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Classical Methods

Second Variation

So far in this chapter we were concerned with any critical point. Now we want
to investigate necessary and sufficient conditions for a given critical point to be
a minimizer of the functional. We begin with a simple result which calculates
the second variation and gives a necessary criterion a given critical point to be
a minimizer in terms of the second variation.

Theorem 1 (Second Variation). Let f = f (t, u, ξ) ∈ C3
(
[a, b]× RN × RN

)
,

α, β ∈ RN be given and X =
{
u ∈ C1

(
[a, b] ;RN

)
: u (a) = α, u (b) = β

}
. Con-

sider the problem

(P ) inf
u∈X

{
I (u) =

ˆ b

a

f (t, u (t) , u̇ (t)) dt

}
= m.

If ū ∈ X ∩C2
(
[a, b] ;RN

)
is a minimizer for (P ) , then the following integral

ˆ b

a

[
〈fuu (t, ū, ˙̄u)ψ,ψ〉+ 2

〈
fuξ (t, ū, ˙̄u)ψ, ψ̇

〉
+
〈
fξξ (t, ū, ˙̄u) ψ̇, ψ̇

〉]
(1)

is nonnegative for any ψ ∈ C1
c

(
[a, b];RN

)
.

Proof. As we did in deriving the EL equations, we take ψ ∈ C1
c

(
[a, b];RN

)
.

Thus for any h ∈ R, we have ū+hψ ∈ X. Now we define the function g : R→ R
by g(h) := I (ū+ hψ) .

Then g ∈ C2 (R) (Check!) and since ū is a minimizer, g must have a local
minima at 0. Thus we must have g′′(0) ≥ 0. But

g′′(0) =
d2

dh2
[I (ū+ hψ)]

∣∣∣∣
h=0

.

The rest is a straight forward calculation. Note that since f ∈ C3, thus in
particular C2 and thus fuξ, fuu and fξξ are all symmetric matrices.
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Quadratic functional related to second variation

To understand the expression for the second variation better, we integrate by
parts in the mixed term and obtain

2

ˆ b

a

〈
fuξ (t, ū, ˙̄u)ψ, ψ̇

〉
= −
ˆ b

a

〈
d

dt
[fuξ (t, ū, ˙̄u)]ψ,ψ

〉
.

Note that here again we used the fact that fuξ takes values in the space of
symmetric matrices. In view of this, we can rewrite the expression (1) as

ˆ b

a

[〈[
fuu (t, ū, ˙̄u)− d

dt
fuξ (t, ū, ˙̄u)

]
ψ,ψ

〉
+
〈
fξξ (t, ū, ˙̄u) ψ̇, ψ̇

〉]
.

The important point here is that the matrix fξξ plays the dominant role here
in determining whether this quadratic form will be nonnegative or not.

The heuristic argument is, since ψ vanishes at the boundary, we have a
Poincaré inequality. Roughly, since the function vanishes at the boundary, the
value of the function itself can not be large while keeping its derivative small,
since it has climb up from zero to the high values. But the converse is quite
possible! The function can be small with large derivative! Why? It can oscillate
a lot!

We now formalize the heuristic argument.

Lemma 2. If the following inequality

ˆ b

a

[〈[
fuu (t, ū, ˙̄u)− d

dt
fuξ (t, ū, ˙̄u)

]
ψ,ψ

〉
+
〈
fξξ (t, ū, ˙̄u) ψ̇, ψ̇

〉]
dt ≥ 0,

holds for every ψ ∈ C1
c

(
[a, b];RN

)
, then the matrix fξξ (t, ū, ˙̄u) is nonnegative

definite for every t ∈ (a, b).

Proof. If fξξ < 0 for some t0 ∈ (a, b), this means there exist a ζ ∈ RN and β > 0
such that

〈fξξ (t0, ū (t0) , ˙̄u (t0)) ζ, ζ〉 < −β.

By continuity of fξξ, we can assume there exists α > 0 such that a < t0 − α <
t0 + α < b and we have

〈fξξ (t, ū (t) , ˙̄u (t)) ζ, ζ〉 < −β for all t ∈ [t0 − α, t0 + α].

Choose

ψ (t) =

α sin2

[
π (t− t0)

α

]
ζ if t ∈ [t0 − α, t0 + α]

0 otherwise.

2



Clearly ψ ∈ C1
c

(
[a, b];RN

)
and plugging it, we obtain

π2

ˆ t0+α

t0−α
sin2

[
2π (t− t0)

α

]
〈fξξ (t, ū (t) , ˙̄u (t)) ζ, ζ〉 dt

+ α2

ˆ t0+α

t0−α
sin4

[
π (t− t0)

α

]〈[
fuu (t, ū, ˙̄u)− d

dt
fuξ (t, ū, ˙̄u)

]
ζ, ζ

〉
dt ≥ 0

But this implies
2Mα3 − 2βπ2α ≥ 0,

where

M = max
t∈[t0−α,t0+α]

∣∣∣∣〈[fuu (t, ū, ˙̄u)− d

dt
fuξ (t, ū, ˙̄u)

]
ζ, ζ

〉∣∣∣∣ .
But this means

β ≤ M

π2
α2,

which we can easily contradict by letting α→ 0. So we deduce

〈fξξ (t, ū (t) , ˙̄u (t)) ζ, ζ〉 ≥ 0 for all ζ ∈ RN , for all t ∈ (a, b).

This proves the lemma.

This condition is known as the Legendre condition. This is implied by
convexity of the map ξ 7→ f (t, u, ξ) . If n > 1, N > 1, then the corresponding
condition is called the Legendre-Hadamard condition.

〈fξξ (x, ū (x) , Dū (x)) a⊗ b, a⊗ b〉 ≥ 0

for all a ∈ Rn, b ∈ RN and for all x ∈ Ω. This is weaker than the Legendre
condition in that case, which would read

〈fξξ (x, ū (x) , Dū (x)) ξ, ξ〉 ≥ 0

for all ξ ∈ Rn×N and for all x ∈ Ω. Another way to see that these two conditions
are different in the vectorial case (n,N > 1) is to notice that the Legendre-
Hadamard is implied by convexity only along rank one matrices, which is in
general significantly weaker than convexity.

Towards a sufficient condition

Possible candidate for sufficiency Can fξξ ≥ 0 be a sufficient condition?
Clearly not! Just think of f(x) = x3, x ∈ R. x = 0 is a critical point and
the second derivative vanishes, but it is not a minima! Then, can fξξ > 0, i.e.
positive definite instead of nonnegative definite, be a sufficient condition? This
looks more promising, as this would be enough for finding minima of functionals.
However, somewhat surprisingly, the answer is still No!
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Understanding the trouble The reason is that the condition is purely local,
whereas being a minimizer is not really a local property. We go back to geodesics.
Think of the unit sphere in R3 centered at the origin and consider the points
A = (1, 0, 0), B = (0, 1, 0) and C = (− 1√

2
,− 1√

2
, 0). All three points lie on the

circle
{

(x, y, 0) : x2 + y2 = 1
}
, which being a great circle is a geodesic on the

sphere. Now, the part of the circle going from A to B is a minimizing path
with lenth π/2 and so is the part of the circle going from B to C, which has
length 3π/4. However, clearly the part of the circle going from A to C can not
be minimizing, since its length is π/2 + 3π/4 = 5π/4, whereas the part of the
circle going from C to A is definitely shorter, with length 2π − 5π/4 = 3π/4.

Jacobi theory and Legendre method

We now consider the second variation itself as an integral functional

J [ψ] :=

ˆ b

a

[〈
Pψ̇, ψ̇

〉
+ 〈Qψ,ψ〉

]
dt, ψ ∈ C1, ψ (a) = ψ (b) = 0,

where

P := fξξ (t, ū, ˙̄u) and Q :=

[
fuu (t, ū, ˙̄u)− d

dt
fuξ (t, ū, ˙̄u)

]
Note that it is not difficult to establish that if

J [ψ] > c

ˆ b

a

∣∣∣ψ̇∣∣∣2 , for all ψ ∈ C1, ψ 6≡ 0 with ψ (a) = ψ (b) = 0, (2)

for some c > 0, then ū is a minimizer. ( See the problem sheet for a detailed
proof ). Note that

J [ψ] > 0, for all ψ ∈ C1, ψ 6≡ 0 with ψ (a) = ψ (b) = 0,

is not sufficient, as can be seen in the following example.

Example 3. The Lagrangian

I [u] =

ˆ 1

−1

[
t2 (u̇ (t))

2
+ t (u̇ (t))

3
]

dt,

has u ≡ 0 as an extremal where the second variation is positive for every non-
trivial test function, but u ≡ 0 is not a minimizer. Indeed, at u ≡ 0, the second
variation is

J [ψ] =

ˆ 1

−1
t2
(
ψ̇ (t)

)2
dt,
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which is clearly positive for every ψ ∈ C1, ψ 6≡ 0 with ψ (a) = ψ (b) = 0. Now
consider the family of functions

uε (t) :=


ε

(
3

4
ε+ t

)
for − 3

4
ε ≤ t ≤ 0,

ε

(
3

4
ε− t

)
for 0 ≤ t ≤ 3

4
ε,

0 otherwise.

Now we have I [uε] = − 9
32ε

5 < 0 = I [0] . We can easily round off the corners of
uε, making it C1 and still keep the condition that the functional is strictly nega-
tive on these functions. Moreover, clearly these modified C1 functions converge
in C1 to u ≡ 0 as ε→ 0. So u ≡ 0 does not minimize the functional among C1

functions in its C1 neighborhood.

However, P > 0, i.e. positive definiteness of P for all t ∈ (a, b) is not enough
to obtain (2). So what other condition is needed to ensure this? To find out,
Legendre wanted to ‘complete the square’ by adding a null Lagrangian, i.e.
integral functionals which always equate to zero irrespective of the argument in
the class of admissible functions.

Legendre method Let W be an arbitrary differentiable symmetric matrix.
Then

0 =

ˆ b

a

d

dt
[〈Wψ,ψ〉] dt for all ψ with ψ (a) = ψ (b) = 0.

Thus
d

dt
[〈Wψ,ψ〉] is a null lagrangian for any W.

Hence adding such a term does not alter the value of J [ψ] . So we get

J [ψ] = J [ψ] +

ˆ b

a

d

dt
[〈Wψ,ψ〉] dt

=

ˆ b

a

[〈
Pψ̇, ψ̇

〉
+ 2

〈
Wψ, ψ̇

〉
+
〈(
Q+ Ẇ

)
ψ,ψ

〉]
dt

When can we make this a perfect square?

Riccati equation

Proposition 4. Suppose W is a solution of the following matrix Riccati equa-
tion,

Ẇ = −Q+WP−1W. (3)

Then we have[〈
Pψ̇, ψ̇

〉
+ 2

〈
Wψ, ψ̇

〉
+
〈(
Q+ Ẇ

)
ψ,ψ

〉]
=

∣∣∣P 1
2 ψ̇ + P−

1
2Wψ

∣∣∣2 .
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Remark 5. Here P
1
2 is the square root of P . Note that since P is symmetric

and positive definite, the square root P
1
2 is well defined and is itself symmetric

and positive definite.

Proof. The proof is elementary calculation. Indeed, we have∣∣∣P 1
2 ψ̇ + P−

1
2Wψ

∣∣∣2 =
〈
P

1
2 ψ̇ + P−

1
2Wψ,P

1
2 ψ̇ + P−

1
2Wψ

〉
=
〈
P

1
2 ψ̇, P

1
2 ψ̇
〉

+
〈
P

1
2 ψ̇, P−

1
2Wψ

〉
+
〈
P−

1
2Wψ,P

1
2 ψ̇
〉

+
〈
P−

1
2Wψ,P−

1
2Wψ

〉
=
〈
Pψ̇, ψ̇

〉
+
〈
ψ̇,Wψ

〉
+
〈
Wψ, ψ̇

〉
+
〈
P−1Wψ,Wψ

〉
=
〈
Pψ̇, ψ̇

〉
+ 2

〈
Wψ, ψ̇

〉
+
〈
WP−1Wψ,ψ

〉
(3)
=
〈
Pψ̇, ψ̇

〉
+ 2

〈
Wψ, ψ̇

〉
+
〈(
Q+ Ẇ

)
ψ,ψ

〉
.

This completes the proof.

Now, to solve the Riccati equation

Ẇ = −Q+WP−1W,

let us substitute
W = −PΨ̇Ψ−1.

Plugging it in the Riccati equation, we obtain

d

dt

(
PΨ̇
)

= QΨ. (4)

Any solution Ψ of the above equation would furnish a solution W of the Riccati
equation if Ψ is invertible.

Jacobi equation and Jacobi fields However, the equation above has an-
other nice interpretation. We again consider the second variation itself as an
integral functional

J [ψ] :=

ˆ b

a

[〈
Pψ̇, ψ̇

〉
+ 〈Qψ,ψ〉

]
dt, ψ ∈ C1, ψ (a) = ψ (b) = 0.

The Euler-Lagrange equation to this variational problem is

d

dt

(
Pψ̇
)

= Qψ. (5)

This is called the Jacobi equation and its solutions ( for a given u ) is called
a Jacobi field along u. Clearly, this equation looks very much the same
as equation (4), except that here the unknown ψ is RN -valued, whereas Ψ in
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(4) is an N × N matrix-valued function. However, since the form of both the
equations are the same, the matrix formed by a system ofN linearly independent
solutions of (5) would solve (4). In fact, any N solutions of (5) would have the
same property. However, they being linearly independent would mean that Ψ
is invertible as well and thus would furnish a solution of the matrix Ricatti
equation. Thus, linear independence is a crucially important property in this
context and we would do well to be very interested in determining if and when
this fails. In accordance with this line of thinking, we define the notion of
conjugate points.

Definition 6 (Conjugate points). Let Ψ be the matrix of N solutions of the
Jacobi equation, i.e.

Ψ :=


ψ1

...

ψN

 .

where ψ1, . . . , ψN solves the Jacobi equation and satisfies

Ψ (a) = 0 and Ψ̇ (a) = IN .

A point ā ∈ (a, b] is called a conjugate to the point a or simply a conjugate
point of a if we have

detΨ (ā) = 0.

At this stage, it should be clear what we are trying to achieve. If there are
no conjugate points to a in (a, b] for J [ψ] , then there would not be one as well
for the functional

Jc [ψ] := J [ψ]− c
ˆ b

a

∣∣∣ψ̇∣∣∣2 ,
by continuous dependence of solutions to ODEs on parameters. But then the
corresponding Ψ would be invertible for every t ∈ (a, b] and thus would furnish
a solution to the corresponding Riccati equation. This in turn would imply that
Jc [ψ] > 0 for all nontrivial ψ ∈ C1

c ((a, b)) , which is sufficient for ū to be a
minimizer.
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