$
\left(\int_{a}^{b}|\dot{u}(t)|^{p} \mathrm{~d} t\right)^{\frac{1}{p}}
$$

is an equivalent norm

Poincaré inequality in $W_{0}^{1, p}$

Now we can show an important inequality known as the Poincaré inequality.

Theorem (Poincaré inequality)

Let (a, b) be a bounded interval and let $u \in W_{0}^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$ for $1 \leq p<\infty$. Then we have

$$
\int_{a}^{b}|u(t)|^{p} \mathrm{~d} t \leq(b-a)^{p} \int_{a}^{b}|\dot{u}(t)|^{p} \mathrm{~d} t
$$

In particular, the expression

$$
\left(\int_{a}^{b}|\dot{u}(t)|^{p} \mathrm{~d} t\right)^{\frac{1}{p}}
$$

is an equivalent norm (i.e equivalent to the $W^{1, p}$ norm)

Prelude to Direct
Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Poincaré inequality in $W_{0}^{1, p}$

Now we can show an important inequality known as the Poincaré inequality.

Theorem (Poincaré inequality)

Let (a, b) be a bounded interval and let $u \in W_{0}^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$ for $1 \leq p<\infty$. Then we have

$$
\int_{a}^{b}|u(t)|^{p} \mathrm{~d} t \leq(b-a)^{p} \int_{a}^{b}|\dot{u}(t)|^{p} \mathrm{~d} t
$$

In particular, the expression

$$
\left(\int_{a}^{b}|\dot{u}(t)|^{p} \mathrm{~d} t\right)^{\frac{1}{p}}
$$

is an equivalent norm (i.e equivalent to the $W^{1, p}$ norm) on $W_{0}^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$.

Poincaré inequality in $W_{0}^{1, p}$

Proof.

We leave out the details of the proof and only provide a sketch, as this is fairly easy.

Prelude to Direct
Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Poincaré inequality in $W_{0}^{1, p}$

Proof.

We leave out the details of the proof and only provide a sketch, as this is fairly easy. We prove it for C_{c}^{∞} functions first

Prelude to Direct
Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Poincaré inequality in $W_{0}^{1, p}$

Proof.

We leave out the details of the proof and only provide a sketch, as this is fairly easy. We prove it for C_{c}^{∞} functions first using the fundamental theorem of calculus

Prelude to Direct

Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Poincaré inequality in $W_{0}^{1, p}$

Proof.

We leave out the details of the proof and only provide a sketch, as this is fairly easy. We prove it for C_{c}^{∞} functions first using the fundamental theorem of calculus and easy estimates and Hölder inequality.

Prelude to Direct
Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Poincaré inequality in $W_{0}^{1, p}$

Proof.

We leave out the details of the proof and only provide a sketch, as this is fairly easy. We prove it for C_{c}^{∞} functions first using the fundamental theorem of calculus and easy estimates and Hölder inequality. Then we claim the result for $W_{0}^{1, p}$ by density.

Poincaré inequality in $W_{0}^{1, p}$

Proof.

We leave out the details of the proof and only provide a sketch, as this is fairly easy. We prove it for C_{c}^{∞} functions first using the fundamental theorem of calculus and easy estimates and Hölder inequality. Then we claim the result for $W_{0}^{1, p}$ by density.

Poincaré inequality in $W_{0}^{1, p}$

Proof.

We leave out the details of the proof and only provide a sketch, as this is fairly easy. We prove it for C_{c}^{∞} functions first using the fundamental theorem of calculus and easy estimates and Hölder inequality. Then we claim the result for $W_{0}^{1, p}$ by density.

Absolutely continuous functions

The geodesic problem was first solved for absolutely continuous curves,

Poincaré inequality in $W_{0}^{1, p}$

Proof.

We leave out the details of the proof and only provide a sketch, as this is fairly easy. We prove it for C_{c}^{∞} functions first using the fundamental theorem of calculus and easy estimates and Hölder inequality. Then we claim the result for $W_{0}^{1, p}$ by density.

Absolutely continuous functions

The geodesic problem was first solved for absolutely continuous curves, which were introduced by Vitalli.

Poincaré inequality in $W_{0}^{1, p}$

Proof.

We leave out the details of the proof and only provide a sketch, as this is fairly easy. We prove it for C_{c}^{∞} functions first using the fundamental theorem of calculus and easy estimates and Hölder inequality. Then we claim the result for $W_{0}^{1, p}$ by density.

Absolutely continuous functions

The geodesic problem was first solved for absolutely continuous curves, which were introduced by Vitalli. First we begin with a precise definition.

Poincaré inequality in $W_{0}^{1, p}$

Proof.

We leave out the details of the proof and only provide a sketch, as this is fairly easy. We prove it for C_{c}^{∞} functions first using the fundamental theorem of calculus and easy estimates and Hölder inequality. Then we claim the result for $W_{0}^{1, p}$ by density. \square

Absolutely continuous functions

The geodesic problem was first solved for absolutely continuous curves, which were introduced by Vitalli. First we begin with a precise definition.

Definition (absolutely continuous functions)
A function $u:(a, b) \rightarrow \mathbb{R}$ is said to be absolutely continuous,

Poincaré inequality in $W_{0}^{1, p}$

Proof.

We leave out the details of the proof and only provide a sketch, as this is fairly easy. We prove it for C_{c}^{∞} functions first using the fundamental theorem of calculus and easy estimates and Hölder inequality. Then we claim the result for $W_{0}^{1, p}$ by density. \square

Absolutely continuous functions

The geodesic problem was first solved for absolutely continuous curves, which were introduced by Vitalli. First we begin with a precise definition.
Definition (absolutely continuous functions)
A function $u:(a, b) \rightarrow \mathbb{R}$ is said to be absolutely continuous, denoted $u \in \operatorname{AC}((a, b))$,

Poincaré inequality in $W_{0}^{1, p}$

Proof.

We leave out the details of the proof and only provide a sketch, as this is fairly easy. We prove it for C_{c}^{∞} functions first using the fundamental theorem of calculus and easy estimates and Hölder inequality. Then we claim the result for $W_{0}^{1, p}$ by density. \square

Absolutely continuous functions

The geodesic problem was first solved for absolutely continuous curves, which were introduced by Vitalli. First we begin with a precise definition.
Definition (absolutely continuous functions)
A function $u:(a, b) \rightarrow \mathbb{R}$ is said to be absolutely continuous, denoted $u \in \operatorname{AC}((a, b))$, if, for every $\varepsilon>0$,

Poincaré inequality in $W_{0}^{1, p}$

Proof.

We leave out the details of the proof and only provide a sketch, as this is fairly easy. We prove it for C_{c}^{∞} functions first using the fundamental theorem of calculus and easy estimates and Hölder inequality. Then we claim the result for $W_{0}^{1, p}$ by density. \square

Absolutely continuous functions

The geodesic problem was first solved for absolutely continuous curves, which were introduced by Vitalli. First we begin with a precise definition.

Definition (absolutely continuous functions)

A function $u:(a, b) \rightarrow \mathbb{R}$ is said to be absolutely continuous, denoted $u \in \operatorname{AC}((a, b))$, if, for every $\varepsilon>0$, there is a $\delta>0$ such that

Poincaré inequality in $W_{0}^{1, p}$

Proof.

We leave out the details of the proof and only provide a sketch, as this is fairly easy. We prove it for C_{c}^{∞} functions first using the fundamental theorem of calculus and easy estimates and Hölder inequality. Then we claim the result for $W_{0}^{1, p}$ by density.

Absolutely continuous functions

The geodesic problem was first solved for absolutely continuous curves, which were introduced by Vitalli. First we begin with a precise definition.

Definition (absolutely continuous functions)

A function $u:(a, b) \rightarrow \mathbb{R}$ is said to be absolutely continuous, denoted $u \in \operatorname{AC}((a, b))$, if, for every $\varepsilon>0$, there is a $\delta>0$ such that

$$
\sum_{i=1}^{M}\left|\beta_{i}-\alpha_{i}\right|<\delta \quad \text { implies } \quad \sum_{i=1}^{M}\left|u\left(\beta_{i}\right)-u\left(\alpha_{i}\right)\right|<\varepsilon
$$

Poincaré inequality in $W_{0}^{1, p}$

Proof.

We leave out the details of the proof and only provide a sketch, as this is fairly easy. We prove it for C_{c}^{∞} functions first using the fundamental theorem of calculus and easy estimates and Hölder inequality. Then we claim the result for $W_{0}^{1, p}$ by density.

Absolutely continuous functions

The geodesic problem was first solved for absolutely continuous curves, which were introduced by Vitalli. First we begin with a precise definition.

Definition (absolutely continuous functions)

A function $u:(a, b) \rightarrow \mathbb{R}$ is said to be absolutely continuous, denoted $u \in \operatorname{AC}((a, b))$, if, for every $\varepsilon>0$, there is a $\delta>0$ such that

$$
\sum_{i=1}^{M}\left|\beta_{i}-\alpha_{i}\right|<\delta \quad \text { implies } \quad \sum_{i=1}^{M}\left|u\left(\beta_{i}\right)-u\left(\alpha_{i}\right)\right|<\varepsilon
$$

whenever $\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{M}, \beta_{M}\right)$ are disjoint segments in (a, b).

Absolutely continuous functions

Introduction to the

 Calculus of VariationsSwarnendu Sil

Remark

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Absolutely continuous functions

Remark

- The vector-valued version is defined similarly.

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Absolutely continuous functions

Remark

- The vector-valued version is defined similarly.
- Clearly, any absolutely continuous function is uniformly continuous.

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Absolutely continuous functions

Remark

- The vector-valued version is defined similarly.
- Clearly, any absolutely continuous function is uniformly continuous.
- Any absolutely continuous function is also of bounded variation.

Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Absolutely continuous functions

Remark

- The vector-valued version is defined similarly.
- Clearly, any absolutely continuous function is uniformly continuous.
- Any absolutely continuous function is also of bounded variation. More precisely, if $u \in A C((a, b))$, we have

Prelude to Direct

Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces

Existence of geodesics
Regularity questions

Absolutely continuous functions

Remark

- The vector-valued version is defined similarly.
- Clearly, any absolutely continuous function is uniformly continuous.
- Any absolutely continuous function is also of bounded variation. More precisely, if $u \in A C((a, b))$, we have

$$
V_{a}^{b}(u):=\sup \sum_{i=1}^{M}\left|u\left(x_{i}\right)-u\left(x_{i-1}\right)\right|<+\infty
$$

Prelude to Direct

Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces

Existence of geodesics

Absolutely continuous functions

Remark

- The vector-valued version is defined similarly.
- Clearly, any absolutely continuous function is uniformly continuous.
- Any absolutely continuous function is also of bounded variation. More precisely, if $u \in A C((a, b))$, we have

$$
V_{a}^{b}(u):=\sup \sum_{i=1}^{M}\left|u\left(x_{i}\right)-u\left(x_{i-1}\right)\right|<+\infty
$$

where the supremum is taken over all natural numbers M

Absolutely continuous functions

Remark

- The vector-valued version is defined similarly.
- Clearly, any absolutely continuous function is uniformly continuous.
- Any absolutely continuous function is also of bounded variation. More precisely, if $u \in A C((a, b))$, we have

$$
V_{a}^{b}(u):=\sup \sum_{i=1}^{M}\left|u\left(x_{i}\right)-u\left(x_{i-1}\right)\right|<+\infty
$$

where the supremum is taken over all natural numbers M and all choices of $x_{i} s$ such that $a<x_{0}<x_{1}<\ldots<x_{M}<b$.

Absolutely continuous functions

Remark

- The vector-valued version is defined similarly.
- Clearly, any absolutely continuous function is uniformly continuous.
- Any absolutely continuous function is also of bounded variation. More precisely, if $u \in A C((a, b))$, we have

$$
V_{a}^{b}(u):=\sup \sum_{i=1}^{M}\left|u\left(x_{i}\right)-u\left(x_{i-1}\right)\right|<+\infty
$$

where the supremum is taken over all natural numbers M and all choices of $x_{i} s$ such that $a<x_{0}<x_{1}<\ldots<x_{M}<b$.

- However, much more is true. In fact, we have,

Absolutely continuous functions

Remark

- The vector-valued version is defined similarly.
- Clearly, any absolutely continuous function is uniformly continuous.
- Any absolutely continuous function is also of bounded variation. More precisely, if $u \in A C((a, b))$, we have

$$
V_{a}^{b}(u):=\sup \sum_{i=1}^{M}\left|u\left(x_{i}\right)-u\left(x_{i-1}\right)\right|<+\infty
$$

where the supremum is taken over all natural numbers M and all choices of $x_{i} s$ such that $a<x_{0}<x_{1}<\ldots<x_{M}<b$.

- However, much more is true. In fact, we have,

$$
A C\left((a, b) ; \mathbb{R}^{N}\right)=W^{1,1}\left((a, b) ; \mathbb{R}^{N}\right)
$$

Absolutely continuous functions

Remark

- The vector-valued version is defined similarly.
- Clearly, any absolutely continuous function is uniformly continuous.
- Any absolutely continuous function is also of bounded variation. More precisely, if $u \in A C((a, b))$, we have

$$
V_{a}^{b}(u):=\sup \sum_{i=1}^{M}\left|u\left(x_{i}\right)-u\left(x_{i-1}\right)\right|<+\infty
$$

where the supremum is taken over all natural numbers M and all choices of $x_{i} s$ such that $a<x_{0}<x_{1}<\ldots<x_{M}<b$.

- However, much more is true. In fact, we have,

$$
A C\left((a, b) ; \mathbb{R}^{N}\right)=W^{1,1}\left((a, b) ; \mathbb{R}^{N}\right)
$$

We shall prove it in the problem sheet in stages.

Existence of geodesics

Now we return to the problem of showing the existence of a geodesic.

Prelude to Direct
Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Existence of geodesics

Now we return to the problem of showing the existence of a geodesic. The variational problem is

Prelude to Direct
Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Existence of geodesics

Now we return to the problem of showing the existence of a geodesic. The variational problem is

$$
\inf _{\gamma \in X}\left\{L(c):=\int_{0}^{T}\left(g_{i j}(\gamma(t)) \dot{\gamma}^{i}(t) \dot{\gamma}^{j}(t)\right)^{\frac{1}{2}} \mathrm{~d} t\right\}=m
$$

Prelude to Direct

Methods
Geodesics: the problem Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Existence of geodesics

Now we return to the problem of showing the existence of a geodesic. The variational problem is

$$
\inf _{\gamma \in X}\left\{L(c):=\int_{0}^{T}\left(g_{i j}(\gamma(t)) \dot{\gamma}^{i}(t) \dot{\gamma}^{j}(t)\right)^{\frac{1}{2}} \mathrm{~d} t\right\}=m
$$

Existence of geodesics
where

$$
X=\left\{: \gamma \in C^{1}([0, T] ; U): \gamma(0)=f^{-1}\left(p_{1}\right), \gamma(T)=f^{-1}\left(p_{2}\right)\right\} .
$$

Existence of geodesics

Now we return to the problem of showing the existence of a geodesic. The variational problem is

$$
\inf _{\gamma \in X}\left\{L(c):=\int_{0}^{T}\left(g_{i j}(\gamma(t)) \dot{\gamma}^{i}(t) \dot{\gamma}^{j}(t)\right)^{\frac{1}{2}} \mathrm{~d} t\right\}=m
$$

Existence of geodesics
where

$$
X=\left\{: \gamma \in C^{1}([0, T] ; U): \gamma(0)=f^{-1}\left(p_{1}\right), \gamma(T)=f^{-1}\left(p_{2}\right)\right\} .
$$

Here we are implicitly making the identification of c with γ via a fixed local chart f.

Existence of geodesics

Now we return to the problem of showing the existence of a geodesic. The variational problem is

$$
\inf _{\gamma \in X}\left\{L(c):=\int_{0}^{T}\left(g_{i j}(\gamma(t)) \dot{\gamma}^{i}(t) \dot{\gamma}^{j}(t)\right)^{\frac{1}{2}} \mathrm{~d} t\right\}=m
$$

Prelude to Direct

Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics Regularity questions
where

$$
X=\left\{: \gamma \in C^{1}([0, T] ; U): \gamma(0)=f^{-1}\left(p_{1}\right), \gamma(T)=f^{-1}\left(p_{2}\right)\right\} .
$$

Here we are implicitly making the identification of c with γ via a fixed local chart f.
We have already seen that this problem does not have enough compactness properties.

Existence of geodesics

Now we return to the problem of showing the existence of a geodesic. The variational problem is

$$
\inf _{\gamma \in X}\left\{L(c):=\int_{0}^{T}\left(g_{i j}(\gamma(t)) \dot{\gamma}^{i}(t) \dot{\gamma}^{j}(t)\right)^{\frac{1}{2}} \mathrm{~d} t\right\}=m .
$$

Prelude to Direct

Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics Regularity questions
where

$$
X=\left\{: \gamma \in C^{1}([0, T] ; U): \gamma(0)=f^{-1}\left(p_{1}\right), \gamma(T)=f^{-1}\left(p_{2}\right)\right\} .
$$

Here we are implicitly making the identification of c with γ via a fixed local chart f.
We have already seen that this problem does not have enough compactness properties. We are going to inspect why in a bit more detail from another perspective.

Existence of geodesics

Now we return to the problem of showing the existence of a geodesic. The variational problem is

$$
\inf _{\gamma \in X}\left\{L(c):=\int_{0}^{T}\left(g_{i j}(\gamma(t)) \dot{\gamma}^{i}(t) \dot{\gamma}^{j}(t)\right)^{\frac{1}{2}} \mathrm{~d} t\right\}=m .
$$

Prelude to Direct

Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics Regularity questions
where

$$
X=\left\{: \gamma \in C^{1}([0, T] ; U): \gamma(0)=f^{-1}\left(p_{1}\right), \gamma(T)=f^{-1}\left(p_{2}\right)\right\} .
$$

Here we are implicitly making the identification of c with γ via a fixed local chart f.
We have already seen that this problem does not have enough compactness properties. We are going to inspect why in a bit more detail from another perspective.

Invariance under reparametrization

The length functional is invariant under reparametrization.

Existence of geodesics
Regularity questions

Invariance under reparametrization

The length functional is invariant under reparametrization. Let

$$
\tau:[0, S] \rightarrow[0, T]
$$

be a diffeomorphism.

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Invariance under reparametrization

The length functional is invariant under reparametrization. Let

$$
\tau:[0, S] \rightarrow[0, T]
$$

be a diffeomorphism. Then we see

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Invariance under reparametrization

The length functional is invariant under reparametrization. Let

$$
\tau:[0, S] \rightarrow[0, T]
$$

be a diffeomorphism. Then we see

Prelude to Direct Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

$$
L(c)=L(c \circ \tau) \quad \text { for any curve } c:[0, T] \rightarrow \mathbb{R}^{N} .
$$

Invariance under reparametrization

The length functional is invariant under reparametrization. Let

$$
\tau:[0, S] \rightarrow[0, T]
$$

be a diffeomorphism. Then we see

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

$$
L(c)=L(c \circ \tau) \quad \text { for any curve } c:[0, T] \rightarrow \mathbb{R}^{N} .
$$

Indeed,

Invariance under reparametrization

The length functional is invariant under reparametrization. Let

$$
\tau:[0, S] \rightarrow[0, T]
$$

be a diffeomorphism. Then we see

$$
L(c)=L(c \circ \tau) \quad \text { for any curve } c:[0, T] \rightarrow \mathbb{R}^{N}
$$

Indeed,

$$
\begin{aligned}
L(c \circ \tau) & =\int_{0}^{S}\left|\frac{d}{d s}(c \circ \tau)(s)\right| \mathrm{d} s \\
& =\int_{0}^{S}\left|\left(\frac{d}{d t} c\right)(\tau(s))\right|\left|\frac{d \tau}{d s}(s)\right| \mathrm{d} s \\
& =\int_{0}^{T}|\dot{c}(t)| \mathrm{d} t=L(c)
\end{aligned}
$$

Prelude to Direct Methods

Geodesics: the problem Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Reparametrization and group action

What is happening here is a noncompactness due to a group action,

Prelude to Direct
Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Reparametrization and group action

What is happening here is a noncompactness due to a group action, here the group being the diffeomorphism group of an interval.

Prelude to Direct
Methods
Geodesics: the problem
Absolute continuity: first
encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Reparametrization and group action

What is happening here is a noncompactness due to a group action, here the group being the diffeomorphism group of an interval.
Just for an analogy,

Prelude to Direct
Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Reparametrization and group action

What is happening here is a noncompactness due to a group action, here the group being the diffeomorphism group of an interval.
Just for an analogy, suppose we are looking to find the unit interval $[0,1]$.

Reparametrization and group action

What is happening here is a noncompactness due to a group action, here the group being the diffeomorphism group of an interval.
Just for an analogy, suppose we are looking to find the unit interval $[0,1]$. Suppose, however,

Prelude to Direct
Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Reparametrization and group action

What is happening here is a noncompactness due to a group action, here the group being the diffeomorphism group of an interval.
Just for an analogy, suppose we are looking to find the unit interval $[0,1]$. Suppose, however, that our problem is invariant under the action of \mathbb{Z},

Reparametrization and group action

What is happening here is a noncompactness due to a group action, here the group being the diffeomorphism group of an interval.
Just for an analogy, suppose we are looking to find the unit interval $[0,1]$. Suppose, however, that our problem is invariant under the action of \mathbb{Z}, i.e. invariant under the transformation

Reparametrization and group action

What is happening here is a noncompactness due to a group action, here the group being the diffeomorphism group of an interval.
Just for an analogy, suppose we are looking to find the unit interval $[0,1]$. Suppose, however, that our problem is invariant under the action of \mathbb{Z}, i.e. invariant under the transformation

$$
x \mapsto x+\mathbb{Z}
$$

Prelude to Direct
Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Reparametrization and group action

What is happening here is a noncompactness due to a group action, here the group being the diffeomorphism group of an interval.
Just for an analogy, suppose we are looking to find the unit interval $[0,1]$. Suppose, however, that our problem is invariant under the action of \mathbb{Z}, i.e. invariant under the transformation

$$
x \mapsto x+\mathbb{Z}
$$

Now, the trouble is,

Reparametrization and group action

What is happening here is a noncompactness due to a group action, here the group being the diffeomorphism group of an interval.
Just for an analogy, suppose we are looking to find the unit interval $[0,1]$. Suppose, however, that our problem is invariant under the action of \mathbb{Z}, i.e. invariant under the transformation

$$
x \mapsto x+\mathbb{Z}
$$

Now, the trouble is, though our problem does not distinguish between copies of the same interval,

Reparametrization and group action

What is happening here is a noncompactness due to a group action, here the group being the diffeomorphism group of an interval.
Just for an analogy, suppose we are looking to find the unit interval $[0,1]$. Suppose, however, that our problem is invariant under the action of \mathbb{Z}, i.e. invariant under the transformation

$$
x \mapsto x+\mathbb{Z}
$$

Now, the trouble is, though our problem does not distinguish between copies of the same interval, we do

Reparametrization and group action

What is happening here is a noncompactness due to a group action, here the group being the diffeomorphism group of an interval.
Just for an analogy, suppose we are looking to find the unit interval $[0,1]$. Suppose, however, that our problem is invariant under the action of \mathbb{Z}, i.e. invariant under the transformation

$$
x \mapsto x+\mathbb{Z}
$$

Now, the trouble is, though our problem does not distinguish between copies of the same interval, we do and thus instead of finding the compact interval $[0,1]$,

Reparametrization and group action

What is happening here is a noncompactness due to a group action, here the group being the diffeomorphism group of an interval.
Just for an analogy, suppose we are looking to find the unit interval $[0,1]$. Suppose, however, that our problem is invariant under the action of \mathbb{Z}, i.e. invariant under the transformation

$$
x \mapsto x+\mathbb{Z}
$$

Now, the trouble is, though our problem does not distinguish between copies of the same interval, we do and thus instead of finding the compact interval $[0,1]$, we would find the collection of all integer translated copies of the interval,

Reparametrization and group action

What is happening here is a noncompactness due to a group action, here the group being the diffeomorphism group of an interval.
Just for an analogy, suppose we are looking to find the unit interval $[0,1]$. Suppose, however, that our problem is invariant under the action of \mathbb{Z}, i.e. invariant under the transformation

$$
x \mapsto x+\mathbb{Z}
$$

Now, the trouble is, though our problem does not distinguish between copies of the same interval, we do and thus instead of finding the compact interval $[0,1]$, we would find the collection of all integer translated copies of the interval, which is $\mathbb{R}(!)$

Reparametrization and group action

What is happening here is a noncompactness due to a group action, here the group being the diffeomorphism group of an interval.
Just for an analogy, suppose we are looking to find the unit interval $[0,1]$. Suppose, however, that our problem is invariant under the action of \mathbb{Z}, i.e. invariant under the transformation

$$
x \mapsto x+\mathbb{Z}
$$

Now, the trouble is, though our problem does not distinguish between copies of the same interval, we do and thus instead of finding the compact interval $[0,1]$, we would find the collection of all integer translated copies of the interval, which is $\mathbb{R}(!)$ and is noncompact!

Reparametrization and group action

What is happening here is a noncompactness due to a group action, here the group being the diffeomorphism group of an interval.
Just for an analogy, suppose we are looking to find the unit interval $[0,1]$. Suppose, however, that our problem is invariant under the action of \mathbb{Z}, i.e. invariant under the transformation

$$
x \mapsto x+\mathbb{Z}
$$

Now, the trouble is, though our problem does not distinguish between copies of the same interval, we do and thus instead of finding the compact interval $[0,1]$, we would find the collection of all integer translated copies of the interval, which is $\mathbb{R}(!)$ and is noncompact!

Probably it is better to view the analogy in reverse.

Reparametrization and group action

Suppose we are working with the noncompact space \mathbb{R},

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Reparametrization and group action

Suppose we are working with the noncompact space \mathbb{R}, and the lack of compactness causes trouble for us.

Reparametrization and group action

Suppose we are working with the noncompact space \mathbb{R}, and the lack of compactness causes trouble for us.
But suppose that our problem is invariant under the action of \mathbb{Z}.

Prelude to Direct
Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Reparametrization and group action

Suppose we are working with the noncompact space \mathbb{R}, and the lack of compactness causes trouble for us.
But suppose that our problem is invariant under the action of \mathbb{Z}. Since the problem does not distinguish between copies of the same interval,

Reparametrization and group action

Suppose we are working with the noncompact space \mathbb{R}, and the lack of compactness causes trouble for us.
But suppose that our problem is invariant under the action of \mathbb{Z}. Since the problem does not distinguish between copies of the same interval, we can cease to do so as well!

Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Reparametrization and group action

Suppose we are working with the noncompact space \mathbb{R}, and the lack of compactness causes trouble for us.
But suppose that our problem is invariant under the action of \mathbb{Z}. Since the problem does not distinguish between copies of the same interval, we can cease to do so as well! Thus, we can 'quotient out' the invariance

Reparametrization and group action

Suppose we are working with the noncompact space \mathbb{R}, and the lack of compactness causes trouble for us.
But suppose that our problem is invariant under the action of \mathbb{Z}. Since the problem does not distinguish between copies of the same interval, we can cease to do so as well! Thus, we can 'quotient out' the invariance or pass to the quotient' \mathbb{R} / \mathbb{Z}.

Reparametrization and group action

Suppose we are working with the noncompact space \mathbb{R}, and the lack of compactness causes trouble for us.
But suppose that our problem is invariant under the action of \mathbb{Z}. Since the problem does not distinguish between copies of the same interval, we can cease to do so as well! Thus, we can 'quotient out' the invariance or pass to the quotient' \mathbb{R} / \mathbb{Z}.
Question: What is the quotient?

Reparametrization and group action

Suppose we are working with the noncompact space \mathbb{R}, and the lack of compactness causes trouble for us.
But suppose that our problem is invariant under the action of \mathbb{Z}. Since the problem does not distinguish between copies of the same interval, we can cease to do so as well! Thus, we can 'quotient out' the invariance or pass to the quotient' \mathbb{R} / \mathbb{Z}.
Question: What is the quotient?

$$
\mathbb{R} / \mathbb{Z}=\mathbb{S}^{1}
$$

Reparametrization and group action

Suppose we are working with the noncompact space \mathbb{R}, and the lack of compactness causes trouble for us.
But suppose that our problem is invariant under the action of \mathbb{Z}. Since the problem does not distinguish between copies of the same interval, we can cease to do so as well! Thus, we can 'quotient out' the invariance or pass to the quotient' \mathbb{R} / \mathbb{Z}.
Question: What is the quotient?

$$
\mathbb{R} / \mathbb{Z}=\mathbb{S}^{1}
$$

which is compact!

Reparametrization and group action

Suppose we are working with the noncompact space \mathbb{R}, and the lack of compactness causes trouble for us.
But suppose that our problem is invariant under the action of \mathbb{Z}. Since the problem does not distinguish between copies of the same interval, we can cease to do so as well! Thus, we can 'quotient out' the invariance or pass to the quotient' \mathbb{R} / \mathbb{Z}.
Question: What is the quotient?

$$
\mathbb{R} / \mathbb{Z}=\mathbb{S}^{1}
$$

which is compact! Caution: Incidentally, \mathbb{S}^{1} is also the one-point compactfication of \mathbb{R}.

Reparametrization and group action

Suppose we are working with the noncompact space \mathbb{R}, and the lack of compactness causes trouble for us.
But suppose that our problem is invariant under the action of \mathbb{Z}. Since the problem does not distinguish between copies of the same interval, we can cease to do so as well! Thus, we can 'quotient out' the invariance or pass to the quotient' \mathbb{R} / \mathbb{Z}.

Question: What is the quotient?

$$
\mathbb{R} / \mathbb{Z}=\mathbb{S}^{1}
$$

which is compact! Caution: Incidentally, \mathbb{S}^{1} is also the one-point compactfication of \mathbb{R}. However, this is not at play here and is just incidental here.

Reparametrization and group action

Suppose we are working with the noncompact space \mathbb{R}, and the lack of compactness causes trouble for us.
But suppose that our problem is invariant under the action of \mathbb{Z}. Since the problem does not distinguish between copies of the same interval, we can cease to do so as well! Thus, we can 'quotient out' the invariance or pass to the quotient' \mathbb{R} / \mathbb{Z}.

Question: What is the quotient?

$$
\mathbb{R} / \mathbb{Z}=\mathbb{S}^{1}
$$

which is compact! Caution: Incidentally, \mathbb{S}^{1} is also the one-point compactfication of \mathbb{R}. However, this is not at play here and is just incidental here. For example, if the domain is \mathbb{R}^{n} for $n \geq 2$

Reparametrization and group action

Suppose we are working with the noncompact space \mathbb{R}, and the lack of compactness causes trouble for us.
But suppose that our problem is invariant under the action of \mathbb{Z}. Since the problem does not distinguish between copies of the same interval, we can cease to do so as well! Thus, we can 'quotient out' the invariance or pass to the quotient' \mathbb{R} / \mathbb{Z}.

Question: What is the quotient?

$$
\mathbb{R} / \mathbb{Z}=\mathbb{S}^{1}
$$

which is compact! Caution: Incidentally, \mathbb{S}^{1} is also the one-point compactfication of \mathbb{R}. However, this is not at play here and is just incidental here. For example, if the domain is \mathbb{R}^{n} for $n \geq 2$ and the problem is invariant under the transformation (translation by an integer lattice)

$$
x \mapsto x+\mathbb{Z}^{n}
$$

Reparametrization and group action

Suppose we are working with the noncompact space \mathbb{R}, and the lack of compactness causes trouble for us.
But suppose that our problem is invariant under the action of \mathbb{Z}. Since the problem does not distinguish between copies of the same interval, we can cease to do so as well! Thus, we can 'quotient out' the invariance or pass to the quotient' \mathbb{R} / \mathbb{Z}.

Question: What is the quotient?

$$
\mathbb{R} / \mathbb{Z}=\mathbb{S}^{1}
$$

which is compact! Caution: Incidentally, \mathbb{S}^{1} is also the one-point compactfication of \mathbb{R}. However, this is not at play here and is just incidental here. For example, if the domain is \mathbb{R}^{n} for $n \geq 2$ and the problem is invariant under the transformation (translation by an integer lattice)

$$
x \mapsto x+\mathbb{Z}^{n}
$$

then

$$
\mathbb{R}^{n} / \mathbb{Z}_{s}^{n}=\mathbb{T}^{n}
$$

Reparametrization and group action

Suppose we are working with the noncompact space \mathbb{R}, and the lack of compactness causes trouble for us.
But suppose that our problem is invariant under the action of \mathbb{Z}. Since the problem does not distinguish between copies of the same interval, we can cease to do so as well! Thus, we can 'quotient out' the invariance or pass to the quotient' \mathbb{R} / \mathbb{Z}.

Question: What is the quotient?

$$
\mathbb{R} / \mathbb{Z}=\mathbb{S}^{1}
$$

which is compact! Caution: Incidentally, \mathbb{S}^{1} is also the one-point compactfication of \mathbb{R}. However, this is not at play here and is just incidental here. For example, if the domain is \mathbb{R}^{n} for $n \geq 2$ and the problem is invariant under the transformation (translation by an integer lattice)

$$
x \mapsto x+\mathbb{Z}^{n}
$$

then

$$
\mathbb{R}^{n} / \mathbb{Z}_{s}^{n}=\mathbb{R}^{n}
$$

the n-torus,

Reparametrization and group action

Suppose we are working with the noncompact space \mathbb{R}, and the lack of compactness causes trouble for us.
But suppose that our problem is invariant under the action of \mathbb{Z}. Since the problem does not distinguish between copies of the same interval, we can cease to do so as well! Thus, we can 'quotient out' the invariance or pass to the quotient' \mathbb{R} / \mathbb{Z}.

Question: What is the quotient?

$$
\mathbb{R} / \mathbb{Z}=\mathbb{S}^{1}
$$

which is compact! Caution: Incidentally, \mathbb{S}^{1} is also the one-point compactfication of \mathbb{R}. However, this is not at play here and is just incidental here. For example, if the domain is \mathbb{R}^{n} for $n \geq 2$ and the problem is invariant under the transformation (translation by an integer lattice)

$$
x \mapsto x+\mathbb{Z}^{n}
$$

then

$$
\mathbb{R}^{n} / \mathbb{Z}^{n}=\mathbb{T}^{n}
$$

the n-torus, which is once again compact,

Reparametrization and group action

Suppose we are working with the noncompact space \mathbb{R}, and the lack of compactness causes trouble for us.
But suppose that our problem is invariant under the action of \mathbb{Z}. Since the problem does not distinguish between copies of the same interval, we can cease to do so as well! Thus, we can 'quotient out' the invariance or pass to the quotient' \mathbb{R} / \mathbb{Z}.

Question: What is the quotient?

$$
\mathbb{R} / \mathbb{Z}=\mathbb{S}^{1}
$$

which is compact! Caution: Incidentally, \mathbb{S}^{1} is also the one-point compactfication of \mathbb{R}. However, this is not at play here and is just incidental here. For example, if the domain is \mathbb{R}^{n} for $n \geq 2$ and the problem is invariant under the transformation (translation by an integer lattice)

$$
x \mapsto x+\mathbb{Z}^{n}
$$

then

$$
\mathbb{R}^{n} / \mathbb{Z}^{n}=\mathbb{R}^{n}
$$

the n-torus, which is once again compact, but is quite different from the one point compactification of \mathbb{R}^{n},

Reparametrization and group action

Suppose we are working with the noncompact space \mathbb{R}, and the lack of compactness causes trouble for us.
But suppose that our problem is invariant under the action of \mathbb{Z}. Since the problem does not distinguish between copies of the same interval, we can cease to do so as well! Thus, we can 'quotient out' the invariance or pass to the quotient' \mathbb{R} / \mathbb{Z}.

Question: What is the quotient?

$$
\mathbb{R} / \mathbb{Z}=\mathbb{S}^{1}
$$

which is compact! Caution: Incidentally, \mathbb{S}^{1} is also the one-point compactfication of \mathbb{R}. However, this is not at play here and is just incidental here. For example, if the domain is \mathbb{R}^{n} for $n \geq 2$ and the problem is invariant under the transformation (translation by an integer lattice)

$$
x \mapsto x+\mathbb{Z}^{n}
$$

then

$$
\mathbb{R}^{n} / \mathbb{Z}^{n}=\mathbb{R}^{n}
$$

the n-torus, which is once again compact, but is quite different from the one point compactification of \mathbb{R}^{n}, which is \mathbb{S}^{n}.

Fixing the parametrization

To 'quotient out' this invariance, we need to fix a parametrization.

Fixing the parametrization

To 'quotient out' this invariance, we need to fix a parametrization. But which one?

Existence of geodesics

Fixing the parametrization

To 'quotient out' this invariance, we need to fix a parametrization. But which one? To answer this, let us go back to the easier problem for which we have more hopes of solving.

Prelude to Direct
Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Fixing the parametrization

To 'quotient out' this invariance, we need to fix a parametrization. But which one? To answer this, let us go back to the easier problem for which we have more hopes of solving. We define the energy of a curve c as

Prelude to Direct
Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Fixing the parametrization

To 'quotient out' this invariance, we need to fix a parametrization. But which one? To answer this, let us go back to the easier problem for which we have more hopes of solving. We define the energy of a curve c as

$$
E(c):=\frac{1}{2} \int_{0}^{T}|\dot{c}(t)|^{2} \mathrm{~d} t=\frac{1}{2} \int_{0}^{T} g_{i j}(\gamma(t)) \dot{\gamma}^{i}(t) \dot{\gamma}^{j}(t) \mathrm{d} t
$$

Methods
Geodesics: the problem Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Fixing the parametrization

To 'quotient out' this invariance, we need to fix a parametrization. But which one? To answer this, let us go back to the easier problem for which we have more hopes of solving. We define the energy of a curve c as

$$
E(c):=\frac{1}{2} \int_{0}^{T}|\dot{c}(t)|^{2} \mathrm{~d} t=\frac{1}{2} \int_{0}^{T} g_{i j}(\gamma(t)) \dot{\gamma}^{i}(t) \dot{\gamma}^{j}(t) \mathrm{d} t
$$

Now we notice that for $c \in W^{1,2}\left([0, T] ; \mathbb{R}^{N}\right)$, we have,

Fixing the parametrization

To 'quotient out' this invariance, we need to fix a parametrization. But which one? To answer this, let us go back to the easier problem for which we have more hopes of solving. We define the energy of a curve c as

$$
E(c):=\frac{1}{2} \int_{0}^{T}|\dot{c}(t)|^{2} \mathrm{~d} t=\frac{1}{2} \int_{0}^{T} g_{i j}(\gamma(t)) \dot{\gamma}^{i}(t) \dot{\gamma}^{j}(t) \mathrm{d} t
$$

Now we notice that for $c \in W^{1,2}\left([0, T] ; \mathbb{R}^{N}\right)$, we have,

$$
\begin{aligned}
L(c) & =\int_{0}^{T}|\dot{c}(t)| \mathrm{d} t \\
& \stackrel{\text { Hölder }}{\leq} \sqrt{T}\left(\int_{0}^{T}|\dot{c}(t)|^{2} \mathrm{~d} t\right)^{\frac{1}{2}} \\
& \leq \sqrt{2 T} \sqrt{E(c)},
\end{aligned}
$$

Fixing the parametrization

To 'quotient out' this invariance, we need to fix a parametrization. But which one? To answer this, let us go back to the easier problem for which we have more hopes of solving. We define the energy of a curve c as

$$
E(c):=\frac{1}{2} \int_{0}^{T}|\dot{c}(t)|^{2} \mathrm{~d} t=\frac{1}{2} \int_{0}^{T} g_{i j}(\gamma(t)) \dot{\gamma}^{i}(t) \dot{\gamma}^{j}(t) \mathrm{d} t
$$

Now we notice that for $c \in W^{1,2}\left([0, T] ; \mathbb{R}^{N}\right)$, we have,

$$
\begin{aligned}
L(c) & =\int_{0}^{T}|\dot{c}(t)| \mathrm{d} t \\
& \stackrel{\text { Hölder }}{\leq} \sqrt{T}\left(\int_{0}^{T}|\dot{c}(t)|^{2} \mathrm{~d} t\right)^{\frac{1}{2}} \\
& \leq \sqrt{2 T} \sqrt{E(c)},
\end{aligned}
$$

with equality if and only if

Fixing the parametrization

To 'quotient out' this invariance, we need to fix a parametrization. But which one? To answer this, let us go back to the easier problem for which we have more hopes of solving. We define the energy of a curve c as

$$
E(c):=\frac{1}{2} \int_{0}^{T}|\dot{c}(t)|^{2} \mathrm{~d} t=\frac{1}{2} \int_{0}^{T} g_{i j}(\gamma(t)) \dot{\gamma}^{i}(t) \dot{\gamma}^{j}(t) \mathrm{d} t
$$

Now we notice that for $c \in W^{1,2}\left([0, T] ; \mathbb{R}^{N}\right)$, we have,

$$
\begin{aligned}
L(c) & =\int_{0}^{T}|\dot{c}(t)| \mathrm{d} t \\
& \stackrel{\text { Holder }}{\leq} \sqrt{T}\left(\int_{0}^{T}|\dot{c}(t)|^{2} \mathrm{~d} t\right)^{\frac{1}{2}} \\
& \leq \sqrt{2 T} \sqrt{E(c)},
\end{aligned}
$$

with equality if and only if

$$
|\dot{c}(t)|=\text { constant } \quad \text { a.e. }
$$

Parametrization by arc-length

Introduction to the

 Calculus of VariationsSwarnendu Sil

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces

Existence of geodesics
Regularity questions
The End

Parametrization by arc-length

Definition

We say a curve $c \in A C\left([0, T] ; \mathbb{R}^{N}\right)$ is parametrized proportionally to arc-length

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces

Existence of geodesics
Regularity questions

Parametrization by arc-length

Definition

We say a curve $c \in A C\left([0, T] ; \mathbb{R}^{N}\right)$ is parametrized proportionally to arc-length if it satisfies

$$
|\dot{c}(t)|=\text { constant } \quad \text { a.e. }
$$

Parametrization by arc-length

Definition

We say a curve $c \in A C\left([0, T] ; \mathbb{R}^{N}\right)$ is parametrized proportionally to arc-length if it satisfies

$$
|\dot{c}(t)|=\text { constant } \quad \text { a.e. }
$$

We say the curve is parametrized by arc-length

Parametrization by arc-length

Definition

We say a curve $c \in A C\left([0, T] ; \mathbb{R}^{N}\right)$ is parametrized proportionally to arc-length if it satisfies

$$
|\dot{c}(t)|=\text { constant } \quad \text { a.e. }
$$

We say the curve is parametrized by arc-length if

$$
|\dot{c}(t)|=1 \quad \text { a.e. }
$$

Prelude to Direct
Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Parametrization by arc-length

Definition

We say a curve $c \in A C\left([0, T] ; \mathbb{R}^{N}\right)$ is parametrized proportionally to arc-length if it satisfies

$$
|\dot{c}(t)|=\text { constant } \quad \text { a.e } .
$$

We say the curve is parametrized by arc-length if

$$
|\dot{c}(t)|=1 \quad \text { a.e. }
$$

Remark

- Any Lipschitz curve can be (re)parametrized by arc-length.

Parametrization by arc-length

Definition

We say a curve $c \in A C\left([0, T] ; \mathbb{R}^{N}\right)$ is parametrized proportionally to arc-length if it satisfies

$$
|\dot{c}(t)|=\text { constant } \quad \text { a.e. }
$$

We say the curve is parametrized by arc-length if

$$
|\dot{c}(t)|=1 \quad \text { a.e. }
$$

Remark

- Any Lipschitz curve can be (re)parametrized by arc-length.
- Any injective, rectifiable, absolutely continuous curve can be (re)parametrized by arc-length.

Prelude to Direct

Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Parametrization by arc-length

Proposition

Let $c:[0, L(c)] \rightarrow \mathbb{R}^{N}$ be a curve which can be parametrized by arc-lenth.

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Parametrization by arc-length

Proposition

Let $c:[0, L(c)] \rightarrow \mathbb{R}^{N}$ be a curve which can be parametrized by arc-lenth. Then among all reparametrizations

$$
\tau:[0, L(c)] \rightarrow[0, L(c)],
$$

Parametrization by arc-length

Proposition

Let $c:[0, L(c)] \rightarrow \mathbb{R}^{N}$ be a curve which can be parametrized by arc-lenth. Then among all reparametrizations

$$
\tau:[0, L(c)] \rightarrow[0, L(c)]
$$

the parametrization by arc-length

Parametrization by arc-length

Proposition

Let $c:[0, L(c)] \rightarrow \mathbb{R}^{N}$ be a curve which can be parametrized by arc-lenth. Then among all reparametrizations

$$
\tau:[0, L(c)] \rightarrow[0, L(c)]
$$

the parametrization by arc-length has the smallest energy and satisfies

Parametrization by arc-length

Proposition

Let $c:[0, L(c)] \rightarrow \mathbb{R}^{N}$ be a curve which can be parametrized by arc-lenth. Then among all reparametrizations

$$
\tau:[0, L(c)] \rightarrow[0, L(c)]
$$

the parametrization by arc-length has the smallest energy and satisfies

$$
L(c)=2 E(c) .
$$

Parametrization by arc-length

Proposition

Let $c:[0, L(c)] \rightarrow \mathbb{R}^{N}$ be a curve which can be parametrized by arc-lenth. Then among all reparametrizations

$$
\tau:[0, L(c)] \rightarrow[0, L(c)]
$$

the parametrization by arc-length has the smallest energy and satisfies

$$
L(c)=2 E(c) .
$$

Thus, we can minimize $E(c)$ instead of $L(c)$ to find geodesic curves.

Existence of geodesics

Now we settle the problem of the existence of a geodesic.

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Existence of geodesics

Now we settle the problem of the existence of a geodesic.
Theorem (existence of geodesics)
Assume $f: U \subset \mathbb{R}^{N} \rightarrow M \subset \mathbb{R}^{d}$ be a chart on M

Prelude to Direct
Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Existence of geodesics

Now we settle the problem of the existence of a geodesic.
Theorem (existence of geodesics)
Assume $f: U \subset \mathbb{R}^{N} \rightarrow M \subset \mathbb{R}^{d}$ be a chart on M such that the metric tensor is uniformly positive definite in $f(U)$

Prelude to Direct
Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Existence of geodesics

Now we settle the problem of the existence of a geodesic.
Theorem (existence of geodesics)
Assume $f: U \subset \mathbb{R}^{N} \rightarrow M \subset \mathbb{R}^{d}$ be a chart on M such that the metric tensor is uniformly positive definite in $f(U)$ and let $p_{1} \neq p_{2} \in M$ be contained in the image of f.

Existence of geodesics

Now we settle the problem of the existence of a geodesic.
Theorem (existence of geodesics)
Assume $f: U \subset \mathbb{R}^{N} \rightarrow M \subset \mathbb{R}^{d}$ be a chart on M such that the metric tensor is uniformly positive definite in $f(U)$ and let $p_{1} \neq p_{2} \in M$ be contained in the image of f. Suppose there exists at least one Lipschitz curve c_{0} on $f(U)$ joining p_{1} and p_{2}

Existence of geodesics

Now we settle the problem of the existence of a geodesic.
Theorem (existence of geodesics)
Assume $f: U \subset \mathbb{R}^{N} \rightarrow M \subset \mathbb{R}^{d}$ be a chart on M such that the

Prelude to Direct
Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions metric tensor is uniformly positive definite in $f(U)$ and let $p_{1} \neq p_{2} \in M$ be contained in the image of f. Suppose there exists at least one Lipschitz curve c_{0} on $f(U)$ joining p_{1} and p_{2} and let
$D:=\inf \left\{L(c): c\right.$ is a Lipschitz curve on $f(U)$ joining p_{1} and $\left.p_{2}\right\}$.

Existence of geodesics

Now we settle the problem of the existence of a geodesic.
Theorem (existence of geodesics)
Assume $f: U \subset \mathbb{R}^{N} \rightarrow M \subset \mathbb{R}^{d}$ be a chart on M such that the $p_{1} \neq p_{2} \in M$ be contained in the image of f. Suppose there exists at least one Lipschitz curve c_{0} on $f(U)$ joining p_{1} and p_{2} and let

$$
D:=\inf \left\{L(c): c \text { is a Lipschitz curve on } f(U) \text { joining } p_{1} \text { and } p_{2}\right\} .
$$

Then the variational problem

Existence of geodesics

Now we settle the problem of the existence of a geodesic.
Theorem (existence of geodesics)
Assume $f: U \subset \mathbb{R}^{N} \rightarrow M \subset \mathbb{R}^{d}$ be a chart on M such that the metric tensor is uniformly positive definite in $f(U)$ and let $p_{1} \neq p_{2} \in M$ be contained in the image of f. Suppose there exists at least one Lipschitz curve c_{0} on $f(U)$ joining p_{1} and p_{2} and let
$D:=\inf \left\{L(c): c\right.$ is a Lipschitz curve on $f(U)$ joining p_{1} and $\left.p_{2}\right\}$.
Then the variational problem

$$
\inf _{\gamma \in \gamma_{0}+W_{0}^{1,2}([0, D] ; U)}\left\{I(\gamma):=\frac{1}{2} \int_{0}^{D} g_{i j}(\gamma(t)) \dot{\gamma}^{i}(t) \dot{\gamma}^{j}(t) \mathrm{d} t\right\}=\frac{1}{2} D,
$$

Existence of geodesics

Now we settle the problem of the existence of a geodesic.
Theorem (existence of geodesics)
Assume $f: U \subset \mathbb{R}^{N} \rightarrow M \subset \mathbb{R}^{d}$ be a chart on M such that the metric tensor is uniformly positive definite in $f(U)$ and let $p_{1} \neq p_{2} \in M$ be contained in the image of f. Suppose there exists at least one Lipschitz curve c_{0} on $f(U)$ joining p_{1} and p_{2} and let
$D:=\inf \left\{L(c): c\right.$ is a Lipschitz curve on $f(U)$ joining p_{1} and $\left.p_{2}\right\}$.
Then the variational problem

$$
\inf _{\gamma \in \gamma_{0}+W_{0}^{1,2}([0, D] ; U)}\left\{I(\gamma):=\frac{1}{2} \int_{0}^{D} g_{i j}(\gamma(t)) \dot{\gamma}^{i}(t) \dot{\gamma}^{j}(t) \mathrm{d} t\right\}=\frac{1}{2} D,
$$

where $f \circ \gamma_{0}=c_{0}$,

Existence of geodesics

Now we settle the problem of the existence of a geodesic.
Theorem (existence of geodesics)
Assume $f: U \subset \mathbb{R}^{N} \rightarrow M \subset \mathbb{R}^{d}$ be a chart on M such that the metric tensor is uniformly positive definite in $f(U)$ and let $p_{1} \neq p_{2} \in M$ be contained in the image of f. Suppose there exists at least one Lipschitz curve c_{0} on $f(U)$ joining p_{1} and p_{2} and let

$$
D:=\inf \left\{L(c): c \text { is a Lipschitz curve on } f(U) \text { joining } p_{1} \text { and } p_{2}\right\} .
$$

Then the variational problem

$$
\inf _{\gamma \in \gamma_{0}+W_{0}^{1,2}([0, D] ; U)}\left\{I(\gamma):=\frac{1}{2} \int_{0}^{D} g_{i j}(\gamma(t)) \dot{\gamma}^{i}(t) \dot{\gamma}^{j}(t) \mathrm{d} t\right\}=\frac{1}{2} D,
$$

where $f \circ \gamma_{0}=c_{0}$, has a minimizer.

Existence of geodesics

Introduction to the Calculus of Variations

Swarnendu Sil
Proof. Let $\left\{\gamma_{\nu}\right\}_{\nu \geq 1}$ be a minimizing sequence,

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Existence of geodesics

Introduction to the

Proof. Let $\left\{\gamma_{\nu}\right\}_{\nu \geq 1}$ be a minimizing sequence, i.e.

$$
I\left(\gamma_{\nu}\right) \rightarrow \frac{1}{2} D \quad \text { as } \nu \rightarrow \infty .
$$

Swarnendu Sil

Existence of geodesics

Proof. Let $\left\{\gamma_{\nu}\right\}_{\nu \geq 1}$ be a minimizing sequence, i.e.

$$
I\left(\gamma_{\nu}\right) \rightarrow \frac{1}{2} D \quad \text { as } \nu \rightarrow \infty .
$$

We write the metric tensor as $G:=\left(g_{i j}\right)_{i, j}$

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Existence of geodesics

Proof. Let $\left\{\gamma_{\nu}\right\}_{\nu \geq 1}$ be a minimizing sequence, i.e.

$$
I\left(\gamma_{\nu}\right) \rightarrow \frac{1}{2} D \quad \text { as } \nu \rightarrow \infty .
$$

We write the metric tensor as $G:=\left(g_{i j}\right)_{i, j}$ and with this notation, we have

Prelude to Direct Methods

Geodesics: the problem Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Existence of geodesics

Proof. Let $\left\{\gamma_{\nu}\right\}_{\nu \geq 1}$ be a minimizing sequence, i.e.

$$
I\left(\gamma_{\nu}\right) \rightarrow \frac{1}{2} D \quad \text { as } \nu \rightarrow \infty .
$$

We write the metric tensor as $G:=\left(g_{i j}\right)_{i, j}$ and with this notation, we have

$$
I\left(\gamma_{\nu}\right):=\frac{1}{2} \int_{0}^{D}\left\langle G\left(\gamma_{\nu}(t)\right) \dot{\gamma}_{\nu}(t) ; \dot{\gamma}_{\nu}(t)\right\rangle \mathrm{d} t
$$

Prelude to Direct Methods

Geodesics: the problem Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics Regularity questions

Existence of geodesics

Proof. Let $\left\{\gamma_{\nu}\right\}_{\nu \geq 1}$ be a minimizing sequence, i.e.

$$
I\left(\gamma_{\nu}\right) \rightarrow \frac{1}{2} D \quad \text { as } \nu \rightarrow \infty .
$$

We write the metric tensor as $G:=\left(g_{i j}\right)_{i, j}$ and with this notation, we have

$$
I\left(\gamma_{\nu}\right):=\frac{1}{2} \int_{0}^{D}\left\langle G\left(\gamma_{\nu}(t)\right) \dot{\gamma}_{\nu}(t) ; \dot{\gamma}_{\nu}(t)\right\rangle \mathrm{d} t
$$

Since the metric tensor G is uniformly positive definite in $f(U)$,

Existence of geodesics

Proof. Let $\left\{\gamma_{\nu}\right\}_{\nu \geq 1}$ be a minimizing sequence, i.e.

$$
I\left(\gamma_{\nu}\right) \rightarrow \frac{1}{2} D \quad \text { as } \nu \rightarrow \infty
$$

We write the metric tensor as $G:=\left(g_{i j}\right)_{i, j}$ and with this notation, we have

$$
I\left(\gamma_{\nu}\right):=\frac{1}{2} \int_{0}^{D}\left\langle G\left(\gamma_{\nu}(t)\right) \dot{\gamma}_{\nu}(t) ; \dot{\gamma}_{\nu}(t)\right\rangle \mathrm{d} t
$$

Since the metric tensor G is uniformly positive definite in $f(U)$, there exists a constant $\lambda>0$ such that

Methods
Geodesics: the problem Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics Regularity questions

Existence of geodesics

Proof. Let $\left\{\gamma_{\nu}\right\}_{\nu \geq 1}$ be a minimizing sequence, i.e.

$$
I\left(\gamma_{\nu}\right) \rightarrow \frac{1}{2} D \quad \text { as } \nu \rightarrow \infty .
$$

We write the metric tensor as $G:=\left(g_{i j}\right)_{i, j}$ and with this notation, we have

$$
I\left(\gamma_{\nu}\right):=\frac{1}{2} \int_{0}^{D}\left\langle G\left(\gamma_{\nu}(t)\right) \dot{\gamma}_{\nu}(t) ; \dot{\gamma}_{\nu}(t)\right\rangle \mathrm{d} t
$$

Since the metric tensor G is uniformly positive definite in $f(U)$, there exists a constant $\lambda>0$ such that

$$
\left\langle G\left(\gamma_{\nu}(t)\right) \dot{\gamma}_{\nu}(t) ; \dot{\gamma}_{\nu}(t)\right\rangle \geq \lambda\left|\dot{\gamma}_{\nu}(t)\right|^{2}
$$

Existence of geodesics

Proof. Let $\left\{\gamma_{\nu}\right\}_{\nu \geq 1}$ be a minimizing sequence, i.e.

$$
I\left(\gamma_{\nu}\right) \rightarrow \frac{1}{2} D \quad \text { as } \nu \rightarrow \infty .
$$

We write the metric tensor as $G:=\left(g_{i j}\right)_{i, j}$ and with this notation, we have

$$
I\left(\gamma_{\nu}\right):=\frac{1}{2} \int_{0}^{D}\left\langle G\left(\gamma_{\nu}(t)\right) \dot{\gamma}_{\nu}(t) ; \dot{\gamma}_{\nu}(t)\right\rangle \mathrm{d} t
$$

Since the metric tensor G is uniformly positive definite in $f(U)$, there exists a constant $\lambda>0$ such that

$$
\left\langle G\left(\gamma_{\nu}(t)\right) \dot{\gamma}_{\nu}(t) ; \dot{\gamma}_{\nu}(t)\right\rangle \geq \lambda\left|\dot{\gamma}_{\nu}(t)\right|^{2}
$$

Thus, we have

Existence of geodesics

Proof. Let $\left\{\gamma_{\nu}\right\}_{\nu \geq 1}$ be a minimizing sequence, i.e.

$$
I\left(\gamma_{\nu}\right) \rightarrow \frac{1}{2} D \quad \text { as } \nu \rightarrow \infty
$$

We write the metric tensor as $G:=\left(g_{i j}\right)_{i, j}$ and with this notation, we have

$$
I\left(\gamma_{\nu}\right):=\frac{1}{2} \int_{0}^{D}\left\langle G\left(\gamma_{\nu}(t)\right) \dot{\gamma}_{\nu}(t) ; \dot{\gamma}_{\nu}(t)\right\rangle \mathrm{d} t
$$

Since the metric tensor G is uniformly positive definite in $f(U)$, there exists a constant $\lambda>0$ such that

$$
\left\langle G\left(\gamma_{\nu}(t)\right) \dot{\gamma}_{\nu}(t) ; \dot{\gamma}_{\nu}(t)\right\rangle \geq \lambda\left|\dot{\gamma}_{\nu}(t)\right|^{2}
$$

Thus, we have

$$
\left\|\dot{\gamma}_{\nu}\right\|_{L^{2}([0, D] ; U)} \leq \frac{2}{\lambda} I\left(\gamma_{\nu}\right) \leq \frac{2}{\lambda} D .
$$

Existence of geodesics

Proof. Let $\left\{\gamma_{\nu}\right\}_{\nu \geq 1}$ be a minimizing sequence, i.e.

$$
I\left(\gamma_{\nu}\right) \rightarrow \frac{1}{2} D \quad \text { as } \nu \rightarrow \infty
$$

We write the metric tensor as $G:=\left(g_{i j}\right)_{i, j}$ and with this notation, we have

$$
I\left(\gamma_{\nu}\right):=\frac{1}{2} \int_{0}^{D}\left\langle G\left(\gamma_{\nu}(t)\right) \dot{\gamma}_{\nu}(t) ; \dot{\gamma}_{\nu}(t)\right\rangle \mathrm{d} t
$$

Since the metric tensor G is uniformly positive definite in $f(U)$, there exists a constant $\lambda>0$ such that

$$
\left\langle G\left(\gamma_{\nu}(t)\right) \dot{\gamma}_{\nu}(t) ; \dot{\gamma}_{\nu}(t)\right\rangle \geq \lambda\left|\dot{\gamma}_{\nu}(t)\right|^{2}
$$

Thus, we have

$$
\left\|\dot{\gamma}_{\nu}\right\|_{L^{2}([0, D] ; U)} \leq \frac{2}{\lambda} I\left(\gamma_{\nu}\right) \leq \frac{2}{\lambda} D .
$$

Existence of geodesics

Introduction to the Calculus of Variations

Swarnendu Sil
Now since $\gamma_{\nu}-\gamma_{0} \in W_{0}^{1,2}([0, D] ; U)$,

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Existence of geodesics

Now since $\gamma_{\nu}-\gamma_{0} \in W_{0}^{1,2}([0, D] ; U)$, by using Poincaré inequality, we have

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Existence of geodesics

Now since $\gamma_{\nu}-\gamma_{0} \in W_{0}^{1,2}([0, D] ; U)$, by using Poincaré inequality, we have

$$
\begin{aligned}
\hline\left\|\gamma_{\nu}\right\|_{L^{2}([0, D] ; U)} & \leq\left\|\gamma_{\nu}-\gamma_{0}\right\|_{L^{2}([0, D] ; U)}+\left\|\gamma_{0}\right\|_{L^{2}([0, D] ; U)} \\
& \leq D\left\|\dot{\gamma}_{\nu}-\dot{\gamma}_{0}\right\|_{L^{2}([0, D] ; U)}+\left\|\gamma_{0}\right\|_{L^{2}([0, D] ; U)} \\
& \leq D\left\|\dot{\gamma}_{\nu}\right\|_{L^{2}([0, D] ; U)}+(D+1)\left\|\gamma_{0}\right\|_{W^{1,2}([0, D] ; U)} \\
& \leq \frac{2}{\lambda} D^{2}+(D+1)\left\|\gamma_{0}\right\|_{W^{1,2}([0, D] ; U)} .
\end{aligned}
$$

Prelude to Direct

 MethodsGeodesics: the problem

Existence of geodesics

Now since $\gamma_{\nu}-\gamma_{0} \in W_{0}^{1,2}([0, D] ; U)$, by using Poincaré inequality, we have

$$
\begin{aligned}
\left\|\gamma_{\nu}\right\|_{L^{2}([0, D] ; U)} & \leq\left\|\gamma_{\nu}-\gamma_{0}\right\|_{L^{2}([0, D] ; U)}+\left\|\gamma_{0}\right\|_{L^{2}([0, D] ; U)} \\
& \leq D\left\|\dot{\gamma}_{\nu}-\dot{\gamma}_{0}\right\|_{L^{2}([0, D] ; U)}+\left\|\gamma_{0}\right\|_{L^{2}([0, D] ; U)} \\
& \leq D\left\|\dot{\gamma}_{\nu}\right\|_{L^{2}([0, D] ; U)}+(D+1)\left\|\gamma_{0}\right\|_{W^{1,2}([0, D] ; U)} \\
& \leq \frac{2}{\lambda} D^{2}+(D+1)\left\|\gamma_{0}\right\|_{W^{1,2}([0, D] ; U)} .
\end{aligned}
$$

This implies $\left\{\gamma_{\nu}\right\}_{\nu \geq 1}$ is uniformly bounded in $W^{1,2}$

Existence of geodesics

Now since $\gamma_{\nu}-\gamma_{0} \in W_{0}^{1,2}([0, D] ; \boldsymbol{U})$, by using Poincaré inequality, we have

$$
\begin{aligned}
\left\|\gamma_{\nu}\right\|_{L^{2}([0, D] ; U)} & \leq\left\|\gamma_{\nu}-\gamma_{0}\right\|_{L^{2}([0, D] ; U)}+\left\|\gamma_{0}\right\|_{L^{2}([0, D] ; U)} \\
& \leq D\left\|\dot{\gamma}_{\nu}-\dot{\gamma}_{0}\right\|_{L^{2}([0, D] ; U)}+\left\|\gamma_{0}\right\|_{L^{2}([0, D] ; U)} \\
& \leq D\left\|\dot{\gamma}_{\nu}\right\|_{L^{2}([0, D] ; U)}+(D+1)\left\|\gamma_{0}\right\|_{W^{1,2}([0, D] ; U)} \\
& \leq \frac{2}{\lambda} D^{2}+(D+1)\left\|\gamma_{0}\right\|_{W^{1,2}([0, D] ; U)} .
\end{aligned}
$$

This implies $\left\{\gamma_{\nu}\right\}_{\nu \geq 1}$ is uniformly bounded in $W^{1,2}$ and thus, we deduce

Existence of geodesics

Now since $\gamma_{\nu}-\gamma_{0} \in W_{0}^{1,2}([0, D] ; \boldsymbol{U})$, by using Poincaré inequality, we have

$$
\begin{aligned}
\left\|\gamma_{\nu}\right\|_{L^{2}([0, D] ; U)} & \leq\left\|\gamma_{\nu}-\gamma_{0}\right\|_{L^{2}([0, D] ; U)}+\left\|\gamma_{0}\right\|_{L^{2}([0, D] ; U)} \\
& \leq D\left\|\dot{\gamma}_{\nu}-\dot{\gamma}_{0}\right\|_{L^{2}([0, D] ; U)}+\left\|\gamma_{0}\right\|_{L^{2}([0, D] ; U)} \\
& \leq D\left\|\dot{\gamma}_{\nu}\right\|_{L^{2}([0, D] ; U)}+(D+1)\left\|\gamma_{0}\right\|_{W^{1,2}([0, D] ; U)} \\
& \leq \frac{2}{\lambda} D^{2}+(D+1)\left\|\gamma_{0}\right\|_{W^{1,2}([0, D] ; U)} .
\end{aligned}
$$

This implies $\left\{\gamma_{\nu}\right\}_{\nu \geq 1}$ is uniformly bounded in $W^{1,2}$ and thus, we deduce

$$
\gamma_{\nu} \rightharpoonup \gamma \quad \text { in } W^{1,2}
$$

Existence of geodesics

Now since $\gamma_{\nu}-\gamma_{0} \in W_{0}^{1,2}([0, D] ; \boldsymbol{U})$, by using Poincaré inequality, we have

$$
\begin{aligned}
\left\|\gamma_{\nu}\right\|_{L^{2}([0, D] ; U)} & \leq\left\|\gamma_{\nu}-\gamma_{0}\right\|_{L^{2}([0, D] ; U)}+\left\|\gamma_{0}\right\|_{L^{2}([0, D] ; U)} \\
& \leq D\left\|\dot{\gamma}_{\nu}-\dot{\gamma}_{0}\right\|_{L^{2}([0, D] ; U)}+\left\|\gamma_{0}\right\|_{L^{2}([0, D] ; U)} \\
& \leq D\left\|\dot{\gamma}_{\nu}\right\|_{L^{2}([0, D] ; U)}+(D+1)\left\|\gamma_{0}\right\|_{W^{1,2}([0, D] ; U)} \\
& \leq \frac{2}{\lambda} D^{2}+(D+1)\left\|\gamma_{0}\right\|_{W^{1,2}([0, D] ; U)} .
\end{aligned}
$$

This implies $\left\{\gamma_{\nu}\right\}_{\nu \geq 1}$ is uniformly bounded in $W^{1,2}$ and thus, we deduce
$\gamma_{\nu} \rightharpoonup \gamma \quad$ in $W^{1,2}$,
for some $\gamma \in \gamma_{0}+W_{0}^{1,2}([0, D] ; U)$.

Existence of geodesics

Now since $\gamma_{\nu}-\gamma_{0} \in W_{0}^{1,2}([0, D] ; \boldsymbol{U})$, by using Poincaré inequality, we have

$$
\begin{aligned}
\left\|\gamma_{\nu}\right\|_{L^{2}([0, D] ; U)} & \leq\left\|\gamma_{\nu}-\gamma_{0}\right\|_{L^{2}([0, D] ; U)}+\left\|\gamma_{0}\right\|_{L^{2}([0, D] ; U)} \\
& \leq D\left\|\dot{\gamma}_{\nu}-\dot{\gamma}_{0}\right\|_{L^{2}([0, D] ; U)}+\left\|\gamma_{0}\right\|_{L^{2}([0, D] ; U)} \\
& \leq D\left\|\dot{\gamma}_{\nu}\right\|_{L^{2}([0, D] ; U)}+(D+1)\left\|\gamma_{0}\right\|_{W^{1,2}([0, D] ; U)} \\
& \leq \frac{2}{\lambda} D^{2}+(D+1)\left\|\gamma_{0}\right\|_{W^{1,2}([0, D] ; U)} .
\end{aligned}
$$

This implies $\left\{\gamma_{\nu}\right\}_{\nu \geq 1}$ is uniformly bounded in $W^{1,2}$ and thus, we deduce
$\gamma_{\nu} \rightharpoonup \gamma \quad$ in $W^{1,2}$,
for some $\gamma \in \gamma_{0}+W_{0}^{1,2}([0, D] ; U)$.
Note that here we have used the fact that $W_{0}^{1,2}$, being a convex subset of $W^{1,2}$, is weakly closed.

Existence of geodesics

Now since $\gamma_{\nu}-\gamma_{0} \in W_{0}^{1,2}([0, D] ; U)$, by using Poincaré inequality, we have

$$
\begin{aligned}
\hline\left\|\gamma_{\nu}\right\|_{L^{2}([0, D] ; U)} & \leq\left\|\gamma_{\nu}-\gamma_{0}\right\|_{L^{2}([0, D] ; U)}+\left\|\gamma_{0}\right\|_{L^{2}([0, D] ; U)} \\
& \leq D\left\|\dot{\gamma}_{\nu}-\dot{\gamma}_{0}\right\|_{L^{2}([0, D] ; U)}+\left\|\gamma_{0}\right\|_{L^{2}([0, D] ; U)} \\
& \leq D\left\|\dot{\gamma}_{\nu}\right\|_{L^{2}([0, D] ; U)}+(D+1)\left\|\gamma_{0}\right\|_{W^{1,2}([0, D] ; U)} \\
& \leq \frac{2}{\lambda} D^{2}+(D+1)\left\|\gamma_{0}\right\|_{W^{1,2}([0, D] ; U)} .
\end{aligned}
$$

This implies $\left\{\gamma_{\nu}\right\}_{\nu \geq 1}$ is uniformly bounded in $W^{1,2}$ and thus, we deduce

$$
\gamma_{\nu} \rightharpoonup \gamma \quad \text { in } W^{1,2}
$$

for some $\gamma \in \gamma_{0}+W_{0}^{1,2}([0, D] ; U)$.
Note that here we have used the fact that $W_{0}^{1,2}$, being a convex subset of $W^{1,2}$, is weakly closed. However, here in dimension one, we could have also used the fact that

$$
\gamma_{\nu} \rightharpoonup \gamma \quad \text { in } W^{1,2} \quad \Rightarrow \quad \gamma_{\nu} \rightarrow \gamma \quad \text { in } C^{0}
$$

Existence of geodesics

Now we want to show that this weak limit γ is a minimizer.

Existence of geodesics

Now we want to show that this weak limit γ is a minimizer. We have,

$$
\begin{aligned}
I\left(\gamma_{\nu}\right) & =\frac{1}{2} \int_{0}^{D}\left\langle G \dot{\gamma}_{\nu} ; \dot{\gamma}_{\nu}\right\rangle \\
& =\frac{1}{2} \int_{0}^{D}\left\langle G\left[\dot{\gamma}+\left(\dot{\gamma}_{\nu}-\dot{\gamma}\right)\right] ; \dot{\gamma}+\left(\dot{\gamma}_{\nu}-\dot{\gamma}\right)\right\rangle \\
& =\frac{1}{2} \int_{0}^{D}\langle G \dot{\gamma} ; \dot{\gamma}\rangle+\int_{0}^{D}\left\langle G \dot{\gamma} ; \dot{\gamma}_{\nu}-\dot{\gamma}\right\rangle+\frac{1}{2} \int_{0}^{D}\left\langle G\left(\dot{\gamma}_{\nu}-\dot{\gamma}\right) ; \dot{\gamma}_{\nu}-\dot{\gamma}\right\rangle,
\end{aligned}
$$

where we used the fact that G is symmetric.

Existence of geodesics

Now we want to show that this weak limit γ is a minimizer. We have,

$$
\begin{aligned}
I\left(\gamma_{\nu}\right) & =\frac{1}{2} \int_{0}^{D}\left\langle G \dot{\gamma}_{\nu} ; \dot{\gamma}_{\nu}\right\rangle \\
& =\frac{1}{2} \int_{0}^{D}\left\langle G\left[\dot{\gamma}+\left(\dot{\gamma}_{\nu}-\dot{\gamma}\right)\right] ; \dot{\gamma}+\left(\dot{\gamma}_{\nu}-\dot{\gamma}\right)\right\rangle \\
& =\frac{1}{2} \int_{0}^{D}\langle G \dot{\gamma} ; \dot{\gamma}\rangle+\int_{0}^{D}\left\langle G \dot{\gamma} ; \dot{\gamma}_{\nu}-\dot{\gamma}\right\rangle+\frac{1}{2} \int_{0}^{D}\left\langle G\left(\dot{\gamma}_{\nu}-\dot{\gamma}\right) ; \dot{\gamma}_{\nu}-\dot{\gamma}\right\rangle,
\end{aligned}
$$

where we used the fact that G is symmetric. By the uniform positive definiteness of G, we have

Existence of geodesics

Now we want to show that this weak limit γ is a minimizer. We have,

$$
\begin{aligned}
I\left(\gamma_{\nu}\right) & =\frac{1}{2} \int_{0}^{D}\left\langle G \dot{\gamma}_{\nu} ; \dot{\gamma}_{\nu}\right\rangle \\
& =\frac{1}{2} \int_{0}^{D}\left\langle G\left[\dot{\gamma}+\left(\dot{\gamma}_{\nu}-\dot{\gamma}\right)\right] ; \dot{\gamma}+\left(\dot{\gamma}_{\nu}-\dot{\gamma}\right)\right\rangle \\
& =\frac{1}{2} \int_{0}^{D}\langle G \dot{\gamma} ; \dot{\gamma}\rangle+\int_{0}^{D}\left\langle G \dot{\gamma} ; \dot{\gamma}_{\nu}-\dot{\gamma}\right\rangle+\frac{1}{2} \int_{0}^{D}\left\langle G\left(\dot{\gamma}_{\nu}-\dot{\gamma}\right) ; \dot{\gamma}_{\nu}-\dot{\gamma}\right\rangle,
\end{aligned}
$$

where we used the fact that G is symmetric. By the uniform positive definiteness of G, we have

$$
\frac{1}{2} \int_{0}^{D}\left\langle G\left(\dot{\gamma}_{\nu}-\dot{\gamma}\right) ; \dot{\gamma}_{\nu}-\dot{\gamma}\right\rangle \geq 0
$$

Existence of geodesics

Now we want to show that this weak limit γ is a minimizer. We have,

$$
\begin{aligned}
I\left(\gamma_{\nu}\right) & =\frac{1}{2} \int_{0}^{D}\left\langle G \dot{\gamma}_{\nu} ; \dot{\gamma_{\nu}}\right\rangle \\
& =\frac{1}{2} \int_{0}^{D}\left\langle G\left[\dot{\gamma}+\left(\dot{\gamma_{\nu}}-\dot{\gamma}\right)\right] ; \dot{\gamma}+\left(\dot{\gamma}_{\nu}-\dot{\gamma}\right)\right\rangle \\
& =\frac{1}{2} \int_{0}^{D}\langle G \dot{\gamma} ; \dot{\gamma}\rangle+\int_{0}^{D}\left\langle G \dot{\gamma} ; \dot{\gamma_{\nu}}-\dot{\gamma}\right\rangle+\frac{1}{2} \int_{0}^{D}\left\langle G\left(\dot{\gamma_{\nu}}-\dot{\gamma}\right) ; \dot{\gamma}_{\nu}-\dot{\gamma}\right\rangle
\end{aligned}
$$

where we used the fact that G is symmetric. By the uniform positive definiteness of G, we have

$$
\frac{1}{2} \int_{0}^{D}\left\langle G\left(\dot{\gamma}_{\nu}-\dot{\gamma}\right) ; \dot{\gamma}_{\nu}-\dot{\gamma}\right\rangle \geq 0
$$

Combining, we obtain

Existence of geodesics

Now we want to show that this weak limit γ is a minimizer. We have,

$$
\begin{aligned}
I\left(\gamma_{\nu}\right) & =\frac{1}{2} \int_{0}^{D}\left\langle G \dot{\gamma}_{\nu} ; \dot{\gamma}_{\nu}\right\rangle \\
& =\frac{1}{2} \int_{0}^{D}\left\langle G\left[\dot{\gamma}+\left(\dot{\gamma}_{\nu}-\dot{\gamma}\right)\right] ; \dot{\gamma}+\left(\dot{\gamma}_{\nu}-\dot{\gamma}\right)\right\rangle \\
& =\frac{1}{2} \int_{0}^{D}\langle G \dot{\gamma} ; \dot{\gamma}\rangle+\int_{0}^{D}\left\langle G \dot{\gamma} ; \dot{\gamma}_{\nu}-\dot{\gamma}\right\rangle+\frac{1}{2} \int_{0}^{D}\left\langle G\left(\dot{\gamma}_{\nu}-\dot{\gamma}\right) ; \dot{\gamma}_{\nu}-\dot{\gamma}\right\rangle,
\end{aligned}
$$

where we used the fact that G is symmetric. By the uniform positive definiteness of G, we have

$$
\frac{1}{2} \int_{0}^{D}\left\langle G\left(\dot{\gamma}_{\nu}-\dot{\gamma}\right) ; \dot{\gamma}_{\nu}-\dot{\gamma}\right\rangle \geq 0
$$

Combining, we obtain

$$
I\left(\gamma_{\nu}\right) \geq I(\gamma)+\int_{0}^{D}\left\langle G \dot{\gamma} ; \dot{\gamma}_{\nu}-\dot{\gamma}\right\rangle
$$

Existence of geodesics

Introduction to the

 Calculus of VariationsSwarnendu Sil

Prelude to Direct Methods

Geodesics: the problem

Absolute continuity: first encounter with Sobolev spaces

Existence of geodesics
Regularity questions
The End

Existence of geodesics

Now since

$$
\dot{\gamma}_{\nu} \rightharpoonup \dot{\gamma} \quad \text { in } L^{2},
$$

we deduce

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

$$
\lim _{\nu \rightarrow \infty} \int_{0}^{D}\left\langle G \dot{\gamma} ; \dot{\gamma}_{\nu}-\dot{\gamma}\right\rangle=0
$$

Existence of geodesics

Now since

$$
\dot{\gamma}_{\nu} \rightharpoonup \dot{\gamma} \quad \text { in } L^{2}
$$

we deduce

Prelude to Direct

 MethodsGeodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

$$
\lim _{\nu \rightarrow \infty} \int_{0}^{D}\left\langle G \dot{\gamma} ; \dot{\gamma_{\nu}}-\dot{\gamma}\right\rangle=0
$$

Thus, we deduce

Existence of geodesics

Now since

$$
\dot{\gamma}_{\nu} \rightharpoonup \dot{\gamma} \quad \text { in } L^{2}
$$

we deduce

Prelude to Direct

 MethodsGeodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

$$
\lim _{\nu \rightarrow \infty} \int_{0}^{D}\left\langle G \dot{\gamma} ; \dot{\gamma_{\nu}}-\dot{\gamma}\right\rangle=0
$$

Thus, we deduce

$$
\frac{1}{2} D=\liminf _{\nu \rightarrow \infty} I\left(\gamma_{\nu}\right) \geq I(\gamma)+\lim _{\nu \rightarrow \infty} \int_{0}^{D}\left\langle G \dot{\gamma} ; \dot{\gamma}_{\nu}-\dot{\gamma}\right\rangle=I(\gamma) \geq \frac{1}{2} D .
$$

Existence of geodesics

Now since

$$
\dot{\gamma}_{\nu} \rightharpoonup \dot{\gamma} \quad \text { in } L^{2}
$$

we deduce

Prelude to Direct Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

$$
\lim _{\nu \rightarrow \infty} \int_{0}^{D}\langle G \dot{\gamma} ; \dot{\gamma} \nu-\dot{\gamma}\rangle=0
$$

Thus, we deduce

$$
\frac{1}{2} D=\liminf _{\nu \rightarrow \infty} I\left(\gamma_{\nu}\right) \geq I(\gamma)+\lim _{\nu \rightarrow \infty} \int_{0}^{D}\left\langle G \dot{\gamma} ; \dot{\gamma}_{\nu}-\dot{\gamma}\right\rangle=I(\gamma) \geq \frac{1}{2} D .
$$

Hence γ is a minimizer.

Regularity

Now we are going to show that this curve is actually C^{2} and not just $W^{1,2}$.

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Regularity

Now we are going to show that this curve is actually C^{2} and not just $W^{1,2}$. Results of this type are called regularity results.

Existence of geodesics
Regularity questions
The End

Regularity

Now we are going to show that this curve is actually C^{2} and not just $W^{1,2}$. Results of this type are called regularity results. We show a general result.

Regularity

Now we are going to show that this curve is actually C^{2} and not just $W^{1,2}$. Results of this type are called regularity results. We show a general result.

Theorem (Regularity)
Let $f \in C^{1}\left([a, b] \times \mathbb{R}^{N} \times \mathbb{R}^{N}\right), f=f(t, u, \xi)$ be such that

- f_{ξ} is C^{1},

Regularity

Now we are going to show that this curve is actually C^{2} and not just $W^{1,2}$. Results of this type are called regularity results. We show a general result.
Theorem (Regularity)
Let $f \in C^{1}\left([a, b] \times \mathbb{R}^{N} \times \mathbb{R}^{N}\right), f=f(t, u, \xi)$ be such that

- f_{ξ} is C^{1},
- $u \in W^{1,1}\left([a, b] ; \mathbb{R}^{N}\right)$ is a critical point of the functional

Prelude to Direct Methods

Geodesics: the problem Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Regularity

Now we are going to show that this curve is actually C^{2} and not just $W^{1,2}$. Results of this type are called regularity results. We show a general result.

Theorem (Regularity)

Let $f \in C^{1}\left([a, b] \times \mathbb{R}^{N} \times \mathbb{R}^{N}\right), f=f(t, u, \xi)$ be such that

- f_{ξ} is C^{1},
- $u \in W^{1,1}\left([a, b] ; \mathbb{R}^{N}\right)$ is a critical point of the functional

$$
I[u]=\int_{a}^{b} f(t, u(t), \dot{u}(t)) \mathrm{d} t
$$

Regularity

Now we are going to show that this curve is actually C^{2} and not just $W^{1,2}$. Results of this type are called regularity results. We show a general result.

Theorem (Regularity)

Let $f \in C^{1}\left([a, b] \times \mathbb{R}^{N} \times \mathbb{R}^{N}\right), f=f(t, u, \xi)$ be such that

- f_{ξ} is C^{1},
- $u \in W^{1,1}\left([a, b] ; \mathbb{R}^{N}\right)$ is a critical point of the functional

$$
I[u]=\int_{a}^{b} f(t, u(t), \dot{u}(t)) \mathrm{d} t
$$

- $f_{u}(t, u(t), \dot{u}(t)), f_{\xi}(t, u(t), \dot{u}(t))$ are L^{1}

Regularity

Now we are going to show that this curve is actually C^{2} and not just $W^{1,2}$. Results of this type are called regularity results. We show a general result.

Theorem (Regularity)

Let $f \in C^{1}\left([a, b] \times \mathbb{R}^{N} \times \mathbb{R}^{N}\right), f=f(t, u, \xi)$ be such that

- f_{ξ} is C^{1},
- $u \in W^{1,1}\left([a, b] ; \mathbb{R}^{N}\right)$ is a critical point of the functional

$$
I[u]=\int_{a}^{b} f(t, u(t), \dot{u}(t)) \mathrm{d} t
$$

- $f_{u}(t, u(t), \dot{u}(t)), f_{\xi}(t, u(t), \dot{u}(t))$ are L^{1} and
- $f_{\xi \xi}$ is positive definite on $\Omega \times \mathbb{R}^{N}$,

Regularity

Now we are going to show that this curve is actually C^{2} and not just $W^{1,2}$. Results of this type are called regularity results. We show a general result.

Theorem (Regularity)

Let $f \in C^{1}\left([a, b] \times \mathbb{R}^{N} \times \mathbb{R}^{N}\right), f=f(t, u, \xi)$ be such that

- f_{ξ} is C^{1},
- $u \in W^{1,1}\left([a, b] ; \mathbb{R}^{N}\right)$ is a critical point of the functional

$$
I[u]=\int_{a}^{b} f(t, u(t), \dot{u}(t)) \mathrm{d} t
$$

- $f_{u}(t, u(t), \dot{u}(t)), f_{\xi}(t, u(t), \dot{u}(t))$ are L^{1} and
- $f_{\xi \xi}$ is positive definite on $\Omega \times \mathbb{R}^{N}$, where $\Omega \subset \mathbb{R}^{N+1}$ contains $\{(t, u(t)): t \in[a, b]\}$.

Regularity

Now we are going to show that this curve is actually C^{2} and not just $W^{1,2}$. Results of this type are called regularity results. We show a general result.

Theorem (Regularity)

Let $f \in C^{1}\left([a, b] \times \mathbb{R}^{N} \times \mathbb{R}^{N}\right), f=f(t, u, \xi)$ be such that

- f_{ξ} is C^{1},
- $u \in W^{1,1}\left([a, b] ; \mathbb{R}^{N}\right)$ is a critical point of the functional

$$
I[u]=\int_{a}^{b} f(t, u(t), \dot{u}(t)) \mathrm{d} t
$$

- $f_{u}(t, u(t), \dot{u}(t)), f_{\xi}(t, u(t), \dot{u}(t))$ are L^{1} and
- $f_{\xi \xi}$ is positive definite on $\Omega \times \mathbb{R}^{N}$, where $\Omega \subset \mathbb{R}^{N+1}$ contains $\{(t, u(t)): t \in[a, b]\}$.
Then u is C^{2}.

Regularity

Now we are going to show that this curve is actually C^{2} and not just $W^{1,2}$. Results of this type are called regularity results. We show a general result.

Theorem (Regularity)

Let $f \in C^{1}\left([a, b] \times \mathbb{R}^{N} \times \mathbb{R}^{N}\right), f=f(t, u, \xi)$ be such that

- f_{ξ} is C^{1},
- $u \in W^{1,1}\left([a, b] ; \mathbb{R}^{N}\right)$ is a critical point of the functional

$$
I[u]=\int_{a}^{b} f(t, u(t), \dot{u}(t)) \mathrm{d} t
$$

- $f_{u}(t, u(t), \dot{u}(t)), f_{\xi}(t, u(t), \dot{u}(t))$ are L^{1} and
- $f_{\xi \xi}$ is positive definite on $\Omega \times \mathbb{R}^{N}$, where $\Omega \subset \mathbb{R}^{N+1}$ contains $\{(t, u(t)): t \in[a, b]\}$.
Then u is C^{2}. Moreover, if f_{ξ} is C^{k} for some $k \geq 2$,

Regularity

Now we are going to show that this curve is actually C^{2} and not just $W^{1,2}$. Results of this type are called regularity results. We show a general result.

Theorem (Regularity)

Let $f \in C^{1}\left([a, b] \times \mathbb{R}^{N} \times \mathbb{R}^{N}\right), f=f(t, u, \xi)$ be such that

- f_{ξ} is C^{1},
- $u \in W^{1,1}\left([a, b] ; \mathbb{R}^{N}\right)$ is a critical point of the functional

$$
I[u]=\int_{a}^{b} f(t, u(t), \dot{u}(t)) \mathrm{d} t
$$

- $f_{u}(t, u(t), \dot{u}(t)), f_{\xi}(t, u(t), \dot{u}(t))$ are L^{1} and
- $f_{\xi \xi}$ is positive definite on $\Omega \times \mathbb{R}^{N}$, where $\Omega \subset \mathbb{R}^{N+1}$ contains $\{(t, u(t)): t \in[a, b]\}$.
Then u is C^{2}. Moreover, if f_{ξ} is C^{k} for some $k \geq 2$, then u is C^{k+1}.

Regularity

Now we are going to show that this curve is actually C^{2} and not just $W^{1,2}$. Results of this type are called regularity results. We show a general result.

Theorem (Regularity)

Let $f \in C^{1}\left([a, b] \times \mathbb{R}^{N} \times \mathbb{R}^{N}\right), f=f(t, u, \xi)$ be such that

- f_{ξ} is C^{1},
- $u \in W^{1,1}\left([a, b] ; \mathbb{R}^{N}\right)$ is a critical point of the functional

$$
I[u]=\int_{a}^{b} f(t, u(t), \dot{u}(t)) \mathrm{d} t
$$

- $f_{u}(t, u(t), \dot{u}(t)), f_{\xi}(t, u(t), \dot{u}(t))$ are L^{1} and
- $f_{\xi \xi}$ is positive definite on $\Omega \times \mathbb{R}^{N}$, where $\Omega \subset \mathbb{R}^{N+1}$ contains $\{(t, u(t)): t \in[a, b]\}$.
Then u is C^{2}. Moreover, if f_{ξ} is C^{k} for some $k \geq 2$, then u is C^{k+1}. In particular, u is C^{∞} if f_{ξ} is C^{∞}.

Regularity

Proof. We define the function $\phi:[a, b] \times \mathbb{R}^{N} \times \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ as

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Regularity

Proof. We define the function $\phi:[a, b] \times \mathbb{R}^{N} \times \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ as

$$
\phi(t, u, \xi, \eta):=f_{\xi}(t, u, \xi)-\eta .
$$

Prelude to Direct Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Regularity

Proof. We define the function $\phi:[a, b] \times \mathbb{R}^{N} \times \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ as

$$
\phi(t, u, \xi, \eta):=f_{\xi}(t, u, \xi)-\eta .
$$

Let $t_{0} \in[a, b], u_{0}=u\left(t_{0}\right), \xi_{0}=\dot{u}\left(t_{0}\right)$

Prelude to Direct Methods
Geodesics: the problem Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Regularity

Proof. We define the function $\phi:[a, b] \times \mathbb{R}^{N} \times \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ as

$$
\phi(t, u, \xi, \eta):=f_{\xi}(t, u, \xi)-\eta .
$$

Let $t_{0} \in[a, b], u_{0}=u\left(t_{0}\right), \xi_{0}=\dot{u}\left(t_{0}\right)$ and $\eta_{0}=f_{\xi}\left(t_{0}, u\left(t_{0}\right), \dot{u}\left(t_{0}\right)\right)$.

Prelude to Direct Methods
Geodesics: the problem Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Regularity

Proof. We define the function $\phi:[a, b] \times \mathbb{R}^{N} \times \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ as

$$
\phi(t, u, \xi, \eta):=f_{\xi}(t, u, \xi)-\eta .
$$

Let $t_{0} \in[a, b], u_{0}=u\left(t_{0}\right), \xi_{0}=\dot{u}\left(t_{0}\right)$ and $\eta_{0}=f_{\xi}\left(t_{0}, u\left(t_{0}\right), \dot{u}\left(t_{0}\right)\right)$. Hence,

$$
\phi\left(t_{0}, u_{0}, \xi_{0}, \eta_{0}\right)=0 .
$$

Regularity

Proof. We define the function $\phi:[a, b] \times \mathbb{R}^{N} \times \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ as

$$
\phi(t, u, \xi, \eta):=f_{\xi}(t, u, \xi)-\eta .
$$

Let $t_{0} \in[a, b], u_{0}=u\left(t_{0}\right), \xi_{0}=\dot{u}\left(t_{0}\right)$ and $\eta_{0}=f_{\xi}\left(t_{0}, u\left(t_{0}\right), \dot{u}\left(t_{0}\right)\right)$. Hence,

$$
\phi\left(t_{0}, u_{0}, \xi_{0}, \eta_{0}\right)=0 .
$$

Note that ϕ is C^{1} since f_{ξ} is.

Regularity

Proof. We define the function $\phi:[a, b] \times \mathbb{R}^{N} \times \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ as

$$
\phi(t, u, \xi, \eta):=f_{\xi}(t, u, \xi)-\eta
$$

Let $t_{0} \in[a, b], u_{0}=u\left(t_{0}\right), \xi_{0}=\dot{u}\left(t_{0}\right)$ and $\eta_{0}=f_{\xi}\left(t_{0}, u\left(t_{0}\right), \dot{u}\left(t_{0}\right)\right)$. Hence,

$$
\phi\left(t_{0}, u_{0}, \xi_{0}, \eta_{0}\right)=0 .
$$

Note that ϕ is C^{1} since f_{ξ} is. Now as $f_{\xi \xi}$ is nonsingular,

Regularity

Proof. We define the function $\phi:[a, b] \times \mathbb{R}^{N} \times \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ as

$$
\phi(t, u, \xi, \eta):=f_{\xi}(t, u, \xi)-\eta
$$

Let $t_{0} \in[a, b], u_{0}=u\left(t_{0}\right), \xi_{0}=\dot{u}\left(t_{0}\right)$ and $\eta_{0}=f_{\xi}\left(t_{0}, u\left(t_{0}\right), \dot{u}\left(t_{0}\right)\right)$. Hence,

$$
\phi\left(t_{0}, u_{0}, \xi_{0}, \eta_{0}\right)=0 .
$$

Note that ϕ is C^{1} since f_{ξ} is. Now as $f_{\xi \xi}$ is nonsingular, we can use implicit function theorem locally.

Regularity

Proof. We define the function $\phi:[a, b] \times \mathbb{R}^{N} \times \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ as

$$
\phi(t, u, \xi, \eta):=f_{\xi}(t, u, \xi)-\eta
$$

Let $t_{0} \in[a, b], u_{0}=u\left(t_{0}\right), \xi_{0}=\dot{u}\left(t_{0}\right)$ and $\eta_{0}=f_{\xi}\left(t_{0}, u\left(t_{0}\right), \dot{u}\left(t_{0}\right)\right)$. Hence,

$$
\phi\left(t_{0}, u_{0}, \xi_{0}, \eta_{0}\right)=0 .
$$

Note that ϕ is C^{1} since f_{ξ} is. Now as $f_{\xi \xi}$ is nonsingular, we can use implicit function theorem locally. Thus, we deduce that there exists an unique continuous function

Regularity

Proof. We define the function $\phi:[a, b] \times \mathbb{R}^{N} \times \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ as

$$
\phi(t, u, \xi, \eta):=f_{\xi}(t, u, \xi)-\eta
$$

Let $t_{0} \in[a, b], u_{0}=u\left(t_{0}\right), \xi_{0}=\dot{u}\left(t_{0}\right)$ and $\eta_{0}=f_{\xi}\left(t_{0}, u\left(t_{0}\right), \dot{u}\left(t_{0}\right)\right)$. Hence,

$$
\phi\left(t_{0}, u_{0}, \xi_{0}, \eta_{0}\right)=0 .
$$

Note that ϕ is C^{1} since f_{ξ} is. Now as $f_{\xi \xi}$ is nonsingular, we can use implicit function theorem locally. Thus, we deduce that there exists an unique continuous function $\varphi=\varphi(t, u, \eta)$ which is C^{1}

Regularity

Proof. We define the function $\phi:[a, b] \times \mathbb{R}^{N} \times \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ as

$$
\phi(t, u, \xi, \eta):=f_{\xi}(t, u, \xi)-\eta
$$

Let $t_{0} \in[a, b], u_{0}=u\left(t_{0}\right), \xi_{0}=\dot{u}\left(t_{0}\right)$ and $\eta_{0}=f_{\xi}\left(t_{0}, u\left(t_{0}\right), \dot{u}\left(t_{0}\right)\right)$. Hence,

$$
\phi\left(t_{0}, u_{0}, \xi_{0}, \eta_{0}\right)=0 .
$$

Note that ϕ is C^{1} since f_{ξ} is. Now as $f_{\xi \xi}$ is nonsingular, we can use implicit function theorem locally. Thus, we deduce that there exists an unique continuous function $\varphi=\varphi(t, u, \eta)$ which is C^{1} and satisfies

$$
\begin{equation*}
\phi(t, u, \varphi(t, u, \eta), \eta)=0 \tag{1}
\end{equation*}
$$

Regularity

Proof. We define the function $\phi:[a, b] \times \mathbb{R}^{N} \times \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ as

$$
\phi(t, u, \xi, \eta):=f_{\xi}(t, u, \xi)-\eta
$$

Let $t_{0} \in[a, b], u_{0}=u\left(t_{0}\right), \xi_{0}=\dot{u}\left(t_{0}\right)$ and $\eta_{0}=f_{\xi}\left(t_{0}, u\left(t_{0}\right), \dot{u}\left(t_{0}\right)\right)$. Hence,

$$
\phi\left(t_{0}, u_{0}, \xi_{0}, \eta_{0}\right)=0 .
$$

Note that ϕ is C^{1} since f_{ξ} is. Now as $f_{\xi \xi}$ is nonsingular, we can use implicit function theorem locally. Thus, we deduce that there exists an unique continuous function $\varphi=\varphi(t, u, \eta)$ which is C^{1} and satisfies

$$
\begin{equation*}
\phi(t, u, \varphi(t, u, \eta), \eta)=0 \tag{1}
\end{equation*}
$$

in a neighborhood of $\left(t_{0}, u_{0}, \xi_{0}, \eta_{0}\right)$.

Regularity

Proof. We define the function $\phi:[a, b] \times \mathbb{R}^{N} \times \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ as

$$
\phi(t, u, \xi, \eta):=f_{\xi}(t, u, \xi)-\eta
$$

Let $t_{0} \in[a, b], u_{0}=u\left(t_{0}\right), \xi_{0}=\dot{u}\left(t_{0}\right)$ and $\eta_{0}=f_{\xi}\left(t_{0}, u\left(t_{0}\right), \dot{u}\left(t_{0}\right)\right)$. Hence,

$$
\phi\left(t_{0}, u_{0}, \xi_{0}, \eta_{0}\right)=0 .
$$

Note that ϕ is C^{1} since f_{ξ} is. Now as $f_{\xi \xi}$ is nonsingular, we can use implicit function theorem locally. Thus, we deduce that there exists an unique continuous function $\varphi=\varphi(t, u, \eta)$ which is C^{1} and satisfies

$$
\begin{equation*}
\phi(t, u, \varphi(t, u, \eta), \eta)=0 \tag{1}
\end{equation*}
$$

in a neighborhood of $\left(t_{0}, u_{0}, \xi_{0}, \eta_{0}\right)$. However, since $\left(t, u(t), \dot{u}(t), f_{\xi}(t, u(t), \dot{u}(t))\right)$ also solves (1) in a neighborhood of $\left(t_{0}, u_{0}, \xi_{0}, \eta_{0}\right)$,

Regularity

Proof. We define the function $\phi:[a, b] \times \mathbb{R}^{N} \times \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ as

$$
\phi(t, u, \xi, \eta):=f_{\xi}(t, u, \xi)-\eta .
$$

Let $t_{0} \in[a, b], u_{0}=u\left(t_{0}\right), \xi_{0}=\dot{u}\left(t_{0}\right)$ and $\eta_{0}=f_{\xi}\left(t_{0}, u\left(t_{0}\right), \dot{u}\left(t_{0}\right)\right)$. Hence,

$$
\phi\left(t_{0}, u_{0}, \xi_{0}, \eta_{0}\right)=0 .
$$

Note that ϕ is C^{1} since f_{ξ} is. Now as $f_{\xi \xi}$ is nonsingular, we can use implicit function theorem locally. Thus, we deduce that there exists an unique continuous function $\varphi=\varphi(t, u, \eta)$ which is C^{1} and satisfies

$$
\begin{equation*}
\phi(t, u, \varphi(t, u, \eta), \eta)=0 \tag{1}
\end{equation*}
$$

in a neighborhood of $\left(t_{0}, u_{0}, \xi_{0}, \eta_{0}\right)$. However, since $\left(t, u(t), \dot{u}(t), f_{\xi}(t, u(t), \dot{u}(t))\right)$ also solves (1) in a neighborhood of ($t_{0}, u_{0}, \xi_{0}, \eta_{0}$), we expect that by uniqueness,

Regularity

Proof. We define the function $\phi:[a, b] \times \mathbb{R}^{N} \times \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ as

$$
\phi(t, u, \xi, \eta):=f_{\xi}(t, u, \xi)-\eta .
$$

Let $t_{0} \in[a, b], u_{0}=u\left(t_{0}\right), \xi_{0}=\dot{u}\left(t_{0}\right)$ and $\eta_{0}=f_{\xi}\left(t_{0}, u\left(t_{0}\right), \dot{u}\left(t_{0}\right)\right)$. Hence,

$$
\phi\left(t_{0}, u_{0}, \xi_{0}, \eta_{0}\right)=0 .
$$

Note that ϕ is C^{1} since f_{ξ} is. Now as $f_{\xi \xi}$ is nonsingular, we can use implicit function theorem locally. Thus, we deduce that there exists an unique continuous function $\varphi=\varphi(t, u, \eta)$ which is C^{1} and satisfies

$$
\begin{equation*}
\phi(t, u, \varphi(t, u, \eta), \eta)=0 \tag{1}
\end{equation*}
$$

in a neighborhood of $\left(t_{0}, u_{0}, \xi_{0}, \eta_{0}\right)$. However, since $\left(t, u(t), \dot{u}(t), f_{\xi}(t, u(t), \dot{u}(t))\right)$ also solves (1) in a neighborhood of ($t_{0}, u_{0}, \xi_{0}, \eta_{0}$), we expect that by uniqueness, we shall have

$$
\dot{u}(t)=\varphi\left(t, u(t), f_{\xi}(t, u(t), \dot{u}(t))\right)
$$

Regularity

However, we can not claim it just yet.

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces

Existence of geodesics
Regularity questions

Regularity

However, we can not claim it just yet. The uniqueness conclusion of implicit function theorem holds for continuous functions

Regularity

However, we can not claim it just yet. The uniqueness conclusion of implicit function theorem holds for continuous functions and we do not yet know if \dot{u} is continuous.

Prelude to Direct
Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Regularity

However, we can not claim it just yet. The uniqueness conclusion of implicit function theorem holds for continuous functions and we do not yet know if \dot{u} is continuous. So we need to prove the uniqueness differently in a larger class.

Prelude to Direct
Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Regularity

However, we can not claim it just yet. The uniqueness conclusion of implicit function theorem holds for continuous functions and we do not yet know if \dot{u} is continuous. So we need to prove the uniqueness differently in a larger class.

Suppose for a given $(t, u, q) \in \Omega \times \mathbb{R}^{N}$,

Regularity

However, we can not claim it just yet. The uniqueness conclusion of implicit function theorem holds for continuous functions and we do not yet know if \dot{u} is continuous. So we need to prove the uniqueness differently in a larger class.

Suppose for a given $(t, u, q) \in \Omega \times \mathbb{R}^{N}$, there exist two solutions $p_{1}, p_{2} \in \mathbb{R}^{N}$ such that

Regularity

However, we can not claim it just yet. The uniqueness conclusion of implicit function theorem holds for continuous functions and we do not yet know if \dot{u} is continuous. So we need to prove the uniqueness differently in a larger class.

Suppose for a given $(t, u, q) \in \Omega \times \mathbb{R}^{N}$, there exist two solutions $p_{1}, p_{2} \in \mathbb{R}^{N}$ such that

$$
q=f_{\xi}\left(t, u, p_{1}\right) \quad \text { and } \quad q=f_{\xi}\left(t, u, p_{2}\right) .
$$

Regularity

However, we can not claim it just yet. The uniqueness conclusion of implicit function theorem holds for continuous functions and we do not yet know if \dot{u} is continuous. So we need to prove the uniqueness differently in a larger class.

Suppose for a given $(t, u, q) \in \Omega \times \mathbb{R}^{N}$, there exist two solutions $p_{1}, p_{2} \in \mathbb{R}^{N}$ such that

$$
q=f_{\xi}\left(t, u, p_{1}\right) \quad \text { and } \quad q=f_{\xi}\left(t, u, p_{2}\right) .
$$

Thus, we have

$$
\int_{a}^{b}\left[f_{\xi \xi}\left(t, u, s p_{1}+(1-s) p_{2}\right)\right]\left(p_{2}-p_{1}\right) \mathrm{d} s=0 .
$$

Regularity

However, we can not claim it just yet. The uniqueness conclusion of implicit function theorem holds for continuous functions and we do not yet know if \dot{u} is continuous. So we need to prove the uniqueness differently in a larger class.

Suppose for a given $(t, u, q) \in \Omega \times \mathbb{R}^{N}$, there exist two solutions $p_{1}, p_{2} \in \mathbb{R}^{N}$ such that

$$
q=f_{\xi}\left(t, u, p_{1}\right) \quad \text { and } \quad q=f_{\xi}\left(t, u, p_{2}\right) .
$$

Thus, we have

$$
\int_{a}^{b}\left[f_{\xi \xi}\left(t, u, s p_{1}+(1-s) p_{2}\right)\right]\left(p_{2}-p_{1}\right) \mathrm{d} s=0 .
$$

Since $f_{\xi \xi}$ is positive definite,

Regularity

However, we can not claim it just yet. The uniqueness conclusion of implicit function theorem holds for continuous functions and we do not yet know if \dot{u} is continuous. So we need to prove the uniqueness differently in a larger class.

Suppose for a given $(t, u, q) \in \Omega \times \mathbb{R}^{N}$, there exist two solutions $p_{1}, p_{2} \in \mathbb{R}^{N}$ such that

$$
q=f_{\xi}\left(t, u, p_{1}\right) \quad \text { and } \quad q=f_{\xi}\left(t, u, p_{2}\right) .
$$

Thus, we have

$$
\int_{a}^{b}\left[f_{\xi \xi}\left(t, u, s p_{1}+(1-s) p_{2}\right)\right]\left(p_{2}-p_{1}\right) \mathrm{d} s=0 .
$$

Since $f_{\xi \xi}$ is positive definite, this implies $p_{1}=p_{2}$.

Regularity

The uniqueness we just proved implies

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Regularity

The uniqueness we just proved implies

$$
\begin{equation*}
\dot{u}(t)=\varphi\left(t, u(t), f_{\xi}(t, u(t), \dot{u}(t))\right) \tag{2}
\end{equation*}
$$

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Regularity

The uniqueness we just proved implies

$$
\begin{equation*}
\dot{u}(t)=\varphi\left(t, u(t), f_{\xi}(t, u(t), \dot{u}(t))\right) \tag{2}
\end{equation*}
$$

for almost all t in a neighborhood of t_{0}.

Prelude to Direct Methods

Geodesics: the problem Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Regularity

The uniqueness we just proved implies

$$
\begin{equation*}
\dot{u}(t)=\varphi\left(t, u(t), f_{\xi}(t, u(t), \dot{u}(t))\right) \tag{2}
\end{equation*}
$$

for almost all t in a neighborhood of t_{0}. Now, $u(t)$ is absolutely continuous w.r.t. t.

Prelude to Direct

 MethodsGeodesics: the problem Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Regularity

The uniqueness we just proved implies

$$
\begin{equation*}
\dot{u}(t)=\varphi\left(t, u(t), f_{\xi}(t, u(t), \dot{u}(t))\right) \tag{2}
\end{equation*}
$$

for almost all t in a neighborhood of t_{0}. Now, $u(t)$ is absolutely

Regularity

The uniqueness we just proved implies

$$
\begin{equation*}
\dot{u}(t)=\varphi\left(t, u(t), f_{\xi}(t, u(t), \dot{u}(t))\right) \tag{2}
\end{equation*}
$$

for almost all t in a neighborhood of t_{0}. Now, $u(t)$ is absolutely absolutely continuous w.r.t t since u is a critical point.

Regularity

The uniqueness we just proved implies

$$
\begin{equation*}
\dot{u}(t)=\varphi\left(t, u(t), f_{\xi}(t, u(t), \dot{u}(t))\right) \tag{2}
\end{equation*}
$$

for almost all t in a neighborhood of t_{0}. Now, $u(t)$ is absolutely absolutely continuous w.r.t t since u is a critical point. So the RHS of (2) is an absolutely continuous function, say $v(t)$.

Regularity

The uniqueness we just proved implies

$$
\begin{equation*}
\dot{u}(t)=\varphi\left(t, u(t), f_{\xi}(t, u(t), \dot{u}(t))\right) \tag{2}
\end{equation*}
$$

for almost all t in a neighborhood of t_{0}. Now, $u(t)$ is absolutely continuous w.r.t. t. We can also prove $f_{\xi}(t, u(t), \dot{u}(t))$ is absolutely continuous w.r.t t since u is a critical point. So the RHS of (2) is an absolutely continuous function, say $v(t)$. But if \dot{u} agrees with an absolutely continuous function for a.e. t in a neighborhood of t_{0},

Regularity

The uniqueness we just proved implies

$$
\begin{equation*}
\dot{u}(t)=\varphi\left(t, u(t), f_{\xi}(t, u(t), \dot{u}(t))\right) \tag{2}
\end{equation*}
$$

for almost all t in a neighborhood of t_{0}. Now, $u(t)$ is absolutely continuous w.r.t. t. We can also prove $f_{\xi}(t, u(t), \dot{u}(t))$ is absolutely continuous w.r.t t since u is a critical point. So the RHS of (2) is an absolutely continuous function, say $v(t)$. But if \dot{u} agrees with an absolutely continuous function for a.e. t in a neighborhood of t_{0}, we have

$$
u(t)=u\left(t_{0}\right)+\int_{t_{0}}^{t} \dot{u}(s) \mathrm{d} s=u\left(t_{0}\right)+\int_{t_{0}}^{t} v(s) \mathrm{d} s,
$$

Regularity

The uniqueness we just proved implies

$$
\begin{equation*}
\dot{u}(t)=\varphi\left(t, u(t), f_{\xi}(t, u(t), \dot{u}(t))\right) \tag{2}
\end{equation*}
$$

for almost all t in a neighborhood of t_{0}. Now, $u(t)$ is absolutely continuous w.r.t. t. We can also prove $f_{\xi}(t, u(t), \dot{u}(t))$ is absolutely continuous w.r.t t since u is a critical point. So the RHS of (2) is an absolutely continuous function, say $v(t)$. But if \dot{u} agrees with an absolutely continuous function for a.e. t in a neighborhood of t_{0}, we have

$$
u(t)=u\left(t_{0}\right)+\int_{t_{0}}^{t} \dot{u}(s) \mathrm{d} s=u\left(t_{0}\right)+\int_{t_{0}}^{t} v(s) \mathrm{d} s
$$

for a.e. t in a neighborhood of t_{0}.

Regularity

The uniqueness we just proved implies

$$
\begin{equation*}
\dot{u}(t)=\varphi\left(t, u(t), f_{\xi}(t, u(t), \dot{u}(t))\right) \tag{2}
\end{equation*}
$$

for almost all t in a neighborhood of t_{0}. Now, $u(t)$ is absolutely continuous w.r.t. t. We can also prove $f_{\xi}(t, u(t), \dot{u}(t))$ is absolutely continuous w.r.t t since u is a critical point. So the RHS of (2) is an absolutely continuous function, say $v(t)$. But if \dot{u} agrees with an absolutely continuous function for a.e. t in a neighborhood of t_{0}, we have

$$
u(t)=u\left(t_{0}\right)+\int_{t_{0}}^{t} \dot{u}(s) \mathrm{d} s=u\left(t_{0}\right)+\int_{t_{0}}^{t} v(s) \mathrm{d} s
$$

for a.e. t in a neighborhood of t_{0}. The LHS above is clearly C^{1},

Regularity

The uniqueness we just proved implies

$$
\begin{equation*}
\dot{u}(t)=\varphi\left(t, u(t), f_{\xi}(t, u(t), \dot{u}(t))\right) \tag{2}
\end{equation*}
$$

for almost all t in a neighborhood of t_{0}. Now, $u(t)$ is absolutely continuous w.r.t. t. We can also prove $f_{\xi}(t, u(t), \dot{u}(t))$ is absolutely continuous w.r.t t since u is a critical point. So the RHS of (2) is an absolutely continuous function, say $v(t)$. But if \dot{u} agrees with an absolutely continuous function for a.e. t in a neighborhood of t_{0}, we have

$$
u(t)=u\left(t_{0}\right)+\int_{t_{0}}^{t} \dot{u}(s) \mathrm{d} s=u\left(t_{0}\right)+\int_{t_{0}}^{t} v(s) \mathrm{d} s
$$

for a.e. t in a neighborhood of t_{0}. The LHS above is clearly C^{1}, hence so is u

Regularity

The uniqueness we just proved implies

$$
\begin{equation*}
\dot{u}(t)=\varphi\left(t, u(t), f_{\xi}(t, u(t), \dot{u}(t))\right) \tag{2}
\end{equation*}
$$

for almost all t in a neighborhood of t_{0}. Now, $u(t)$ is absolutely continuous w.r.t. t. We can also prove $f_{\xi}(t, u(t), \dot{u}(t))$ is absolutely continuous w.r.t t since u is a critical point. So the RHS of (2) is an absolutely continuous function, say $v(t)$. But if \dot{u} agrees with an absolutely continuous function for a.e. t in a neighborhood of t_{0}, we have

$$
u(t)=u\left(t_{0}\right)+\int_{t_{0}}^{t} \dot{u}(s) \mathrm{d} s=u\left(t_{0}\right)+\int_{t_{0}}^{t} v(s) \mathrm{d} s
$$

for a.e. t in a neighborhood of t_{0}. The LHS above is clearly C^{1}, hence so is u and thus \dot{u} is continuous.

Regularity

The uniqueness we just proved implies

$$
\begin{equation*}
\dot{u}(t)=\varphi\left(t, u(t), f_{\xi}(t, u(t), \dot{u}(t))\right) \tag{2}
\end{equation*}
$$

for almost all t in a neighborhood of t_{0}. Now, $u(t)$ is absolutely continuous w.r.t. t. We can also prove $f_{\xi}(t, u(t), \dot{u}(t))$ is absolutely continuous w.r.t t since u is a critical point. So the RHS of (2) is an absolutely continuous function, say $v(t)$. But if \dot{u} agrees with an absolutely continuous function for a.e. t in a neighborhood of t_{0}, we have

$$
u(t)=u\left(t_{0}\right)+\int_{t_{0}}^{t} \dot{u}(s) \mathrm{d} s=u\left(t_{0}\right)+\int_{t_{0}}^{t} v(s) \mathrm{d} s
$$

for a.e. t in a neighborhood of t_{0}. The LHS above is clearly C^{1}, hence so is u and thus \dot{u} is continuous. So now the uniqueness for implicit function theorem implies (2) holds

Regularity

The uniqueness we just proved implies

$$
\begin{equation*}
\dot{u}(t)=\varphi\left(t, u(t), f_{\xi}(t, u(t), \dot{u}(t))\right) \tag{2}
\end{equation*}
$$

for almost all t in a neighborhood of t_{0}. Now, $u(t)$ is absolutely continuous w.r.t. t. We can also prove $f_{\xi}(t, u(t), \dot{u}(t))$ is absolutely continuous w.r.t t since u is a critical point. So the RHS of (2) is an absolutely continuous function, say $v(t)$. But if \dot{u} agrees with an absolutely continuous function for a.e. t in a neighborhood of t_{0}, we have

$$
u(t)=u\left(t_{0}\right)+\int_{t_{0}}^{t} \dot{u}(s) \mathrm{d} s=u\left(t_{0}\right)+\int_{t_{0}}^{t} v(s) \mathrm{d} s
$$

for a.e. t in a neighborhood of t_{0}. The LHS above is clearly C^{1}, hence so is u and thus \dot{u} is continuous. So now the uniqueness for implicit function theorem implies (2) holds and u is C^{2}.

Thank you Questions?

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

