Introduction to the Calculus of Variations: Lecture 10

Prelude to Direct

Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Swarnendu Sil
Department of Mathematics
Indian Institute of Science

Spring Semester 2021

Outline

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Recap

We have already defined weak derivatives.
Definition (weak derivatives)
Let $u \in L^{1}\left((0, T) ; \mathbb{R}^{d}\right)$.

Prelude to Direct

Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Recap

We have already defined weak derivatives.
Definition (weak derivatives)
Let $u \in L^{1}\left((0, T) ; \mathbb{R}^{d}\right)$. We say u has a weak derivative

Prelude to Direct

Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces

Existence of geodesics
Regularity questions
The End

Recap

We have already defined weak derivatives.
Definition (weak derivatives)
Let $u \in L^{1}\left((0, T) ; \mathbb{R}^{d}\right)$. We say u has a weak derivative if there exists a function $v \in L^{1}\left((0, T) ; \mathbb{R}^{d}\right)$

Prelude to Direct

Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Recap

We have already defined weak derivatives.
Definition (weak derivatives)
Let $u \in L^{1}\left((0, T) ; \mathbb{R}^{d}\right)$. We say u has a weak derivative if there exists a function $v \in L^{1}\left((0, T) ; \mathbb{R}^{d}\right)$ such that

Prelude to Direct

Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Recap

We have already defined weak derivatives.

Definition (weak derivatives)

Let $u \in L^{1}\left((0, T) ; \mathbb{R}^{d}\right)$. We say u has a weak derivative if there

Prelude to Direct

Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

$$
\int_{0}^{T}\langle v, \psi\rangle=-\int_{0}^{T}\langle u, \dot{\psi}\rangle \quad \text { for any } \psi \in C_{c}^{\infty}\left((0, T) ; \mathbb{R}^{d}\right)
$$

Recap

We have already defined weak derivatives.

Definition (weak derivatives)

Let $u \in L^{1}\left((0, T) ; \mathbb{R}^{d}\right)$. We say u has a weak derivative if there

$$
\int_{0}^{T}\langle v, \psi\rangle=-\int_{0}^{T}\langle u, \dot{\psi}\rangle \quad \text { for any } \psi \in C_{c}^{\infty}\left((0, T) ; \mathbb{R}^{d}\right) .
$$

In this case, we say v is the weak derivative of u and we write

$$
v=\dot{u} .
$$

Recap

We have already defined weak derivatives.

Definition (weak derivatives)

Let $u \in L^{1}\left((0, T) ; \mathbb{R}^{d}\right)$. We say u has a weak derivative if there

$$
\int_{0}^{T}\langle v, \psi\rangle=-\int_{0}^{T}\langle u, \dot{\psi}\rangle \quad \text { for any } \psi \in C_{c}^{\infty}\left((0, T) ; \mathbb{R}^{d}\right) .
$$

In this case, we say v is the weak derivative of u and we write

$$
v=\dot{u} .
$$

Remark

The weak derivative, if it exists, is unique.

Recap

We have already defined weak derivatives.

Definition (weak derivatives)

Let $u \in L^{1}\left((0, T) ; \mathbb{R}^{d}\right)$. We say u has a weak derivative if there

$$
\int_{0}^{T}\langle v, \psi\rangle=-\int_{0}^{T}\langle u, \dot{\psi}\rangle \quad \text { for any } \psi \in C_{c}^{\infty}\left((0, T) ; \mathbb{R}^{d}\right) .
$$

In this case, we say v is the weak derivative of u and we write

$$
v=\dot{u} .
$$

Remark

The weak derivative, if it exists, is unique.
Can you see why?

Recap

We have already defined weak derivatives.

Definition (weak derivatives)

Let $u \in L^{1}\left((0, T) ; \mathbb{R}^{d}\right)$. We say u has a weak derivative if there
exists a function $v \in L^{1}\left((0, T) ; \mathbb{R}^{d}\right)$ such that

$$
\int_{0}^{T}\langle v, \psi\rangle=-\int_{0}^{T}\langle u, \dot{\psi}\rangle \quad \text { for any } \psi \in C_{c}^{\infty}\left((0, T) ; \mathbb{R}^{d}\right)
$$

In this case, we say v is the weak derivative of u and we write

$$
v=\dot{u}
$$

Remark

The weak derivative, if it exists, is unique.
Can you see why?
Any two weak derivatives of u would be equal a.e. by the fundamental lemma of calculus of variations

Recap

We have already defined weak derivatives.

Definition (weak derivatives)

Let $u \in L^{1}\left((0, T) ; \mathbb{R}^{d}\right)$. We say u has a weak derivative if there exists a function $v \in L^{1}\left((0, T) ; \mathbb{R}^{d}\right)$ such that

$$
\int_{0}^{T}\langle v, \psi\rangle=-\int_{0}^{T}\langle u, \dot{\psi}\rangle \quad \text { for any } \psi \in C_{c}^{\infty}\left((0, T) ; \mathbb{R}^{d}\right) .
$$

In this case, we say v is the weak derivative of u and we write

$$
v=\dot{u} .
$$

Remark

The weak derivative, if it exists, is unique.
Can you see why?
Any two weak derivatives of u would be equal a.e. by the fundamental lemma of calculus of variations and thus would represent the same L^{1} function.

Sobolev spaces in dimension one

Introduction to the Calculus of Variations

Swarnendu Sil

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces

Existence of geodesics
Regularity questions
The End

Sobolev spaces in dimension one

Introduction to the

 Calculus of VariationsSwarnendu Sil

Definition ($W^{1, p}$ functions)

A measurable function $u:(a, b) \rightarrow \mathbb{R}$

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces

Existence of geodesics
Regularity questions
The End

Sobolev spaces in dimension one

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Sobolev spaces in dimension one

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Sobolev spaces in dimension one

Definition ($W^{1, p}$ functions)

A measurable function $u:(a, b) \rightarrow \mathbb{R}$ is said to be a Sobolev function of class $W^{1, p}$ if $u \in L^{p}((a, b))$ and the weak derivative $\dot{u} \in L^{p}((a, b))$ for $1 \leq p \leq \infty$.

Sobolev spaces in dimension one

Definition ($W^{1, p}$ functions)
A measurable function $u:(a, b) \rightarrow \mathbb{R}$ is said to be a Sobolev function of class $W^{1, p}$ if $u \in L^{p}((a, b))$ and the weak derivative $\dot{u} \in L^{p}((a, b))$ for $1 \leq p \leq \infty$. In this case, we write $u \in W^{1, p}((a, b))$.

Prelude to Direct Methods

Geodesics: the problem

Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Sobolev spaces in dimension one

Definition ($W^{1, p}$ functions)
A measurable function $u:(a, b) \rightarrow \mathbb{R}$ is said to be a Sobolev function of class $W^{1, p}$ if $u \in L^{p}((a, b))$ and the weak derivative $\dot{u} \in L^{p}((a, b))$ for $1 \leq p \leq \infty$. In this case, we write $u \in W^{1, p}((a, b))$.
A measurable function $u:(a, b) \rightarrow \mathbb{R}^{N}$ is said to be a Sobolev function of class $W^{1, p}$

Sobolev spaces in dimension one

Definition ($W^{1, p}$ functions)
A measurable function $u:(a, b) \rightarrow \mathbb{R}$ is said to be a Sobolev function of class $W^{1, p}$ if $u \in L^{p}((a, b))$ and the weak derivative $\dot{u} \in L^{p}((a, b))$ for $1 \leq p \leq \infty$. In this case, we write $u \in W^{1, p}((a, b))$.
A measurable function $u:(a, b) \rightarrow \mathbb{R}^{N}$ is said to be a Sobolev function of class $W^{1, p}$ if $u_{i} \in W^{1, p}((a, b))$

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Sobolev spaces in dimension one

Definition ($W^{1, p}$ functions)
A measurable function $u:(a, b) \rightarrow \mathbb{R}$ is said to be a Sobolev function of class $W^{1, p}$ if $u \in L^{p}((a, b))$ and the weak derivative $\dot{u} \in L^{p}((a, b))$ for $1 \leq p \leq \infty$. In this case, we write $u \in W^{1, p}((a, b))$.
A measurable function $u:(a, b) \rightarrow \mathbb{R}^{N}$ is said to be a Sobolev function of class $W^{1, p}$ if $u_{i} \in W^{1, p}((a, b))$ for every $1 \leq i \leq N$.

Sobolev spaces in dimension one

Definition ($W^{1, p}$ functions)
A measurable function $u:(a, b) \rightarrow \mathbb{R}$ is said to be a Sobolev

Prelude to Direct

 MethodsGeodesics: the problem
Absolute continuity: first Absolute continuity: first
encounter with Sobolev spaces $\dot{u} \in L^{p}((a, b))$ for $1 \leq p \leq \infty$. In this case, we write $u \in W^{1, p}((a, b))$.
A measurable function $u:(a, b) \rightarrow \mathbb{R}^{N}$ is said to be a Sobolev function of class $W^{1, p}$ if $u_{i} \in W^{1, p}((a, b))$ for every $1 \leq i \leq N$.

Remark

Note that by our definition, as soon as an L^{1} function is weakly differentiable,

Sobolev spaces in dimension one

Definition ($W^{1, p}$ functions)
A measurable function $u:(a, b) \rightarrow \mathbb{R}$ is said to be a Sobolev function of class $W^{1, p}$ if $u \in L^{p}((a, b))$ and the weak derivative $\dot{u} \in L^{p}((a, b))$ for $1 \leq p \leq \infty$. In this case, we write $u \in W^{1, p}((a, b))$.
A measurable function $u:(a, b) \rightarrow \mathbb{R}^{N}$ is said to be a Sobolev function of class $W^{1, p}$ if $u_{i} \in W^{1, p}((a, b))$ for every $1 \leq i \leq N$.

Remark

Note that by our definition, as soon as an L^{1} function is weakly differentiable, it is a Sobolev function of class $W^{1,1}$.

Sobolev spaces in dimension one

 Calculus of VariationsSwarnendu Sil
Let us now introduce a norm on $W^{1, p}$.

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces

Existence of geodesics
Regularity questions
The End

Sobolev spaces in dimension one

Introduction to the

 Calculus of VariationsSwarnendu Sil
Let us now introduce a norm on $W^{1, p}$.

Proposition

Let $u \in W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$.

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces

Existence of geodesics
Regularity questions
The End

Sobolev spaces in dimension one

Let us now introduce a norm on $W^{1, p}$.

Proposition

Let $u \in W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$. If $1 \leq p<\infty$, then

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Sobolev spaces in dimension one

Let us now introduce a norm on $W^{1, p}$.

Proposition

Let $u \in W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$. If $1 \leq p<\infty$, then

$$
\|u\|_{W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)}:=\|u\|_{L^{p}\left((a, b) ; \mathbb{R}^{N}\right)}+\|\dot{u}\|_{L^{p}\left((a, b) ; \mathbb{R}^{N}\right)}<\infty .
$$

Prelude to Direct

 MethodsGeodesics: the problem Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Sobolev spaces in dimension one

Let us now introduce a norm on $W^{1, p}$.
Proposition
Let $u \in W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$. If $1 \leq p<\infty$, then

$$
\|u\|_{W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)}:=\|u\|_{L^{p}\left((a, b) ; \mathbb{R}^{N}\right)}+\|\dot{u}\|_{L^{p}\left((a, b) ; \mathbb{R}^{N}\right)}<\infty .
$$

Geodesics: the problem

Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

For $p=\infty$, we have

Sobolev spaces in dimension one

Let us now introduce a norm on $W^{1, p}$.

Proposition

Let $u \in W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$. If $1 \leq p<\infty$, then

$$
\|u\|_{W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)}:=\|u\|_{L^{p}\left((a, b) ; \mathbb{R}^{N}\right)}+\|\dot{u}\|_{L^{p}\left((a, b) ; \mathbb{R}^{N}\right)}<\infty .
$$

Prelude to Direct

 MethodsGeodesics: the problem Absolute continuity: first encounter with Sobolev spaces

Existence of geodesics
Regularity questions

For $p=\infty$, we have

$$
\|u\|_{W^{1, \infty}\left((a, b) ; \mathbb{R}^{N}\right)}:=\|u\|_{L^{\infty}\left((a, b) \mathbb{R}^{N}\right)}+\|\dot{u}\|_{L^{\infty}\left((a, b) ; \mathbb{R}^{N}\right)}<\infty .
$$

Sobolev spaces in dimension one

Let us now introduce a norm on $W^{1, p}$.

Proposition

Let $u \in W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$. If $1 \leq p<\infty$, then

$$
\|u\|_{W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)}:=\|u\|_{L^{p}\left((a, b) ; \mathbb{R}^{N}\right)}+\|\dot{u}\|_{L^{p}\left((a, b) ; \mathbb{R}^{N}\right)}<\infty .
$$

Prelude to Direct

 MethodsGeodesics: the problem Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

For $p=\infty$, we have

$$
\|u\|_{W^{1, \infty}\left((a, b) ; \mathbb{R}^{N}\right)}:=\|u\|_{L^{\infty}\left((a, b) \mathbb{R}^{N}\right)}+\|\dot{u}\|_{L^{\infty}\left((a, b) ; \mathbb{R}^{N}\right)}<\infty .
$$

Moreover, these expressions defines a norm

Sobolev spaces in dimension one

Let us now introduce a norm on $W^{1, p}$.

Proposition

Let $u \in W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$. If $1 \leq p<\infty$, then

$$
\|u\|_{W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)}:=\|u\|_{L^{p}\left((a, b) ; \mathbb{R}^{N}\right)}+\|\dot{u}\|_{L^{p}\left((a, b) ; \mathbb{R}^{N}\right)}<\infty .
$$

Prelude to Direct

 MethodsFor $p=\infty$, we have

$$
\|u\|_{W^{1, \infty}\left((a, b) ; \mathbb{R}^{N}\right)}:=\|u\|_{L^{\infty}\left((a, b) \mathbb{R}^{N}\right)}+\|\dot{u}\|_{L^{\infty}\left((a, b) ; \mathbb{R}^{N}\right)}<\infty .
$$

Moreover, these expressions defines a norm on the vector space of all functions in $W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$.

Sobolev spaces in dimension one

Let us now introduce a norm on $W^{1, p}$.

Proposition

Let $u \in W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$. If $1 \leq p<\infty$, then

$$
\|u\|_{W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)}:=\|u\|_{L^{p}\left((a, b) ; \mathbb{R}^{N}\right)}+\|\dot{u}\|_{L^{p}\left((a, b) ; \mathbb{R}^{N}\right)}<\infty .
$$

For $p=\infty$, we have

$$
\|u\|_{W^{1, \infty}\left((a, b) ; \mathbb{R}^{N}\right)}:=\|u\|_{L^{\infty}\left((a, b) \mathbb{R}^{N}\right)}+\|\dot{\|}\|_{L^{\infty}\left((a, b) ; \mathbb{R}^{N}\right)}<\infty .
$$

Moreover, these expressions defines a norm on the vector space of all functions in $W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$.

Proposition

The vector space of all function in $W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$,

Sobolev spaces in dimension one

Let us now introduce a norm on $W^{1, p}$.

Proposition

Let $u \in W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$. If $1 \leq p<\infty$, then

$$
\|u\|_{W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)}:=\|u\|_{L^{p}\left((a, b) ; \mathbb{R}^{N}\right)}+\|\dot{u}\|_{L^{p}\left((a, b) ; \mathbb{R}^{N}\right)}<\infty .
$$

For $p=\infty$, we have

$$
\|u\|_{W^{1, \infty}\left((a, b) ; \mathbb{R}^{N}\right)}:=\|u\|_{L^{\infty}\left((a, b) \mathbb{R}^{N}\right)}+\|\dot{\|}\|_{L^{\infty}\left((a, b) ; \mathbb{R}^{N}\right)}<\infty .
$$

Moreover, these expressions defines a norm on the vector space of all functions in $W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$.

Proposition

The vector space of all function in $W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$, equipped with the norms above

Sobolev spaces in dimension one

Let us now introduce a norm on $W^{1, p}$.

Proposition

Let $u \in W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$. If $1 \leq p<\infty$, then

$$
\|u\|_{W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)}:=\|u\|_{L^{p}\left((a, b) ; \mathbb{R}^{N}\right)}+\|\dot{u}\|_{L^{p}\left((a, b) ; \mathbb{R}^{N}\right)}<\infty .
$$

Prelude to Direct

For $p=\infty$, we have

$$
\|u\|_{W^{1, \infty}\left((a, b) ; \mathbb{R}^{N}\right)}:=\|u\|_{L^{\infty}\left((a, b) \mathbb{R}^{N}\right)}+\|\dot{u}\|_{L^{\infty}\left((a, b) ; \mathbb{R}^{N}\right)}<\infty .
$$

Moreover, these expressions defines a norm on the vector space of all functions in $W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$.

Proposition

The vector space of all function in $W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$, equipped with the norms above is a Banach space,

Sobolev spaces in dimension one

Let us now introduce a norm on $W^{1, p}$.

Proposition

Let $u \in W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$. If $1 \leq p<\infty$, then

$$
\|u\|_{W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)}:=\|u\|_{L^{p}\left((a, b) ; \mathbb{R}^{N}\right)}+\|\dot{u}\|_{L^{p}\left((a, b) ; \mathbb{R}^{N}\right)}<\infty .
$$

Prelude to Direct

For $p=\infty$, we have

$$
\|u\|_{W^{1, \infty}\left((a, b) ; \mathbb{R}^{N}\right)}:=\|u\|_{L^{\infty}\left((a, b) \mathbb{R}^{N}\right)}+\|\dot{u}\|_{L^{\infty}\left((a, b) ; \mathbb{R}^{N}\right)}<\infty .
$$

Moreover, these expressions defines a norm on the vector space of all functions in $W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$.

Proposition

The vector space of all function in $W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$, equipped with the norms above is a Banach space, which is reflexive for $1<p<\infty$

Sobolev spaces in dimension one

Let us now introduce a norm on $W^{1, p}$.

Proposition

Let $u \in W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$. If $1 \leq p<\infty$, then

$$
\|u\|_{W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)}:=\|u\|_{L^{p}\left((a, b) ; \mathbb{R}^{N}\right)}+\|\dot{u}\|_{L^{p}\left((a, b) ; \mathbb{R}^{N}\right)}<\infty .
$$

Prelude to Direct

For $p=\infty$, we have

$$
\|u\|_{W^{1, \infty}\left((a, b) ; \mathbb{R}^{N}\right)}:=\|u\|_{L^{\infty}\left((a, b) \mathbb{R}^{N}\right)}+\|\dot{u}\|_{L^{\infty}\left((a, b) ; \mathbb{R}^{N}\right)}<\infty .
$$

Moreover, these expressions defines a norm on the vector space of all functions in $W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$.

Proposition

The vector space of all function in $W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$, equipped with the norms above is a Banach space, which is reflexive for $1<p<\infty$ and is separable for $1 \leq p<\infty$.

Sobolev spaces in dimension one

Let us now introduce a norm on $W^{1, p}$.

Proposition

Let $u \in W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$. If $1 \leq p<\infty$, then

$$
\|u\|_{W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)}:=\|u\|_{L^{p}\left((a, b) ; \mathbb{R}^{N}\right)}+\|\dot{u}\|_{L^{p}\left((a, b) ; \mathbb{R}^{N}\right)}<\infty .
$$

For $p=\infty$, we have

$$
\|u\|_{W^{1, \infty}\left((a, b) ; \mathbb{R}^{N}\right)}:=\|u\|_{L^{\infty}\left((a, b) \mathbb{R}^{N}\right)}+\|\dot{\|}\|_{L^{\infty}\left((a, b) ; \mathbb{R}^{N}\right)}<\infty .
$$

Moreover, these expressions defines a norm on the vector space of all functions in $W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$.

Proposition

The vector space of all function in $W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$, equipped with the norms above is a Banach space, which is reflexive for $1<p<\infty$ and is separable for $1 \leq p<\infty$. We would simply write this space as $W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$.

Sobolev spaces in dimension one

Introduction to the

 Calculus of VariationsSwarnendu Sil

Proposition

The space $W^{1,2}\left((a, b) ; \mathbb{R}^{N}\right)$,

Prelude to Direct
Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces

Existence of geodesics
Regularity questions
The End

Sobolev spaces in dimension one

Introduction to the

 Calculus of VariationsSwarnendu Sil

Proposition

The space $W^{1,2}\left((a, b) ; \mathbb{R}^{N}\right)$, equipped with the inner product

Prelude to Direct
Methods
Geodesics: the problem Absolute continuity: first encounter with Sobolev spaces

Existence of geodesics
Regularity questions
The End

Sobolev spaces in dimension one

Proposition

The space $W^{1,2}\left((a, b) ; \mathbb{R}^{N}\right)$, equipped with the inner product

$$
\begin{aligned}
\langle u, v\rangle_{W^{1,2}\left((a, b) ; \mathbb{R}^{N}\right)}: & =\langle u, v\rangle_{L^{2}\left((a, b) ; \mathbb{R}^{N}\right)}+\langle\dot{u}, \dot{v}\rangle_{L^{2}\left((a, b) ; \mathbb{R}^{N}\right)} \\
& =\int_{a}^{b}\langle u, v\rangle+\int_{a}^{b}\langle\dot{u}, \dot{v}\rangle
\end{aligned}
$$

Prelude to Direct

 MethodsGeodesics: the problem Absolute continuity: first encounter with Sobolev spaces

Existence of geodesics
Regularity questions

Sobolev spaces in dimension one

Proposition

The space $W^{1,2}\left((a, b) ; \mathbb{R}^{N}\right)$, equipped with the inner product

$$
\begin{aligned}
\langle u, v\rangle_{W^{1,2}\left((a, b) ; \mathbb{R}^{N}\right)}: & =\langle u, v\rangle_{L^{2}\left((a, b) ; \mathbb{R}^{N}\right)}+\langle\dot{u}, \dot{v}\rangle_{L^{2}\left((a, b) ; \mathbb{R}^{N}\right)} \\
& =\int_{a}^{b}\langle u, v\rangle+\int_{a}^{b}\langle\dot{u}, \dot{v}\rangle
\end{aligned}
$$

is a Hilbert space.

Sobolev spaces in dimension one

Proposition

The space $W^{1,2}\left((a, b) ; \mathbb{R}^{N}\right)$, equipped with the inner product

$$
\begin{aligned}
\langle u, v\rangle_{W^{1,2}\left((a, b) ; \mathbb{R}^{N}\right)}: & =\langle u, v\rangle_{L^{2}\left((a, b) ; \mathbb{R}^{N}\right)}+\langle\dot{u}, \dot{v}\rangle_{L^{2}\left((a, b) ; \mathbb{R}^{N}\right)} \\
& =\int_{a}^{b}\langle u, v\rangle+\int_{a}^{b}\langle\dot{u}, \dot{v}\rangle
\end{aligned}
$$

is a Hilbert space.
There is another way the Sobolev spaces could have been defined for $1 \leq p<\infty$.

Sobolev spaces in dimension one

Proposition

The space $W^{1,2}\left((a, b) ; \mathbb{R}^{N}\right)$, equipped with the inner product

$$
\begin{aligned}
\langle u, v\rangle_{W^{1,2}\left((a, b) ; \mathbb{R}^{N}\right)} & :=\langle u, v\rangle_{L^{2}\left((a, b) ; \mathbb{R}^{N}\right)}+\langle\dot{u}, \dot{v}\rangle_{L^{2}\left((a, b) ; \mathbb{R}^{N}\right)} \\
& =\int_{a}^{b}\langle u, v\rangle+\int_{a}^{b}\langle\dot{u}, \dot{v}\rangle,
\end{aligned}
$$

is a Hilbert space.
There is another way the Sobolev spaces could have been defined for $1 \leq p<\infty$.
Definition (Sobolev spaces $H^{1, p}$)
Let $X^{1, p}$ be the linear subspace

Sobolev spaces in dimension one

Proposition

The space $W^{1,2}\left((a, b) ; \mathbb{R}^{N}\right)$, equipped with the inner product

$$
\begin{aligned}
\langle u, v\rangle_{W^{1,2}\left((a, b) ; \mathbb{R}^{N}\right)}: & =\langle u, v\rangle_{L^{2}\left((a, b) ; \mathbb{R}^{N}\right)}+\langle\dot{u}, \dot{v}\rangle_{L^{2}\left((a, b) ; \mathbb{R}^{N}\right)} \\
& =\int_{a}^{b}\langle u, v\rangle+\int_{a}^{b}\langle\dot{u}, \dot{v}\rangle
\end{aligned}
$$

is a Hilbert space.
There is another way the Sobolev spaces could have been defined for $1 \leq p<\infty$.
Definition (Sobolev spaces $H^{1, p}$)
Let $X^{1, p}$ be the linear subspace of $C^{1}\left((a, b) ; \mathbb{R}^{N}\right)$ functions such that

Sobolev spaces in dimension one

Proposition

The space $W^{1,2}\left((a, b) ; \mathbb{R}^{N}\right)$, equipped with the inner product

$$
\begin{aligned}
\langle u, v\rangle_{W^{1,2}\left((a, b) ; \mathbb{R}^{N}\right)} & :=\langle u, v\rangle_{L^{2}\left((a, b) ; \mathbb{R}^{N}\right)}+\langle\dot{u}, \dot{v}\rangle_{L^{2}\left((a, b) ; \mathbb{R}^{N}\right)} \\
& =\int_{a}^{b}\langle u, v\rangle+\int_{a}^{b}\langle\dot{u}, \dot{v}\rangle,
\end{aligned}
$$

is a Hilbert space.
There is another way the Sobolev spaces could have been defined for $1 \leq p<\infty$.
Definition (Sobolev spaces $H^{1, p}$)
Let $X^{1, p}$ be the linear subspace of $C^{1}\left((a, b) ; \mathbb{R}^{N}\right)$ functions such that

$$
\|u\|_{W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)}:=\|u\|_{L^{p}\left((a, b) ; \mathbb{R}^{N}\right)}+\|\dot{u}\|_{L^{p}\left((a, b) ; \mathbb{R}^{N}\right)}<\infty .
$$

Sobolev spaces in dimension one

Proposition

The space $W^{1,2}\left((a, b) ; \mathbb{R}^{N}\right)$, equipped with the inner product

$$
\begin{aligned}
\langle u, v\rangle_{W^{1,2}\left((a, b) ; \mathbb{R}^{N}\right)}: & =\langle u, v\rangle_{L^{2}\left((a, b) ; \mathbb{R}^{N}\right)}+\langle\dot{u}, \dot{v}\rangle_{L^{2}\left((a, b) ; \mathbb{R}^{N}\right)} \\
& =\int_{a}^{b}\langle u, v\rangle+\int_{a}^{b}\langle\dot{u}, \dot{v}\rangle
\end{aligned}
$$

is a Hilbert space.
There is another way the Sobolev spaces could have been defined for $1 \leq p<\infty$.
Definition (Sobolev spaces $H^{1, p}$)
Let $X^{1, p}$ be the linear subspace of $C^{1}\left((a, b) ; \mathbb{R}^{N}\right)$ functions such that

$$
\|u\|_{W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)}:=\|u\|_{L^{p}\left((a, b) ; \mathbb{R}^{N}\right)}+\|\dot{u}\|_{L^{p}\left((a, b) ; \mathbb{R}^{N}\right)}<\infty .
$$

The completion of $X^{1, p}$ with respect to the above norm

Sobolev spaces in dimension one

Proposition

The space $W^{1,2}\left((a, b) ; \mathbb{R}^{N}\right)$, equipped with the inner product

$$
\begin{aligned}
\langle u, v\rangle_{W^{1,2}\left((a, b) ; \mathbb{R}^{N}\right)} & :=\langle u, v\rangle_{L^{2}\left((a, b) ; \mathbb{R}^{N}\right)}+\langle\dot{u}, \dot{v}\rangle_{L^{2}\left((a, b) ; \mathbb{R}^{N}\right)} \\
& =\int_{a}^{b}\langle u, v\rangle+\int_{a}^{b}\langle\dot{u}, \dot{v}\rangle,
\end{aligned}
$$

is a Hilbert space.
There is another way the Sobolev spaces could have been defined for $1 \leq p<\infty$.
Definition (Sobolev spaces $H^{1, p}$)
Let $X^{1, p}$ be the linear subspace of $C^{1}\left((a, b) ; \mathbb{R}^{N}\right)$ functions such that

$$
\|u\|_{W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)}:=\|u\|_{L^{p}\left((a, b) ; \mathbb{R}^{N}\right)}+\|\dot{u}\|_{L^{p}\left((a, b) ; \mathbb{R}^{N}\right)}<\infty .
$$

The completion of $X^{1, p}$ with respect to the above norm is called $H^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$.

We are now going to prove that the two spaces $W^{1, p}$ and $H^{1, p}$ are the same.

Prelude to Direct Methods

Geodesics: the problem

Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

We are now going to prove that the two spaces $W^{1, p}$ and $H^{1, p}$ are the same. In particular, we prove smooth functions are dense in $W^{1, p}$.

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

We are now going to prove that the two spaces $W^{1, p}$ and $H^{1, p}$ are the same. In particular, we prove smooth functions are dense in $W^{1, p}$. To show this, we shall also prove that any function $u \in W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$

We are now going to prove that the two spaces $W^{1, p}$ and $H^{1, p}$ are the same. In particular, we prove smooth functions are dense in $W^{1, p}$. To show this, we shall also prove that any function $u \in W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$ is actually the restriction of a $W^{1, p}\left(\mathbb{R} ; \mathbb{R}^{N}\right)$ function.

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces

Existence of geodesics

We are now going to prove that the two spaces $W^{1, p}$ and $H^{1, p}$ are the same. In particular, we prove smooth functions are dense in $W^{1, p}$. To show this, we shall also prove that any function $u \in W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$ is actually the restriction of a $W^{1, p}\left(\mathbb{R} ; \mathbb{R}^{N}\right)$ function.

Theorem (extension and density)
Let (a, b) be a bounded interval of \mathbb{R}

Prelude to Direct
Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

We are now going to prove that the two spaces $W^{1, p}$ and $H^{1, p}$ are the same. In particular, we prove smooth functions are dense in $W^{1, p}$. To show this, we shall also prove that any function $u \in W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$ is actually the restriction of a $W^{1, p}\left(\mathbb{R} ; \mathbb{R}^{N}\right)$ function.

Theorem (extension and density)

Let (a, b) be a bounded interval of \mathbb{R} and let $u \in W^{1, p}((a, b))$ with $1 \leq p<\infty$.

We are now going to prove that the two spaces $W^{1, p}$ and $H^{1, p}$ are the same. In particular, we prove smooth functions are dense in $W^{1, p}$. To show this, we shall also prove that any function $u \in W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$ is actually the restriction of a $W^{1, p}\left(\mathbb{R} ; \mathbb{R}^{N}\right)$ function.

Theorem (extension and density)

Let (a, b) be a bounded interval of \mathbb{R} and let $u \in W^{1, p}((a, b))$ with $1 \leq p<\infty$. Then

Prelude to Direct

Methods

Absolute continuity: first encounter with Sobolev spaces

Existence of geodesics

We are now going to prove that the two spaces $W^{1, p}$ and $H^{1, p}$ are the same. In particular, we prove smooth functions are dense in $W^{1, p}$. To show this, we shall also prove that any function $u \in W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$ is actually the restriction of a $W^{1, p}\left(\mathbb{R} ; \mathbb{R}^{N}\right)$ function.

Theorem (extension and density)

Let (a, b) be a bounded interval of \mathbb{R} and let $u \in W^{1, p}((a, b))$ with $1 \leq p<\infty$. Then

1. There exists a function $U \in L^{p}(\mathbb{R})$ which has a weak derivative $\dot{U} \in L^{p}(\mathbb{R})$

Methods

Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics

We are now going to prove that the two spaces $W^{1, p}$ and $H^{1, p}$ are the same. In particular, we prove smooth functions are dense in $W^{1, p}$. To show this, we shall also prove that any function $u \in W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$ is actually the restriction of a $W^{1, p}\left(\mathbb{R} ; \mathbb{R}^{N}\right)$ function.

Theorem (extension and density)

Let (a, b) be a bounded interval of \mathbb{R} and let $u \in W^{1, p}((a, b))$ with $1 \leq p<\infty$. Then

1. There exists a function $U \in L^{p}(\mathbb{R})$ which has a weak derivative $\dot{U} \in L^{p}(\mathbb{R})$ and satisfies $U=u$ in (a, b).

Absolute continuity: first encounter with Sobolev spaces

Existence of geodesics

We are now going to prove that the two spaces $W^{1, p}$ and $H^{1, p}$ are the same. In particular, we prove smooth functions are dense in $W^{1, p}$. To show this, we shall also prove that any function $u \in W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$ is actually the restriction of a $W^{1, p}\left(\mathbb{R} ; \mathbb{R}^{N}\right)$ function.

Theorem (extension and density)

Let (a, b) be a bounded interval of \mathbb{R} and let $u \in W^{1, p}((a, b))$ with $1 \leq p<\infty$. Then

1. There exists a function $U \in L^{p}(\mathbb{R})$ which has a weak derivative $\dot{U} \in L^{p}(\mathbb{R})$ and satisfies $U=u$ in (a, b).
2. $u \in H^{1, p}((a, b))$.
$W^{1, p}=H^{1, p}$
Introduction to the Calculus of Variations

Swarnendu Sil

Proof

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End
$W^{1, p}=H^{1, p}$
Introduction to the Calculus of Variations

Swarnendu Sil

Proof

Proof of 1. Pick $\bar{a}, \bar{b} \in \mathbb{R}$
Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End
$W^{1, p}=H^{1, p}$
Introduction to the Calculus of Variations

Swarnendu Sil

Proof

Proof of 1. Pick $\bar{a}, \bar{b} \in \mathbb{R}$ with $a<\bar{a}<\bar{b}<b$

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Proof

Proof of 1. Pick $\bar{a}, \bar{b} \in \mathbb{R}$ with $a<\bar{a}<\bar{b}<b$ and let $\eta \in C^{1}(\mathbb{R})$

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Proof

Proof of 1. Pick $\bar{a}, \bar{b} \in \mathbb{R}$ with $a<\bar{a}<\bar{b}<b$ and let $\eta \in C^{1}(\mathbb{R})$ be such that

$$
\eta=1 \text { in }(-\infty, \bar{a}) \quad \text { and } \quad \eta=0 \text { in }(\bar{b}, \infty)
$$

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Proof

Proof of 1. Pick $\bar{a}, \bar{b} \in \mathbb{R}$ with $a<\bar{a}<\bar{b}<b$ and let $\eta \in C^{1}(\mathbb{R})$ be such that

$$
\eta=1 \text { in }(-\infty, \bar{a}) \quad \text { and } \quad \eta=0 \text { in }(\bar{b}, \infty) .
$$

Prelude to Direct

 MethodsGeodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Our plan is to write

Proof

Proof of 1. Pick $\bar{a}, \bar{b} \in \mathbb{R}$ with $a<\bar{a}<\bar{b}<b$ and let $\eta \in C^{1}(\mathbb{R})$ be such that

$$
\eta=1 \text { in }(-\infty, \bar{a}) \quad \text { and } \quad \eta=0 \text { in }(\bar{b}, \infty) .
$$

Prelude to Direct

 MethodsGeodesics: the problem
Absolute continuity: first encounter with Sobolev spaces

Existence of geodesics
Regularity questions

Our plan is to write

$$
u=\eta u+(1-\eta) u .
$$

Proof

Proof of 1. Pick $\bar{a}, \bar{b} \in \mathbb{R}$ with $a<\bar{a}<\bar{b}<b$ and let $\eta \in C^{1}(\mathbb{R})$ be such that

$$
\eta=1 \text { in }(-\infty, \bar{a}) \quad \text { and } \quad \eta=0 \text { in }(\bar{b}, \infty) .
$$

Our plan is to write

$$
u=\eta u+(1-\eta) u .
$$

We can check that

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces

Existence of geodesics
Regularity questions

Proof

Proof of 1. Pick $\bar{a}, \bar{b} \in \mathbb{R}$ with $a<\bar{a}<\bar{b}<b$ and let $\eta \in C^{1}(\mathbb{R})$ be such that

$$
\eta=1 \text { in }(-\infty, \bar{a}) \quad \text { and } \quad \eta=0 \text { in }(\bar{b}, \infty) .
$$

Our plan is to write

$$
u=\eta u+(1-\eta) u .
$$

We can check that

$$
\eta u \in W^{1, p}((a, \infty)) \quad \text { and } \quad(1-\eta) u \in W^{1, p}((-\infty, b)) .
$$

$$
W^{1, p}=H^{1, p}
$$

Proof

Proof of 1. Pick $\bar{a}, \bar{b} \in \mathbb{R}$ with $a<\bar{a}<\bar{b}<b$ and let $\eta \in C^{1}(\mathbb{R})$ be such that

$$
\eta=1 \text { in }(-\infty, \bar{a}) \quad \text { and } \quad \eta=0 \text { in }(\bar{b}, \infty) .
$$

Our plan is to write

$$
u=\eta u+(1-\eta) u .
$$

We can check that

$$
\eta u \in W^{1, p}((a, \infty)) \quad \text { and } \quad(1-\eta) u \in W^{1, p}((-\infty, b)) .
$$

Now we define

$W^{1, p}=H^{1, p}$

Proof

Proof of 1. Pick $\bar{a}, \bar{b} \in \mathbb{R}$ with $a<\bar{a}<\bar{b}<b$ and let $\eta \in C^{1}(\mathbb{R})$ be such that

$$
\eta=1 \text { in }(-\infty, \bar{a}) \quad \text { and } \quad \eta=0 \text { in }(\bar{b}, \infty) .
$$

Prelude to Direct

Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Our plan is to write

$$
u=\eta u+(1-\eta) u
$$

We can check that

$$
\eta u \in W^{1, p}((a, \infty)) \quad \text { and } \quad(1-\eta) u \in W^{1, p}((-\infty, b)) .
$$

Now we define

$$
U_{1}(t)=\left\{\begin{array}{ll}
{[\eta u](t),} & t>a \\
{[\eta u](2 a-t),} & t<a
\end{array} \quad \text { and } \quad U_{2}= \begin{cases}{[(1-\eta) u](t),} & t<b \\
{[(1-\eta) u](2 b-t),} & t>b .\end{cases}\right.
$$

$W^{1, p}=H^{1, p}$

Proof

Proof of 1. Pick $\bar{a}, \bar{b} \in \mathbb{R}$ with $a<\bar{a}<\bar{b}<b$ and let $\eta \in C^{1}(\mathbb{R})$ be such that

$$
\eta=1 \text { in }(-\infty, \bar{a}) \quad \text { and } \quad \eta=0 \text { in }(\bar{b}, \infty) .
$$

Prelude to Direct

Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics

Our plan is to write

$$
u=\eta u+(1-\eta) u .
$$

We can check that

$$
\eta u \in W^{1, p}((a, \infty)) \quad \text { and } \quad(1-\eta) u \in W^{1, p}((-\infty, b)) .
$$

Now we define
$U_{1}(t)=\left\{\begin{array}{ll}{[\eta u](t),} & t>a \\ {[\eta u](2 a-t),} & t<a\end{array} \quad\right.$ and $\quad U_{2}= \begin{cases}{[(1-\eta) u](t),} & t<b \\ {[(1-\eta) u](2 b-t),} & t>b .\end{cases}$
Clearly, $U=U_{1}+U_{2}$ does the job.
$W^{1, p}=H^{1, p}$
Introduction to the Calculus of Variations

Swarnendu Sil

Proof of 2.

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

$$
W^{1, p}=H^{1, p}
$$

Proof of 2.

Let $U \in W^{1, p}(\mathbb{R})$

Prelude to Direct

 MethodsGeodesics: the problem
Absolute continuity: first encounter with Sobolev spaces

Existence of geodesics
Regularity questions
The End
$W^{1, p}=H^{1, p}$

Proof of 2.

Let $U \in W^{1, p}(\mathbb{R})$ be the above extension of $u \in W^{1, p}((a, b))$.

Introduction to the Calculus of Variations

Swarnendu Sil

Prelude to Direct Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End
$W^{1, p}=H^{1, p}$

Proof of 2.

Let $U \in W^{1, p}(\mathbb{R})$ be the above extension of $u \in W^{1, p}((a, b))$. Pick a nonnegative $\phi \in C_{c}^{\infty}([-1,1])$

Introduction to the Calculus of Variations

Swarnendu Sil

Prelude to Direct
Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End
$W^{1, p}=H^{1, p}$

Proof of 2.

Let $U \in W^{1, p}(\mathbb{R})$ be the above extension of $u \in W^{1, p}((a, b))$. Pick a nonnegative $\phi \in C_{c}^{\infty}([-1,1])$ such that $\int \phi=1$
$W^{1, p}=H^{1, p}$

Proof of 2.

Let $U \in W^{1, p}(\mathbb{R})$ be the above extension of $u \in W^{1, p}((a, b))$. Pick a nonnegative $\phi \in C_{c}^{\infty}([-1,1])$ such that $\int \phi=1$ and set

$$
\phi_{\varepsilon}(t):=\frac{1}{\varepsilon} \phi\left(\frac{t}{\varepsilon}\right)
$$

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Proof of 2.

Let $U \in W^{1, p}(\mathbb{R})$ be the above extension of $u \in W^{1, p}((a, b))$. Pick a nonnegative $\phi \in C_{c}^{\infty}([-1,1])$ such that $\int \phi=1$ and set

$$
\phi_{\varepsilon}(t):=\frac{1}{\varepsilon} \phi\left(\frac{t}{\varepsilon}\right) .
$$

Prelude to Direct
Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Then we can easily check that
$W^{1, p}=H^{1, p}$

Proof of 2.

Let $U \in W^{1, p}(\mathbb{R})$ be the above extension of $u \in W^{1, p}((a, b))$. Pick a nonnegative $\phi \in C_{c}^{\infty}([-1,1])$ such that $\int \phi=1$ and set

$$
\phi_{\varepsilon}(t):=\frac{1}{\varepsilon} \phi\left(\frac{t}{\varepsilon}\right) .
$$

Then we can easily check that

$$
U_{\varepsilon}:=U * \phi_{\varepsilon}
$$

Proof of 2.

Let $U \in W^{1, p}(\mathbb{R})$ be the above extension of $u \in W^{1, p}((a, b))$. Pick a nonnegative $\phi \in C_{c}^{\infty}([-1,1])$ such that $\int \phi=1$ and set

$$
\phi_{\varepsilon}(t):=\frac{1}{\varepsilon} \phi\left(\frac{t}{\varepsilon}\right) .
$$

Prelude to Direct
Methods
Geodesics: the problem Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Then we can easily check that

$$
U_{\varepsilon}:=U * \phi_{\varepsilon}
$$

is smooth

Proof of 2.

Let $U \in W^{1, p}(\mathbb{R})$ be the above extension of $u \in W^{1, p}((a, b))$. Pick a nonnegative $\phi \in C_{c}^{\infty}([-1,1])$ such that $\int \phi=1$ and set

$$
\phi_{\varepsilon}(t):=\frac{1}{\varepsilon} \phi\left(\frac{t}{\varepsilon}\right) .
$$

Geodesics: the problem Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Then we can easily check that

$$
U_{\varepsilon}:=U * \phi_{\varepsilon}
$$

is smooth and

$W^{1, p}=H^{1, p}$

Proof of 2.

Let $U \in W^{1, p}(\mathbb{R})$ be the above extension of $u \in W^{1, p}((a, b))$. Pick a nonnegative $\phi \in C_{c}^{\infty}([-1,1])$ such that $\int \phi=1$ and set

$$
\phi_{\varepsilon}(t):=\frac{1}{\varepsilon} \phi\left(\frac{t}{\varepsilon}\right) .
$$

Then we can easily check that

$$
U_{\varepsilon}:=U * \phi_{\varepsilon}
$$

is smooth and converges to U in the $W^{1, p}$ norm on \mathbb{R}.

$W^{1, p}=H^{1, p}$

Proof of 2.

Let $U \in W^{1, p}(\mathbb{R})$ be the above extension of $u \in W^{1, p}((a, b))$. Pick a nonnegative $\phi \in C_{c}^{\infty}([-1,1])$ such that $\int \phi=1$ and set

$$
\phi_{\varepsilon}(t):=\frac{1}{\varepsilon} \phi\left(\frac{t}{\varepsilon}\right) .
$$

Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Then we can easily check that

$$
U_{\varepsilon}:=U * \phi_{\varepsilon}
$$

is smooth and converges to U in the $W^{1, p}$ norm on \mathbb{R}.
Boundary values of a $W^{1, p}$ function in one dimension Now we want to investigate the question of boundary values

$W^{1, p}=H^{1, p}$

Proof of 2.

Let $U \in W^{1, p}(\mathbb{R})$ be the above extension of $u \in W^{1, p}((a, b))$. Pick a nonnegative $\phi \in C_{c}^{\infty}([-1,1])$ such that $\int \phi=1$ and set

$$
\phi_{\varepsilon}(t):=\frac{1}{\varepsilon} \phi\left(\frac{t}{\varepsilon}\right) .
$$

Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Then we can easily check that

$$
U_{\varepsilon}:=U * \phi_{\varepsilon}
$$

is smooth and converges to U in the $W^{1, p}$ norm on \mathbb{R}.
Boundary values of a $W^{1, p}$ function in one dimension Now we want to investigate the question of boundary values (or any pointwise value)

$W^{1, p}=H^{1, p}$

Proof of 2.

Let $U \in W^{1, p}(\mathbb{R})$ be the above extension of $u \in W^{1, p}((a, b))$. Pick a nonnegative $\phi \in C_{c}^{\infty}([-1,1])$ such that $\int \phi=1$ and set

$$
\phi_{\varepsilon}(t):=\frac{1}{\varepsilon} \phi\left(\frac{t}{\varepsilon}\right) .
$$

Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Then we can easily check that

$$
U_{\varepsilon}:=U * \phi_{\varepsilon}
$$

is smooth and converges to U in the $W^{1, p}$ norm on \mathbb{R}.
Boundary values of a $W^{1, p}$ function in one dimension Now we want to investigate the question of boundary values (or any pointwise value) of a $W^{1, p}$ function.

Proof of 2.

Let $U \in W^{1, p}(\mathbb{R})$ be the above extension of $u \in W^{1, p}((a, b))$. Pick a nonnegative $\phi \in C_{c}^{\infty}([-1,1])$ such that $\int \phi=1$ and set

$$
\phi_{\varepsilon}(t):=\frac{1}{\varepsilon} \phi\left(\frac{t}{\varepsilon}\right) .
$$

Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics

Then we can easily check that

$$
U_{\varepsilon}:=U * \phi_{\varepsilon}
$$

is smooth and converges to U in the $W^{1, p}$ norm on \mathbb{R}.
Boundary values of a $W^{1, p}$ function in one dimension Now we want to investigate the question of boundary values (or any pointwise value) of a $W^{1, p}$ function. Note since $W^{1, p}$ functions are only a priory L^{p} functions,

$$
W^{1, p}=H^{1, p}
$$

Proof of 2.

Let $U \in W^{1, p}(\mathbb{R})$ be the above extension of $u \in W^{1, p}((a, b))$. Pick a nonnegative $\phi \in C_{c}^{\infty}([-1,1])$ such that $\int \phi=1$ and set

$$
\phi_{\varepsilon}(t):=\frac{1}{\varepsilon} \phi\left(\frac{t}{\varepsilon}\right) .
$$

Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics

Then we can easily check that

$$
U_{\varepsilon}:=U * \phi_{\varepsilon}
$$

is smooth and converges to U in the $W^{1, p}$ norm on \mathbb{R}.
Boundary values of a $W^{1, p}$ function in one dimension Now we want to investigate the question of boundary values (or any pointwise value) of a $W^{1, p}$ function. Note since $W^{1, p}$ functions are only a priory L^{p} functions, they are only defined a.e.

$W^{1, p}=H^{1, p}$

Proof of 2.

Let $U \in W^{1, p}(\mathbb{R})$ be the above extension of $u \in W^{1, p}((a, b))$. Pick a nonnegative $\phi \in C_{c}^{\infty}([-1,1])$ such that $\int \phi=1$ and set

$$
\phi_{\varepsilon}(t):=\frac{1}{\varepsilon} \phi\left(\frac{t}{\varepsilon}\right) .
$$

Then we can easily check that

$$
U_{\varepsilon}:=U * \phi_{\varepsilon}
$$

is smooth and converges to U in the $W^{1, p}$ norm on \mathbb{R}.
Boundary values of a $W^{1, p}$ function in one dimension Now we want to investigate the question of boundary values (or any pointwise value) of a $W^{1, p}$ function. Note since $W^{1, p}$ functions are only a priory L^{p} functions, they are only defined a.e. and thus the pointwise value does not necessarily make sense!

$W^{1, p}=H^{1, p}$

Proof of 2.

Let $U \in W^{1, p}(\mathbb{R})$ be the above extension of $u \in W^{1, p}((a, b))$. Pick a nonnegative $\phi \in C_{c}^{\infty}([-1,1])$ such that $\int \phi=1$ and set

$$
\phi_{\varepsilon}(t):=\frac{1}{\varepsilon} \phi\left(\frac{t}{\varepsilon}\right) .
$$

Then we can easily check that

$$
U_{\varepsilon}:=U * \phi_{\varepsilon}
$$

is smooth and converges to U in the $W^{1, p}$ norm on \mathbb{R}.
Boundary values of a $W^{1, p}$ function in one dimension Now we want to investigate the question of boundary values (or any pointwise value) of a $W^{1, p}$ function. Note since $W^{1, p}$ functions are only a priory L^{p} functions, they are only defined a.e. and thus the pointwise value does not necessarily make sense! Later, we would resolve this issue by the trace map.

$W^{1, p}=H^{1, p}$

Proof of 2.

Let $U \in W^{1, p}(\mathbb{R})$ be the above extension of $u \in W^{1, p}((a, b))$. Pick a nonnegative $\phi \in C_{c}^{\infty}([-1,1])$ such that $\int \phi=1$ and set

$$
\phi_{\varepsilon}(t):=\frac{1}{\varepsilon} \phi\left(\frac{t}{\varepsilon}\right) .
$$

Then we can easily check that

$$
U_{\varepsilon}:=U * \phi_{\varepsilon}
$$

is smooth and converges to U in the $W^{1, p}$ norm on \mathbb{R}.
Boundary values of a $W^{1, p}$ function in one dimension Now we want to investigate the question of boundary values (or any pointwise value) of a $W^{1, p}$ function. Note since $W^{1, p}$ functions are only a priory L^{p} functions, they are only defined a.e. and thus the pointwise value does not necessarily make sense! Later, we would resolve this issue by the trace map. In one dimension, however,

$W^{1, p}=H^{1, p}$

Proof of 2.

Let $U \in W^{1, p}(\mathbb{R})$ be the above extension of $u \in W^{1, p}((a, b))$. Pick a nonnegative $\phi \in C_{c}^{\infty}([-1,1])$ such that $\int \phi=1$ and set

$$
\phi_{\varepsilon}(t):=\frac{1}{\varepsilon} \phi\left(\frac{t}{\varepsilon}\right) .
$$

Then we can easily check that

$$
U_{\varepsilon}:=U * \phi_{\varepsilon}
$$

is smooth and converges to U in the $W^{1, p}$ norm on \mathbb{R}.
Boundary values of a $W^{1, p}$ function in one dimension Now we want to investigate the question of boundary values (or any pointwise value) of a $W^{1, p}$ function. Note since $W^{1, p}$ functions are only a priory L^{p} functions, they are only defined a.e. and thus the pointwise value does not necessarily make sense! Later, we would resolve this issue by the trace map. In one dimension, however, we are in luck.

$W^{1, p}=H^{1, p}$

Proof of 2.

Let $U \in W^{1, p}(\mathbb{R})$ be the above extension of $u \in W^{1, p}((a, b))$. Pick a nonnegative $\phi \in C_{c}^{\infty}([-1,1])$ such that $\int \phi=1$ and set

$$
\phi_{\varepsilon}(t):=\frac{1}{\varepsilon} \phi\left(\frac{t}{\varepsilon}\right) .
$$

Then we can easily check that

$$
U_{\varepsilon}:=U * \phi_{\varepsilon}
$$

is smooth and converges to U in the $W^{1, p}$ norm on \mathbb{R}.
Boundary values of a $W^{1, p}$ function in one dimension Now we want to investigate the question of boundary values (or any pointwise value) of a $W^{1, p}$ function. Note since $W^{1, p}$ functions are only a priory L^{p} functions, they are only defined a.e. and thus the pointwise value does not necessarily make sense! Later, we would resolve this issue by the trace map. In one dimension, however, we are in luck. As we show now, these functions are actually continuous

$W^{1, p}=H^{1, p}$

Proof of 2.

Let $U \in W^{1, p}(\mathbb{R})$ be the above extension of $u \in W^{1, p}((a, b))$. Pick a nonnegative $\phi \in C_{c}^{\infty}([-1,1])$ such that $\int \phi=1$ and set

$$
\phi_{\varepsilon}(t):=\frac{1}{\varepsilon} \phi\left(\frac{t}{\varepsilon}\right) .
$$

Then we can easily check that

$$
U_{\varepsilon}:=U * \phi_{\varepsilon}
$$

is smooth and converges to U in the $W^{1, p}$ norm on \mathbb{R}.
Boundary values of a $W^{1, p}$ function in one dimension Now we want to investigate the question of boundary values (or any pointwise value) of a $W^{1, p}$ function. Note since $W^{1, p}$ functions are only a priory L^{p} functions, they are only defined a.e. and thus the pointwise value does not necessarily make sense! Later, we would resolve this issue by the trace map. In one dimension, however, we are in luck. As we show now, these functions are actually continuous in one dimension.

Continuity of $W^{1,1}$ functions in one dimension

Theorem
Every function in $W^{1,1}((a, b))$ is uniformly continuous in $[a, b]$.

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Continuity of $W^{1,1}$ functions in one dimension

Theorem
Every function in $W^{1,1}((a, b))$ is uniformly continuous in $[a, b]$. In particular,

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Continuity of $W^{1,1}$ functions in one dimension

Theorem
Every function in $W^{1,1}((a, b))$ is uniformly continuous in $[a, b]$. In particular,

$$
W^{1,1}((a, b)) \subset C^{0}([a, b])
$$

Prelude to Direct Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Continuity of $W^{1,1}$ functions in one dimension

Theorem
Every function in $W^{1,1}((a, b))$ is uniformly continuous in $[a, b]$. In particular,

$$
W^{1,1}((a, b)) \subset C^{0}([a, b])
$$

Continuity of $W^{1,1}$ functions in one dimension

Theorem
Every function in $W^{1,1}((a, b))$ is uniformly continuous in $[a, b]$. In particular,

$$
W^{1,1}((a, b)) \subset C^{0}([a, b])
$$

and

$$
\sup _{t \in[a, b]}|u| \leq \frac{1}{(b-a)} \int_{a}^{b}|u|+\int_{a}^{b}|\dot{u}| .
$$

Continuity of $W^{1,1}$ functions in one dimension

Theorem
Every function in $W^{1,1}((a, b))$ is uniformly continuous in $[a, b]$. In particular,

$$
W^{1,1}((a, b)) \subset C^{0}([a, b])
$$

and

$$
\sup _{t \in[a, b]}|u| \leq \frac{1}{(b-a)} \int_{a}^{b}|u|+\int_{a}^{b}|\dot{u}| .
$$

Moreover, the fundamental theorem of calculus holds,

Continuity of $W^{1,1}$ functions in one dimension

Theorem
Every function in $W^{1,1}((a, b))$ is uniformly continuous in $[a, b]$. In particular,

$$
W^{1,1}((a, b)) \subset C^{0}([a, b])
$$

and

$$
\sup _{t \in[a, b]}|u| \leq \frac{1}{(b-a)} \int_{a}^{b}|u|+\int_{a}^{b}|\dot{u}| .
$$

Moreover, the fundamental theorem of calculus holds, i.e. for all $a \leq s<t \leq b$,

Prelude to Direct

Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Continuity of $W^{1,1}$ functions in one dimension

Theorem

Every function in $W^{1,1}((a, b))$ is uniformly continuous in $[a, b]$. In particular,

$$
W^{1,1}((a, b)) \subset C^{0}([a, b])
$$

and

$$
\sup _{t \in[a, b]}|u| \leq \frac{1}{(b-a)} \int_{a}^{b}|u|+\int_{a}^{b}|\dot{u}| .
$$

Moreover, the fundamental theorem of calculus holds, i.e. for all $a \leq s<t \leq b$,

$$
u(t)-u(s)=\int_{s}^{t} \dot{u}(\theta) \mathrm{d} \theta .
$$

Continuity of $W^{1,1}$ functions in one dimension

Theorem

Every function in $W^{1,1}((a, b))$ is uniformly continuous in $[a, b]$. In particular,

$$
W^{1,1}((a, b)) \subset C^{0}([a, b])
$$

Prelude to Direct

Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
and

$$
\sup _{t \in[a, b]}|u| \leq \frac{1}{(b-a)} \int_{a}^{b}|u|+\int_{a}^{b}|\dot{u}| .
$$

Moreover, the fundamental theorem of calculus holds, i.e. for all $a \leq s<t \leq b$,

$$
u(t)-u(s)=\int_{s}^{t} \dot{u}(\theta) \mathrm{d} \theta .
$$

This is something we have already seen implicitly in attempting to solve the geodesic problem before.

Continuity of $W^{1,1}$ functions in one dimension

Proof

Geodesics: the problem

Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Continuity of $W^{1,1}$ functions in one dimension

Proof

Since $W^{1,1}=H^{1,1}$,

Prelude to Direct Methods

Geodesics: the problem Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Continuity of $W^{1,1}$ functions in one dimension

Proof

Since $W^{1,1}=H^{1,1}$, for $u \in W^{1,1}((a, b))$, there exists a sequence $\left\{u_{\nu}\right\}_{\nu \geq 1} \subset X^{1,1}$

Prelude to Direct Methods

Geodesics: the problem Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Continuity of $W^{1,1}$ functions in one dimension

Proof

Since $W^{1,1}=H^{1,1}$, for $u \in W^{1,1}((a, b))$, there exists a sequence $\left\{u_{\nu}\right\}_{\nu \geq 1} \subset X^{1,1}$ such that

$$
u_{\nu} \rightarrow u \quad \text { in } W^{1,1}
$$

Prelude to Direct Methods
Geodesics: the problem Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Continuity of $W^{1,1}$ functions in one dimension

Proof

Since $W^{1,1}=H^{1,1}$, for $u \in W^{1,1}((a, b))$, there exists a sequence $\left\{u_{\nu}\right\}_{\nu \geq 1} \subset X^{1,1}$ such that

$$
u_{\nu} \rightarrow u \quad \text { in } W^{1,1}
$$

Now, using the fundamental theorem of calculus,

Continuity of $W^{1,1}$ functions in one dimension

Proof

Since $W^{1,1}=H^{1,1}$, for $u \in W^{1,1}((a, b))$, there exists a sequence $\left\{u_{\nu}\right\}_{\nu \geq 1} \subset X^{1,1}$ such that

$$
u_{\nu} \rightarrow u \quad \text { in } W^{1,1}
$$

Now, using the fundamental theorem of calculus, we obtain

Continuity of $W^{1,1}$ functions in one dimension

Proof

Since $W^{1,1}=H^{1,1}$, for $u \in W^{1,1}((a, b))$, there exists a sequence $\left\{u_{\nu}\right\}_{\nu \geq 1} \subset X^{1,1}$ such that

$$
u_{\nu} \rightarrow u \quad \text { in } W^{1,1}
$$

Now, using the fundamental theorem of calculus, we obtain

$$
\begin{equation*}
u_{\nu}(t)-u_{\nu}(s)=\int_{s}^{t} u_{\nu}(t) \mathrm{d} t \tag{1}
\end{equation*}
$$

Continuity of $W^{1,1}$ functions in one dimension

Proof

Since $W^{1,1}=H^{1,1}$, for $u \in W^{1,1}((a, b))$, there exists a sequence $\left\{u_{\nu}\right\}_{\nu \geq 1} \subset X^{1,1}$ such that

$$
u_{\nu} \rightarrow u \quad \text { in } W^{1,1}
$$

Now, using the fundamental theorem of calculus, we obtain

$$
\begin{equation*}
u_{\nu}(t)-u_{\nu}(s)=\int_{s}^{t} u_{\nu}(t) \mathrm{d} t \tag{1}
\end{equation*}
$$

Thus, in particular, we have,

Continuity of $W^{1,1}$ functions in one dimension

Proof

Since $W^{1,1}=H^{1,1}$, for $u \in W^{1,1}((a, b))$, there exists a sequence $\left\{u_{\nu}\right\}_{\nu \geq 1} \subset X^{1,1}$ such that

$$
u_{\nu} \rightarrow u \quad \text { in } W^{1,1}
$$

Now, using the fundamental theorem of calculus, we obtain

$$
\begin{equation*}
u_{\nu}(t)-u_{\nu}(s)=\int_{s}^{t} u_{\nu}(t) \mathrm{d} t \tag{1}
\end{equation*}
$$

Thus, in particular, we have,

$$
\left|u_{\nu}(t)-u_{\nu}(s)\right|=\left|\int_{s}^{t} \dot{u}_{\nu}(t) \mathrm{d} t\right| \leq \int_{s}^{t}\left|\dot{u}_{\nu}(t)\right| \mathrm{d} t
$$

and

$$
\left|u_{\nu}(t)\right| \leq\left|u_{\nu}(s)\right|+\int_{s}^{t}\left|\dot{u}_{\nu}(t)\right| \mathrm{d} t
$$

Prelude to Direct Methods

Geodesics: the problem Absolute continuity: first encounter with Sobolev spaces

Continuity of $W^{1,1}$ functions in one dimension

The last inequality implies

Continuity of $W^{1,1}$ functions in one dimension

The last inequality implies

$$
\left|u_{\nu}(t)\right| \leq\left|u_{\nu}(s)\right|+\int_{a}^{b}\left|\dot{u}_{\nu}(t)\right| \mathrm{d} t
$$

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Continuity of $W^{1,1}$ functions in one dimension

The last inequality implies

$$
\left|u_{\nu}(t)\right| \leq\left|u_{\nu}(s)\right|+\int_{a}^{b}\left|\dot{u}_{\nu}(t)\right| \mathrm{d} t
$$

Prelude to Direct
Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
Integrating this with respect to $s \in(a, b)$,

Continuity of $W^{1,1}$ functions in one dimension

The last inequality implies

$$
\left|u_{\nu}(t)\right| \leq\left|u_{\nu}(s)\right|+\int_{a}^{b}\left|\dot{u}_{\nu}(t)\right| \mathrm{d} t
$$

Geodesics: the problem

Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
Integrating this with respect to $s \in(a, b)$, we obtain

Continuity of $W^{1,1}$ functions in one dimension

The last inequality implies

$$
\left|u_{\nu}(t)\right| \leq\left|u_{\nu}(s)\right|+\int_{a}^{b}\left|\dot{u}_{\nu}(t)\right| \mathrm{d} t
$$

Geodesics: the problem

 Absolute continuity: first encounter with Sobolev spacesExistence of geodesics
Regularity questions

Integrating this with respect to $s \in(a, b)$, we obtain

$$
\begin{equation*}
\left|u_{\nu}(t)\right| \leq \frac{1}{(b-a)} \int_{a}^{b}\left|u_{\nu}(s)\right| \mathrm{d} s+\int_{a}^{b}\left|\dot{\nu}_{\nu}(t)\right| \mathrm{d} t . \tag{2}
\end{equation*}
$$

Thus $\left\{u_{\nu}\right\}$ is uniformly bounded in C^{0}

Continuity of $W^{1,1}$ functions in one dimension

The last inequality implies

$$
\left|u_{\nu}(t)\right| \leq\left|u_{\nu}(s)\right|+\int_{a}^{b}\left|u_{\nu}(t)\right| \mathrm{d} t
$$

Geodesics: the problem

 Absolute continuity: first encounter with Sobolev spacesExistence of geodesics
Regularity questions

Integrating this with respect to $s \in(a, b)$, we obtain

$$
\begin{equation*}
\left|u_{\nu}(t)\right| \leq \frac{1}{(b-a)} \int_{a}^{b}\left|u_{\nu}(s)\right| \mathrm{d} s+\int_{a}^{b}\left|\dot{u}_{\nu}(t)\right| \mathrm{d} t . \tag{2}
\end{equation*}
$$

Thus $\left\{u_{\nu}\right\}$ is uniformly bounded in C^{0} and as

$$
\dot{u}_{\nu} \rightarrow \dot{u} \text { strongly in } L^{1}
$$

Continuity of $W^{1,1}$ functions in one dimension

The last inequality implies

$$
\left|u_{\nu}(t)\right| \leq\left|u_{\nu}(s)\right|+\int_{a}^{b}\left|u_{\nu}(t)\right| \mathrm{d} t
$$

Geodesics: the problem

 Absolute continuity: first encounter with Sobolev spacesIntegrating this with respect to $s \in(a, b)$, we obtain

$$
\begin{equation*}
\left|u_{\nu}(t)\right| \leq \frac{1}{(b-a)} \int_{a}^{b}\left|u_{\nu}(s)\right| \mathrm{d} s+\int_{a}^{b}\left|\dot{\nu}_{\nu}(t)\right| \mathrm{d} t . \tag{2}
\end{equation*}
$$

Thus $\left\{u_{\nu}\right\}$ is uniformly bounded in C^{0} and as

$$
\dot{u}_{\nu} \rightarrow \dot{u} \text { strongly in } L^{1}
$$

we have

Continuity of $W^{1,1}$ functions in one dimension

The last inequality implies

$$
\left|u_{\nu}(t)\right| \leq\left|u_{\nu}(s)\right|+\int_{a}^{b}\left|u_{\nu}(t)\right| \mathrm{d} t
$$

Integrating this with respect to $s \in(a, b)$, we obtain

$$
\begin{equation*}
\left|u_{\nu}(t)\right| \leq \frac{1}{(b-a)} \int_{a}^{b}\left|u_{\nu}(s)\right| \mathrm{d} s+\int_{a}^{b}\left|\dot{u}_{\nu}(t)\right| \mathrm{d} t \tag{2}
\end{equation*}
$$

Thus $\left\{u_{\nu}\right\}$ is uniformly bounded in C^{0} and as

$$
\dot{u}_{\nu} \rightarrow \dot{u} \text { strongly in } L^{1}
$$

we have

$$
\int_{s}^{t}\left|\dot{u}_{\nu}(t)\right| \mathrm{d} t \rightarrow 0 \quad \text { uniformly in } \nu \quad \text { as } t-s \rightarrow 0
$$

Continuity of $W^{1,1}$ functions in one dimension

Indeed, since $\dot{u} \in L^{1}$,

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Continuity of $W^{1,1}$ functions in one dimension

Indeed, since $\dot{u} \in L^{1}$, we have
Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Continuity of $W^{1,1}$ functions in one dimension

Indeed, since $\dot{u} \in L^{1}$, we have

$$
\int_{s}^{t}|\dot{u}(t)| \mathrm{d} t \rightarrow 0 \quad \text { as } t-s \rightarrow 0
$$

Prelude to Direct
Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Continuity of $W^{1,1}$ functions in one dimension

Indeed, since $\dot{u} \in L^{1}$, we have

$$
\int_{s}^{t}|\dot{u}(t)| \mathrm{d} t \rightarrow 0 \quad \text { as } t-s \rightarrow 0
$$

But the strong convergence implies

Prelude to Direct
Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Continuity of $W^{1,1}$ functions in one dimension

Indeed, since $\dot{u} \in L^{1}$, we have

$$
\int_{s}^{t}|\dot{u}(t)| \mathrm{d} t \rightarrow 0 \quad \text { as } t-s \rightarrow 0
$$

But the strong convergence implies

$$
\int_{s}^{t}\left|\dot{u}_{\nu}(t)-\dot{u}(t)\right| \mathrm{d} t \rightarrow 0 \quad \text { as } \nu \rightarrow 0
$$

Prelude to Direct
Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Continuity of $W^{1,1}$ functions in one dimension

Indeed, since $\dot{u} \in L^{1}$, we have

$$
\int_{s}^{t}|\dot{u}(t)| \mathrm{d} t \rightarrow 0 \quad \text { as } t-s \rightarrow 0
$$

But the strong convergence implies

$$
\int_{s}^{t}\left|\dot{u}_{\nu}(t)-\dot{u}(t)\right| \mathrm{d} t \rightarrow 0 \quad \text { as } \nu \rightarrow 0
$$

These two together implies the claim above.

Continuity of $W^{1,1}$ functions in one dimension

Indeed, since $\dot{u} \in L^{1}$, we have

$$
\int_{s}^{t}|\dot{u}(t)| \mathrm{d} t \rightarrow 0 \quad \text { as } t-s \rightarrow 0
$$

But the strong convergence implies

$$
\int_{s}^{t}\left|\dot{u}_{\nu}(t)-\dot{u}(t)\right| \mathrm{d} t \rightarrow 0 \quad \text { as } \nu \rightarrow 0
$$

These two together implies the claim above.
But the inequality

Continuity of $W^{1,1}$ functions in one dimension

Indeed, since $\dot{u} \in L^{1}$, we have

$$
\int_{s}^{t}|\dot{u}(t)| \mathrm{d} t \rightarrow 0 \quad \text { as } t-s \rightarrow 0
$$

But the strong convergence implies

$$
\int_{s}^{t}\left|\dot{u}_{\nu}(t)-\dot{u}(t)\right| \mathrm{d} t \rightarrow 0 \quad \text { as } \nu \rightarrow 0
$$

Prelude to Direct

Methods

Geodesics: the problem

 Absolute continuity: first encounter with Sobolev spacesThese two together implies the claim above.
But the inequality

$$
\begin{equation*}
\left|u_{\nu}(t)-u_{\nu}(s)\right|=\left|\int_{s}^{t} \dot{u}_{\nu}(t) \mathrm{d} t\right| \leq \int_{s}^{t}\left|\dot{u}_{\nu}(t)\right| \mathrm{d} t \tag{3}
\end{equation*}
$$

Continuity of $W^{1,1}$ functions in one dimension

Indeed, since $\dot{u} \in L^{1}$, we have

$$
\int_{s}^{t}|\dot{u}(t)| \mathrm{d} t \rightarrow 0 \quad \text { as } t-s \rightarrow 0
$$

But the strong convergence implies

$$
\int_{s}^{t}\left|\dot{u}_{\nu}(t)-\dot{u}(t)\right| \mathrm{d} t \rightarrow 0 \quad \text { as } \nu \rightarrow 0
$$

These two together implies the claim above.
But the inequality

$$
\begin{equation*}
\left|u_{\nu}(t)-u_{\nu}(s)\right|=\left|\int_{s}^{t} \dot{u}_{\nu}(t) \mathrm{d} t\right| \leq \int_{s}^{t}\left|\dot{u}_{\nu}(t)\right| \mathrm{d} t \tag{3}
\end{equation*}
$$

together with the fact that

Continuity of $W^{1,1}$ functions in one dimension

Indeed, since $\dot{u} \in L^{1}$, we have

$$
\int_{s}^{t}|\dot{u}(t)| \mathrm{d} t \rightarrow 0 \quad \text { as } t-s \rightarrow 0
$$

But the strong convergence implies

$$
\int_{s}^{t}\left|\dot{u}_{\nu}(t)-\dot{u}(t)\right| \mathrm{d} t \rightarrow 0 \quad \text { as } \nu \rightarrow 0
$$

Prelude to Direct

 MethodsGeodesics: the problem Absolute continuity: first encounter with Sobolev spaces

These two together implies the claim above.
But the inequality

$$
\begin{equation*}
\left|u_{\nu}(t)-u_{\nu}(s)\right|=\left|\int_{s}^{t} u_{\nu}(t) \mathrm{d} t\right| \leq \int_{s}^{t}\left|\dot{u}_{\nu}(t)\right| \mathrm{d} t \tag{3}
\end{equation*}
$$

together with the fact that

$$
\int_{s}^{t}\left|\dot{u}_{\nu}(t)\right| \mathrm{d} t \rightarrow 0 \quad \text { uniformly in } \nu \quad \text { as } t-s \rightarrow 0
$$

Continuity of $W^{1,1}$ functions in one dimension

Indeed, since $\dot{u} \in L^{1}$, we have

$$
\int_{s}^{t}|\dot{u}(t)| \mathrm{d} t \rightarrow 0 \quad \text { as } t-s \rightarrow 0
$$

But the strong convergence implies

$$
\int_{s}^{t}\left|\dot{u}_{\nu}(t)-\dot{u}(t)\right| \mathrm{d} t \rightarrow 0 \quad \text { as } \nu \rightarrow 0
$$

Prelude to Direct

 MethodsGeodesics: the problem Absolute continuity: first encounter with Sobolev spaces

These two together implies the claim above.
But the inequality

$$
\begin{equation*}
\left|u_{\nu}(t)-u_{\nu}(s)\right|=\left|\int_{s}^{t} u_{\nu}(t) \mathrm{d} t\right| \leq \int_{s}^{t}\left|\dot{u}_{\nu}(t)\right| \mathrm{d} t \tag{3}
\end{equation*}
$$

together with the fact that

$$
\int_{s}^{t}\left|\dot{u}_{\nu}(t)\right| \mathrm{d} t \rightarrow 0 \quad \text { uniformly in } \nu \quad \text { as } t-s \rightarrow 0
$$

implies

Continuity of $W^{1,1}$ functions in one dimension

Indeed, since $\dot{u} \in L^{1}$, we have

$$
\int_{s}^{t}|\dot{u}(t)| \mathrm{d} t \rightarrow 0 \quad \text { as } t-s \rightarrow 0
$$

But the strong convergence implies

$$
\int_{s}^{t}\left|\dot{u}_{\nu}(t)-\dot{u}(t)\right| \mathrm{d} t \rightarrow 0 \quad \text { as } \nu \rightarrow 0
$$

Prelude to Direct

Methods

 encounter with Sobolev spacesThese two together implies the claim above.
But the inequality

$$
\begin{equation*}
\left|u_{\nu}(t)-u_{\nu}(s)\right|=\left|\int_{s}^{t} u_{\nu}(t) \mathrm{d} t\right| \leq \int_{s}^{t}\left|\dot{u}_{\nu}(t)\right| \mathrm{d} t \tag{3}
\end{equation*}
$$

together with the fact that

$$
\int_{s}^{t}\left|\dot{u}_{\nu}(t)\right| \mathrm{d} t \rightarrow 0 \quad \text { uniformly in } \nu \quad \text { as } t-s \rightarrow 0
$$

implies

$$
\left|u_{\nu}(t)-u_{\nu}(s)\right| \rightarrow 0 \quad \text { uniformly in } \nu \quad \text { as } t-s \rightarrow 0 .
$$

Continuity of $W^{1,1}$ functions in one dimension

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Continuity of $W^{1,1}$ functions in one dimension

This implies that $\left\{u_{\nu}\right\}$ is equicontinuous and thus by Ascoli-Arzela

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Continuity of $W^{1,1}$ functions in one dimension

This implies that $\left\{u_{\nu}\right\}$ is equicontinuous and thus by Ascoli-Arzela

Geodesics: the problem

Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics theorem, up to the extraction of a subsequence which we do not relabel,

Continuity of $W^{1,1}$ functions in one dimension

This implies that $\left\{u_{\nu}\right\}$ is equicontinuous and thus by Ascoli-Arzela

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End theorem, up to the extraction of a subsequence which we do not relabel, we have

$$
u_{\nu} \rightarrow u \quad \text { in } C^{0} .
$$

Continuity of $W^{1,1}$ functions in one dimension

This implies that $\left\{u_{\nu}\right\}$ is equicontinuous and thus by Ascoli-Arzela

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions theorem, up to the extraction of a subsequence which we do not relabel, we have

$$
u_{\nu} \rightarrow u \quad \text { in } C^{0} .
$$

This shows u is continuous.

Continuity of $W^{1,1}$ functions in one dimension

This implies that $\left\{u_{\nu}\right\}$ is equicontinuous and thus by Ascoli-Arzela

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions theorem, up to the extraction of a subsequence which we do not relabel, we have

$$
u_{\nu} \rightarrow u \quad \text { in } C^{0}
$$

This shows u is continuous. Now, passing to the limit in (3),

Continuity of $W^{1,1}$ functions in one dimension

This implies that $\left\{u_{\nu}\right\}$ is equicontinuous and thus by Ascoli-Arzela

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions theorem, up to the extraction of a subsequence which we do not relabel, we have

$$
u_{\nu} \rightarrow u \quad \text { in } C^{0}
$$

This shows u is continuous. Now, passing to the limit in (3), we deduce that u is uniformly continuous.

Continuity of $W^{1,1}$ functions in one dimension

This implies that $\left\{u_{\nu}\right\}$ is equicontinuous and thus by Ascoli-Arzela theorem, up to the extraction of a subsequence which we do not relabel, we have

$$
u_{\nu} \rightarrow u \quad \text { in } C^{0} .
$$

This shows u is continuous. Now, passing to the limit in (3), we deduce that u is uniformly continuous. The other statements follow by passing to the limit

Continuity of $W^{1,1}$ functions in one dimension

This implies that $\left\{u_{\nu}\right\}$ is equicontinuous and thus by Ascoli-Arzela

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics Regularity questions theorem, up to the extraction of a subsequence which we do not relabel, we have

$$
u_{\nu} \rightarrow u \quad \text { in } C^{0}
$$

This shows u is continuous. Now, passing to the limit in (3), we deduce that u is uniformly continuous. The other statements follow by passing to the limit in (1) and (2).

Continuity of $W^{1, p}$ functions in one dimension

In a similar manner, we can prove the following,

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Continuity of $W^{1, p}$ functions in one dimension

In a similar manner, we can prove the following, which is a particular case of the Sobolev-Morrey embedding.

Prelude to Direct Methods

Geodesics: the problem

Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Continuity of $W^{1, p}$ functions in one dimension

In a similar manner, we can prove the following, which is a particular case of the Sobolev-Morrey embedding.

Theorem

Every function in $W^{1, p}((a, b))$ with $p>1$ Hölder continuous in $[a, b]$.

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Continuity of $W^{1, p}$ functions in one dimension

In a similar manner, we can prove the following, which is a particular case of the Sobolev-Morrey embedding.

Theorem

Every function in $W^{1, p}((a, b))$ with $p>1$ Hölder continuous in [a, b]. In particular,

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Continuity of $W^{1, p}$ functions in one dimension

In a similar manner, we can prove the following, which is a particular case of the Sobolev-Morrey embedding.

Theorem

Every function in $W^{1, p}((a, b))$ with $p>1$ Hölder continuous in [a, b]. In particular,

$$
W^{1, p}((a, b)) \subset C^{0,1-\frac{1}{p}}([a, b])
$$

Continuity of $W^{1, p}$ functions in one dimension

In a similar manner, we can prove the following, which is a particular case of the Sobolev-Morrey embedding.

Theorem

Every function in $W^{1, p}((a, b))$ with $p>1$ Hölder continuous in [a, b]. In particular,

$$
W^{1, p}((a, b)) \subset C^{0,1-\frac{1}{p}}([a, b])
$$

and

Continuity of $W^{1, p}$ functions in one dimension

In a similar manner, we can prove the following, which is a particular case of the Sobolev-Morrey embedding.

Theorem

Every function in $W^{1, p}((a, b))$ with $p>1$ Hölder continuous in [a, b]. In particular,

$$
W^{1, p}((a, b)) \subset C^{0,1-\frac{1}{p}}([a, b])
$$

and

$$
\sup _{t \in[a, b]}|u| \leq\left(\frac{1}{(b-a)} \int_{a}^{b}|u|^{p}\right)^{\frac{1}{p}}+(b-a)^{1-\frac{1}{p}}\left(\int_{a}^{b}|\dot{u}|^{p}\right)^{\frac{1}{p}} .
$$

Continuity of $W^{1, p}$ functions in one dimension

In a similar manner, we can prove the following, which is a particular case of the Sobolev-Morrey embedding.

Theorem

Every function in $W^{1, p}((a, b))$ with $p>1$ Hölder continuous in [a, b]. In particular,

$$
W^{1, p}((a, b)) \subset C^{0,1-\frac{1}{p}}([a, b])
$$

and

$$
\sup _{t \in[a, b]}|u| \leq\left(\frac{1}{(b-a)} \int_{a}^{b}|u|^{p}\right)^{\frac{1}{p}}+(b-a)^{1-\frac{1}{p}}\left(\int_{a}^{b}|\dot{u}|^{p}\right)^{\frac{1}{p}} .
$$

Moreoever for all $s, t \in[a, b]$,

Continuity of $W^{1, p}$ functions in one dimension

In a similar manner, we can prove the following, which is a particular case of the Sobolev-Morrey embedding.

Theorem

Every function in $W^{1, p}((a, b))$ with $p>1$ Hölder continuous in [a, b]. In particular,

$$
W^{1, p}((a, b)) \subset C^{0,1-\frac{1}{p}}([a, b])
$$

and

$$
\sup _{t \in[a, b]}|u| \leq\left(\frac{1}{(b-a)} \int_{a}^{b}|u|^{p}\right)^{\frac{1}{p}}+(b-a)^{1-\frac{1}{p}}\left(\int_{a}^{b}|\dot{u}|^{p}\right)^{\frac{1}{p}} .
$$

Moreoever for all $s, t \in[a, b]$, we have,

Continuity of $W^{1, p}$ functions in one dimension

In a similar manner, we can prove the following, which is a particular case of the Sobolev-Morrey embedding.

Theorem

Every function in $W^{1, p}((a, b))$ with $p>1$ Hölder continuous in [a, b]. In particular,

$$
W^{1, p}((a, b)) \subset C^{0,1-\frac{1}{p}}([a, b])
$$

and

$$
\sup _{t \in[a, b]}|u| \leq\left(\frac{1}{(b-a)} \int_{a}^{b}|u|^{p}\right)^{\frac{1}{p}}+(b-a)^{1-\frac{1}{p}}\left(\int_{a}^{b}|\dot{u}|^{p}\right)^{\frac{1}{p}} .
$$

Moreoever for all $s, t \in[a, b]$, we have,

$$
|u(t)-u(s)| \leq\left(\int_{a}^{b}|\dot{u}|^{p}\right)^{\frac{1}{p}}|t-s|^{1-\frac{1}{p}}
$$

Continuity of $W^{1, p}$ functions in one dimension

Proof

Continuity of $W^{1, p}$ functions in one dimension

Proof

The proof is almost the same.

Prelude to Direct
Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Continuity of $W^{1, p}$ functions in one dimension

Proof

The proof is almost the same. The only step where it differs is that we now need to apply Hölder inequality to

Prelude to Direct
Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions

Continuity of $W^{1, p}$ functions in one dimension

Proof

The proof is almost the same. The only step where it differs is that we now need to apply Hölder inequality to

$$
\left|u_{\nu}(t)-u_{\nu}(s)\right|=\left|\int_{s}^{t} u_{\nu}(t) \mathrm{d} t\right| \leq \int_{s}^{t}\left|\dot{u}_{\nu}(t)\right| \mathrm{d} t
$$

Continuity of $W^{1, p}$ functions in one dimension

Proof

The proof is almost the same. The only step where it differs is that we now need to apply Hölder inequality to

$$
\left|u_{\nu}(t)-u_{\nu}(s)\right|=\left|\int_{s}^{t} \dot{u}_{\nu}(t) \mathrm{d} t\right| \leq \int_{s}^{t}\left|\dot{u}_{\nu}(t)\right| \mathrm{d} t
$$

to deduce

Continuity of $W^{1, p}$ functions in one dimension

Proof

The proof is almost the same. The only step where it differs is that we now need to apply Hölder inequality to

$$
\left|u_{\nu}(t)-u_{\nu}(s)\right|=\left|\int_{s}^{t} \dot{u}_{\nu}(t) \mathrm{d} t\right| \leq \int_{s}^{t}\left|\dot{u}_{\nu}(t)\right| \mathrm{d} t
$$

to deduce

$$
\begin{aligned}
\left|u_{\nu}(t)-u_{\nu}(s)\right| & \leq \int_{s}^{t}\left|\dot{u}_{\nu}(t)\right| \mathrm{d} t \\
& \leq\left(\int_{s}^{t}|\dot{u}|^{p}\right)^{\frac{1}{\rho}}|t-s|^{1-\frac{1}{\rho}} \\
& \leq\left(\int_{a}^{b}|\dot{u}|^{p}\right)^{\frac{1}{\rho}}|t-s|^{1-\frac{1}{\rho}} .
\end{aligned}
$$

Continuity of $W^{1, p}$ functions in one dimension

Proof

The proof is almost the same. The only step where it differs is that we now need to apply Hölder inequality to

$$
\left|u_{\nu}(t)-u_{\nu}(s)\right|=\left|\int_{s}^{t} \dot{u}_{\nu}(t) \mathrm{d} t\right| \leq \int_{s}^{t}\left|\dot{u}_{\nu}(t)\right| \mathrm{d} t
$$

to deduce

$$
\begin{aligned}
\left|u_{\nu}(t)-u_{\nu}(s)\right| & \leq \int_{s}^{t}\left|\dot{\nu}_{\nu}(t)\right| \mathrm{d} t \\
& \leq\left(\int_{s}^{t}|\dot{u}|^{p}\right)^{\frac{1}{p}}|t-s|^{1-\frac{1}{p}} \\
& \leq\left(\int_{a}^{b}|\dot{u}|^{p}\right)^{\frac{1}{p}}|t-s|^{1-\frac{1}{p}}
\end{aligned}
$$

The rest is the same.

Functions with zero boundary values in $W^{1, p}$ in one dimension

Swarnendu Sil

Now we are going to characterize the functions with zero boundary values.

Prelude to Direct
Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces

Existence of geodesics
Regularity questions
The End

Functions with zero boundary values in $W^{1, p}$ in one dimension

Now we are going to characterize the functions with zero boundary values.
Definition ($W_{0}^{1, p}$)
We define the space $W_{0}^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$ as

Functions with zero boundary values in $W^{1, p}$ in one dimension

Now we are going to characterize the functions with zero boundary values.
Definition ($W_{0}^{1, p}$)
We define the space $W_{0}^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$ as the completion of

$$
X_{0}^{1, p}:=\left\{u \in C_{c}^{\infty}\left((a, b) ; \mathbb{R}^{N}\right):\|u\|_{W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)}<\infty\right\}
$$

Functions with zero boundary values in $W^{1, p}$ in one dimension

Now we are going to characterize the functions with zero boundary values.
Definition ($W_{0}^{1, p}$)
We define the space $W_{0}^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$ as the completion of

$$
X_{0}^{1, p}:=\left\{u \in C_{c}^{\infty}\left((a, b) ; \mathbb{R}^{N}\right):\|u\|_{W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)}<\infty\right\}
$$

with respect to the $W^{1, p}$ norm.

Functions with zero boundary values in $W^{1, p}$ in one dimension

Now we are going to characterize the functions with zero boundary values.
Definition ($W_{0}^{1, p}$)
We define the space $W_{0}^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$ as the completion of

$$
X_{0}^{1, p}:=\left\{u \in C_{c}^{\infty}\left((a, b) ; \mathbb{R}^{N}\right):\|u\|_{W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)}<\infty\right\}
$$

with respect to the $W^{1, p}$ norm.
Clearly, if $u \in W_{0}^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$,

Functions with zero boundary values in $W^{1, p}$ in one dimension

Now we are going to characterize the functions with zero boundary values.
Definition ($W_{0}^{1, p}$)
We define the space $W_{0}^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$ as the completion of

$$
X_{0}^{1, p}:=\left\{u \in C_{c}^{\infty}\left((a, b) ; \mathbb{R}^{N}\right):\|u\|_{W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)}<\infty\right\}
$$

with respect to the $W^{1, p}$ norm.
Clearly, if $u \in W_{0}^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$, then $u(a)=0=u(b)$.

Functions with zero boundary values in $W^{1, p}$ in one dimension

Now we are going to characterize the functions with zero boundary values.
Definition ($W_{0}^{1, p}$)
We define the space $W_{0}^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$ as the completion of

$$
X_{0}^{1, p}:=\left\{u \in C_{c}^{\infty}\left((a, b) ; \mathbb{R}^{N}\right):\|u\|_{W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)}<\infty\right\}
$$

with respect to the $W^{1, p}$ norm.
Clearly, if $u \in W_{0}^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$, then $u(a)=0=u(b)$. We can prove the converse as well.

Functions with zero boundary values in $W^{1, p}$ in one dimension

Now we are going to characterize the functions with zero boundary values.
Definition ($W_{0}^{1, p}$)
We define the space $W_{0}^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$ as the completion of

$$
X_{0}^{1, p}:=\left\{u \in C_{c}^{\infty}\left((a, b) ; \mathbb{R}^{N}\right):\|u\|_{W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)}<\infty\right\}
$$

with respect to the $W^{1, p}$ norm.
Clearly, if $u \in W_{0}^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$, then $u(a)=0=u(b)$. We can prove the converse as well.
Theorem (Characterization of $W_{0}^{1, p}$)
Let $u \in W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$. Then $u \in W_{0}^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$ if and only if $u(a)=0=u(b)$.

Functions with zero boundary values in $W^{1, p}$ in one dimension

Proof

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Functions with zero boundary values in $W^{1, p}$ in one dimension

Swarnendu Sil

Proof

Fix any function $G \in C^{1}(\mathbb{R})$

Prelude to Direct
Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

Functions with zero boundary values in $W^{1, p}$ in one dimension

Proof

Fix any function $G \in C^{1}(\mathbb{R})$ such that

$$
G(t)= \begin{cases}0 & \text { if }|t| \leq 1 \\ t & \text { if }|t| \geq 2\end{cases}
$$

Prelude to Direct
Methods
Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End
and

$$
|G(t)| \leq|t| \quad \text { for all } t \in \mathbb{R} .
$$

Functions with zero boundary values in $W^{1, p}$ in one dimension

Proof

Fix any function $G \in C^{1}(\mathbb{R})$ such that

$$
G(t)= \begin{cases}0 & \text { if }|t| \leq 1 \\ t & \text { if }|t| \geq 2\end{cases}
$$

Prelude to Direct

Methods

Geodesics: the problem

Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End
and

$$
|G(t)| \leq|t| \quad \text { for all } t \in \mathbb{R}
$$

Set

$$
u_{\nu}=\frac{1}{\nu} G(\nu u),
$$

so that $u_{\nu} \in W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$.

Functions with zero boundary values in $W^{1, p}$ in one dimension

Proof

Fix any function $G \in C^{1}(\mathbb{R})$ such that

$$
G(t)= \begin{cases}0 & \text { if }|t| \leq 1 \\ t & \text { if }|t| \geq 2\end{cases}
$$

Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
and

$$
|G(t)| \leq|t| \quad \text { for all } t \in \mathbb{R} .
$$

Set

$$
u_{\nu}=\frac{1}{\nu} G(\nu u),
$$

so that $u_{\nu} \in W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$. On the other hand, we can check that the support of u_{ν} is compactly contained in (a, b) since $u(a)=0=u(b)$ and u is continuous.

Functions with zero boundary values in $W^{1, p}$ in one dimension

Proof

Fix any function $G \in C^{1}(\mathbb{R})$ such that

$$
G(t)= \begin{cases}0 & \text { if }|t| \leq 1 \\ t & \text { if }|t| \geq 2\end{cases}
$$

and

$$
|G(t)| \leq|t| \quad \text { for all } t \in \mathbb{R}
$$

Set

$$
u_{\nu}=\frac{1}{\nu} G(\nu u),
$$

so that $u_{\nu} \in W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$. On the other hand, we can check that the support of u_{ν} is compactly contained in (a, b) since $u(a)=0=u(b)$ and u is continuous. But this implies easily that $u_{\nu} \in W_{0}^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$.

Functions with zero boundary values in $W^{1, p}$ in one dimension

Proof

Fix any function $G \in C^{1}(\mathbb{R})$ such that

$$
G(t)= \begin{cases}0 & \text { if }|t| \leq 1 \\ t & \text { if }|t| \geq 2\end{cases}
$$

Methods

Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
and

$$
|G(t)| \leq|t| \quad \text { for all } t \in \mathbb{R}
$$

Set

$$
u_{\nu}=\frac{1}{\nu} G(\nu u)
$$

so that $u_{\nu} \in W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$. On the other hand, we can check that the support of u_{ν} is compactly contained in (a, b) since $u(a)=0=u(b)$ and u is continuous. But this implies easily that $u_{\nu} \in W_{0}^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$. Finally, one easily checks that

$$
u_{\nu} \rightarrow u \quad \text { in } W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)
$$

by the dominated convergence theorem.

Thank you Questions?

Prelude to Direct Methods

Geodesics: the problem
Absolute continuity: first encounter with Sobolev spaces
Existence of geodesics
Regularity questions
The End

