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Recap

We have already defined weak derivatives.

Definition (weak derivatives)

Let u ∈ L1
(
(0,T );Rd

)
.

We say u has a weak derivative if there

exists a function v ∈ L1
(
(0,T );Rd

)
such that

ˆ T

0

〈v , ψ〉 = −
ˆ T

0

〈
u, ψ̇

〉
for any ψ ∈ C∞c

(
(0,T );Rd

)
.

In this case, we say v is the weak derivative of u and we write

v = u̇.

Remark
The weak derivative, if it exists, is unique.

Can you see why?
Any two weak derivatives of u would be equal a.e. by the
fundamental lemma of calculus of variations and thus would
represent the same L1 function.
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Sobolev spaces in dimension one

Definition (W 1,p functions)

A measurable function u : (a, b)→ R is said to be a Sobolev
function of class W 1,p if u ∈ Lp ((a, b)) and the weak derivative
u̇ ∈ Lp ((a, b)) for 1 ≤ p ≤ ∞. In this case, we write
u ∈W 1,p ((a, b)) .

A measurable function u : (a, b)→ RN is said to be a Sobolev
function of class W 1,p if ui ∈W 1,p ((a, b)) for every 1 ≤ i ≤ N.

Remark
Note that by our definition, as soon as an L1 function is weakly
differentiable, it is a Sobolev function of class W 1,1.
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Sobolev spaces in dimension one

Let us now introduce a norm on W 1,p.

Proposition

Let u ∈W 1,p
(
(a, b);RN

)
. If 1 ≤ p <∞, then

‖u‖W 1,p((a,b);RN ) := ‖u‖Lp((a,b);RN ) + ‖u̇‖Lp((a,b);RN ) <∞.

For p =∞, we have

‖u‖W 1,∞((a,b);RN ) := ‖u‖L∞((a,b)RN ) + ‖u̇‖L∞((a,b);RN ) <∞.

Moreover, these expressions defines a norm on the vector space of
all functions in W 1,p

(
(a, b);RN

)
.

Proposition

The vector space of all function in W 1,p
(
(a, b);RN

)
, equipped

with the norms above is a Banach space, which is reflexive for
1 < p <∞ and is separable for 1 ≤ p <∞. We would simply
write this space as W 1,p

(
(a, b);RN

)
.
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Sobolev spaces in dimension one

Proposition

The space W 1,2
(
(a, b);RN

)
,

equipped with the inner product

〈u, v〉W 1,2((a,b);RN ) : = 〈u, v〉L2((a,b);RN ) + 〈u̇, v̇〉L2((a,b);RN )

=

ˆ b

a

〈u, v〉+

ˆ b

a

〈u̇, v̇〉 ,

is a Hilbert space.

There is another way the Sobolev spaces could have been defined
for 1 ≤ p <∞.
Definition (Sobolev spaces H1,p)

Let X 1,p be the linear subspace of C 1
(
(a, b);RN

)
functions such

that

‖u‖W 1,p((a,b);RN ) := ‖u‖Lp((a,b);RN ) + ‖u̇‖Lp((a,b);RN ) <∞.

The completion of X 1,p with respect to the above norm is called
H1,p

(
(a, b);RN

)
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W 1,p = H1,p

We are now going to prove that the two spaces W 1,p and H1,p are
the same.

In particular, we prove smooth functions are dense in
W 1,p. To show this, we shall also prove that any function
u ∈W 1,p

(
(a, b);RN

)
is actually the restriction of a W 1,p

(
R;RN

)
function.

Theorem (extension and density)

Let (a, b) be a bounded interval of R and let u ∈W 1,p ((a, b))
with 1 ≤ p <∞. Then

1. There exists a function U ∈ Lp (R) which has a weak
derivative U̇ ∈ Lp (R) and satisfies U = u in (a, b).

2. u ∈ H1,p ((a, b)) .
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(
(a, b);RN

)
is actually the restriction of a W 1,p

(
R;RN

)
function.

Theorem (extension and density)

Let (a, b) be a bounded interval of R and let u ∈W 1,p ((a, b))
with 1 ≤ p <∞. Then

1. There exists a function U ∈ Lp (R) which has a weak
derivative U̇ ∈ Lp (R) and satisfies U = u in (a, b).

2. u ∈ H1,p ((a, b)) .
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Proof

Proof of 1. Pick ā, b̄ ∈ R with a < ā < b̄ < b and let η ∈ C 1 (R)
be such that

η = 1 in (−∞, ā) and η = 0 in (b̄,∞).

Our plan is to write

u = ηu + (1− η) u.

We can check that

ηu ∈W 1,p ((a,∞)) and (1− η) u ∈W 1,p ((−∞, b)) .

Now we define

U1 (t) =

{
[ηu] (t) , t > a

[ηu] (2a− t) , t < a
and U2 =

{
[(1− η) u] (t) , t < b

[(1− η) u] (2b − t) , t > b.

Clearly, U = U1 + U2 does the job.
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W 1,p = H1,p

Proof of 2.

Let U ∈W 1,p (R) be the above extension of u ∈W 1,p ((a, b)) .
Pick a nonnegative φ ∈ C∞c ([−1, 1]) such that

´
φ = 1 and set

φε (t) :=
1

ε
φ
( t
ε

)
.

Then we can easily check that

Uε := U ∗ φε

is smooth and converges to U in the W 1,p norm on R.

Boundary values of a W 1,p function in one dimension

Now we want to investigate the question of boundary values ( or
any pointwise value ) of a W 1,p function. Note since W 1,p

functions are only a priory Lp functions,they are only defined a.e.
and thus the pointwise value does not necessarily make sense!

Later, we would resolve this issue by the trace map. In one
dimension, however, we are in luck. As we show now, these
functions are actually continuous in one dimension.
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Continuity of W 1,1 functions in one dimension

Theorem
Every function in W 1,1 ((a, b)) is uniformly continuous in [a, b].

In
particular,

W 1,1 ((a, b)) ⊂ C 0 ([a, b])

and

sup
t∈[a,b]

|u| ≤ 1

(b − a)

ˆ b

a

|u|+
ˆ b

a

|u̇| .

Moreover, the fundamental theorem of calculus holds, i.e. for all
a ≤ s < t ≤ b,

u (t)− u (s) =

ˆ t

s

u̇ (θ) dθ.

This is something we have already seen implicitly in attempting to
solve the geodesic problem before.
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Continuity of W 1,1 functions in one dimension

Proof

Since W 1,1 = H1,1, for u ∈W 1,1 ((a, b)) , there exists a sequence
{uν}ν≥1 ⊂ X 1,1 such that

uν → u in W 1,1.

Now, using the fundamental theorem of calculus, we obtain

uν(t)− uν(s) =

ˆ t

s

u̇ν(t) dt. (1)

Thus, in particular, we have,

|uν(t)− uν(s)| =

∣∣∣∣ˆ t

s

u̇ν(t) dt

∣∣∣∣ ≤ ˆ t

s

|u̇ν(t)| dt.

and

|uν(t)| ≤ |uν (s)|+
ˆ t

s

|u̇ν(t)| dt.
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{uν}ν≥1 ⊂ X 1,1

such that

uν → u in W 1,1.

Now, using the fundamental theorem of calculus, we obtain

uν(t)− uν(s) =

ˆ t

s

u̇ν(t) dt. (1)

Thus, in particular, we have,

|uν(t)− uν(s)| =

∣∣∣∣ˆ t

s

u̇ν(t) dt

∣∣∣∣ ≤ ˆ t
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ˆ t
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|u̇ν(t)| dt.



Introduction to the
Calculus of Variations

Swarnendu Sil

Prelude to Direct
Methods

Geodesics: the problem

Absolute continuity: first
encounter with Sobolev
spaces

Existence of geodesics

Regularity questions

The End

Continuity of W 1,1 functions in one dimension

Proof

Since W 1,1 = H1,1, for u ∈W 1,1 ((a, b)) , there exists a sequence
{uν}ν≥1 ⊂ X 1,1 such that

uν → u in W 1,1.

Now, using the fundamental theorem of calculus, we obtain

uν(t)− uν(s) =

ˆ t

s

u̇ν(t) dt. (1)

Thus, in particular, we have,

|uν(t)− uν(s)| =

∣∣∣∣ˆ t

s

u̇ν(t) dt

∣∣∣∣ ≤ ˆ t

s

|u̇ν(t)| dt.

and

|uν(t)| ≤ |uν (s)|+
ˆ t

s

|u̇ν(t)| dt.



Introduction to the
Calculus of Variations

Swarnendu Sil

Prelude to Direct
Methods

Geodesics: the problem

Absolute continuity: first
encounter with Sobolev
spaces

Existence of geodesics

Regularity questions

The End

Continuity of W 1,1 functions in one dimension

Proof

Since W 1,1 = H1,1, for u ∈W 1,1 ((a, b)) , there exists a sequence
{uν}ν≥1 ⊂ X 1,1 such that

uν → u in W 1,1.

Now, using the fundamental theorem of calculus,

we obtain

uν(t)− uν(s) =

ˆ t

s

u̇ν(t) dt. (1)

Thus, in particular, we have,

|uν(t)− uν(s)| =

∣∣∣∣ˆ t

s

u̇ν(t) dt

∣∣∣∣ ≤ ˆ t

s

|u̇ν(t)| dt.

and

|uν(t)| ≤ |uν (s)|+
ˆ t

s

|u̇ν(t)| dt.



Introduction to the
Calculus of Variations

Swarnendu Sil

Prelude to Direct
Methods

Geodesics: the problem

Absolute continuity: first
encounter with Sobolev
spaces

Existence of geodesics

Regularity questions

The End

Continuity of W 1,1 functions in one dimension

Proof

Since W 1,1 = H1,1, for u ∈W 1,1 ((a, b)) , there exists a sequence
{uν}ν≥1 ⊂ X 1,1 such that

uν → u in W 1,1.

Now, using the fundamental theorem of calculus, we obtain

uν(t)− uν(s) =

ˆ t

s

u̇ν(t) dt. (1)

Thus, in particular, we have,

|uν(t)− uν(s)| =

∣∣∣∣ˆ t

s

u̇ν(t) dt

∣∣∣∣ ≤ ˆ t

s

|u̇ν(t)| dt.

and

|uν(t)| ≤ |uν (s)|+
ˆ t

s

|u̇ν(t)| dt.



Introduction to the
Calculus of Variations

Swarnendu Sil

Prelude to Direct
Methods

Geodesics: the problem

Absolute continuity: first
encounter with Sobolev
spaces

Existence of geodesics

Regularity questions

The End

Continuity of W 1,1 functions in one dimension

Proof

Since W 1,1 = H1,1, for u ∈W 1,1 ((a, b)) , there exists a sequence
{uν}ν≥1 ⊂ X 1,1 such that

uν → u in W 1,1.

Now, using the fundamental theorem of calculus, we obtain

uν(t)− uν(s) =

ˆ t

s

u̇ν(t) dt. (1)

Thus, in particular, we have,

|uν(t)− uν(s)| =

∣∣∣∣ˆ t

s

u̇ν(t) dt

∣∣∣∣ ≤ ˆ t

s

|u̇ν(t)| dt.

and

|uν(t)| ≤ |uν (s)|+
ˆ t

s

|u̇ν(t)| dt.



Introduction to the
Calculus of Variations

Swarnendu Sil

Prelude to Direct
Methods

Geodesics: the problem

Absolute continuity: first
encounter with Sobolev
spaces

Existence of geodesics

Regularity questions

The End

Continuity of W 1,1 functions in one dimension

Proof

Since W 1,1 = H1,1, for u ∈W 1,1 ((a, b)) , there exists a sequence
{uν}ν≥1 ⊂ X 1,1 such that

uν → u in W 1,1.

Now, using the fundamental theorem of calculus, we obtain

uν(t)− uν(s) =

ˆ t

s

u̇ν(t) dt. (1)

Thus, in particular, we have,

|uν(t)− uν(s)| =

∣∣∣∣ˆ t

s

u̇ν(t) dt

∣∣∣∣ ≤ ˆ t

s

|u̇ν(t)| dt.

and

|uν(t)| ≤ |uν (s)|+
ˆ t

s

|u̇ν(t)| dt.



Introduction to the
Calculus of Variations

Swarnendu Sil

Prelude to Direct
Methods

Geodesics: the problem

Absolute continuity: first
encounter with Sobolev
spaces

Existence of geodesics

Regularity questions

The End

Continuity of W 1,1 functions in one dimension

Proof

Since W 1,1 = H1,1, for u ∈W 1,1 ((a, b)) , there exists a sequence
{uν}ν≥1 ⊂ X 1,1 such that

uν → u in W 1,1.

Now, using the fundamental theorem of calculus, we obtain

uν(t)− uν(s) =

ˆ t

s

u̇ν(t) dt. (1)

Thus, in particular, we have,

|uν(t)− uν(s)| =

∣∣∣∣ˆ t

s

u̇ν(t) dt

∣∣∣∣ ≤ ˆ t

s

|u̇ν(t)| dt.

and

|uν(t)| ≤ |uν (s)|+
ˆ t

s

|u̇ν(t)| dt.



Introduction to the
Calculus of Variations

Swarnendu Sil

Prelude to Direct
Methods

Geodesics: the problem

Absolute continuity: first
encounter with Sobolev
spaces

Existence of geodesics

Regularity questions

The End

Continuity of W 1,1 functions in one dimension

The last inequality implies

|uν(t)| ≤ |uν (s)|+
ˆ b

a

|u̇ν(t)| dt.

Integrating this with respect to s ∈ (a, b), we obtain
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(b − a)

ˆ b

a

|uν (s)| ds +
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Thus {uν} is uniformly bounded in C 0 and as

u̇ν → u̇ strongly in L1,

we have
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|u̇ν(t)| dt → 0 uniformly in ν as t − s → 0.
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Continuity of W 1,1 functions in one dimension

This implies that {uν} is equicontinuous

and thus by Ascoli-Arzela
theorem, up to the extraction of a subsequence which we do not
relabel, we have

uν → u in C 0.

This shows u is continuous. Now, passing to the limit in (3), we
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Continuity of W 1,p functions in one dimension

In a similar manner, we can prove the following,

which is a
particular case of the Sobolev-Morrey embedding.

Theorem
Every function in W 1,p ((a, b)) with p > 1 Hölder continuous in
[a, b]. In particular,

W 1,p ((a, b)) ⊂ C 0,1− 1
p ([a, b])

and

sup
t∈[a,b]

|u| ≤

(
1

(b − a)

ˆ b

a

|u|p
) 1

p

+ (b − a)1− 1
p

(ˆ b

a

|u̇|p
) 1

p

.

Moreoever for all s, t ∈ [a, b], we have,

|u (t)− u (s)| ≤

(ˆ b

a

|u̇|p
) 1

p

|t − s|1−
1
p .
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[a, b]. In particular,

W 1,p ((a, b)) ⊂ C 0,1− 1
p ([a, b])

and

sup
t∈[a,b]

|u| ≤

(
1

(b − a)

ˆ b

a

|u|p
) 1

p

+ (b − a)1− 1
p

(ˆ b

a

|u̇|p
) 1

p

.

Moreoever for all s, t ∈ [a, b], we have,

|u (t)− u (s)| ≤

(ˆ b

a

|u̇|p
) 1

p

|t − s|1−
1
p .



Introduction to the
Calculus of Variations

Swarnendu Sil

Prelude to Direct
Methods

Geodesics: the problem

Absolute continuity: first
encounter with Sobolev
spaces

Existence of geodesics

Regularity questions

The End

Continuity of W 1,p functions in one dimension

In a similar manner, we can prove the following,which is a
particular case of the Sobolev-Morrey embedding.

Theorem
Every function in W 1,p ((a, b)) with p > 1 Hölder continuous in
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Proof

The proof is almost the same. The only step where it differs is
that we now need to apply Hölder inequality to

|uν(t)− uν(s)| =

∣∣∣∣ˆ t

s

u̇ν(t) dt

∣∣∣∣ ≤ ˆ t

s

|u̇ν(t)| dt.
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) 1

p

|t − s|1−
1
p

≤

(ˆ b

a

|u̇|p
) 1

p

|t − s|1−
1
p .

The rest is the same.



Introduction to the
Calculus of Variations

Swarnendu Sil

Prelude to Direct
Methods

Geodesics: the problem

Absolute continuity: first
encounter with Sobolev
spaces

Existence of geodesics

Regularity questions

The End

Continuity of W 1,p functions in one dimension

Proof

The proof is almost the same.

The only step where it differs is
that we now need to apply Hölder inequality to

|uν(t)− uν(s)| =

∣∣∣∣ˆ t

s

u̇ν(t) dt

∣∣∣∣ ≤ ˆ t

s

|u̇ν(t)| dt.

to deduce

|uν(t)− uν(s)| ≤
ˆ t

s

|u̇ν(t)| dt

≤
(ˆ t

s

|u̇|p
) 1

p

|t − s|1−
1
p

≤

(ˆ b

a

|u̇|p
) 1

p

|t − s|1−
1
p .

The rest is the same.



Introduction to the
Calculus of Variations

Swarnendu Sil

Prelude to Direct
Methods

Geodesics: the problem

Absolute continuity: first
encounter with Sobolev
spaces

Existence of geodesics

Regularity questions

The End

Continuity of W 1,p functions in one dimension

Proof

The proof is almost the same. The only step where it differs is
that we now need to apply Hölder inequality to

|uν(t)− uν(s)| =

∣∣∣∣ˆ t

s

u̇ν(t) dt

∣∣∣∣ ≤ ˆ t

s

|u̇ν(t)| dt.

to deduce

|uν(t)− uν(s)| ≤
ˆ t

s

|u̇ν(t)| dt

≤
(ˆ t

s

|u̇|p
) 1

p

|t − s|1−
1
p

≤

(ˆ b

a

|u̇|p
) 1

p

|t − s|1−
1
p .

The rest is the same.



Introduction to the
Calculus of Variations

Swarnendu Sil

Prelude to Direct
Methods

Geodesics: the problem

Absolute continuity: first
encounter with Sobolev
spaces

Existence of geodesics

Regularity questions

The End

Continuity of W 1,p functions in one dimension

Proof

The proof is almost the same. The only step where it differs is
that we now need to apply Hölder inequality to
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Functions with zero boundary values in W 1,p in one dimension

Now we are going to characterize the functions with zero
boundary values.

Definition (W 1,p
0 )

We define the space W 1,p
0

(
(a, b);RN

)
as the completion of

X 1,p
0 :=

{
u ∈ C∞c

(
(a, b);RN

)
: ‖u‖W 1,p((a,b);RN ) <∞

}
with respect to the W 1,p norm.

Clearly, if u ∈W 1,p
0

(
(a, b);RN

)
, then u (a) = 0 = u (b) . We can

prove the converse as well.

Theorem (Characterization of W 1,p
0 )

Let u ∈W 1,p
(
(a, b);RN

)
. Then u ∈W 1,p

0

(
(a, b);RN

)
if and only

if u (a) = 0 = u (b) .



Introduction to the
Calculus of Variations

Swarnendu Sil

Prelude to Direct
Methods

Geodesics: the problem

Absolute continuity: first
encounter with Sobolev
spaces

Existence of geodesics

Regularity questions

The End

Functions with zero boundary values in W 1,p in one dimension

Now we are going to characterize the functions with zero
boundary values.

Definition (W 1,p
0 )

We define the space W 1,p
0

(
(a, b);RN

)
as

the completion of

X 1,p
0 :=

{
u ∈ C∞c

(
(a, b);RN

)
: ‖u‖W 1,p((a,b);RN ) <∞

}
with respect to the W 1,p norm.

Clearly, if u ∈W 1,p
0

(
(a, b);RN

)
, then u (a) = 0 = u (b) . We can

prove the converse as well.

Theorem (Characterization of W 1,p
0 )

Let u ∈W 1,p
(
(a, b);RN

)
. Then u ∈W 1,p

0

(
(a, b);RN

)
if and only

if u (a) = 0 = u (b) .



Introduction to the
Calculus of Variations

Swarnendu Sil

Prelude to Direct
Methods

Geodesics: the problem

Absolute continuity: first
encounter with Sobolev
spaces

Existence of geodesics

Regularity questions

The End

Functions with zero boundary values in W 1,p in one dimension

Now we are going to characterize the functions with zero
boundary values.

Definition (W 1,p
0 )

We define the space W 1,p
0

(
(a, b);RN

)
as the completion of

X 1,p
0 :=

{
u ∈ C∞c

(
(a, b);RN

)
: ‖u‖W 1,p((a,b);RN ) <∞

}

with respect to the W 1,p norm.

Clearly, if u ∈W 1,p
0

(
(a, b);RN

)
, then u (a) = 0 = u (b) . We can

prove the converse as well.

Theorem (Characterization of W 1,p
0 )

Let u ∈W 1,p
(
(a, b);RN

)
. Then u ∈W 1,p

0

(
(a, b);RN

)
if and only

if u (a) = 0 = u (b) .



Introduction to the
Calculus of Variations

Swarnendu Sil

Prelude to Direct
Methods

Geodesics: the problem

Absolute continuity: first
encounter with Sobolev
spaces

Existence of geodesics

Regularity questions

The End

Functions with zero boundary values in W 1,p in one dimension

Now we are going to characterize the functions with zero
boundary values.

Definition (W 1,p
0 )

We define the space W 1,p
0

(
(a, b);RN

)
as the completion of

X 1,p
0 :=

{
u ∈ C∞c

(
(a, b);RN

)
: ‖u‖W 1,p((a,b);RN ) <∞

}
with respect to the W 1,p norm.

Clearly, if u ∈W 1,p
0

(
(a, b);RN

)
, then u (a) = 0 = u (b) . We can

prove the converse as well.

Theorem (Characterization of W 1,p
0 )
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Functions with zero boundary values in W 1,p in one dimension

Proof

Fix any function G ∈ C 1 (R) such that

G (t) =

{
0 if |t| ≤ 1,

t if |t| ≥ 2.

and
|G (t)| ≤ |t| for all t ∈ R.

Set

uν =
1

ν
G (νu) ,

so that uν ∈W 1,p
(
(a, b);RN

)
. On the other hand, we can check

that the support of uν is compactly contained in (a, b) since
u (a) = 0 = u (b) and u is continuous. But this implies easily that
uν ∈W 1,p

0

(
(a, b);RN

)
. Finally, one easily checks that

uν → u in W 1,p
(
(a, b);RN

)
by the dominated convergence theorem.
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