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Chapter 1

Classical Methods

1.1 Second Variation

So far in this chapter we were concerned with any critical point. Now we want
to investigate necessary and sufficient conditions for a given critical point to be
a minimizer of the functional. We begin with a simple result which calculates
the second variation and gives a necessary criterion a given critical point to be
a minimizer in terms of the second variation.

Theorem 1 (Second Variation). Let f = f (t, u, ξ) ∈ C3
(
[a, b]× RN × RN

)
,

α, β ∈ RN be given and X =
{
u ∈ C1

(
[a, b] ;RN

)
: u (a) = α, u (b) = β

}
. Con-

sider the problem

(P ) inf
u∈X

{
I (u) =

ˆ b

a

f (t, u (t) , u̇ (t)) dt

}
= m.

If ū ∈ X ∩C2
(
[a, b] ;RN

)
is a minimizer for (P ) , then the following integral

ˆ b

a

[
〈fuu (t, ū, ˙̄u)ψ,ψ〉+ 2

〈
fuξ (t, ū, ˙̄u)ψ, ψ̇

〉
+
〈
fξξ (t, ū, ˙̄u) ψ̇, ψ̇

〉]
(1.1)

is nonnegative for any ψ ∈ C1
c

(
[a, b];RN

)
.

Proof. As we did in deriving the EL equations, we take ψ ∈ C1
c

(
[a, b];RN

)
.

Thus for any h ∈ R, we have ū+hψ ∈ X. Now we define the function g : R→ R
by g(h) := I (ū+ hψ) .

Then g ∈ C2 (R) (Check!) and since ū is a minimizer, g must have a local
minima at 0. Thus we must have g′′(0) ≥ 0. But

g′′(0) =
d2

dh2
[I (ū+ hψ)]

∣∣∣∣
h=0

.

The rest is a straight forward calculation. Note that since f ∈ C3, thus in
particular C2 and thus fuξ, fuu and fξξ are all symmetric matrices.
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Quadratic functional related to second variation

To understand the expression for the second variation better, we integrate by
parts in the mixed term and obtain

2

ˆ b

a

〈
fuξ (t, ū, ˙̄u)ψ, ψ̇

〉
= −
ˆ b

a

〈
d

dt
[fuξ (t, ū, ˙̄u)]ψ,ψ

〉
.

Note that here again we used the fact that fuξ takes values in the space of
symmetric matrices. In view of this, we can rewrite the expression (1.1) as

ˆ b

a

[〈[
fuu (t, ū, ˙̄u)− d

dt
fuξ (t, ū, ˙̄u)

]
ψ,ψ

〉
+
〈
fξξ (t, ū, ˙̄u) ψ̇, ψ̇

〉]
.

The important point here is that the matrix fξξ plays the dominant role here
in determining whether this quadratic form will be nonnegative or not.

The heuristic argument is, since ψ vanishes at the boundary, we have a
Poincaré inequality. Roughly, since the function vanishes at the boundary, the
value of the function itself can not be large while keeping its derivative small,
since it has climb up from zero to the high values. But the converse is quite
possible! The function can be small with large derivative! Why? It can oscillate
a lot!

We now formalize the heuristic argument.

Lemma 2. If the following inequality

ˆ b

a

[〈[
fuu (t, ū, ˙̄u)− d

dt
fuξ (t, ū, ˙̄u)

]
ψ,ψ

〉
+
〈
fξξ (t, ū, ˙̄u) ψ̇, ψ̇

〉]
dt ≥ 0,

holds for every ψ ∈ C1
c

(
[a, b];RN

)
, then the matrix fξξ (t, ū, ˙̄u) is nonnegative

definite for every t ∈ (a, b).

Proof. If fξξ < 0 for some t0 ∈ (a, b), this means there exist a ζ ∈ RN and β > 0
such that

〈fξξ (t0, ū (t0) , ˙̄u (t0)) ζ, ζ〉 < −β.

By continuity of fξξ, we can assume there exists α > 0 such that a < t0 − α <
t0 + α < b and we have

〈fξξ (t, ū (t) , ˙̄u (t)) ζ, ζ〉 < −β for all t ∈ [t0 − α, t0 + α].

Choose

ψ (t) =

α sin2

[
π (t− t0)

α

]
ζ if t ∈ [t0 − α, t0 + α]

0 otherwise.
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Clearly ψ ∈ C1
c

(
[a, b];RN

)
and plugging it, we obtain

π2

ˆ t0+α

t0−α
sin2

[
2π (t− t0)

α

]
〈fξξ (t, ū (t) , ˙̄u (t)) ζ, ζ〉 dt

+ α2

ˆ t0+α

t0−α
sin4

[
π (t− t0)

α

]〈[
fuu (t, ū, ˙̄u)− d

dt
fuξ (t, ū, ˙̄u)

]
ζ, ζ

〉
dt ≥ 0

But this implies
2Mα3 − 2βπ2α ≥ 0,

where

M = max
t∈[t0−α,t0+α]

∣∣∣∣〈[fuu (t, ū, ˙̄u)− d

dt
fuξ (t, ū, ˙̄u)

]
ζ, ζ

〉∣∣∣∣ .
But this means

β ≤ M

π2
α2,

which we can easily contradict by letting α→ 0. So we deduce

〈fξξ (t, ū (t) , ˙̄u (t)) ζ, ζ〉 ≥ 0 for all ζ ∈ RN , for all t ∈ (a, b).

This proves the lemma.

This condition is known as the Legendre condition. This is implied by
convexity of the map ξ 7→ f (t, u, ξ) . If n > 1, N > 1, then the corresponding
condition is called the Legendre-Hadamard condition.

〈fξξ (x, ū (x) , Dū (x)) a⊗ b, a⊗ b〉 ≥ 0

for all a ∈ Rn, b ∈ RN and for all x ∈ Ω. This is weaker than the Legendre
condition in that case, which would read

〈fξξ (x, ū (x) , Dū (x)) ξ, ξ〉 ≥ 0

for all ξ ∈ Rn×N and for all x ∈ Ω. Another way to see that these two conditions
are different in the vectorial case (n,N > 1) is to notice that the Legendre-
Hadamard is implied by convexity only along rank one matrices, which is in
general significantly weaker than convexity.

Towards a sufficient condition

Possible candidate for sufficiency Can fξξ ≥ 0 be a sufficient condition?
Clearly not! Just think of f(x) = x3, x ∈ R. x = 0 is a critical point and
the second derivative vanishes, but it is not a minima! Then, can fξξ > 0, i.e.
positive definite instead of nonnegative definite, be a sufficient condition? This
looks more promising, as this would be enough for finding minima of functionals.
However, somewhat surprisingly, the answer is still No!
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Understanding the trouble The reason is that the condition is purely local,
whereas being a minimizer is not really a local property. We go back to geodesics.
Think of the unit sphere in R3 centered at the origin and consider the points
A = (1, 0, 0), B = (0, 1, 0) and C = (− 1√

2
,− 1√

2
, 0). All three points lie on the

circle
{

(x, y, 0) : x2 + y2 = 1
}
, which being a great circle is a geodesic on the

sphere. Now, the part of the circle going from A to B is a minimizing path
with lenth π/2 and so is the part of the circle going from B to C, which has
length 3π/4. However, clearly the part of the circle going from A to C can not
be minimizing, since its length is π/2 + 3π/4 = 5π/4, whereas the part of the
circle going from C to A is definitely shorter, with length 2π − 5π/4 = 3π/4.

Jacobi theory and Legendre method

We now consider the second variation itself as an integral functional

J [ψ] :=

ˆ b

a

[〈
Pψ̇, ψ̇

〉
+ 〈Qψ,ψ〉

]
dt, ψ ∈ C1, ψ (a) = ψ (b) = 0,

where

P := fξξ (t, ū, ˙̄u) and Q :=

[
fuu (t, ū, ˙̄u)− d

dt
fuξ (t, ū, ˙̄u)

]
Note that it is not difficult to establish that if

J [ψ] > c

ˆ b

a

∣∣∣ψ̇∣∣∣2 , for all ψ ∈ C1, ψ 6≡ 0 with ψ (a) = ψ (b) = 0, (1.2)

for some c > 0, then ū is a minimizer. ( See the problem sheet for a detailed
proof ). Note that

J [ψ] > 0, for all ψ ∈ C1, ψ 6≡ 0 with ψ (a) = ψ (b) = 0,

is not sufficient, as can be seen in the following example.

Example 3. The Lagrangian

I [u] =

ˆ 1

−1

[
t2 (u̇ (t))

2
+ t (u̇ (t))

3
]

dt,

has u ≡ 0 as an extremal where the second variation is positive for every non-
trivial test function, but u ≡ 0 is not a minimizer. Indeed, at u ≡ 0, the second
variation is

J [ψ] =

ˆ 1

−1
t2
(
ψ̇ (t)

)2
dt,
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which is clearly positive for every ψ ∈ C1, ψ 6≡ 0 with ψ (a) = ψ (b) = 0. Now
consider the family of functions

uε (t) :=


ε

(
3

4
ε+ t

)
for − 3

4
ε ≤ t ≤ 0,

ε

(
3

4
ε− t

)
for 0 ≤ t ≤ 3

4
ε,

0 otherwise.

Now we have I [uε] = − 9
32ε

5 < 0 = I [0] . We can easily round off the corners of
uε, making it C1 and still keep the condition that the functional is strictly nega-
tive on these functions. Moreover, clearly these modified C1 functions converge
in C1 to u ≡ 0 as ε→ 0. So u ≡ 0 does not minimize the functional among C1

functions in its C1 neighborhood.

However, P > 0, i.e. positive definiteness of P for all t ∈ (a, b) is not enough
to obtain (1.2). So what other condition is needed to ensure this? To find out,
Legendre wanted to ‘complete the square’ by adding a null Lagrangian, i.e.
integral functionals which always equate to zero irrespective of the argument in
the class of admissible functions.

Legendre method Let W be an arbitrary differentiable symmetric matrix.
Then

0 =

ˆ b

a

d

dt
[〈Wψ,ψ〉] dt for all ψ with ψ (a) = ψ (b) = 0.

Thus
d

dt
[〈Wψ,ψ〉] is a null lagrangian for any W.

Hence adding such a term does not alter the value of J [ψ] . So we get

J [ψ] = J [ψ] +

ˆ b

a

d

dt
[〈Wψ,ψ〉] dt

=

ˆ b

a

[〈
Pψ̇, ψ̇

〉
+ 2

〈
Wψ, ψ̇

〉
+
〈(
Q+ Ẇ

)
ψ,ψ

〉]
dt

When can we make this a perfect square?

Riccati equation

Proposition 4. Suppose W is a solution of the following matrix Riccati equa-
tion,

Ẇ = −Q+WP−1W. (1.3)

Then we have[〈
Pψ̇, ψ̇

〉
+ 2

〈
Wψ, ψ̇

〉
+
〈(
Q+ Ẇ

)
ψ,ψ

〉]
=

∣∣∣P 1
2 ψ̇ + P−

1
2Wψ

∣∣∣2 .
5



Remark 5. Here P
1
2 is the square root of P . Note that since P is symmetric

and positive definite, the square root P
1
2 is well defined and is itself symmetric

and positive definite.

Proof. The proof is elementary calculation. Indeed, we have∣∣∣P 1
2 ψ̇ + P−

1
2Wψ

∣∣∣2 =
〈
P

1
2 ψ̇ + P−

1
2Wψ,P

1
2 ψ̇ + P−

1
2Wψ

〉
=
〈
P

1
2 ψ̇, P

1
2 ψ̇
〉

+
〈
P

1
2 ψ̇, P−

1
2Wψ

〉
+
〈
P−

1
2Wψ,P

1
2 ψ̇
〉

+
〈
P−

1
2Wψ,P−

1
2Wψ

〉
=
〈
Pψ̇, ψ̇

〉
+
〈
ψ̇,Wψ

〉
+
〈
Wψ, ψ̇

〉
+
〈
P−1Wψ,Wψ

〉
=
〈
Pψ̇, ψ̇

〉
+ 2

〈
Wψ, ψ̇

〉
+
〈
WP−1Wψ,ψ

〉
(1.3)
=
〈
Pψ̇, ψ̇

〉
+ 2

〈
Wψ, ψ̇

〉
+
〈(
Q+ Ẇ

)
ψ,ψ

〉
.

This completes the proof.

Now, to solve the Riccati equation

Ẇ = −Q+WP−1W,

let us substitute
W = −PΨ̇Ψ−1.

Plugging it in the Riccati equation, we obtain

d

dt

(
PΨ̇
)

= QΨ. (1.4)

Any solution Ψ of the above equation would furnish a solution W of the Riccati
equation if Ψ is invertible.

Jacobi equation and Jacobi fields However, the equation above has an-
other nice interpretation. We again consider the second variation itself as an
integral functional

J [ψ] :=

ˆ b

a

[〈
Pψ̇, ψ̇

〉
+ 〈Qψ,ψ〉

]
dt, ψ ∈ C1, ψ (a) = ψ (b) = 0.

The Euler-Lagrange equation to this variational problem is

d

dt

(
Pψ̇
)

= Qψ. (1.5)

This is called the Jacobi equation and its solutions ( for a given u ) is called
a Jacobi field along u. Clearly, this equation looks very much the same as
equation (1.4), except that here the unknown ψ is RN -valued, whereas Ψ in
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(1.4) is an N ×N matrix-valued function. However, since the form of both the
equations are the same, the matrix formed by a system ofN linearly independent
solutions of (1.5) would solve (1.4). In fact, any N solutions of (1.5) would have
the same property. However, they being linearly independent would mean that
Ψ is invertible as well and thus would furnish a solution of the matrix Ricatti
equation. Thus, linear independence is a crucially important property in this
context and we would do well to be very interested in determining if and when
this fails. In accordance with this line of thinking, we define the notion of
conjugate points.

Definition 6 (Conjugate points). Let Ψ be the matrix of N solutions of the
Jacobi equation, i.e.

Ψ :=


ψ1

...

ψN

 .

where ψ1, . . . , ψN solves the Jacobi equation and satisfies

Ψ (a) = 0 and Ψ̇ (a) = IN .

A point ā ∈ (a, b] is called a conjugate to the point a or simply a conjugate
point of a if we have

detΨ (ā) = 0.

At this stage, it should be clear what we are trying to achieve. If there are
no conjugate points to a in (a, b] for J [ψ] , then there would not be one as well
for the functional

Jc [ψ] := J [ψ]− c
ˆ b

a

∣∣∣ψ̇∣∣∣2 ,
by continuous dependence of solutions to ODEs on parameters. But then the
corresponding Ψ would be invertible for every t ∈ (a, b] and thus would furnish
a solution to the corresponding Riccati equation. This in turn would imply that
Jc [ψ] > 0 for all nontrivial ψ ∈ C1

c ((a, b)) , which is sufficient for ū to be a
minimizer.

Now our goal is to show that this is a sufficient condition for ū to be a
minimizer.

1.1.1 Sufficient condition for a minimizer

Theorem 7. Let f = f (t, u, ξ) ∈ C3
(
[a, b]× RN × RN

)
, α, β ∈ RN , X ={

u ∈ C1
(
[a, b] ;RN

)
: u (a) = α, u (b) = β

}
.

(P ) inf
u∈X

{
I (u) =

ˆ b

a

f (t, u (t) , u̇ (t)) dt

}
= m.

Let ū ∈ X ∩ C2
(
[a, b] ;RN

)
be a critical point of I such that

7



• fξξ (t, ū (t) , ˙̄u (t)) is positive definite for every t ∈ [a, b],

• there exists no point in (a, b] which is conjugate to a.

Then ū is a minimizer of I.

Proof. We need to show that the hypotheses implies that there exists c > 0 such
that

J [ψ] > c

ˆ b

a

∣∣∣ψ̇∣∣∣2 (1.6)

for all ψ ∈ C1 ([a, b]) , ψ 6≡ 0 with ψ(a) = 0 = ψ(b), as this is sufficient for ū to
be a minimizer. We set

Jc [ψ] := J [ψ]− c
ˆ b

a

∣∣∣ψ̇∣∣∣2 .
Clearly, this has the same form as J [ψ] with P replaced by

Pc := P − cIN .

So the corresponding Jacobi equation is

d

dt

[
(P − cIN ) ψ̇

]
= Qψ.

Now, by continuous dependence of solutions to ODEs on parameters, the above
Jacobi equation also does not have a point conjugate to a for small enough
c > 0, since there is none, by hypothesis, for the equation

d

dt

(
Pψ̇
)

= Qψ.

Also as fξξ, i.e. P is positive definite, so must be Pc for c > 0 small enough.
Thus, as we saw already, we can write

Jc [ψ] =

ˆ b

a

∣∣∣P 1
2
c ψ̇ + P

− 1
2

c Wψ
∣∣∣2 dt.

So if Jc [ψ] ≯ 0, then we must have

P
1
2
c ψ̇ + P

− 1
2

c Wψ = 0 for all t ∈ (a, b)

for some ψ ∈ C1 ([a, b]) with ψ(a) = 0 = ψ(b). But the above is the first order
ODE

ψ̇ = −
(
P−1c W

)
ψ.

Since ψ satisfies the initial condition ψ(a) = 0, by uniqueness of solutions of
ODE, we must have ψ ≡ 0. So Jc [ψ] > 0 for all ψ ∈ C1 ([a, b]) , ψ 6≡ 0 with
ψ(a) = 0 = ψ(b). This proves (1.6). Thus ū is a minimizer and this completes
the proof.
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1.1.2 Jacobi fields and conjugate points

Now we want to investigate how sharp the conditions are. More precisely, we
wish to show that our sufficient conditions, especially about the absence of
conjugate points are actually very close to being necessary. But before analyzing
these questions more deeply, we need to show the relation between conjugate
points and zeros of Jacobi fields.

Proposition 8. Let a∗ be a conjugate point of a. Then there exists a Jacobi
field η ∈ C1

(
[a, a∗],RN

)
, η 6≡ 0, on [a, a∗] such that η(a) = 0 = η(a∗).

Proof. Since a∗ is a conjugate point, detΨ(a∗) = 0. Thus, the rows of Ψ are
linearly dependent at a∗. Hence, there exists a linear combination of rows of Ψ

η(t) =

N∑
i=1

µiψi(t)

which is not identically zero and satisfies

η(a) = 0 = η(a∗).

Since each ψi solves the Jacobi equation, so does η.

Vanishing of Jacobi fields and the quadratic forms Now we show that
the existence of a Jacobi field which vanishes at an interior point has an impor-
tant consequence.

Proposition 9. If η ∈ C1
(
[a, a∗],RN

)
, η 6≡ 0, is a Jacobi field on [a, a∗] such

that η(a) = 0 = η(a∗), then we have

ˆ a∗

a

[〈P η̇, η̇〉+ 〈Qη, η〉] dt = 0.

Proof. Since η(a) = 0 = η(a∗), we can integrate by parts to obtain

ˆ a∗

a

[〈P η̇, η̇〉+ 〈Qη, η〉] dt =

ˆ a∗

a

〈[
− d

dt
(P η̇) +Qη

]
, η

〉
dt.

But the expression in the bracket vanishes as η is a Jacobi field.

1.1.3 Jacobi’s necessary condition

Now we are ready to show that the absence of interior conjugate points is almost
necessary for the existence of a minimizer. However, we show the theorem for
minimization problems in a slightly larger class C1

piece. This has the advantage
that the proof is considerably simpler, but the price we have to pay is that we
would need to use a regularity result that we have not seen yet. However, since
we are going to see the regularity result soon anyway and as such both this
proof and the regularity result are more in tune with the spirit of modern direct
methods, it is instructive to follow this proof.
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Theorem 10. Let f = f (t, u, ξ) ∈ C3
(
[a, b]× RN × RN

)
, α, β ∈ RN , Xpiece ={

u ∈ C1
piece

(
[a, b] ;RN

)
: u (a) = α, u (b) = β

}
.

(P ) inf
u∈Xpiece

{
I (u) =

ˆ b

a

f (t, u (t) , u̇ (t)) dt

}
= m.

Let ū ∈ X ∩C2
(
[a, b] ;RN

)
be a minimizer of I such that fξξ (t, ū (t) , ˙̄u (t)) is

positive definite for every t ∈ [a, b]. Then there exists no point in (a, b) which
is conjugate to a.

Remark 11. Conjugate points in (a, b) are called interior conjugate points
for obvious reasons.

Question: Did we obtain a necessary and sufficient condition? NO!

• fξξ is positive definite for every t ∈ [a, b] is an explicit assumption! Not
a necessary condition. Only fξξ nonnegative definite everywhere in
[a, b] is necessary.

• b not being conjugate to a is needed for sufficiency, but is not necessary.

Now we are ready to prove Jacobi’s necessary condition theorem.

Proof. This boils down to proving that if P is positive definite and

J [ψ] =

ˆ b

a

[〈
Pψ̇, ψ̇

〉
+ 〈Qψ,ψ〉

]
dt ≥ 0

for every ψ ∈ C1
piece ([a, b]) with ψ(a) = 0 = ψ(b), then exists no point in (a, b)

which is conjugate to a.

Suppose, if possible, that a∗ ∈ (a, b) is a conjugate point of a. Then as we
have just shown, this implies that there exists a Jacobi field η ∈ C1

(
[a, a∗],RN

)
,

η 6≡ 0, on [a, a∗] such that η(a) = 0 = η(a∗). Now we set

η∗ =

{
η if t ∈ [a, a∗]

0 if t ∈ [a∗, b]
.

Clearly η∗ is piecewise C1. We shall prove that this actually is C2.
Now since J [η∗] = 0 and J [ψ] ≥ 0 for every ψ ∈ C1

piece ([a, b]) with ψ(a) =
0 = ψ(b), η∗ is a minimizer for J. Since P is positive definite, we shall soon see
that this implies η∗ ∈ C2. Thus, η̇∗ is continuous across a∗ and thus

η̇∗ (a∗) = 0.

But η∗ satisfies the Jacobi equation, which is a second order ODE and we
have η∗(a∗) = 0 and η̇∗ (a∗) = 0. By uniqueness of solutions of ODE, this
implies η∗ ≡ 0, which is a contradiction.
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Now we would show the same for the usual minimization problem in the
C1 class, but only for the case N = 1. Things simplify considerably for this
assumption and the proof still is not completely transparent. However, as we
will see, the ideas in this proof are somewhat different. The advantage of the
piecewise C1 setting was that we could directly plug in the ‘broken’ jacobi field (
the extension by zero of a nontrivial Jacobi field defined on a smaller interval ).
In the C1 setting, we do not have that opportunity. However, the more regular
setting on the other hand gives us the luxury of using the implicit function
theorem and continuous dependence on parameters of solutions of ODEs.

Theorem 12. Let f = f (t, u, ξ) ∈ C3 ([a, b]× R× R) , α, β ∈ R, and

X =
{
u ∈ C1 ([a, b] ;R) : u (a) = α, u (b) = β

}
.

(P ) inf
u∈X

{
I (u) =

ˆ b

a

f (t, u (t) , u̇ (t)) dt

}
= m.

Let ū ∈ X ∩C2 ([a, b] ;R) be a minimizer of I such that fξξ (t, ū (t) , ˙̄u (t)) > 0
for every t ∈ [a, b]. Then there exists no point in (a, b) which is conjugate to a.

Let us briefly explain the ideas. Instead of working with the functional
J, we would consider a one-parameter family of functionals Jλ such that as λ
varies, we move continuously from our functional J to another one for which
it is plainly evident that there could be no conjugate points. Then we argue
that as conjugate points are about existence of zeros of nontrivial Jacobi fields
and Jacobi fields are solutions of ODEs, namely the Jacobi equations, they
vary continuously with respect to the parameter λ and thus can not appear
suddenly. This argument, in many different guises are used a lot in PDE theory
and is generally called method of continuity. The more topologically oriented
reader would recognize the method as a ‘homotopy method’, where Jλ is
our homotopy from our functional J to another one which are much easier to
analyze.

We begin with a lemma which analyzes the ‘simpler functional’.

Lemma 13. The functional

Ĩ (u) :=
1

2

ˆ b

a

|u̇ (t)|2 dt

has no conjugate points in (a, b].

Proof. This is really elementary. If there is a conjugate point, by Proposition
8, we must have a nontrivial Jacobi field vanishing at the conjugate point. But,
clearly fξξ is the identity matrix and all other terms in the quadratic form is
zero matrix. Thus the quadratic form for this functional is

Q (ψ) =

ˆ b

a

∣∣∣ψ̇ (t)
∣∣∣2 dt

11



and hence the Jacobi equation for this functional is

ψ̈ = 0.

But then any Jacobi field vanishing at a must necessarily be of the form

ψ = t− a.

So this clearly can not vanish at any point in (a, b]. This contradiction establishes
the lemma.

Now we are ready to prove our theorem.

Proof. (of Theorem 12) For 0 ≤ λ ≤ 1, we consider the functional

Iλ (u) := λI (u) +
1

2
(1− λ)

ˆ b

a

|u̇ (t)|2 dt.

Clearly, this is a homotopy between I0 = I and I1 = Ĩ . The corresponding
quadratic form is

Jλ (ψ) = λJ (ψ) + (1− λ)Q (ψ) := λJ (ψ) + (1− λ)

ˆ b

a

∣∣∣ψ̇ (t)
∣∣∣2 dt.

Since ū is a minimizer for I, we have J (ψ) ≥ 0 for every ψ ∈ C1 ([a, b]) with
ψ (a) = ψ (b) = 0. Thus, clearly,

Jλ (ψ) > 0 for λ ∈ [0, 1)

for every ψ ∈ C1 ([a, b]) , ψ 6≡ 0 with ψ (a) = ψ (b) = 0 and Jλ (ψ) ≥ 0 for any
λ ∈ [0, 1] for every ψ ∈ C1 ([a, b]) with ψ (a) = ψ (b) = 0. The Jacobi equation
is

d

dt

(
[λP + (1− λ)] ψ̇

)
= λQψ. (1.7)

Since P > 0, so is λP + (1− λ) for any λ ∈ [0, 1]. Now suppose, if possible,
a∗ ∈ (a, b) is a conjugate point for I. By Proposition 8, this implies there exists
a nontrivial Jacobi field for I vanishing at a∗. More precisely, this means there
exists a η 6≡ 0 with η(a) = 0 = η(a∗) solving

d

dt
(P η̇) = Qη.

Now, there exists a solution ψ = ψ (t, λ) of (1.7) which

(1) depends continuously on λ and has continuous partial derivative with re-
spect to both t and λ in [a, b]× [0, 1), 1

1This follows from the fact that (1.7) is equivalent to

[λP + (1− λ)] ψ̈ +

(
d

dt
[λP + (1− λ)]

)
ψ̇ = λQψ.

12



(2) ψ (t, λ0) 6≡ 0 for any λ0 ∈ [0, 1]

(3) and satisfies

ψ (t, 1) = η (t) and ψ (t, 0) = t− a.

Also note that if ψ (t0, λ0) = 0 for any (t0, λ0) ∈ [a, b]× [0, 1], then

∂ψ

∂t
(t0, λ0) 6= 0, (1.8)

since otherwise by uniqueness of solutions for second order ODEs, we would
have ψ (t, λ0) = 0 for all t ∈ [a, b]. But this contradicts (3) above. Now consider
the point (a∗, 1) . Since

ψ (a∗, 1) = η (a∗) = 0,

by the above argument, we deduce

∂ψ

∂t
(a∗, 1) 6= 0.

Now we consider the set

Σ = {(t, λ) ∈ [a, b]× [0, 1] : ψ (t, λ) = 0} .

Now (a∗, 1) ∈ Σ and since ∂ψ
∂t (a∗, 1) 6= 0, we can use the implicit function theo-

rem to deduce the existence of a unique C1 function t (λ) such that (t (λ) , λ) ∈ Σ
for all λ in a neighbourhood of 1. Thus, clearly the graph of this function, which
describes parametrically a curve γ in the λ − t plane, has to enter the open
rectangle

R = (a, b)× (0, 1).

Now, the curve can not terminate inside R, since if it does, then by virtue of
(1.8), the conditions for the implicit function theorem is still satisfied at that
point and we can continue the curve. Moreover, differentiationg the expression

ψ (t (λ) , λ) = 0,

we deduce
d

dλ
t (λ) = −

∂ψ
∂λ
∂ψ
∂t

.

This implies, by virtue of (1.8), that ∂ψ
∂t is finite and thus the curve can not

have a ‘horizontal’ ( i.e. paraller to the t-axis ) derivative at any point. Thus,
the curve can not ‘double back’ and meet the the line λ = 1 again. Thus the
only other possibilities that remain are the following

Now since λP + (1− λ) > 0 for (t, λ) ∈ [a, b]× [0, 1), we can write this as

ψ̈ +
λṖ

[λP + (1− λ)]
ψ̇ =

λ

[λP + (1− λ)]
Qψ.

Clearly, the coefficients are smooth functions of λ, thus the continuous dependence on param-
eters theorem for solutions of ODEs yield the conclusion about the continuity of the partial
derivative with respect to λ.

13



1. the curve exits R through the line λ = 0,

2. The curve exits R through the line t = a and

3. the curve exits R through the the line t = b.

Now we show these possibilities are impossible too. The easiest is the
first one. This is impossible because for λ = 0, the functional reduces to Ĩ
which does not have any conjugate points at all. The curve γ can not meet
the line t = a as well. Indeed, since ψ (a, λ) ∈ Σ for all λ ∈ [0, 1] and the
hypotheses of the implicit function theorem is satisfies on any point (a, λ) ,
the function t (λ) satisfying ψ (t (λ) , λ) = 0 is unique. But t (λ) ≡ a is one
such function and clearly γ is not the graph of this function, as γ passes
through (a∗, 1). The third possibility is also impossible. If γ intersects the
line t = b at the point (b, λ1) for some λ1 ∈ (0, 1), then we have

ψ (a, λ1) = 0 = ψ (b, λ1)

with ψ 6≡ 0. But this implies, by Proposition 9 that Jλ1ψ = 0. But this
contradicts the fact that

Jλ (ψ) > 0 for λ ∈ [0, 1)

for every ψ ∈ C1 ([a, b]) , ψ 6≡ 0 with ψ (a) = ψ (b) = 0.

This proves that no such curve γ can exists and thus there can be no interior
conjugate point.

Remark 14. Note why the proof does not work for a∗ = b. As the point (b, 1) is
the upper-right corner of the boundary of the rectangle R, it is perfectly possible
for a C1 curve with non-horizontal derivative to pass through (b, 1) and to not
enter R ever.

1.2 Examples

Now we want to show some examples first.

Case 1: Lagrangian depends only on the derivative

f (t, u, ξ) = f (ξ) .

This is the simplest case. The Euler-Lagrange equation is

d

dt
[f ′ (u̇)] = 0, i.e. f ′ (u̇) = constant.

Note that

14



ū (t) =
β − α
b− a

(t− a) + α (1.9)

is a solution of the equation and also satisfies the boundary conditions ū (a) =
α, ū (b) = β. It is therefore a stationary point of I. It is not, however, always a
minimizer of (P ) as we shall see.

1. f is convex.

If f is convex, the above ū is indeed a minimizer. From Jensen inequality,
it follows that for any u ∈ C1 ([a, b]) with u (a) = α, u (b) = β

1

b− a

ˆ b

a

f (u̇ (t)) dt ≥ f

(
1

b− a

ˆ b

a

u̇ (t) dt

)

= f

(
u (b)− u (a)

b− a

)
= f

(
β − α
b− a

)
= f ( ˙̄u (t))

=
1

b− a

ˆ b

a

f ( ˙̄u (t)) dt

which is the claim. If f is not strictly convex, then, in general, there are other
minimizers.

2. f is non-convex.

If f is non-convex, then (P ) has, in general, no solution and therefore the
above ū is not necessarily a minimizer (in the particular example below it is a
maximizer of the integral).

Consider

f (ξ) = e−ξ
2

.

and

(P ) inf
u∈X

{
I (u) =

ˆ 1

0

f (u̇ (t)) dt

}
= m

where
X =

{
u ∈ C1 ([0, 1]) : u (0) = u (1) = 0

}
.

We have from (1.9) that ū ≡ 0 and it is clearly a maximizer of I in the class of
admissible functions X .

However (P ) has no minimizer, as we now show. Let us show that m = 0.
Let ν ∈ N and define

uν (x) = ν

(
x− 1

2

)2

− ν

4

then uν ∈ X and

I (uν) =

ˆ 1

0

e−4ν
2(x−1/2)2 dx =

1

2ν

ˆ ν

−ν
e−y

2

dy → 0 as ν →∞.
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Thus m = 0, as claimed. But clearly, no function u ∈ X can satisfy

ˆ 1

0

e−(u̇(t))
2

dt = 0

and hence (P ) has no solution.

Minimizer in C1
piece are not necessarily C1

Now we give an example to show that minimizers in the class C1
piece

might not even be C1, thus we can not in general expect a gain of regularity.

Consider

f (ξ) =
(
ξ2 − 1

)2
.

(Ppiece) inf
u∈Xpiec

{
I (u) =

ˆ 1

0

f (u̇ (t)) dt

}
= mpiece

where
Xpiece =

{
u ∈ C1

piec ([0, 1]) : u (0) = u (1) = 0
}
.

We can easily check that the tent function

v1 (t) =

{
t if t ∈ [0, 1/2]

1− t if t ∈ (1/2, 1]

is a minimizer since v is piecewise C1 and satisfies v1 (0) = v1 (1) = 0 and
I (v1) = 0. Thus mpiece = 0.

Note that (Ppiece) has a plethora of minimizers, not just one. Indeed, there
are uncountably infinitely many minimizers. For example, the one-sided dou-
ble tent

v2 (t) =



t if t ∈ [0, 1/4]

1

2
− t if t ∈ [1/4, 1/2]

t− 1

2
if t ∈ [1/2, 3/4]

1− t if t ∈ [3/4, 1]

is also a minimizer.
The two-sided double tent

v3 (t) =


t if t ∈ [0, 1/4]

1

2
− t if x ∈ [1/4, 3/4]

t− 1 if t ∈ [3/4, 1]
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is another one. One can easily construct functions with multiple number of tents,
one or two-sided or a combination of those. Any piecewise affine functions with
slopes +1 or −1 which respects the boundary values is a minimizer. All of them
are Lipschitz and of course C1

piece, in fact C∞piece, but none of them are C1!

Indeed, the minimization problem in C1, i.e.

(P ) inf
u∈X

{
I (u) =

ˆ 1

0

f (u̇ (t)) dt

}
= m

where
X =

{
u ∈ C1 ([0, 1]) : u (0) = u (1) = 0

}
,

admits no solution.
Let us first show that m = 0.

Consider the following sequence, which are just smoothed out versions of v1
above,

uν (t) =


t if t ∈

[
0, 12 −

1
ν

]
−2ν2

(
t− 1

2

)3 − 4ν
(
t− 1

2

)2 − t+ 1 if t ∈
(
1
2 −

1
ν ,

1
2

]
1− t if x ∈

(
1
2 , 1
]
.

Note that uν ∈ X and

I (uν) =

ˆ 1

0

f (u̇ν (t)) dt =

ˆ 1
2

1
2−

1
ν

f (u̇ν (t)) dt ≤ 4

ν
→ 0.

This implies that indeed m = 0. But I (u) = 0 implies that |u̇| = 1 almost
everywhere.

But no function u ∈ X can satisfy |u̇| = 1, since by continuity of the deriva-
tive we should have either u̇ = 1 everywhere or u̇ = −1 everywhere, which is
clearly incompatible with the boundary data.

Also note that the Euler-Lagrange equation is

d

dt

[
u̇
(
u̇2 − 1

)]
= 0.

It has ū ≡ 0 as a solution. However, since m = 0, it is not a minimizer as
I (0) = 1.

Case 2: Lagrangian depends on time and derivative

f (t, u, ξ) = f (t, ξ) .

The Euler-Lagrange equation is

d

dt
[fξ (t, u̇)] = 0, i.e. fξ (t, u̇) = constant.
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The equation is already harder to solve than the preceding one and, in general,
it does not have a solution as simple as the last case.

Weierstrass example

Let

f (t, ξ) = tξ2.

Note that ξ 7→ f (t, ξ) is convex for every t ∈ [0, 1] and even strictly convex
if t ∈ (0, 1] . So things would have been very nice without the t-dependence.
This example due to Weierstrass is among the first to point out that even t
dependence can mess things up.

Consider the problem

(P ) inf
u∈X

{
I (u) =

ˆ 1

0

f (t, u̇ (t)) dt

}
= m

where
X =

{
u ∈ C1 ([0, 1]) : u (0) = 1, u (1) = 0

}
.

We will show that (P ) has no C1 or piecewise C1 solution (not even in any
Sobolev space).

The Euler-Lagrange equation is

d

dt
(tu̇) = 0 ⇒ u̇ =

c

t
⇒ u (t) = c log t+ d, t ∈ (0, 1)

where c and d are constants. Observe first that such a u cannot satisfy simul-
taneously u (0) = 1 and u (1) = 0.

Let us also consider the following problem

(Ppiece) inf
u∈Xpiece

{
I (u) =

ˆ 1

0

f (t, u̇ (t)) dt

}
= mpiece

where
Xpiece =

{
u ∈ C1

piece ([0, 1]) : u (0) = 1, u (1) = 0
}
.

We now prove that neither (P ) nor (Ppiece) have a minimizer.

For both cases it is sufficient to establish that mpiece = m = 0.
Indeed if there exists a piecewise C1 function v satisfying I (v) = 0, this

would imply that v′ = 0 a.e. in (0, 1) .

Since the function v ∈ Xpiece, it should be continuous and v (1) should be
equal to 0. But then this means v ≡ 0, which does not verify the other boundary
condition, namely v (0) = 1. Hence, neither (P ) nor (Ppiece) have a minimizer.

Now let ν ∈ N and consider the sequence

uν (t) =

{
1 if t ∈

[
0, 1ν

]
− log t
log ν if t ∈

(
1
ν , 1
]
.
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Note that uν is piecewise C1, uν (0) = 1, uν (1) = 0 and

I (uν) =
1

log ν
→ 0 as ν →∞,

hence mpiec = 0.
We finally prove that m = 0.

Consider the following sequence

uν (t) =

{ −ν2

log ν t
2 + ν

log ν t+ 1 if t ∈
[
0, 1ν

]
− log t
log ν if t ∈

(
1
ν , 1
]
.

We easily have uν ∈ X and since

u̇ν (t) =

{
ν

log ν (1− 2νt) if t ∈
[
0, 1ν

]
−1
t log ν if t ∈

(
1
ν , 1
]

we deduce that

0 ≤ I (uν) =
ν2

log2 ν

ˆ 1/ν

0

t (1− 2νt)
2

dt+
1

log2 ν

ˆ 1

1/ν

dt

t
→ 0, as ν →∞.

This indeed shows that m = 0.

Minimizer in C1 are not necessarily C2

Our last example shows that even minimizers in the class C1 need not
automatically have higher regularity, in particular, might not be C2.

Consider f which depends on all the variables t, u and ξ, given as

f(t, u, ξ) = u2(2t− ξ)2.

(P ) inf
u∈X

{
I (u) =

ˆ 1

−1
f (t, u (t) , u̇ (t)) dt

}
= m

where X =
{
u ∈ C1 ([0, 1]) : u (−1) = 0, u (1) = 1

}
.

One can easily check that the function

v(t) :=

{
0 if t ∈ [−1, 0]

t2 if t ∈ [0, 1],

is a minimizer for (P ) which is not C2.
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