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Poincaré inequality in W 1,p
0

Now we can show an important inequality known as the Poincaré
inequality.

Theorem (Poincaré inequality)

Let (a, b) be a bounded interval and let u ∈W 1,p
0

(
(a, b);RN

)
for

1 ≤ p <∞. Then we have

ˆ b

a

|u(t)|p dt ≤ (b − a)p
ˆ b

a

|u̇ (t)|p dt.

In particular, the expression(ˆ b

a

|u̇ (t)|p dt

) 1
p

is an equivalent norm ( i.e equivalent to the W 1,p norm ) on
W 1,p

0

(
(a, b);RN

)
.
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Let (a, b) be a bounded interval and let u ∈W 1,p
0

(
(a, b);RN

)
for

1 ≤ p <∞. Then we have

ˆ b

a

|u(t)|p dt ≤ (b − a)p
ˆ b

a

|u̇ (t)|p dt.

In particular, the expression(ˆ b

a

|u̇ (t)|p dt

) 1
p

is an equivalent norm ( i.e equivalent to the W 1,p norm ) on
W 1,p

0

(
(a, b);RN

)
.



Introduction to the
Calculus of Variations

Swarnendu Sil

Prelude to Direct
Methods

Geodesics: the problem

Absolute continuity: first
encounter with Sobolev
spaces

Existence of geodesics

Regularity questions

The End
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Poincaré inequality in W 1,p
0

Proof.
We leave out the details of the proof and only provide a sketch, as
this is fairly easy.

We prove it for C∞c functions first using the
fundamental theorem of calculus and easy estimates and Hölder
inequality. Then we claim the result for W 1,p

0 by density.

Absolutely continuous functions

The geodesic problem was first solved for absolutely continuous
curves, which were introduced by Vitalli. First we begin with a
precise definition.

Definition (absolutely continuous functions)

A function u : (a, b)→ R is said to be absolutely continuous,
denoted u ∈ AC ((a, b)) , if, for every ε > 0, there is a δ > 0 such
that

M∑
i=1

|βi − αi | < δ implies
M∑
i=1

|u (βi )− u (αi )| < ε

whenever (α1, β1), . . . , (αM , βM) are disjoint segments in (a, b).
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Poincaré inequality in W 1,p
0

Proof.
We leave out the details of the proof and only provide a sketch, as
this is fairly easy. We prove it for C∞c functions first using the
fundamental theorem of calculus and easy estimates and Hölder
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inequality. Then we claim the result for W 1,p

0 by density.

Absolutely continuous functions

The geodesic problem was first solved for absolutely continuous
curves,

which were introduced by Vitalli. First we begin with a
precise definition.

Definition (absolutely continuous functions)

A function u : (a, b)→ R is said to be absolutely continuous,
denoted u ∈ AC ((a, b)) , if, for every ε > 0, there is a δ > 0 such
that

M∑
i=1

|βi − αi | < δ implies
M∑
i=1

|u (βi )− u (αi )| < ε

whenever (α1, β1), . . . , (αM , βM) are disjoint segments in (a, b).



Introduction to the
Calculus of Variations

Swarnendu Sil

Prelude to Direct
Methods

Geodesics: the problem

Absolute continuity: first
encounter with Sobolev
spaces

Existence of geodesics

Regularity questions

The End
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Poincaré inequality in W 1,p
0

Proof.
We leave out the details of the proof and only provide a sketch, as
this is fairly easy. We prove it for C∞c functions first using the
fundamental theorem of calculus and easy estimates and Hölder
inequality. Then we claim the result for W 1,p

0 by density.

Absolutely continuous functions

The geodesic problem was first solved for absolutely continuous
curves, which were introduced by Vitalli. First we begin with a
precise definition.

Definition (absolutely continuous functions)

A function u : (a, b)→ R is said to be absolutely continuous,
denoted u ∈ AC ((a, b)) , if, for every ε > 0, there is a δ > 0 such
that

M∑
i=1

|βi − αi | < δ implies
M∑
i=1

|u (βi )− u (αi )| < ε

whenever (α1, β1), . . . , (αM , βM) are disjoint segments in (a, b).



Introduction to the
Calculus of Variations

Swarnendu Sil

Prelude to Direct
Methods

Geodesics: the problem

Absolute continuity: first
encounter with Sobolev
spaces

Existence of geodesics

Regularity questions

The End

Absolutely continuous functions

Remark

I The vector-valued version is defined similarly.

I Clearly, any absolutely continuous function is uniformly
continuous.

I Any absolutely continuous function is also of bounded
variation. More precisely, if u ∈ AC ((a, b)) , we have

V b
a (u) := sup

M∑
i=1

|u(xi )− u(xi−1)| < +∞,

where the supremum is taken over all natural numbers M and
all choices of xi s such that a < x0 < x1 < . . . < xM < b.

I However, much more is true. In fact, we have,

AC
(
(a, b);RN

)
= W 1,1

(
(a, b);RN

)
.

We shall prove it in the problem sheet in stages.
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Existence of geodesics

Now we return to the problem of showing the existence of a
geodesic.

The variational problem is

inf
γ∈X

{
L (c) :=

ˆ T

0

(
gij (γ (t)) γ̇ i (t) γ̇j (t)

) 1
2

dt

}
= m.

where

X =
{

: γ ∈ C 1 ([0,T ];U) : γ (0) = f −1 (p1) , γ (T ) = f −1 (p2)
}
.

Here we are implicitly making the identification of c with γ via a
fixed local chart f .

We have already seen that this problem does not have enough
compactness properties. We are going to inspect why in a bit
more detail from another perspective.
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Invariance under reparametrization

The length functional is invariant under reparametrization.

Let

τ : [0,S ]→ [0,T ]

be a diffeomorphism. Then we see

L(c) = L(c ◦ τ) for any curve c : [0,T ]→ RN .

Indeed,

L(c ◦ τ) =

ˆ S

0

∣∣∣∣ dds (c ◦ τ) (s)

∣∣∣∣ ds

=

ˆ S

0

∣∣∣∣( d

dt
c

)
(τ(s))

∣∣∣∣ ∣∣∣∣dτds (s)

∣∣∣∣ ds

=

ˆ T

0

|ċ (t)| dt = L (c) .
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Reparametrization and group action

What is happening here is a noncompactness due to a group
action,

here the group being the diffeomorphism group of an
interval.

Just for an analogy, suppose we are looking to find the unit
interval [0, 1]. Suppose, however, that our problem is invariant
under the action of Z, i.e. invariant under the transformation

x 7→ x + Z.

Now, the trouble is, though our problem does not distinguish
between copies of the same interval,we do and thus instead of
finding the compact interval [0, 1], we would find the collection of
all integer translated copies of the interval, which is R(!) and is
noncompact!

Probably it is better to view the analogy in reverse.
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Suppose we are working with the noncompact space R,

and the
lack of compactness causes trouble for us.

But suppose that our problem is invariant under the action of Z.

Since the problem does not distinguish between copies of the same
interval, we can cease to do so as well! Thus, we can ‘quotient
out’ the invariance or pass to the quotient’ R/Z.
Question: What is the quotient?

R/Z = S1,

which is compact! Caution: Incidentally, S1 is also the one-point
compactfication of R. However, this is not at play here and is just
incidental here. For example, if the domain is Rn for n ≥ 2 and
the problem is invariant under the transformation ( translation by
an integer lattice)

x 7→ x + Zn,

then
Rn/Zn = Tn,

the n-torus, which is once again compact, but is quite different
from the one point compactification of Rn, which is Sn.
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Question: What is the quotient?

R/Z = S1,

which is compact! Caution: Incidentally, S1 is also the one-point
compactfication of R. However, this is not at play here and is just
incidental here. For example, if the domain is Rn for n ≥ 2 and
the problem is invariant under the transformation ( translation by
an integer lattice)

x 7→ x + Zn,

then
Rn/Zn = Tn,

the n-torus, which is once again compact, but is quite different
from the one point compactification of Rn,

which is Sn.
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Fixing the parametrization

To ‘quotient out’ this invariance, we need to fix a parametrization.

But which one? To answer this, let us go back to the easier
problem for which we have more hopes of solving. We define the
energy of a curve c as

E (c) :=
1

2

ˆ T

0

|ċ (t)|2 dt =
1

2

ˆ T

0

gij (γ (t)) γ̇ i (t) γ̇j (t) dt

Now we notice that for c ∈W 1,2
(
[0,T ];RN

)
, we have,

L (c) =

ˆ T

0

|ċ (t)| dt

Hölder
≤
√
T

(ˆ T

0

|ċ (t)|2 dt

) 1
2

≤
√

2T
√
E (c),

with equality if and only if

|ċ (t)| = constant a.e.
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|ċ (t)| dt
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|ċ (t)| = constant a.e.



Introduction to the
Calculus of Variations

Swarnendu Sil

Prelude to Direct
Methods

Geodesics: the problem

Absolute continuity: first
encounter with Sobolev
spaces

Existence of geodesics

Regularity questions

The End

Parametrization by arc-length

Definition
We say a curve c ∈ AC

(
[0,T ];RN

)
is parametrized

proportionally to arc-length if it satisfies

|ċ (t)| = constant a.e.

We say the curve is parametrized by arc-length if

|ċ (t)| = 1 a.e.

Remark

I Any Lipschitz curve can be (re)parametrized by arc-length.

I Any injective, rectifiable, absolutely continuous curve can be
(re)parametrized by arc-length.
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Parametrization by arc-length

Proposition

Let c : [0, L (c)]→ RN be a curve which can be parametrized by
arc-lenth.

Then among all reparametrizations

τ : [0, L (c)]→ [0, L (c)] ,

the parametrization by arc-length has the smallest energy and
satisfies

L (c) = 2E (c) .

Thus, we can minimize E (c) instead of L (c) to find geodesic
curves.
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Existence of geodesics

Now we settle the problem of the existence of a geodesic.

Theorem (existence of geodesics)

Assume f : U ⊂ RN → M ⊂ Rd be a chart on M such that the
metric tensor is uniformly positive definite in f (U) and let
p1 6= p2 ∈ M be contained in the image of f . Suppose there exists
at least one Lipschitz curve c0 on f (U) joining p1 and p2 and let

D := inf {L (c) : c is a Lipschitz curve on f (U) joining p1 and p2} .

Then the variational problem

inf
γ∈γ0+W 1,2

0 ([0,D];U)

{
I (γ) :=

1

2

ˆ D

0

gij (γ (t)) γ̇ i (t) γ̇j (t) dt

}
=

1

2
D,

where f ◦ γ0 = c0, has a minimizer.
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Existence of geodesics

Proof. Let {γν}ν≥1 be a minimizing sequence,

i.e.

I (γν)→ 1

2
D as ν →∞.

We write the metric tensor as G := (gij)i,j and with this notation,
we have

I (γν) :=
1

2

ˆ D

0

〈G (γν (t)) γ̇ν (t) ; γ̇ν (t)〉 dt.

Since the metric tensor G is uniformly positive definite in f (U) ,
there exists a constant λ > 0 such that

〈G (γν (t)) γ̇ν (t) ; γ̇ν (t)〉 ≥ λ |γ̇ν (t)|2 .

Thus, we have

‖γ̇ν‖L2([0,D];U) ≤
2

λ
I (γν) ≤ 2

λ
D.
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Existence of geodesics

Now since γν − γ0 ∈W 1,2
0 ([0,D];U) ,

by using Poincaré
inequality, we have

‖γν‖L2([0,D];U) ≤ ‖γν − γ0‖L2([0,D];U) + ‖γ0‖L2([0,D];U)

≤ D ‖γ̇ν − γ̇0‖L2([0,D];U) + ‖γ0‖L2([0,D];U)

≤ D ‖γ̇ν‖L2([0,D];U) + (D + 1) ‖γ0‖W 1,2([0,D];U)

≤ 2

λ
D2 + (D + 1) ‖γ0‖W 1,2([0,D];U) .

This implies {γν}ν≥1 is uniformly bounded in W 1,2 and thus, we
deduce

γν ⇀ γ in W 1,2,

for some γ ∈ γ0 + W 1,2
0 ([0,D];U) .

Note that here we have used the fact that W 1,2
0 , being a convex

subset of W 1,2, is weakly closed. However, here in dimension one,
we could have also used the fact that

γν ⇀ γ in W 1,2 ⇒ γν → γ in C 0.



Introduction to the
Calculus of Variations

Swarnendu Sil

Prelude to Direct
Methods

Geodesics: the problem

Absolute continuity: first
encounter with Sobolev
spaces

Existence of geodesics

Regularity questions

The End

Existence of geodesics

Now since γν − γ0 ∈W 1,2
0 ([0,D];U) , by using Poincaré
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inequality, we have

‖γν‖L2([0,D];U) ≤ ‖γν − γ0‖L2([0,D];U) + ‖γ0‖L2([0,D];U)

≤ D ‖γ̇ν − γ̇0‖L2([0,D];U) + ‖γ0‖L2([0,D];U)

≤ D ‖γ̇ν‖L2([0,D];U) + (D + 1) ‖γ0‖W 1,2([0,D];U)

≤ 2

λ
D2 + (D + 1) ‖γ0‖W 1,2([0,D];U) .

This implies {γν}ν≥1 is uniformly bounded in W 1,2 and thus, we
deduce

γν ⇀ γ in W 1,2,

for some γ ∈ γ0 + W 1,2
0 ([0,D];U) .

Note that here we have used the fact that W 1,2
0 , being a convex

subset of W 1,2, is weakly closed. However, here in dimension one,
we could have also used the fact that

γν ⇀ γ in W 1,2 ⇒ γν → γ in C 0.



Introduction to the
Calculus of Variations

Swarnendu Sil

Prelude to Direct
Methods

Geodesics: the problem

Absolute continuity: first
encounter with Sobolev
spaces

Existence of geodesics

Regularity questions

The End

Existence of geodesics

Now since γν − γ0 ∈W 1,2
0 ([0,D];U) , by using Poincaré
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Now we want to show that this weak limit γ is a minimizer.

We
have,

I (γν) =
1

2

ˆ D

0

〈G γ̇ν ; γ̇ν〉

=
1

2

ˆ D

0

〈G [γ̇ + (γ̇ν − γ̇)] ; γ̇ + (γ̇ν − γ̇)〉

=
1

2

ˆ D

0

〈G γ̇; γ̇〉+

ˆ D

0

〈G γ̇; γ̇ν − γ̇〉+
1

2

ˆ D

0

〈G (γ̇ν − γ̇) ; γ̇ν − γ̇〉 ,

where we used the fact that G is symmetric. By the uniform
positive definiteness of G , we have

1

2

ˆ D

0

〈G (γ̇ν − γ̇) ; γ̇ν − γ̇〉 ≥ 0.

Combining, we obtain

I (γν) ≥ I (γ) +

ˆ D

0

〈G γ̇; γ̇ν − γ̇〉 .
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Now since
γ̇ν ⇀ γ̇ in L2,

we deduce

lim
ν→∞

ˆ D

0

〈G γ̇; γ̇ν − γ̇〉 = 0.

Thus, we deduce

1

2
D = lim inf

ν→∞
I (γν) ≥ I (γ) + lim

ν→∞

ˆ D

0

〈G γ̇; γ̇ν − γ̇〉 = I (γ) ≥ 1

2
D.

Hence γ is a minimizer.
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Regularity

Now we are going to show that this curve is actually C 2 and not
just W 1,2.

Results of this type are called regularity results. We
show a general result.

Theorem (Regularity)

Let f ∈ C 1
(
[a, b]× RN × RN

)
, f = f (t, u, ξ) be such that

I fξ is C 1,

I u ∈W 1,1
(
[a, b];RN

)
is a critical point of the functional

I [u] =

ˆ b

a

f (t, u (t) , u̇ (t)) dt,

I fu (t, u (t) , u̇ (t)) , fξ (t, u (t) , u̇ (t)) are L1 and

I fξξ is positive definite on Ω× RN , where Ω ⊂ RN+1 contains
{(t, u (t)) : t ∈ [a, b]} .

Then u is C 2. Moreover, if fξ is C k for some k ≥ 2, then u is
C k+1. In particular, u is C∞ if fξ is C∞.



Introduction to the
Calculus of Variations

Swarnendu Sil

Prelude to Direct
Methods

Geodesics: the problem

Absolute continuity: first
encounter with Sobolev
spaces

Existence of geodesics

Regularity questions

The End

Regularity

Now we are going to show that this curve is actually C 2 and not
just W 1,2. Results of this type are called regularity results.

We
show a general result.

Theorem (Regularity)

Let f ∈ C 1
(
[a, b]× RN × RN

)
, f = f (t, u, ξ) be such that

I fξ is C 1,

I u ∈W 1,1
(
[a, b];RN

)
is a critical point of the functional

I [u] =

ˆ b

a

f (t, u (t) , u̇ (t)) dt,

I fu (t, u (t) , u̇ (t)) , fξ (t, u (t) , u̇ (t)) are L1 and

I fξξ is positive definite on Ω× RN , where Ω ⊂ RN+1 contains
{(t, u (t)) : t ∈ [a, b]} .

Then u is C 2. Moreover, if fξ is C k for some k ≥ 2, then u is
C k+1. In particular, u is C∞ if fξ is C∞.



Introduction to the
Calculus of Variations

Swarnendu Sil

Prelude to Direct
Methods

Geodesics: the problem

Absolute continuity: first
encounter with Sobolev
spaces

Existence of geodesics

Regularity questions

The End

Regularity

Now we are going to show that this curve is actually C 2 and not
just W 1,2. Results of this type are called regularity results. We
show a general result.

Theorem (Regularity)

Let f ∈ C 1
(
[a, b]× RN × RN

)
, f = f (t, u, ξ) be such that

I fξ is C 1,

I u ∈W 1,1
(
[a, b];RN

)
is a critical point of the functional

I [u] =

ˆ b

a

f (t, u (t) , u̇ (t)) dt,

I fu (t, u (t) , u̇ (t)) , fξ (t, u (t) , u̇ (t)) are L1 and

I fξξ is positive definite on Ω× RN , where Ω ⊂ RN+1 contains
{(t, u (t)) : t ∈ [a, b]} .

Then u is C 2. Moreover, if fξ is C k for some k ≥ 2, then u is
C k+1. In particular, u is C∞ if fξ is C∞.



Introduction to the
Calculus of Variations

Swarnendu Sil

Prelude to Direct
Methods

Geodesics: the problem

Absolute continuity: first
encounter with Sobolev
spaces

Existence of geodesics

Regularity questions

The End

Regularity

Now we are going to show that this curve is actually C 2 and not
just W 1,2. Results of this type are called regularity results. We
show a general result.

Theorem (Regularity)

Let f ∈ C 1
(
[a, b]× RN × RN

)
, f = f (t, u, ξ) be such that

I fξ is C 1,

I u ∈W 1,1
(
[a, b];RN

)
is a critical point of the functional

I [u] =

ˆ b

a

f (t, u (t) , u̇ (t)) dt,

I fu (t, u (t) , u̇ (t)) , fξ (t, u (t) , u̇ (t)) are L1 and

I fξξ is positive definite on Ω× RN , where Ω ⊂ RN+1 contains
{(t, u (t)) : t ∈ [a, b]} .

Then u is C 2. Moreover, if fξ is C k for some k ≥ 2, then u is
C k+1. In particular, u is C∞ if fξ is C∞.



Introduction to the
Calculus of Variations

Swarnendu Sil

Prelude to Direct
Methods

Geodesics: the problem

Absolute continuity: first
encounter with Sobolev
spaces

Existence of geodesics

Regularity questions

The End

Regularity

Now we are going to show that this curve is actually C 2 and not
just W 1,2. Results of this type are called regularity results. We
show a general result.

Theorem (Regularity)

Let f ∈ C 1
(
[a, b]× RN × RN

)
, f = f (t, u, ξ) be such that

I fξ is C 1,

I u ∈W 1,1
(
[a, b];RN

)
is a critical point of the functional

I [u] =

ˆ b

a

f (t, u (t) , u̇ (t)) dt,

I fu (t, u (t) , u̇ (t)) , fξ (t, u (t) , u̇ (t)) are L1 and

I fξξ is positive definite on Ω× RN , where Ω ⊂ RN+1 contains
{(t, u (t)) : t ∈ [a, b]} .

Then u is C 2. Moreover, if fξ is C k for some k ≥ 2, then u is
C k+1. In particular, u is C∞ if fξ is C∞.



Introduction to the
Calculus of Variations

Swarnendu Sil

Prelude to Direct
Methods

Geodesics: the problem

Absolute continuity: first
encounter with Sobolev
spaces

Existence of geodesics

Regularity questions

The End

Regularity

Now we are going to show that this curve is actually C 2 and not
just W 1,2. Results of this type are called regularity results. We
show a general result.

Theorem (Regularity)

Let f ∈ C 1
(
[a, b]× RN × RN

)
, f = f (t, u, ξ) be such that

I fξ is C 1,

I u ∈W 1,1
(
[a, b];RN

)
is a critical point of the functional

I [u] =

ˆ b

a

f (t, u (t) , u̇ (t)) dt,

I fu (t, u (t) , u̇ (t)) , fξ (t, u (t) , u̇ (t)) are L1 and

I fξξ is positive definite on Ω× RN , where Ω ⊂ RN+1 contains
{(t, u (t)) : t ∈ [a, b]} .

Then u is C 2. Moreover, if fξ is C k for some k ≥ 2, then u is
C k+1. In particular, u is C∞ if fξ is C∞.



Introduction to the
Calculus of Variations

Swarnendu Sil

Prelude to Direct
Methods

Geodesics: the problem

Absolute continuity: first
encounter with Sobolev
spaces

Existence of geodesics

Regularity questions

The End

Regularity

Now we are going to show that this curve is actually C 2 and not
just W 1,2. Results of this type are called regularity results. We
show a general result.

Theorem (Regularity)

Let f ∈ C 1
(
[a, b]× RN × RN

)
, f = f (t, u, ξ) be such that

I fξ is C 1,

I u ∈W 1,1
(
[a, b];RN

)
is a critical point of the functional

I [u] =

ˆ b

a

f (t, u (t) , u̇ (t)) dt,

I fu (t, u (t) , u̇ (t)) , fξ (t, u (t) , u̇ (t)) are L1

and

I fξξ is positive definite on Ω× RN , where Ω ⊂ RN+1 contains
{(t, u (t)) : t ∈ [a, b]} .

Then u is C 2. Moreover, if fξ is C k for some k ≥ 2, then u is
C k+1. In particular, u is C∞ if fξ is C∞.



Introduction to the
Calculus of Variations

Swarnendu Sil

Prelude to Direct
Methods

Geodesics: the problem

Absolute continuity: first
encounter with Sobolev
spaces

Existence of geodesics

Regularity questions

The End

Regularity

Now we are going to show that this curve is actually C 2 and not
just W 1,2. Results of this type are called regularity results. We
show a general result.

Theorem (Regularity)

Let f ∈ C 1
(
[a, b]× RN × RN

)
, f = f (t, u, ξ) be such that

I fξ is C 1,

I u ∈W 1,1
(
[a, b];RN

)
is a critical point of the functional

I [u] =

ˆ b

a

f (t, u (t) , u̇ (t)) dt,

I fu (t, u (t) , u̇ (t)) , fξ (t, u (t) , u̇ (t)) are L1 and

I fξξ is positive definite on Ω× RN ,

where Ω ⊂ RN+1 contains
{(t, u (t)) : t ∈ [a, b]} .

Then u is C 2. Moreover, if fξ is C k for some k ≥ 2, then u is
C k+1. In particular, u is C∞ if fξ is C∞.



Introduction to the
Calculus of Variations

Swarnendu Sil

Prelude to Direct
Methods

Geodesics: the problem

Absolute continuity: first
encounter with Sobolev
spaces

Existence of geodesics

Regularity questions

The End

Regularity

Now we are going to show that this curve is actually C 2 and not
just W 1,2. Results of this type are called regularity results. We
show a general result.

Theorem (Regularity)

Let f ∈ C 1
(
[a, b]× RN × RN

)
, f = f (t, u, ξ) be such that

I fξ is C 1,

I u ∈W 1,1
(
[a, b];RN

)
is a critical point of the functional

I [u] =

ˆ b

a

f (t, u (t) , u̇ (t)) dt,

I fu (t, u (t) , u̇ (t)) , fξ (t, u (t) , u̇ (t)) are L1 and

I fξξ is positive definite on Ω× RN , where Ω ⊂ RN+1 contains
{(t, u (t)) : t ∈ [a, b]} .

Then u is C 2. Moreover, if fξ is C k for some k ≥ 2, then u is
C k+1. In particular, u is C∞ if fξ is C∞.



Introduction to the
Calculus of Variations

Swarnendu Sil

Prelude to Direct
Methods

Geodesics: the problem

Absolute continuity: first
encounter with Sobolev
spaces

Existence of geodesics

Regularity questions

The End

Regularity

Now we are going to show that this curve is actually C 2 and not
just W 1,2. Results of this type are called regularity results. We
show a general result.

Theorem (Regularity)

Let f ∈ C 1
(
[a, b]× RN × RN

)
, f = f (t, u, ξ) be such that

I fξ is C 1,

I u ∈W 1,1
(
[a, b];RN

)
is a critical point of the functional

I [u] =

ˆ b

a

f (t, u (t) , u̇ (t)) dt,

I fu (t, u (t) , u̇ (t)) , fξ (t, u (t) , u̇ (t)) are L1 and

I fξξ is positive definite on Ω× RN , where Ω ⊂ RN+1 contains
{(t, u (t)) : t ∈ [a, b]} .

Then u is C 2.

Moreover, if fξ is C k for some k ≥ 2, then u is
C k+1. In particular, u is C∞ if fξ is C∞.



Introduction to the
Calculus of Variations

Swarnendu Sil

Prelude to Direct
Methods

Geodesics: the problem

Absolute continuity: first
encounter with Sobolev
spaces

Existence of geodesics

Regularity questions

The End

Regularity

Now we are going to show that this curve is actually C 2 and not
just W 1,2. Results of this type are called regularity results. We
show a general result.

Theorem (Regularity)

Let f ∈ C 1
(
[a, b]× RN × RN

)
, f = f (t, u, ξ) be such that

I fξ is C 1,

I u ∈W 1,1
(
[a, b];RN

)
is a critical point of the functional

I [u] =

ˆ b

a

f (t, u (t) , u̇ (t)) dt,

I fu (t, u (t) , u̇ (t)) , fξ (t, u (t) , u̇ (t)) are L1 and

I fξξ is positive definite on Ω× RN , where Ω ⊂ RN+1 contains
{(t, u (t)) : t ∈ [a, b]} .

Then u is C 2. Moreover, if fξ is C k for some k ≥ 2,

then u is
C k+1. In particular, u is C∞ if fξ is C∞.



Introduction to the
Calculus of Variations

Swarnendu Sil

Prelude to Direct
Methods

Geodesics: the problem

Absolute continuity: first
encounter with Sobolev
spaces

Existence of geodesics

Regularity questions

The End

Regularity

Now we are going to show that this curve is actually C 2 and not
just W 1,2. Results of this type are called regularity results. We
show a general result.

Theorem (Regularity)

Let f ∈ C 1
(
[a, b]× RN × RN

)
, f = f (t, u, ξ) be such that

I fξ is C 1,

I u ∈W 1,1
(
[a, b];RN

)
is a critical point of the functional

I [u] =

ˆ b

a

f (t, u (t) , u̇ (t)) dt,

I fu (t, u (t) , u̇ (t)) , fξ (t, u (t) , u̇ (t)) are L1 and

I fξξ is positive definite on Ω× RN , where Ω ⊂ RN+1 contains
{(t, u (t)) : t ∈ [a, b]} .

Then u is C 2. Moreover, if fξ is C k for some k ≥ 2, then u is
C k+1.

In particular, u is C∞ if fξ is C∞.
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Proof. We define the function φ : [a, b]×RN ×RN ×RN → R as

φ (t, u, ξ, η) := fξ (t, u, ξ)− η.

Let t0 ∈ [a, b], u0 = u (t0) , ξ0 = u̇ (t0) and
η0 = fξ (t0, u (t0) , u̇ (t0)) . Hence,

φ (t0, u0, ξ0, η0) = 0.

Note that φ is C 1 since fξ is. Now as fξξ is nonsingular, we can
use implicit function theorem locally. Thus, we deduce that there
exists an unique continuous function ϕ = ϕ (t, u, η) which is C 1

and satisfies

φ (t, u, ϕ (t, u, η) , η) = 0 (1)

in a neighborhood of (t0, u0, ξ0, η0) . However, since
(t, u (t) , u̇ (t) , fξ (t, u (t) , u̇ (t))) also solves (1) in a neighborhood
of (t0, u0, ξ0, η0) , we expect that by uniqueness, we shall have

u̇ (t) = ϕ (t, u (t) , fξ (t, u (t) , u̇ (t))) .
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However, we can not claim it just yet.

The uniqueness conclusion
of implicit function theorem holds for continuous functions and we
do not yet know if u̇ is continuous. So we need to prove the
uniqueness differently in a larger class.

Suppose for a given (t, u, q) ∈ Ω× RN , there exist two solutions
p1, p2 ∈ RN such that

q = fξ (t, u, p1) and q = fξ (t, u, p2) .

Thus, we have

ˆ b

a

[fξξ (t, u, sp1 + (1− s) p2)] (p2 − p1) ds = 0.

Since fξξ is positive definite, this implies p1 = p2.
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Suppose for a given (t, u, q) ∈ Ω× RN ,

there exist two solutions
p1, p2 ∈ RN such that

q = fξ (t, u, p1) and q = fξ (t, u, p2) .

Thus, we have

ˆ b

a

[fξξ (t, u, sp1 + (1− s) p2)] (p2 − p1) ds = 0.

Since fξξ is positive definite, this implies p1 = p2.
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The uniqueness we just proved implies

u̇ (t) = ϕ (t, u (t) , fξ (t, u (t) , u̇ (t))) (2)

for almost all t in a neighborhood of t0. Now, u (t) is absolutely
continuous w.r.t. t. We can also prove fξ (t, u (t) , u̇ (t)) is
absolutely continuous w.r.t t since u is a critical point. So the
RHS of (2) is an absolutely continuous function, say v (t). But if
u̇ agrees with an absolutely continuous function for a.e. t in a
neighborhood of t0, we have

u (t) = u (t0) +

ˆ t

t0

u̇ (s) ds = u (t0) +

ˆ t

t0

v (s) ds,

for a.e. t in a neighborhood of t0. The LHS above is clearly C 1,
hence so is u and thus u̇ is continuous. So now the uniqueness for
implicit function theorem implies (2) holds and u is C 2.
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