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Recap

We have already defined weak derivatives.

Definition (weak derivatives)
Let u e L' ((0, T);RY).
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Any two weak derivatives of u would be equal a.e. by the
fundamental lemma of calculus of variations
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We have already defined weak derivatives.

Definition (weak derivatives) St it
Absolute continuity: first

Let u € L' ((0, T); R?) . We say u has a weak derivative if there (T

spaces

exists a function v € L* ((0, T); RY) such that S

/OT (v,9) = — /OT <u7¢> for any ¢ € C ((0, T);RY) .

In this case, we say v is the weak derivative of u and we write

v = 0.

Remark
The weak derivative, if it exists, is unique.

Can you see why?

Any two weak derivatives of u would be equal a.e. by the
fundamental lemma of calculus of variations and thus would
represent the same L! function.
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Let us now introduce a norm on WP,

Proposition Al oty
Let ue WP ((a,b);RY). If1 < p < oo, then Speountervith Sobeer
HUval,p((a,b);RN) = HUHLP((a,b);RN) + ”u”LP((a,b);R’V) < oo.

For p = oo, we have

ullwree (a,pymny 7= 1ll oo ((a,pyrmy + 101 oo (a5 0) < OO

Moreover, these expressions defines a norm on the vector space of
all functions in WP ((a, b); RV) .

Proposition

The vector space of all function in WP ((a, b); RV) , equipped
with the norms above is a Banach space, which is reflexive for
1 < p < oo and is separable for 1 < p < co. We would simply
write this space as WP ((a, b); R") .
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Sobolev spaces in dimension one

Proposition
The space W12 ((a, b); IRN) , equipped with the inner product

(U V) wra(apymmy - = (U V) 2o bymny T (05 V) 122,50y
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is a Hilbert space.

There is another way the Sobolev spaces could have been defined
for 1 < p < o0.
Definition (Sobolev spaces H'P)

Let X1 be the linear subspace of C* ((a, b); R) functions such
that

HUHWLn((a,b);RN) = HUHLP((a,b);]R’V) + ||"’||Lp((a,b);RN) < oo.

The completion of XP with respect to the above norm is called
H-P ((a, b);RN) .
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Let (a, b) be a bounded interval of R and let u € WP ((a, b))
with 1 < p < oo.
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the same. In particular, we prove smooth functions are dense in S
WP, To show this, we shall also prove that any function

ue whe ((a, b); RN) is actually the restriction of a WP (R;RN)

function.

Theorem (extension and density)

Let (a, b) be a bounded interval of R and let u € WP ((a, b))
with 1 < p < co. Then
1. There exists a function U € LP (R) which has a weak
derivative U € LP (R) and satisfies U = u in (a, b).
2. ue€ HY ((a,b)).
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be SUCh that eA:::Iute continuity: first

with Sobolev

n=1in(—o0,3a) and n=0in (b,00). r—
Our plan is to write
u=nu+(l—n)u.
We can check that
nue WP ((a,00)) and (1 —n)ue WP ((—oo,b)).
Now we define
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Clearly, U = U; + U, does the job.
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Proof of 2.
Let U € WLP (R) be the above extension of u € WP ((a, b)). R
Pick a nonnegative ¢ € C2° ([—1,1]) such that [ ¢ =1 and set Ao continiy: s
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Then we can easily check that
U: == U= ¢,

is smooth and converges to U in the WP norm on R. O

Boundary values of a W' function in one dimension

Now we want to investigate the question of boundary values ( or
any pointwise value ) of a W function. Note since W1
functions are only a priory LP functions,they are only defined a.e.
and thus the pointwise value does not necessarily make sense!

Later, we would resolve this issue by the trace map. In one
dimension, however, we are in luck. As we show now, these
functions are actually continuous in one dimension.
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Theorem
Every function in WY ((a, b)) is uniformly continuous in [a, b]. In
particular,

W ((a, b)) € C°([a, b])

1 b b
sup |u| < 7/ u +/ al .
te[a,b] | (b - 3) a | | a ‘ |

Moreover, the fundamental theorem of calculus holds, i.e. for all
a<s<t<hb,

and

u(t)fu(s):/ u(6) dé.
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Theorem Geodesics: the problem
Absolute continuity: first
Every function in WY ((a, b)) is uniformly continuous in [a, b]. In LR
particular, Eatreof s
Wt ((a, b)) € C°([a, b)) L
and

1 b b
sup |u|§7/ |u|+/ | .
te(a,b] (bf 3) a a

Moreover, the fundamental theorem of calculus holds, i.e. for all
a<s<t<hb,

u(t)fu(s):/ u(6) dé.

This is something we have already seen implicitly in attempting to
solve the geodesic problem before.
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Proof

Since W1t = HLL for u € WY1 ((a, b)), there exists a sequence
{u,},~; C XY such that

u, —u in Wbl —

Now, using the fundamental theorem of calculus, we obtain

u,,(t)—ul,(s):/ 4 (¢) dt. (1)

Thus, in particular, we have,

/: i (t) dt S/stu',,(t) dt.

()] < |, (s)\+/ 0, (1)) dt.

|u () = u(s)] =

and
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The last inequality implies

b
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Integrating this with respect to s € (a, b), we obtain

00 < Gy [ we @) ds [ (o] a

Thus {u,} is uniformly bounded in C°
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00 < Gy [ we @) ds [ (o] a

Thus {u,} is uniformly bounded in C° and as
U, — 0 strongly in L,
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The last inequality implies

b
luy ()] < [u (5)|+/ i, () dt.

Integrating this with respect to s € (a, b), we obtain

00 < g [ (@) ds+ [ ol ae | @

Thus {u,} is uniformly bounded in C° and as
U, — 0 strongly in L,

we have

t
/ |u,(t)] dt =0 uniformly inv ast—s—0.
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Continuity of W! functions in one dimension

Indeed, since i € L1, we have

/t |a(t)] dt — 0

ast—s—0.
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Continuity of W! functions in one dimension

Indeed, since i € L1, we have

t
/|u(t)| dt—0 ast—s—0.
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But the strong convergence implies
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Indeed, since i € L1, we have

Absolute continuity: first
encounter with Sobolev

t
/ la(t)| dt — 0 ast—s—0. rotte contnty.
s

spaces

But the strong convergence implies

t
/|Lil,(t)—1)(t)| dt 50  asv—0.
S
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Indeed, since i € L1, we have

Absolute continuity: first

t
/ la(t)| dt — 0 ast—s—0. rotte contnty.
s

encounter with Sobolev
spaces

But the strong convergence implies Fenee

t
/|Lil,(t)—L'1(t)| dt 50  asv—0.
S

These two together implies the claim above.
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Indeed, since i € L1, we have
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These two together implies the claim above.
But the inequality



Continuity of W! functions in one dimension

Indeed, since i € L1, we have

t
/|u(t)| dt—0 ast—s—0.
s

But the strong convergence implies

t
/|u'l,(t)—L'1(t)| dt 50  asv—0.
S

These two together implies the claim above.

But the inequality
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These two together implies the claim above.
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Indeed, since i € L1, we have

Absolute continuity: first
encounter with Sobolev
spaces

t
/ |a(t)] dt — 0 ast—s—0. rotte contnty.
s

But the strong convergence implies e

t
/|u'l,(t)—L'1(t)| dt 50  asv—0.
S

These two together implies the claim above.

But the inequality
t
/ U, (t) dt
S

together with the fact that

luy (t) — uy(s)| =

< / (0] dt. | (3)

t
/ li,(t)] dt =0 uniformlyinv ast—s—0,
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implies
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Indeed, since i € L1, we have

t
/ |a(t)] dt — 0 ast—s—0. rotte contnty.
s 3 &

But the strong convergence implies
t
/ i, (8) — a(H)] dt >0 asv— 0.
S

These two together implies the claim above.

But the inequality
t
/ U, (t) dt
S

together with the fact that

00) - 0] = < [liorae | @

t
/ li,(t)] dt =0 uniformlyinv ast—s—0,
s
implies

|u,(t) — uy(s)] = 0 uniformlyinv  ast—s— 0.
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theorem,
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Continuity of W! functions in one dimension

This implies that {u,} is equicontinuous and thus by Ascoli-Arzela
theorem, up to the extraction of a subsequence which we do not
relabel, we have

u, —>u in CO.

Introduction to the
Calculus of Variations

Swarnendu Sil

Geodesics: the problem

Absolute continuity: first
encounter with Sobolev
spaces

Existence of geodesics



Continuity of W! functions in one dimension

This implies that {u,} is equicontinuous and thus by Ascoli-Arzela
theorem, up to the extraction of a subsequence which we do not
relabel, we have

u, —>u in CO.

This shows u is continuous.
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Continuity of W! functions in one dimension

This implies that {u,} is equicontinuous and thus by Ascoli-Arzela
theorem, up to the extraction of a subsequence which we do not
relabel, we have

u, — u in CO.

This shows u is continuous. Now, passing to the limit in (3),
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Continuity of W! functions in one dimension

This implies that {u,} is equicontinuous and thus by Ascoli-Arzela
theorem, up to the extraction of a subsequence which we do not
relabel, we have

u, — u in CO.

This shows u is continuous. Now, passing to the limit in (3), we
deduce that v is uniformly continuous.
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This implies that {u,} is equicontinuous and thus by Ascoli-Arzela
theorem, up to the extraction of a subsequence which we do not
relabel, we have

u, — u in CO.

This shows u is continuous. Now, passing to the limit in (3), we
deduce that v is uniformly continuous. The other statements
follow by passing to the limit
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Continuity of W! functions in one dimension

This implies that {u,} is equicontinuous and thus by Ascoli-Arzela
theorem, up to the extraction of a subsequence which we do not
relabel, we have

u, — u in CO.

This shows u is continuous. Now, passing to the limit in (3), we
deduce that v is uniformly continuous. The other statements
follow by passing to the limit in (1) and (2).
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Continuity of W functions in one dimension

In a similar manner, we can prove the following,which is a
particular case of the Sobolev-Morrey embedding.
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Continuity of W functions in one dimension

In a similar manner, we can prove the following,which is a
particular case of the Sobolev-Morrey embedding.

Theorem
Every function in WP ((a, b)) with p > 1 Hélder continuous in
[a, b].
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[a, b]. In particular,
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Continuity of W functions in one dimension

In a similar manner, we can prove the following,which is a
particular case of the Sobolev-Morrey embedding.

Theorem
Every function in WP ((a, b)) with p > 1 Hélder continuous in
[a, b]. In particular,

WP ((a, b)) € C*'5 ([a, b])
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Continuity of W functions in one dimension

In a similar manner, we can prove the following,which is a
particular case of the Sobolev-Morrey embedding.

Theorem
Every function in WP ((a, b)) with p > 1 Hélder continuous in
[a, b]. In particular,

WP ((a, b)) € C*'5 ([a, b])

and
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In a similar manner, we can prove the following,which is a
particular case of the Sobolev-Morrey embedding.
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Every function in WP ((a, b)) with p > 1 Hélder continuous in R
[a, b]. In particular, e

WP ((a, b)) € C*'5 ([a, b])

and
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Continuity of W functions in one dimension

In a similar manner, we can prove the following,which is a
particular case of the Sobolev-Morrey embedding.

Theorem
Every function in WP ((a, b)) with p > 1 Hélder continuous in
[a, b]. In particular,

WP ((a, b)) € C*'5 ([a, b])

and

o < ([ — bvé (b—a)'5 ﬂpi
sup |u| < 7/ u +(b—a) » / u .
te(a,b] (b_a) a a

Moreoever for all s, t € [a, b], we have,

N\ 1
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Proof
The proof is almost the same. The only step where it differs is Geodescs:the praiem
that we now need to apply Holder inequality to encounter with Sopole,

spaces

Existence of geodesic

- /st | (t)] dt.

|uy (8) = ()| =

/St u,(t) dt




Continuity of W functions in one dimension

Proof

The proof is almost the same. The only step where it differs is
that we now need to apply Holder inequality to

|uy (8) = ()| =

/st u,(t) dt

< [Clato) at

to deduce
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Continuity of W functions in one dimension

Proof

The proof is almost the same. The only step where it differs is
that we now need to apply Holder inequality to

|uy (8) = ()| =

[t ad < [Clao at

to deduce

w0) - o) < [ a0 at

P 1
< ([ i) pe- s
S
1
b P .
< /|u|p It —s|"77.
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Continuity of W functions in one dimension

Proof

The proof is almost the same. The only step where it differs is
that we now need to apply Holder inequality to

|uy (8) = ()| =

[t ad < [Clao at

to deduce

w0) - o) < [ a0 at

P 1
s(/wﬂ|wﬁv
S
1
b P .
< /|u|p It —s|"77.
a

The rest is the same.
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Functions with zero boundary values in W'” in one dimension

Now we are going to characterize the functions with zero
boundary values.
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Functions with zero boundary values in W'” in one dimension

Now we are going to characterize the functions with zero
boundary values.

Definition (/")
We define the space Wol’p ((a, b); RV) as
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Functions with zero boundary values in W'” in one dimension

Now we are going to characterize the functions with zero
boundary values.

Definition (/")
We define the space Wol’p ((a, b); RN) as the completion of

X;P = {u € € ((a, b);RY) : lull we((a,b)mm) < oo}
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Functions with zero boundary values in W'” in one dimension

Now we are going to characterize the functions with zero
boundary values.

Definition (/")
We define the space Wol’p ((a, b); RN) as the completion of

X;P = {u € € ((a, b);RY) : lull we((a,b)mm) < oo}

with respect to the WP norm.
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Functions with zero boundary values in W'” in one dimension

Now we are going to characterize the functions with zero
boundary values.

Definition (/")
We define the space Wol’p ((a, b); RN) as the completion of

X;P = {u € € ((a, b);RY) : lull we((a,b)mm) < oo}

with respect to the WP norm.
Clearly, if u Wol’p ((a, b);RN) ,
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Functions with zero boundary values in W'” in one dimension

Now we are going to characterize the functions with zero
boundary values.

Definition (/")
We define the space Wol’p ((a, b); RN) as the completion of

X;P = {u € € ((a, b);RY) : lull we((a,b)mm) < oo}

with respect to the WP norm.

Clearly, if u e Wol"p ((a,b);RN) , then u(a) =0 = u(b). We can
prove the converse as well.

Introduction to the
Calculus of Variations

Swarnendu Sil

Geodesics: the problem

Absolute continuity: first
encounter with Sobolev
spaces

Existence of geodesics



Functions with zero boundary values in W'” in one dimension

Now we are going to characterize the functions with zero
boundary values.

Definition (/")
We define the space Wol’p ((a, b); RN) as the completion of

X;P = {u € € ((a, b);RY) : lull we((a,b)mm) < oo}

with respect to the WP norm.

Clearly, if u e Wol’p ((a,b);RN) , then u(a) =0 = u(b). We can
prove the converse as well.

Theorem (Characterization of W, )

Let u € WP ((a,b);RN). Then u € Wy ((a, b); RV) if and only
ifu(a)=0=u(b).
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Proof
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Functions with zero boundary values in W'” in one dimension

Proof
Fix any function G € C! (R)
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Functions with zero boundary values in W'” in one dimension

Proof
Fix any function G € C!(R) such that

6(t) = {o if [t] <1,

tif t] > 2.

and

|G(t)] < |t|] forall teR.

Set 1
u, = ;G (vu),

so that u, € W' ((a, b); RV).
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Functions with zero boundary values in W'” in one dimension

Proof
Fix any function G € C!(R) such that

6(t) = {o if [t] <1,

tif t] > 2.

and

|G(t)] < [|t| forallteR.

Set 1
u, = ;G (vu),

so that u, € W'* ((a, b); RV). On the other hand, we can check
that the support of u, is compactly contained in (a, b) since

u(a) =0=u(b) and u is continuous.
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Functions with zero boundary values in W'” in one dimension

Proof
Fix any function G € C!(R) such that

6(t) = {o if [t] <1,

tif t] > 2.

and

|G(t)] < [|t| forallteR.

Set 1
u, = ;G (vu),

so that u, € W'* ((a, b); RV). On the other hand, we can check
that the support of u, is compactly contained in (a, b) since
u(a) =0=u(b) and u is continuous. But this implies easily that

u, € WP ((a, b);RN) .
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Proof
Fix any function G € C! (R) such that i i
Absolute (c(!tlln;iotszel\r/st
0 iflt <1, wes
6= 4" = e

tif t] > 2.

and

|G(t)] < [|t| forallteR.
Set

1
u, = ;G(VU),

so that u, € W'* ((a, b); RV). On the other hand, we can check
that the support of u, is compactly contained in (a, b) since

u(a) =0=u(b) and u is continuous. But this implies easily that
u, € Wol’p ((a, b);RN) . Finally, one easily checks that

u, = u in W' ((a, b); R")

by the dominated convergence theorem. O
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