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Chapter 1

Prelude to Direct Methods

Direct methods in a classical problem Now we intend to give a brief illus-
tration of direct methods in a classical problem. We intend to study a problem
that we have referred to a few times already, the problem of finding geodesics,
i.e. curves of ‘shortest’ length between two given points on a manifold.

However, we are going to solve the problem using the direct methods.
Although the setting is decidedly simpler here, but we would already see a
remarkable number of features that would remain with us in different guises
and would keep us busy till the end of the course. Roughly, these are the
following.

• Sobolev spaces ( we would see a baby version here and this would stay
with us from chapter 4 onwards)

• direct methods for existence ( this will return and stay with us from chap-
ter 5 onwards )

• noncompactness due to group action and a possible way to overcome it (
this would return when we study the area functional in the last chapter)

• regularity questions ( we shall take it up again the chapter 6)

1.1 Geodesics: the problem

1.1.1 The variational problem for geodesics

Let M be an N -dimensional smooth embedded submanifold of Rd. Let c ∈
C1 ([0, T ];M) be a C1 curve on M. Let p1, p2 ∈M be two distinct points on M.
We suppose that the curve begins at p1 and ends at p2, which translates to

c(0) = p1 and c(T ) = p2.
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The length of the curve is

L (c) :=

ˆ T

0

|ċ (t)| dt.

Our aim is to find a curve connecting p1 and p2 which has the shortest length.

So our first try for the variational problem is

inf
{
L (c) : c ∈ C1

(
[0, T ];Rd

)
, c(0) = p1, c(T ) = p2.

}
= m.

But clearly this can not be the variational problem. It has no reference to
M whatsoever! In fact, we already know the solution to the above variational
problem ( though it is quite tricky proving it this way! ). The straight line in
Rd joining the points p1 and p2 is the unique path of shortest length. This path
has no reason to lie in M. ( Think of M as the N -sphere SN in RN+1. )

Now there are two ways we can bring M into the picture. One is if M is
given by some equations

M =
{
x ∈ Rd : Gα (x) = 0 for all α ∈ I

}
,

then we can treat this as a variational problem with additional constraints

Gα (c(t)) = 0 for all α ∈ I.

However, here we shall not take this path and instead introduce local charts
in M.

Charts, length and the metric tensor

Local charts Let p ∈ M. A local chart around p is a map f : U ⊂ RN →
V ⊂ Rd such that

• U, V are open sets in the respective Euclidean spaces,

• f (U) = M ∩ V,

• p ∈ f (U) and

• f is a smooth diffeomorphism onto its image.

Now since f is a diffeomorphism, for any curve c (t) which is contained inside a
single chart, i.e. c ([0, T ]) ⊂ f (U) , there exists a curve γ in U such that

c (t) = f (γ (t)) for every t ∈ [0, T ].

γ is also C1 if c is and by the chain rule, we have

ċ (t) = Df (γ (t)) γ̇ (t) .
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Writing in components, this is

ċα (t) =
∂fα

∂zi
(γ (t)) γ̇i (t) for every 1 ≤ α ≤ d.

Here we used the Einstein summation convention, where any repeated index
would be summed over its respective range ( i.e. here the only repeated index
is i, which is to be summed over, here from 1 to N ). Thus

L (c) =

ˆ T

0

(
∂fα

∂zi
(γ (t)) γ̇i (t)

∂fα

∂zj
(γ (t)) γ̇j (t)

) 1
2

dt

=

ˆ T

0

(
gij (γ (t)) γ̇i (t) γ̇j (t)

) 1
2

dt,

where G = (gij) is a positive definite symmetric N ×N matrix

gij (z) =
∂fα

∂zi
(z)

∂fα

∂zj
(z),

called the metric tensor of M with respect to the chart f : U → V, where
as usual we used the Einstein summation convention, i.e. the repeated index α
is to be summed over from 1 to d. The symmetry of the metric tensor G can
be proved immediately from the expressions for gij above. For proving positive
definiteness, note that the expressions imply

G = (Df)
T
Df, (1.1)

where the superscript denotes the transpose and Df is invertible. The positive
definiteness of G is now a simple exercise in linear algebra. Note that the
symmetry of G can be immediately read off from this expression as well.

Chart overlaps, transition functions and the length of curves We
shall always work with the simplifying assumption that the curve is contained
in a single chart just for clarity. In general, a manifold would be covered by a
collection of charts {(fβ , Uβ)}β (called an atlas). Given a curve c on M, we can
always find a partition

0 = t0 < t1 < . . . < tr < T

such that c ([tk, tk+1]) is contained in a single chart and then we would write
the length functional as sum of the integrals. It might appear that the length
of a curve depends on the chart chosen. But it does not. If c (0, T ) ⊂ f1 (U1) ∩
f2 (U2) , then one can check we have

ˆ T

0

(
g1ij (γ1 (t)) γ̇i1 (t)

˙
γj1 (t)

) 1
2

dt =

ˆ T

0

(
g2ij (γ2 (t)) γ̇i2 (t)

˙
γj2 (t)

) 1
2

dt,
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where
f1 ◦ γ1 = c = f2 ◦ γ2.

The diffeomorphism

f−12 ◦ f1 : f−11 (f1 (U1) ∩ f2 (U2))→ f−12 (f1 (U1) ∩ f2 (U2))

is called a transition map.

The variational problem Now our variational problem is

inf
γ∈X

{ˆ T

0

(
gij (γ (t)) γ̇i (t) γ̇j (t)

) 1
2

dt

}
= m.

where

X =
{

: γ ∈ C1 ([0, T ];U) : γ (0) = f−1 (p1) , γ (T ) = f−1 (p2)
}
.

Now we attempt to solve it via direct methods. But it is a quite difficult one
and we need to slowly move towards it.

1.1.2 Difficulties

To understand at least some of the difficulties of the problem, we first try to
solve the simpler problem

inf
{
L (c) : c ∈ C1

(
[0, T ];Rd

)
, c(0) = p1, c(T ) = p2.

}
= m.

This is just the first problem we wrote down today.

Now, as we did in the case of finding a minima, if {cν} is a minimizing
sequence, i.e.

L (cν) =

ˆ T

0

|ċν (t)| dt→ m,

we deduce

‖ċν‖L1([0,T ]) :=

ˆ T

0

|ċν (t)| dt ≤ m+ 1.

Now we see one of the first difficulties. We obtained an uniform bound for the
L1 norm of the derivatives and not the C0 norm of the derivatives.

So we realize that C1 is a terrible class from the point of view of direct
methods. From integral functionals, uniform bounds for some integral norms of
the derivatives are the best we can hope for. So, minimizing sequences would
never be uniformly bounded in the C1 norm!
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However, we push ahead a bit more. Using the fundamental theorem of
calculus, we obtain

|cν(t)| ≤ |cν (0)|+
∣∣∣∣ˆ t

0

ċν(t) dt

∣∣∣∣ ≤ |p1|+ ‖ċν‖L1([0,T ]) ≤ |p1|+m+ 1,

and

|cν(t)− cν(s)| =
∣∣∣∣ˆ t

s

ċν(t) dt

∣∣∣∣ ≤ ˆ t

s

|ċν(t)| dt.

So at least the C0 norm of the minimizing sequences are uniformly bounded.
However, this is not good enough for extracting a convergent sequence. ( Thus
showing C0 is an equally bad space as C1 ).

But we were very close. By virtue of the Ascoli-Arzela theorem, all we
needed for compactness is equicontinuity, i.e.

|cν(t)− cν(s)| → 0 uniformly in ν as t− s→ 0.

From the second inequality, this would be the case if we can conclude

ˆ t

s

|ċν(t)| dt→ 0 uniformly in ν as t− s→ 0.

This property is called equiintegrability. Unfortunately, a sequence which
is uniformly bounded in L1 need not be equiintegrable, showing L1 is not a
particularly nice space either.

An easier problem Let us now make our life a bit easier and try to solve
the variational problem

inf
c∈X

{
E (c) =

ˆ T

0

|ċ (t)|2 dt

}
= m,

where
X =

{
c ∈ C1

(
[0, T ];Rd

)
: c(0) = p1, c(T ) = p2

}
.

Arguing as before, for a minimizing sequence {cν} , we now have

E (cν) = ‖ċν‖2L2([0,T ]) ≤ m+ 1.

But this time we have a control of the L2 norm of the derivatives instead of
the L1 norm.
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Compactness in C0 Using the fundamental theorem of calculus once again,
this time we obtain

|cν(t)| ≤ |cν (0)|+
∣∣∣∣ˆ t

0

ċν(t) dt

∣∣∣∣
Hölder
≤ |p1|+

√
t ‖ċν‖L2([0,T ])

≤ |p1|+
√
t
√
m+ 1.

Thus {cν} is uniformly bounded in C0. Now we have,

|cν(t)− cν(s)| =
∣∣∣∣ˆ t

s

ċν(t) dt

∣∣∣∣ Hölder
≤

√
(t− s)

(ˆ t

s

|ċν(t)|2 dt

) 1
2

≤
√

(t− s) ‖ċν‖L2([0,T ])

≤
√

(t− s)
√
m+ 1.

Thus,

|cν(t)− cν(s)| → 0 uniformly in ν as t− s→ 0.

Hence by Ascoli-Arzela theorem, we deduce that up to the extraction of a
subsequence which is not relabelled, we obtain

cν → c in C0,

for some c ∈ C0
(
[0, T ];Rd

)
. Unfortunately, this tells us nothing about the

derivatives of c.

c might not even be differentiable, let alone being C1.

However, since {ċν} is uniformly bounded in L2, which unlike L1, is a re-
flexive space, we deduce, by Banach-Alaoglu theorem

ċν ⇀ v in L2, (1.2)

for some v ∈ L2
(
[0, T ];Rd

)
. Is there a relation between v and c? In particular,

is v = ċ?

Note that (1.2) implies for any ψ ∈ C∞c
(
[0, T ];Rd

)
, we have

ˆ T

0

〈ċν , ψ〉 →
ˆ T

0

〈v, ψ〉 . (1.3)

1.1.3 Idea of weak derivatives

But integrating by parts, we obtain

ˆ T

0

〈ċν , ψ〉 = −
ˆ T

0

〈
cν , ψ̇

〉
. (1.4)
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By convergence of cν to c in C0, the RHS above converges to

−
ˆ T

0

〈
cν , ψ̇

〉
→ −

ˆ T

0

〈
c,ψ̇
〉
.

So, using this and (1.2) and (1.3) and (1.4), we deduce

ˆ T

0

〈v, ψ〉 = −
ˆ T

0

〈
c,ψ̇
〉

for any ψ ∈ C∞c
(
[0, T ];Rd

)
.

v certainly looks way too much like ċ!! Indeed, if we knew c is C1, the
above formula would indeed tell us v = ċ using integration by parts and the
fundamental lemma of calculus of variations.

Unfortunately, we have no way of knowing at this point that c is C1. As we
said, for all we know, c need not even be differentiable. However, since v ∈ L2,
the above formula suggests that probably instead of C1 curves, we should look
for ‘curves’ with L2 ‘derivatives’.

But how can a function which might not be differentiable have a ‘deriva-
tive’??

The last bit of inspired idea that we need is that we need to outrageously
bold and simply call v as a ‘derivative’ of c!! This seemingly insane idea is the
beginning of modern theory of PDEs and Calculus of Variations.

Definition 1 (weak derivatives). Let u ∈ L1
(
[0, T ];Rd

)
. We say u has a weak

derivative if there exists a function v ∈ L1
(
[0, T ];Rd

)
such that

ˆ T

0

〈v, ψ〉 = −
ˆ T

0

〈
u, ψ̇

〉
for any ψ ∈ C∞c

(
[0, T ];Rd

)
.

7


	Prelude to Direct Methods
	Geodesics: the problem
	The variational problem for geodesics
	Difficulties
	Idea of weak derivatives



