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Classical Methods

Symmetry and Noether’s theorem

We have already seen that H is a conserved quantity if H does not depend
explicitly on t. This is not a coincidence, but is just an example of a profound
general fact.

Symmetries of L or H ⇔ first integral.

Any symmetry of the Lagrangian (and thus also of the Hamiltonian and vice
versa) corresponds to a first integral, i.e. a conserved quantity.

This deep result is the Noether’s theorem, named after its discoverer, the
brilliant Emmy Noether. Conservation laws are ubiquitous in nature and so
are symmetries. This theorem connects the two and tells us that these two
apparently disconnected aspects of a physical system, symmetries and conserved
quantities, are in a precise sense one and the same thing.

Time translation symmetry Now let us show in which sense no explicit
t-dependence of the the Hamiltonian (and thus the Lagrangian too) is a sym-
metry. This symmetry is called the time translation symmetry or in other words,
invariance under time translations. Consider the one-parameter family of dif-

feomorphisms
φτ (t) = t+ τ for τ ∈ R.

Thus, the curve u : [a, b]→ RN is transformed to u ◦ φ−1
τ : [a+ τ, b+ τ ]→ RN .

Now, since the Hamiltonian does not depend explicitly on t, the same must be
true for the Lagrangian density f. So we can write

f = f (u, ξ) .

Now, it is clear that

φ−1
τ (s) = s− τ for every τ ∈ R.

Thus, we have

d

ds

[
u ◦ φ−1

τ

]
(s) =

d

ds
[u (s− τ)] = u̇ (s− τ) .
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Hence, for any θ ∈ (a, b], we have

ˆ θ+τ

a+τ

f

(
u ◦ φ−1

τ (s) ,
d

ds

[
u ◦ φ−1

τ

]
(s)

)
ds

=

ˆ θ+τ

a+τ

f (u (s− τ) , u̇ (s− τ)) ds

=

ˆ θ

a

f (u (t) , u̇ (t)) dt. (1)

Thus, we have the invariance

Iθ[u] = Iθ[u ◦ φ−1
τ ] for any θ ∈ (a, b].

To understand better what is happening, perhaps it is instructive to compare
(1) to the following string of equalities

Iθ[u ◦ φ−1
τ ] =

ˆ θ+τ

a+τ

f

(
s, u ◦ φ−1

τ (s) ,
d

ds

[
u ◦ φ−1

τ

]
(s)

)
ds

=

ˆ θ+τ

a+τ

f (s, u (s− τ) , u̇ (s− τ)) ds

=

ˆ θ

a

f (t+ τ, u (t) , u̇ (t)) dt 6= Iθ[u],

which would have resulted instead if f were to depend explicitly on the t variable.

Invariance Now we are going to define more precisely what we mean by a
symmetry. We begin with the definition of a Cr-smoothly varying one parameter
family of diffeomorphisms.

Definition 1 (Cr-smoothly varying one parameter family of diffeomorphisms).
Let X,Y be smooth manifolds and let r, p ≥ 1 be integers. A Cr-smoothly
varying one parameter family of Cp-diffeomorphisms on X is a map

Φ : R×X → Y

satisfying the following properties.

• one parameter family of Cp-diffeomorphisms For each s ∈ R, the
map

Φ (s, ·) := φs (·) : X → φs (X) ⊂ Y

is a diffeomorphism of X (onto its image) into Y of class Cp.

• Cr-smoothly varying The map

s 7→ Φ (s, ·) := φs (·) ,
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considered as a map from R into Cp (X;Y ) is of class Cr. If we only write
diffeomorphisms instead of Cp-diffeomorphisms, it is understood that we
are talking about C∞-diffeomorphisms. Likewise, if we only write smoothly
varying instead of Cr-smoothly varying, this means the map

s 7→ Φ (s, ·) := φs (·) ,

considered as a map from R into Cp (X;Y ) is C∞.

Now we can define the notion of invariance under the action of a family of
diffeomorphisms.

Definition 2 (Invariance). Let φs : [a, b] × RN → R × RN , s ∈ R be a C2-
smoothly varying one-parameter family of diffeomorphisms, which can be written
as

φs (t, z) =
(
φ0
s (t) , φ̄s (z)

)
for every t ∈ [a, b] and for every z ∈ RN ,

such that

φ0 (t, z) = (t, z) for every t ∈ [a, b] and for every z ∈ RN .

A Lagrangian is invariant under the action of the family of diffeomorphisms
{φs}s∈R if it satisfies

ˆ φ0
s(θ)

φ0
s(a)

f

(
ts,
[
φ̄s ◦ u ◦

(
φ0
s

)−1
]

(ts) ,
d

dts

[
φ̄s ◦ u ◦

(
φ0
s

)−1
]

(ts)

)
dts

=

ˆ θ

a

f (t, u (t) , u̇ (t)) dt for every θ ∈ (a, b],

for every s ∈ R, where ts = φ0
s (t) .

Noether’s theorem

Theorem 3 (Noether’s theorem). Let f ∈ C2
(
[a, b]× RN × RN

)
. Suppose the

Lagrangian

I[u] =

ˆ b

a

f (t, u (t) , u̇ (t)) dt

is invariant under the action of the family of diffeomorphisms {φs} as above.
Then the following expression〈

fξ (t, u (t) , u̇ (t)) ,
d

ds

[
φ̄s (u(t))

]∣∣∣∣
s=0

〉
+ [f (t, u (t) , u̇ (t))− 〈fξ (t, u (t) , u̇ (t)) , u̇ (t)〉] d

ds

[
φ0
s (t)

]∣∣∣∣
s=0

is constant along any solution u(t) of the EL equations for I, i.e. defines a
first integral.
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Proof. First we prove a special case where the t variable is unchanged, i.e.
φ0
s (t) = t for every t ∈ [a, b] for every s ∈ R. Thus, the invariance condition

reduces to

ˆ θ

a

f

(
t,
[
φ̄s ◦ u

]
(t) ,

d

dt

[
φ̄s ◦ u

]
(t)

)
dt

=

ˆ θ

a

f (t, u (t) , u̇ (t)) dt

for every s ∈ R, for every θ ∈ (a, b] and for any u ∈ C2
(
[a, b];RN

)
. 1

Fix θ ∈ (a, b]. Now differentiating with respect to s and using the fact that
φ̄0 is identity on RN , we deduce, by invariance,

0 =
d

ds

(ˆ θ

a

f

(
t,
[
φ̄s ◦ u

]
(t) ,

d

dt

[
φ̄s ◦ u

]
(t)

)
dt

)∣∣∣∣∣
s=0

=

ˆ θ

a

〈
fu (t, u (t) , u̇ (t)) ;

d

ds

[
φ̄s ◦ u

]∣∣∣∣
s=0

(t)

〉
dt

+

ˆ θ

a

〈
fξ (t, u (t) , u̇ (t)) ;

d

dt

[
d

ds

[
φ̄s ◦ u

]∣∣∣∣
s=0

(t)

]〉
dt

=

ˆ θ

a

〈
d

dt
[fξ (t, u (t) , u̇ (t))] ;

d

ds

[
φ̄s ◦ u

]∣∣∣∣
s=0

(t)

〉
dt

+

ˆ θ

a

〈
fξ (t, u (t) , u̇ (t)) ;

d

dt

[
d

ds

[
φ̄s ◦ u

]∣∣∣∣
s=0

(t)

]〉
dt

In the last line we substituted for fu using the EL equations. So, we obtained
so far

0 =

ˆ θ

a

〈
d

dt
[fξ (t, u (t) , u̇ (t))] ;

d

ds

[
φ̄s ◦ u

]∣∣∣∣
s=0

(t)

〉
dt

+

ˆ θ

a

〈
fξ (t, u (t) , u̇ (t)) ;

d

dt

[
d

ds

[
φ̄s ◦ u

]∣∣∣∣
s=0

(t)

]〉
dt

=

ˆ θ

a

d

dt

[〈
fξ (t, u (t) , u̇ (t)) ;

d

ds

[
φ̄s ◦ u

]∣∣∣∣
s=0

(t)

]〉
dt

1 Note that a consequence of invariance is that if u satisfies the EL equations, so does φ̄s ◦u
for every s ∈ R. Thus, we have,

d

dt

[
fξ

(
t,
[
φ̄s ◦ u

]
(t) ,

d

dt

[
φ̄s ◦ u

]
(t)

)]
= fu

(
t,
[
φ̄s ◦ u

]
(t) ,

d

dt

[
φ̄s ◦ u

]
(t)

)
for every s ∈ R and for every t ∈ (a, θ) . We would not use this.
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Thus, we have〈
fξ (θ, u (θ) , u̇ (θ)) ;

d

ds

[
φ̄s ◦ u

]∣∣∣∣
s=0

(θ)

〉
=

〈
fξ (a, u (a) , u̇ (a)) ;

d

ds

[
φ̄s ◦ u

]∣∣∣∣
s=0

(a)

〉
.

Since θ ∈ (a, b] is arbitrary, this proves the special case.

Now we are going to prove the general case. We want to reduce it to the
special case we just proved. So we artifically introduce a variable τ and consider
t as a new dependent variable on the same footing as u to transform the problem
to the previous case, but on RN+1 instead.

For τ ∈ [a, b], we write t = t (τ) := τ and set the new Lagrangian density

f̄

(
t (τ) , u (t (τ)) ,

dt

dτ
,
d

dτ
[u (t (τ))]

)
:= f

(
t, u (t) ,

d
dτ [u (t (τ))]

dt
dτ

)
dt

dτ

= f (t, u (t) , u̇ (t))
dt

dτ
.

So the Lagrangian

Ī (t, u) :=

ˆ τ1

τ0

f̄

(
t (τ) , u (t (τ)) ,

dt

dτ
,
d

dτ
[u (t (τ))]

)
dτ

does not depend explicitly on τ anymore.
Thus we can apply the previous result to Ī and deduce that〈

f̄ξ̄

(
t (τ) , u (t (τ)) ,

dt

dτ
,
d

dτ
[u (t (τ))]

)
;
d

ds

[
φ̄s ◦ u

]∣∣∣∣
s=0

(t (τ))

〉
+f̄ξ0

(
t (τ) , u (t (τ)) ,

dt

dτ
,
d

dτ
[u (t (τ))]

)
d

ds

[
φ0
s ◦ t

]∣∣∣∣
s=0

(τ)

is a first integral, where ξ0 is the dt/dτ variable and ξ̄ stands for the d [u (t (τ))] /dτ
variable. Now from the definition of f̄ , clearly at s = 0, we have

f̄ξ̄ = fξ

and we compute

f̄ξ0 = f − 〈fξ; u̇〉 . ( since φ0
s (t (τ)) = t (τ) = τ, we have dt/dτ = 1 at s = 0)

This proves the theorem.
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Examples of conservation laws

Now we illustrate Noether’s theorem by some simple examples.

Example 1: Linear momentum conservation Let m > 0 be the mass
and x(t) ∈ R3 be the position of a point particle. Let the potential energy
function U : R3 → R be independent of the x3 coordinate, i.e.

U(x) = U (x1, x2) .

The Lagrangian density, as usual, is

f(t, x, ξ) =
1

2
mξ2 − U (x) .

It is easy to check that the family of transformations

hs (x) := x+ se3 = (x1, x2, x3 + s) , s ∈ R

leaves the Lagrangian invariant. Now Noether’s theorem tells us that the third
component of linear momemtum

p3 := mẋ3

is a first integral. Similarly, if U ≡ 0, then mẋ is a first integral.

Example 2: Angular momentum conservation Once again consider
the same Lagrangian density. But this time let the potential energy function
U : R3 → R satisfy

U(x) = U (R3 [φ]x) for all φ ∈ [0, 2π],

where the rotation matrix R3 [φ] represents a rotation about the x3-axis
through an angle φ and its precise expression is

R3 [φ] =

 cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 .

Clearly, if {φs}s∈R is a one parameter family of angles, and satisfies φ0 = 0,
then the family of transformations

hs (x) := R3 [φs]x, s ∈ R

leaves the Lagrangian invariant. Now one can check that Noether’s theorem
tells us that the third component of angular momemtum

M3 := (u ∧mẋ) · e3

is a first integral, where ∧ is the vector product ( cross product ).
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Conjugate momemta and cyclic variables The first of our example can
be generalized in a sense. Assume we are given a Hamiltonian which has no
explicit dependence, i.e.

H (t, u, v) = H (u, v) .

The variables u and v in the arguments of the Hamiltonian are in a sense
conjugate variables. For each 1 ≤ i ≤ N, the variable vi, is called the
conjugate momenta of the variable ui (for the same i).

Suppose also that for some 1 ≤ i ≤ N, we have

∂H

∂ui
= 0.

Then the variable ui is called a cyclic variable. Now it can be shown that
the Noether’s theorem implies that the conjugate momemta for a cyclic
variable is a first integral. More precisely,

∂H

∂ui
= 0 ⇒ vi is a first integral.

This actually can be extended to Hamiltonians with explicit dependence on t
as well. We have already seen that if t is a ‘cyclic variable’, i.e. if ∂H

∂t = 0, then
H itself is a first integral.

Conjugate momenta of a variable can be and usually is defined in terms of the
Lagrangian.

Definition 4 (Conjugate momenta). Let f ∈ C1
(
[a, b]× RN × RN

)
, f =

f (t, u, ξ) be a given Lagrangian density. For 1 ≤ i ≤ N, the function fξi is
called the conjugate momentum associated to the variable ui.

Remark 5. The variables ui, 1 ≤ i ≤ N, are often called position or general-
ized position variables. This is the reason why the Lagrangian density is often
written as

f = f (t, q, q̇)

in the physics literature, where qis are the genenalized position or coordinate
variables and

pi :=
∂f

∂q̇i

is the momentum or generalized momentum conjugate to qi.

As we have already seen in the discussion of Legendre transform and the
Hamiltonian, the variable v in the Hamiltonian basically represents fξ. So it
is clear why we call vi the momentum conjugate to ui in terms of the Hamil-
tonian. However, note that only the ui variables have conjugate momenta.
Neither the u̇i variables in the Lagrangian formulation nor the vi variables in
the Hamiltonian formulation has any conjugate momenta. Also note that there
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is a distinction between the velocity q̇ and the momentum fξ, which might ap-
pear surprising due to the high-school physics maxim ‘momentum = mass ×
velocity’ and mass being a constant number. To appreciate fully the conceptual
difference between the two, interested reader can try to right down the La-
grangian density for a relativistic particle moving in the Minkowski 4-space and
calculate the momenta and the velocities. This exercise would also shed some
light on why H should be considered the ‘momentum’ conjugate to t variable.
The actual definition of a cyclic variable is also in terms of the Lagrangian.

Definition 6 (Cyclic variables). Let f ∈ C1
(
[a, b]× RN × RN

)
, f = f (t, u, ξ)

be a given Lagrangian density. For 1 ≤ i ≤ N, the variable ui is called a cyclic
variable for the Lagrangian density f if the Lagrangian density does not depend
explicitly on ui. More precisely, if we have

∂f

∂ui
= 0.

Once again, it is not hard to see why ∂H
∂ui

= 0 would imply that ui is a cyclic
variable.
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