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Hello everyone
A warm welcome to you all

I am Swarnendu.
I work on Calculus of Variations, PDEs and Geometric Analysis.

I obtained my PhD in 2016 from EPFL, Switzerland.

This course is a gentle introduction to
the direct methods in Calculus of Variations concerning

minimization problems.

I intend to give you a flavour of the subject using important
prototype examples.

So we will mostly not care about proving the sharpest result.
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Practical information

I Course Page Link:
http://math.iisc.ac.in/~ssil/Courses/Intro_

CalcVar_Spring21/CalcVar1Spring21.html. All the
material related to the course would be on this page.

I A detailed course content outline and prerequisites can be
found at http:
//math.iisc.ac.in/~ssil/Courses/Intro_CalcVar_

Spring21/Intro_Calc_Var_2021_Course_Syllabus.pdf

I Lectures would take place on Microsoft Teams. Slides and
lecture notes will be uploaded to the course page as soon as
possible once the lecture is over, ideally within a few minutes.

http://math.iisc.ac.in/~ssil/Courses/Intro_CalcVar_Spring21/CalcVar1Spring21.html
http://math.iisc.ac.in/~ssil/Courses/Intro_CalcVar_Spring21/CalcVar1Spring21.html
http://math.iisc.ac.in/~ssil/Courses/Intro_CalcVar_Spring21/Intro_Calc_Var_2021_Course_Syllabus.pdf
http://math.iisc.ac.in/~ssil/Courses/Intro_CalcVar_Spring21/Intro_Calc_Var_2021_Course_Syllabus.pdf
http://math.iisc.ac.in/~ssil/Courses/Intro_CalcVar_Spring21/Intro_Calc_Var_2021_Course_Syllabus.pdf


Introduction to the
Calculus of Variations

Swarnendu Sil

About the course

Chapter 1:
Introduction

Finding a minima of a
function

Finding minima: classical
method

Finding minima: direct
method

Finding minima:
Comparison of the
methods

Function to functionals

The abstract problem

Brief history

Classical examples

The End

A few words about the course

I The course has three integral parts,
I Lecture and/or Slides,
I Lecture Notes and
I Problem Sheets ( along with Solution keys which would be

posted later, ideally the week after).

Each of these are absolutely indispensable. They are not
copies of one another, though significant overlaps are of
course unavoidable. There are lots of material in the lecture
notes which might not even be mentioned in the slides. There
are many problems in the assignments the likes which are not
discussed in neither the slides nor the lecture notes.

I Draw lots of figures and sketches! Our pattern-friendly brains
love those incomparably more than greek alphabets.

I Treat any phrase like ‘clearly’, ‘it is easy to see’ etc as a bull
would treat a red flag. Do not let me slide a shaky argument
past you! Faith has no place in mathematics and the only
authority it recognizes is that of an iron-clad proof.
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Outline of the Course

Skeleton
The course is divided into six chapters as follows.

I Chapter 1: Introduction

I Chapter 2: Classical Methods

I Chapter 3: Tools from Analysis

I Chapter 4: Direct Methods

I Chapter 5: Regularity

I Chapter 6: Plateau’s problem and Minimal surfaces

The first chapter would be quite short. The second chapter
discusses the classical methods. The third chapter basically
collects some analytic preliminaries for later chapters. The last
three chapters are in some sense the heart of the course.
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Basic case of finding a minima

We begin with the study of a considerably simpler problem, which
we all learned how to solve in our Calculus courses - finding a
minima of a given function. However, this would already give us a
glimpse of what is to come.

Finding the minima of a function

Let X ⊂ Rn and let F : X → R. Consider the minimization
problem

inf{F (x) : x ∈ X} (P)

There are roughly two methods to solve the problem ( if it can be
solved at all!! )
The methods are called the classical method and the direct
method.
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Basic case of finding a minima: The classical method

I Classical Method Assume F is C 1.

Then x̄ ∈ X is a
stationary point/critical point of F if and only if it solves the
equation

∇F (x̄) = 0. (Euler-Lagrange Eqn.) (1)

Try to solve this to obtain all critical points. Then check for a
local minima.
Now if F is C 2, then a given critical point x̄ ∈ X is a minima
if

∇2F (x̄) > 0, i.e. positive definite. (Legendre condition)
(2)

This is exactly how we found minima in Calculus courses!
Note that if F is strictly convex and C 2, (2) is automatic.
The minima would also be unique and global.

Convexity in general plays an important role in minization
problems.
See Lecture notes and the assignments for more on this.
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Basic case of finding a minima: The direct method

I Direct Method Let {xs} ⊂ X be a minimizing sequence,
i.e.

lim
s→∞

F (xs) = inf{F (x) : x ∈ X}. (3)

Such sequences must exist, by definition of the infimum!
Now suppose the hypotheses on F allow us to prove
sequential compactness of all such minimizing sequences.
Typically, we can deduce an uniform bound

‖xs‖ ≤ C for all s.

Then up to the extraction of a subsequence that we do not
relabel, we get

xs → x̄ , for some x̄ ∈ X . (by Bolzano-Weierstrass) (4)

Now if F is lower semicontinuous, we obtain

inf{F (x) : x ∈ X}
since x̄∈X
≤ F (x̄)

lsc
≤ lim

s→∞
F (xs)

min seq
= inf{F (x) : x ∈ X}.

Thus all inequalities must be equalities and x̄ is a minima.
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Basic case of finding a minima: The direct method

Probably you have never used this method before to find a
minima!

So it is tempting to conclude that the direct method is
somehow inferior. No!
Consider f (x) = |x | . A brief glance at its graph is enough to see
that it has a unique, global minima at the origin.

Direct method needs only lower semicontinuity. There are lots of
lower semicontinuous functions! Many of them are discontinuous!

Obtaining the uniform bound for minimizing sequences is not
always easy. But these generally follow from coercivity
assumptions on F . For example, F : Rn → R is said to have
superlinear growth at infinity if it satisfies

lim
‖x‖→∞

|F (x)|
‖x‖

= +∞.

You are asked to show in the assignment that this implies a
uniform bound for minimizing sequences if F is bounded below.
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Basic case of finding a minima: Comparison of the methods

Comparing the two methods

I The classical method

I works by solving the EL equations
I finds all critical points
I needs F to be reasonably regular

I The direct method
I works directly with the function, not the EL equations (Hence

the name!)
I finds only minima, not all critical points ( There are direct

methods for finding other critical points too, but those are
beyond the scope of this course)

I F can be less regular, but has to be coercive and lower
semicontinuous.

The basic features of the two methods are the same in the
calculus of variations too.
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Comparison of the methods in the case of the calculus of
variations

But there are some differences as well. For finding minima of a
function, the EL equations are algebraic equations. In the Calculus
of Variations, the EL equations are ODE, system of ODEs, PDE or
a system of PDEs.

If they are PDEs or system of PDEs, even proving existence of a
solution (let alone characterizing all solutions!) directly is hard!

In fact, PDE theory is one of the main applications of the Calculus
of Variations! Conversely, variational methods are among the most
important tools in PDE theory.

If a PDE appears as the EL equation of some functional (which by
the way is often the case), we usually prove existence of a solution
by finding a critical point for the functional by direct methods,
precisely going in the reverse direction as compared to the classical
methods.
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Calculus of Variation: The problem

We now want to pass from functions to functionals. Let us state
our model problem.

From functions to functionals
Let Ω ⊂ Rn open, bounded, smooth. n,N ≥ 1 are integers. Let A
be a given class of functions u : Ω→ RN and
f : Ω× RN × Rn×N → R be a given function. Consider the
following minimization problem

inf

{
I (u) :=

ˆ
Ω

f (x , u(x),Du(x)) dx : u ∈ A
}

(P)

I The integral functional I (u) is called the Lagrangian

I The integral f is called the Lagrangian density

I The class A is called the class of admissible functions.

The Lagrangian can depend on higher order derivatives of u.
Those however are somewhat rare, though notable exceptions exist
(e.g. Polyharmonic maps).
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Brief History: Antiquity

Isoperimetric problem

Perhaps the oldest known problem in the calculus of variations is
the isoperimetric problem, which is just the isoperimetric
inequality in dimension two.
The problem is to find the(?) geometric figure which has the
largest area with a fixed perimeter.

The fact that the circle has this property is probably known since
antiquity in many cultures around the world, including Greece,
Egypt, India, Babylon, China etc. In Europe, it was traditionally
known as the Dido problem.
Around 200 BCE, Zenodorous proved the inequality for polygons.
Archimedes, Pappus, Euler, Galileo, Legendre, Riccati,
Steiner......

The first proof that agrees with modern standards is due to
Weierstrass.

Blaschke, Carathéodory, Frobenius, Hurwitz, Lebesgue,
Liebmann, Minkowski, H.A. Schwarz, Sturm, Tonelli among
others.....
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Brief History: Seventeenth to Twentieth Century

Seventeenth century and the Brachistochrone

I Fermat (1662) - geometric optics,

I Newton (1685) and Huygens (1691) - bodies moving
through a fluid,

I Gallileo (1638) formulated the Brachistochrone problem,
solved by John Bernoulli (1696), James Bernoulli,
Newton and Leibnitz.

Euler and Lagrange introduced what is now known as the
Euler-Lagrange equation.

Bliss, Bolza, Carathéodory, Clebsch, Hahn, Hamilton,
Hilbert, Kneser, Jacobi, Legendre, Mayer, Weierstrass and
many many others.....
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Brief History: Seventeenth to Twentieth Century

Nineteenth century and the Dirichlet integral

Dirichlet, Gauss, Thompson and Riemann...

Hilbert solved the problem, extending works of Lebesgue and
Tonelli.

This problem inspired the development of most of modern
analysis, namely functional analysis, measure theory, distribution
theory, Sobolev spaces, partial differential equations.
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Brief History: Seventeenth to Twentieth Century

Minimal surfaces
This is another central problem which has inspired a lot of
analysis, including subjects like geometric measure theory.

Lagrange first formulated the problem in 1762.

However, this is often called Plateau’s problem in honor of the
Belgian physicist Joseph Plateau, whose experiments with soap
films and his empirical ’Plateau’s laws’ influenced the status of the
problem considerably.

Ampère, Beltrami, Bernstein, Bonnet, Catalan, Darboux,
Enneper, Haar, Korn, Legendre, Lie, Meusnier, Monge,
Müntz, Riemann, H.A. Schwarz, Serret, Weierstrass,
Weingarten and others.

Douglas and Rado finally solved the problem in 1930. Douglas
was awarded the fields medal for it in 1936!

Courant, Leray, Mac Shane, Morrey, Morse, Tonelli...
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Now we are going to give a few classical examples, almost all of
which were instrumental in driving the early research in the
calculus of variations and paved the way for later developments.

I Fermat’s principle of least time: The basic variational
principle in geometric optics.

I Newton’s problem: Finding the surface of revolution which
experiences least resistance when moving through a fluid.

I Brachistochrone: Almost the iconic example in the classical
calculus of variations.

I Principle of least action: Essentially the heart and soul of
Newtonian mechanics.

I Minimal surface of revolution : The easier version of another
iconic example: the minimal surface problem

I Dirichlet integral: The most celebrated and the protypical
example in all of the calculus of variations.

I Minimal surfaces: Another star of the show! Almost as
famous as the Dirichlet integral.

I Isoperimetric inequality By far the oldest variational problem
to be noticed.
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Fermat’s principle of least time

Find the path of a light ray in a medium with nonconstant
refractive index.
The ray follows the path of least time!
The variational problem:

inf

{
I (u) :=

ˆ b

a

f (x , u(x), u′(x)) dx : u(a) = α, u(b) = β

}
,

(5)

where n = N = 1 and the form of the Lagrangian is

f (x , u, ξ) = g(x , u)
√

1 + ξ2.
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Newton’s optimal surface of revolution with least fluid
resistance

Find the surface of revolution that experiences the least resistance
while moving through a fluid.
The variational problem:

m = inf

{
I (u) :=

ˆ b

a

f (u(x), u′(x)) dx : u(a) = α, u(b) = β

}
,

(6)

where n = N = 1 and the form of the Lagrangian density is

f (x , u, ξ) = f (u, ξ) = 2πu

(
ξ3

1 + ξ2

)
.
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Brachistochrone

Find the quickest path between two points for a point mass
moving under gravity.

Let one of the points be the origin (0, 0) ⊂ R2 and the other point
is (b,−β) ⊂ R2 with b, β > 0. Gravity is acting downwards in the
negative y -axis and the path is expressed as (x ,−u(x)) with
0 ≤ x ≤ b.
The variational problem:

m = inf

{
I (u) :=

ˆ b

a

f (u(x), u′(x)) dx : u ∈ A

}
, (7)

where n = N = 1 and the form of the Lagrangian density is

f (x , u, ξ) = f (u, ξ) =

√(
1 + ξ2

2gu

)
.

The class of admissible paths is

A :=

{
u ∈ C 1 ([0, b]) : u(0) = 0, u(b) = β

and u(x) > 0 for all x ∈ (0, b]

}
.

The solution is called a Cycloid, which is also a Tautochrone.
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Principle of least action: mechanics of system of point masses

Find the configuration of M point masses moving under a
potential at time T .

Let mi > 0 be the mass and ui (t) = (xi (t), yi (t), zi (t)) ∈ R3 be
the position of the i-th particles for 1 ≤ i ≤ M. Let
u(t) := (u1(t), . . . , uM(t)) ∈ R3M be the configuration at time t.
The potential energy function for the configuration u(t) is a
given function U : R+ × R3M → R.
The variational problem:

m = inf

{
I (u) :=

ˆ T

0

f (t, u(t), u̇(t)) dt : u(0) = u0, u̇(0) = v0

}
,

(8)

where n = 1,N = 3M, u0, v0 given and the form of the Lagrangian
density is

f (x , u, ξ) = T (ξ)− U (t, u(t)) . ( usually called action )

Here T is the kinetic energy and is given by

T (ξ) :=
1

2

M∑
i=1

miξ
2
i .
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Minimal surface of revolution

Determine the one with minimal area among all surfaces of
revolution of the form

v(x , y) = (x , u(x) cos y , u(x) sin y)

with fixed end points u(a) = α, u(b) = β.
Here n = N = 1 and the Lagrangian density is

f (x , u, ξ) = f (u, ξ) = 2πu
√

1 + ξ2

and the variational problem is

inf

{
I (u) =

ˆ b

a

f (u(x), u′(x)) dx : u(a) = α, u(b) = β, u > 0

}
= m.

The solutions are called Catenoids.
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Dirichlet integral

Arguably the most celebrated problem in all of the calculus of
variations. We have here n > 1,N = 1 and

inf

{
I (u) =

1

2

ˆ
Ω

|∇u|2 dx : u = u0 on ∂Ω

}
= m.

The Euler-Lagrange equation is nothing other than the Laplace
equation, namely

∆u = 0.

A generalized version of this is the p-Dirichlet integral,

inf

{
I (u) =

1

p

ˆ
Ω

|∇u|p dx : u = u0 on ∂Ω

}
= m,

where 1 < p <∞. The Euler-Lagrange equation is the p-Laplace
equation, i.e.

∆pu := div
(
|∇u|(p−2)∇u

)
= 0.

This is quasilinear if p 6= 2, degenerate elliptic if p > 2 and
singular elliptic if 1 < p < 2.
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Minimal surfaces

The question is
to find among all surfaces Σ ⊂ R3 (or more generally in Rn+1,
n ≥ 2)
with prescribed boundary, ∂Σ = Γ,
where Γ is a simple closed curve,
one that is of minimal area.

A variant of this problem is known as Plateau problem.

One can experimentally realize such surfaces by dipping a wire
loop into soapy water; the surface obtained when pulling the wire
out from the water is a minimal surface.

The precise formulation of the problem depends on the kind of
surfaces that we are considering. We have seen above how to
write the problem for minimal surfaces of revolution. We now
formulate the problem for more general surfaces.
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Minimal surfaces: Nonparametric surfaces

Nonparametric surfaces

We consider (hyper) surfaces of the form

Σ =
{
v (x) = (x , u (x)) ∈ Rn+1 : x ∈ Ω

}
with u : Ω→ R and where Ω ⊂ Rn is a bounded connected open
set.

These surfaces are therefore graphs of functions.

The fact that ∂Σ is a preassigned curve, Γ, reads now as u = u0

on ∂Ω, where u0 is a given function. The area of such a surface is
given by

Area (Σ) = I (u) =

ˆ
Ω

f (∇u (x)) dx

where, for ξ ∈ Rn, we have set

f (ξ) =

√
1 + |ξ|2 .
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Minimal surfaces: Nonparametric surfaces

The problem is then written in the usual form

(P) inf

{
I (u) =

ˆ
Ω

f (∇u (x)) dx : u = u0 on ∂Ω

}
,

with

f (ξ) =

√
1 + |ξ|2 for ξ ∈ Rn.

Associated with (P) we have the so-called minimal surface
equation

(E ) Mu ≡
(

1 + |∇u|2
)

∆u −
n∑

i,j=1

uxiuxjuxixj = 0

which is the equation that any minimizer u of (P) should satisfy.
In geometrical terms, this equation just expresses the fact that the
corresponding surface Σ has everywhere vanishing mean curvature.
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Minimal surfaces: Parametric surfaces

Parametric surfaces
Nonparametric surfaces are clearly too restrictive from the
geometrical point of view and one is led to consider parametric
surfaces. These are sets Σ ⊂ Rn+1 so that there exist a connected
open set Ω ⊂ Rn and a map v : Ω→ Rn+1 such that

Σ = v
(
Ω
)

=
{
v (x) : x ∈ Ω

}
.

For example, when n = 2 and v = v (x1, x2) ∈ R3, if we denote by
vx1 × vx2 the normal to the surface (where a× b stands for the
vectorial product of a, b ∈ R3 and vx1 = ∂v/∂x1 , vx2 = ∂v/∂x2)
we find that the area is given by

Area (Σ) = J (v) =

¨
Ω

|vx1 × vx2 | dx1dx2 .

In terms of the notations introduced at the beginning of the
present section we have n = 2 and N = 3.
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Isoperimetric inequality

Isoperimetric inequality in dimension two

Let A ⊂ R2 be a bounded open set whose boundary, ∂A, is a
sufficiently regular simple closed curve. Denote by L (∂A) the
length of the boundary and by M (A) the measure (the area) of A.
The isoperimetric inequality states that

[L (∂A)]2 − 4πM (A) ≥ 0.

Equality holds if and only if A is a disk (i.e. ∂A is a circle).

Isoperimetric inequality in any dimension

For open sets A ⊂ Rn with sufficiently regular boundary, ∂A, and
it reads as

[L (∂A)]n − nn ωn [M (A)]n−1 ≥ 0

where ωn is the measure of the unit ball of Rn, M (A) stands for
the measure of A and L (∂A) for the (n − 1) measure of ∂A.
Moreover, if A is sufficiently regular (for example, convex), there is
equality if and only if A is a ball.
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Isoperimetric inequality

We can rewrite this into our formalism (here n = 1 and N = 2) by
parametrizing the curve

∂A =
{
u (x) =

(
u1 (x) , u2 (x)

)
: x ∈ [a, b]

}
and setting

L (∂A) = L (u) =

ˆ b

a

√(
(u1)′

)2
+
(
(u2)′

)2
,

M (A) = M (u) =
1

2

ˆ b

a

(
u1
(
u2
)′ − u2

(
u1
)′)

=

ˆ b

a

u1
(
u2
)′
.

The problem is then to show that

(P) inf {L (u) : M (u) = 1; u (a) = u (b)} = 2
√
π.
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