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Classical Methods

Hamilton-Jacobi equations

Hamilton-Jacobi equations

Now we are going to show that in some cases, a solution to the Hamilton’s
equations, which are 2N first order ODEs{

u̇ (t) = Hv (t, u (t) , v (t)) ,

v̇ (t) = −Hu (t, u (t) , v (t)) .
(H)

can be furnished by finding a complete integral of a first order PDE. These PDE
is called the Hamilton-Jacobi equation

St +H (t, u, Su) = 0. (HJE)

First we begin by showing that if S = S (t, u) satisfies (HJE) and u(t) satisfies

u̇ = Hv (t, u, Su) ,

then v = Su satisfies the other equation of (H). Also, an m-parameter family
of solutions to (HJE) yields m first integrals of (H).

Theorem 1 (Hamilton-Jacobi equation). Let H ∈ C1
(
[a, b]× RN × RN

)
, H =

H (t, u, v) . Suppose there exists S ∈ C2
(
[a, b]× RN

)
, S = S (t, u) , a solution

of the Hamilton-Jacobi equation

St +H (t, u, Su) = 0 for all (t, u) ∈ [a, b]× RN . (1)

Assume also that there exists u ∈ C1
(
[a, b];RN

)
, a solution of

u̇(t) = Hv (t, u, Su) for all t ∈ [a, b]. (2)

Set v (t) = Su (t, u (t)) . Then (u, v) is a solution of the Hamilton’s equation.

Moreover if S ∈ C2
(
[a, b]× RN × Rm

)
is an m-parameter family of solutions

to the Hamilton-Jacobi equation (1), then

∂S

∂αi
is a first integral of Hamilton’s equations for each 1 ≤ i ≤ m.
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Proof. Fix 1 ≤ i ≤ N. Differentiating the Hamilton-Jacobi equation w.r.t. ui,
we get

Suit +Hui
+

〈
Hv,

∂

∂ui
Su

〉
= 0.

Note that this is justified since S ∈ C2 and H ∈ C1. Now since v (t) =
Su (t, u (t)) , differentiating we obtain

v̇i (t) = Stui
+

〈
∂

∂u
Sui

, u̇

〉
.

Once again, this is justified since S ∈ C2 and H ∈ C1. Also, since S ∈ C2, for
any 1 ≤ i ≤ N, we have

Suit = Stui
,

∂

∂ui
Su =

∂

∂u
Sui

.

Thus, using (2) and the symmetry of the scalar product, we deduce

v̇i (t) = −Hui
.

For the last part, differentiating the Hamilton-Jacobi equation w.r.t. αi, we get

Sαit +

〈
Hv,

∂

∂αi
Su

〉
= 0.

So, once again using the fact that the second derivatives of S commute, we have

d

dt

(
∂S

∂αi

)
= Sαit +

〈
u̇,

∂

∂u

[
∂S

∂αi

]〉
=

〈
u̇−Hv,

∂

∂u

[
∂S

∂αi

]〉
= 0.

This proves ∂S
∂αi

is a first integral and completes the proof.

Now we present another theorem whose conclusion is stronger, in the sense
that it furnishes us with a general solution of the Hamilton’s equation, but it
needs us to find a complete integral of the Hamilton-Jacobi equation instead of
a single solution.

Theorem 2 (Jacobi’s theorem). Let S ∈ C2
(
[a, b]× RN × RN

)
, written as S =

S (t, u1, . . . , uN , α1, . . . , αN ) be a complete integral of the Hamilton-Jacobi equa-
tion, i.e. a general solution of (HJE) depending on N parameters α1, . . . , αN .
Let

det

(
∂2S (t, u, α)

∂α∂u

)
6= 0 for every (t, u, α) ∈ [a, b]× RN × RN

and let β1, . . . , βN be N arbitrary constants. Then the N parameter family of
RN -valued functions u (t) = u (t, α1, . . . , αN , β1, . . . , βN ) defined by the relations

∂

∂αi
S (t, u1, . . . , uN , α1, . . . , αN ) = βi for 1 ≤ i ≤ N,
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together with the N parameter family of RN -valued functions

vi =
∂

∂ui
S (t, u1, . . . , uN , α1, . . . , αN ) for 1 ≤ i ≤ N

constitute a general solution of the Hamilton’s equations (H).

Proof. Note that since

det

(
∂2S

∂α∂u

)
6= 0 for every (t, u, α) ∈ [a, b]× RN × RN ,

it is indeed possible, using the implicit function 1 theorem, to determine u as a
function of t, α and β from the relations

∂

∂αi
S (t, u1, . . . , uN , α1, . . . , αN ) = βi for 1 ≤ i ≤ N. (3)

Once we have determined u, we can define v via the equations

vi =
∂

∂ui
S (t, u1, . . . , uN , α1, . . . , αN ) for 1 ≤ i ≤ N. (4)

So all we need to show is that the pair (u, v) so constructed satisfy (H). Differ-
ntiating(3) w.r.t. t, we obtain

0 =
d

dt

(
∂

∂αi
S

)
=

〈
u̇−Hv,

∂

∂u

[
∂S

∂αi

]〉
for 1 ≤ i ≤ N.

This implies u̇ = Hv. Now, differentiating (4), we obtain as before

v̇i (t) = Stui
+

〈
∂

∂u
Sui , u̇

〉
= Stui +

〈
∂

∂u
Sui , Hv

〉
for 1 ≤ i ≤ N.

Again as before, we differentiate (HJE) to deduce

Suit +Hui +

〈
Hv,

∂

∂ui
Su

〉
= 0 for 1 ≤ i ≤ N.

These clearly imply
v̇ = −Hu.

This completes the proof.

1To be even more explicit, check the hypotheses and apply the implicit function theorem
on the vector valued function F : [a, b] × RN × RN × RN → RN , defined componentwise by
the equations

Fi (t, u, α, β) :=
∂

∂αi
S (t, u1, . . . , uN , α1, . . . , αN )− βi for 1 ≤ i ≤ N.
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Geometric content of the HJE

The strange looking function S might appear to drop out of nowhere, but it
actually has a geometric meaning. Let A = (t0, x0) , B = (t1, x1) be two points
in [a, b] × RN such that there is a unique integral curve of (H) that passes
through those two points. Then the value of the integral

ˆ t1

t0

f (t, u (t) , u̇ (t)) dt,

where u is the unique integral curve joining A and B, clearly depends upon the
endpoints A and B and is usually known as the geodesic distance between
A and B. As the prototypical example, this reduces to the usual distance
when the Lagrangian is arc length. Now if we fix the point A, clearly the
above integral can then be expressed as a function of the coordinates of point
B, which is precisely our function S.

On the other hand, if the you are familiar with the method of characteristics
technique for solving first order PDEs, then you would instantly recognize that
(H) is nothing but the characteristic system for the nonlinear first order PDE
(HJE).

There are other important geometric aspect of the Hamilton-Jacobi equation.
Very briefly, if you think of a disturbance propagating in a possibly anisotropic,
nonhomogeneous medium, there are essentially two viewpoints by which such a
phenomena can be described. One is the so-called ‘ray viewpoint’, in which
we follow the trajectories of disturbance propagation. The other is the so-called
‘wave front viewpoint’, where we describe the time evolution of the boundary
of the disturbed region, called wave fronts. The analogy of the terminology
with optics ( and wave propagation in general ) is quite deliberate and in-
tended. Indeed, the equivalence of the two descriptions is known in physics as
the Huygen’s principle. Here what we proved is exactly a rigorous mathemati-
cal formulation of the Huygen’s principle. The wave front approach leads
to the Hamilton-Jacobi PDE, which describes the evolution of the
wave front ( given by the zero set of the function S ). On the other
hand, the ray approach leads to the Hamilton’s equations. This has also
deep connections with the theory of optimal control, where the Pontrjagin
Maximum principle is an analogue ( and a generalization) of the Hamilton’s
equations and the ‘ray viewpoint’, whereas the Hamilton-Jacobi-Bellman
equations or HJB equations are the analogue ( and a generalization ) of the
Hamilton-Jacobi equation and the wave-front viewpoint. However, discussing
these ideas precisely would need a much more detailed study of envelopes and
convex duality than we have done so far. Interested reader can see [2] and [1]
for much more on these topics.
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Second Variation

So far in this chapter we were concerned with any critical point. Now we want
to investigate necessary and sufficient conditions for a given critical point to be
a minimizer of the functional. We begin with a simple result which calculates
the second variation and gives a necessary criterion a given critical point to be
a minimizer in terms of the second variation.

Theorem 3 (Second Variation). Let f = f (t, u, ξ) ∈ C3
(
[a, b]× RN × RN

)
,

α, β ∈ RN be given and X =
{
u ∈ C1

(
[a, b] ;RN

)
: u (a) = α, u (b) = β

}
. Con-

sider the problem

(P ) inf
u∈X

{
I (u) =

ˆ b

a

f (t, u (t) , u̇ (t)) dt

}
= m.

If ū ∈ X ∩C2
(
[a, b] ;RN

)
is a minimizer for (P ) , then the following integral

ˆ b

a

[
〈fuu (t, ū, ˙̄u)ψ,ψ〉+ 2

〈
fuξ (t, ū, ˙̄u)ψ, ψ̇

〉
+
〈
fξξ (t, ū, ˙̄u) ψ̇, ψ̇

〉]
(5)

is nonnegative for any ψ ∈ C1
c

(
[a, b];RN

)
.

Proof. As we did in deriving the EL equations, we take ψ ∈ C1
c

(
[a, b];RN

)
.

Thus for any h ∈ R, we have ū+hψ ∈ X. Now we define the function g : R→ R
by g(h) := I (ū+ hψ) .

Then g ∈ C2 (R) (Check!) and since ū is a minimizer, g must have a local
minima at 0. Thus we must have g′′(0) ≥ 0. But

g′′(0) =
d2

dh2
[I (ū+ hψ)]

∣∣∣∣
h=0

.

The rest is a straight forward calculation. Note that since f ∈ C3, thus in
particular C2 and thus fuξ, fuu and fξξ are all symmetric matrices.

Quadratic functional related to second variation

To understand the expression for the second variation better, we integrate by
parts in the mixed term and obtain

2

ˆ b

a

〈
fuξ (t, ū, ˙̄u)ψ, ψ̇

〉
= −
ˆ b

a

〈
d

dt
[fuξ (t, ū, ˙̄u)]ψ,ψ

〉
.

Note that here again we used the fact that fuξ takes values in the space of
symmetric matrices. In view of this, we can rewrite the expression (5) as

ˆ b

a

[〈[
fuu (t, ū, ˙̄u)− d

dt
fuξ (t, ū, ˙̄u)

]
ψ,ψ

〉
+
〈
fξξ (t, ū, ˙̄u) ψ̇, ψ̇

〉]
.
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The important point here is that the matrix fξξ plays the dominant role here
in determining whether this quadratic form will be nonnegative or not.

The heuristic argument is, since ψ vanishes at the boundary, we have a
Poincaré inequality. Roughly, since the function vanishes at the boundary, the
value of the function itself can not be large while keeping its derivative small,
since it has climb up from zero to the high values. But the converse is quite
possible! The function can be small with large derivative! Why? It can oscillate
a lot!

We now formalize the heuristic argument.

Lemma 4. If the following inequality

ˆ b

a

[〈[
fuu (t, ū, ˙̄u)− d

dt
fuξ (t, ū, ˙̄u)

]
ψ,ψ

〉
+
〈
fξξ (t, ū, ˙̄u) ψ̇, ψ̇

〉]
dt ≥ 0,

holds for every ψ ∈ C1
c

(
[a, b];RN

)
, then the matrix fξξ (t, ū, ˙̄u) is nonnegative

definite for every t ∈ (a, b).
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