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Classical Methods

Hamiltonian formuation

We begin with a preliminary study of convex functions and in particular, the
notion of convex duality known as the Legendre transform.

Legendre transform

Convex analysis

Definition 1. (i) A set Ω ⊂ Rn is said to be convex if for every x, y ∈ Ω and
every λ ∈ [0, 1] , then λx+ (1− λ) y ∈ Ω.

(ii) Let Ω ⊂ Rn be convex. A function f : Ω→ R is said to be convex if for
every x, y ∈ Ω and every λ ∈ [0, 1] , the following inequality holds

f (λx+ (1− λ) y) ≤ λf (x) + (1− λ) f (y) .

(iii) Let Ω ⊂ Rn be convex. A function f : Ω → R is said to be strictly
convex if for every x, y ∈ Ω, x 6= y, and every λ ∈ (0, 1) , the following strict
inequality holds

f (λx+ (1− λ) y) < λf (x) + (1− λ) f (y) .

We now give some criteria equivalent to the convexity.

Theorem 2. Let f : Rn → R, f ∈ C1 (Rn) and denote the scalar product in
Rn by 〈·, ·〉 . The following assertions are then equivalent.

(i) f is convex.

(ii) For every x, y ∈ Rn, the following inequality holds

f (x) ≥ f (y) + 〈∇f (y) , x− y〉 .

(iii) For every x, y ∈ Rn, the following inequality is valid

〈∇f (x)−∇f (y) , x− y〉 ≥ 0.

If, moreover, f ∈ C2 (Rn) , then the above statements are equivalent to

(iv) for every x, v ∈ Rn, the following inequality holds〈
∇2f (x) v, v

〉
≥ 0.

1



Example 3. Let n = 1, 1 ≤ p <∞, f (x) = |x|p and

v∗f (y) =


p |y|p−2

y if 1 < p <∞
+1 if p = 1 and y > 0

0 if p = 1 and y = 0

−1 if p = 1 and y < 0.

It follows, trivially if p = 1 and from (ii) of the theorem otherwise, that, for
every x, y ∈ R,

|x|p ≥ |y|p + v∗f (y) (x− y) .

Note that, when p = 1, we could have chosen v∗f (0) arbitrarily in [−1, 1] . More-
over, the quantity v∗f (y) is called, in convex analysis, the subgradient of f at
y. Draw a sketch of the graph of the function and draw the set of subgradients.
See the exercises for more on subgradients of a convex function.

The following is an important inequality for convex functions.

Theorem 4 (Jensen inequality). Let Ω ⊂ Rn be open and bounded, u =(
u1, · · · , uN

)
∈ L1

(
Ω;RN

)
and f : RN → R be convex, then

f (uΩ) ≤ 1

|Ω|

ˆ
Ω

f (u (x)) dx

where

uΩ =
(
u1

Ω, · · · , uNΩ
)

with uiΩ =
1

|Ω|

ˆ
Ω

ui (x) dx.

Legendre transform

We now need to introduce the notion of duality, also known as Legendre trans-
form, for convex functions. It is convenient to accept, in the definition, functions
that are allowed to take the value +∞ (a function that takes only finite values
is called finite).

Definition 5 (Legendre transform). Let f : Rn → R (or f : Rn → R∪{+∞}).

(i) The Legendre transform, or dual, of f is the function f∗ : Rn → R ∪
{±∞} defined by

f∗ (x∗) = sup
x∈Rn

{〈x;x∗〉 − f (x)}

where 〈.; .〉 denotes the scalar product in Rn.
(ii) The bidual of f is the function f∗∗ : Rn → R ∪ {±∞} defined by

f∗∗ (x) = sup
x∗∈Rn

{〈x;x∗〉 − f∗ (x∗)} .

Remark 6. (i) In general, f∗ takes the value +∞, even if f takes only finite
values. See the problem sheet for an example.

(ii) If f 6≡ +∞, then f∗ > −∞. (Prove this!)
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Example 7. Let us try to calculate the Legendre transform of

f(x) =
1

p
|x|p for all x ∈ Rn and 1 < p <∞.

By definition, we have

f∗ (x∗) = sup
x∈Rn

{〈x∗, x〉 − f(x)} . (1)

If the supremum is achieved at a point y ∈ Rn (i.e. a maxima) for the following
function

g(x) := 〈x∗, x〉 − f(x),

then we must have

0 = ∇g (y) = x∗ −∇f (y) = x∗ − |y|p−2
y.

But

x∗ = |y|p−2
y ⇒ |x∗|

1
p−1 = |y| and y =

x∗

|y|p−2 .

Combining the last two identities, we deduce

y = |x∗|
2−p
p−1 x∗ = |x∗|

p−2(p−1)
p−1 x∗ = |x∗|(

p
p−1−2) x∗ = |x∗|p

′
−2
x∗,

where p
′

= p
p−1 is the Hölder conjugate of p, i.e

1

p
+

1

p′
= 1.

So plugging it in (1), we deduce

f∗ (x∗) = 〈x∗, y〉 − f(y) = 〈x∗, y〉 − 1

p
|y|p =

1

p′
|x∗|p

′

.

We now gather some properties of the Legendre transform (for a proof see the
Problem sheet).

Theorem 8. Let f : Rn → R (or f : Rn → R ∪ {+∞}).

(i) The function f∗ is convex (even if f is not).

(ii) The function f∗∗ is convex and f∗∗ ≤ f. If, furthermore, f is convex,
bounded below and finite then f∗∗ = f. More generally, if f is bounded below
and finite but not necessarily convex, then f∗∗ is its convex envelope (which
means that it is the largest convex function that is smaller than f).

(iii) The following identity always holds: f∗∗∗ = f∗.

(iv) If f ∈ C1 (Rn) , convex and finite, then

f (x) + f∗ (∇f (x)) = 〈∇f (x) ;x〉 , ∀x ∈ Rn.
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(v) If f : Rn → R is strictly convex and if

lim
|x|→∞

f (x)

|x|
= +∞

then f∗ ∈ C1 (Rn) . Moreover, if f ∈ C1 (Rn) and

f (x) + f∗ (x∗) = 〈x∗;x〉

then
x∗ = ∇f (x) and x = ∇f∗ (x∗) .

Hamiltonian formulation

So far we have investigated the stationary points of the following functional

u 7→ I(u) :=

ˆ b

a

f (t, u (t) , u̇ (t)) dt, for u ∈ X.

We showed that C2 stationary points satisfy the Euler-Lagrange equations. Now
we are going to show that in some cases, these C2 stationary points are also
the stationary points of another functional whose EL equations are going to be
systems of 2N first order ODEs instead of the system of N second order ODEs
we obtained.

The functional is, for u, v ∈ C2
(
[a, b];RN

)
,

(u, v) 7→ J(u, v) :=

ˆ b

a

[〈u̇ (t) , v (t)〉 −H (t, u (t) , v (t))] dt.

where the function H : [a, b]×RN ×RN → R is called the Hamiltonian and it
is the Legendre transform ( strictly speaking, a partial Legendre transform
) of the Lagrangian f, i.e.

H (x, u, v) = sup
ξ∈RN

{〈v, ξ〉 − f (x, u, ξ)} .

Now since the Hamiltonian is the Legendre transform of the Lagrangian, we
should be able to infer some regularity of the Hamiltonian if the Lagrangian is
nice enough. This is the spirit of the following lemma.

Lemma 9 (Regularity of the Hamiltonian). Let f ∈ C2
(
[a, b]× RN × RN

)
,

f = f (t, u, ξ) be such that

(convexity) fξξ (t, u, ξ) positive definite , for every (t, u, ξ) ∈ [a, b]×RN×RN ,

(coercivity) f (t, u, ξ) ≥ ω (|ξ|)+g (t, u) , for every (t, u, ξ) ∈ [a, b]×RN×RN
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where ω is nonnegative, continuous and increasing with lim
t→∞

ω (t) /t = ∞ and

g : [a, b]× RN → R is continuous.
Then the Hamiltonian H ∈ C2

(
[a, b]× RN × RN

)
and we have

Ht (t, u, v) = −ft (t, u,Hv (t, u, v))

Hu (t, u, v) = −fu (t, u,Hv (t, u, v)) ,

H (t, u, v) = 〈v,Hv (t, u, v)〉 − f (t, u,Hv (t, u, v))

and v = fξ (t, u, ξ) if and only if ξ = Hv (t, u, v) .

Proof. Note that the coercivity assumptions imply

lim
|ξ|→∞

f (t, u, ξ)

|ξ|
= +∞ for every (t, u) ∈ [a, b]× RN .

Thus given any t ∈ [a, b] and u, v ∈ RN , the the supremum in the definition of
H, i.e.

sup
ξ∈RN

{〈v, ξ〉 − f (t, u, ξ)}

is achieved at some ξ = ξ (t, u, v) ∈ RN . Thus the function g : RN → R defined
by

g(y) := 〈v, y〉 − f (t, u, y)

achieves a maxima at y = ξ. Hence we must have ∇g (y)|y=ξ = 0. i.e.

v = fξ (t, u, ξ) .

So far we have established that H (t, u, v) is finite everywhere and

v = fξ (t, u, ξ) .

One can actually establish the continuity of H as well already. Let ξ be the
maximizer

H (t, u, v) = 〈v, ξ〉 − f (t, u, ξ)

By definition of H, for some other point (t̄, ū, v̄) , we have

H (t̄, ū, v̄) ≥ 〈v̄, ξ〉 − f (t̄, ū, ξ) .

Thus, we obtain

H (t, u, v)−H (t̄, ū, v̄) ≤ 〈v − v̄, ξ〉+ [f (t̄, ū, ξ)− f (t, u, ξ)] .

Now continuity of H follows from the continuity of (t, u) 7→ f (t, u, ξ) for every
ξ. Now we want to invert the equation

v = fξ (t, u, ξ)
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and express ξ as a function of t, u, v. But since f ∈ C2 and fξξ is positive definite
and hence invertible, inverse function theorem implies that ξ = ξ (t, u, v) is C1.
Now the equation

H (t, u, v) = 〈v, ξ (t, u, v)〉 − f (t, u, ξ (t, u, v))

immediately implies H is C1. Furthermore, we deduce

Ht = 〈v − fξ, ξt〉 − ft = −ft,
Hu = 〈v − fξ, ξu〉 − fu = −fu,
Hv = ξ + 〈v − fξ, ξv〉 = ξ.

The last equation also proves ξ = Hv if and only if v = fξ. But since f is C2

and ξ is C1, we deduce that the maps

(t, u, v) 7→ ft (t, u, ξ (t, u, v)) and (t, u, v) 7→ fu (t, u, ξ (t, u, v))

are both C1 as well. Thus the equations ( which we deduced on last slide )

∇H =

Ht

Hu

Hv

 =

−ft−fu
ξ


implies that H is C2.

Hamilton’s equations

The Euler-Lagrange equations for the functional

J(u, v) :=

ˆ b

a

[〈u̇ (t) , v (t)〉 −H (t, u (t) , v (t))] dt, for u, v ∈ C2
(
[a, b];RN

)
are called the Hamilton’s equations and sometimes also called the canoni-
cal form of the Euler-Lagrange equation of the Lagrangian formulation. The
equations are the following 2N first order ODEs.{

u̇ (t) = Hv (t, u (t) , v (t)) ,

v̇ (t) = −Hu (t, u (t) , v (t)) .
(H)

Indeed, letting w := (w1, w2) = (u, v) ∈ RN × RN = R2N and letting ζ :=
(ζ1, ζ2) = (u̇, v̇) stand for the derivatives variable, we can write the Lagrangian
density as a function H : [a, b]× R2N × R2N given by

H (t, w, ζ) := 〈ζ1, w2〉 −H (t, w1, w2) .

Thus we obtain

Hζ =

(
Hζ1
Hζ2

)
=

(
w2

0

)
and Hw =

(
Hw1

Hw2

)
=

(
−Hw1

ζ1 −Hw2

)
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Recall that the Euler-Lagrange equation is

d

dt
Hζ = Hw.

So we deduce
d

dt
w2 = −Hw1

and 0 = ζ1 −Hw2
.

This yields
v̇ = −Hu and 0 = u̇−Hv,

respectively, which is nothing but (H).

Equivalence of Lagrangian and Hamiltonian formulation

Now we are going to show that under suitable assumptions, the Hamilton’s
equations are equivalent to the Euler-Lagrange equations for the Lagrangian
formulations for C2 critical points.

Theorem 10 (Hamiltonian and Lagrangian formulation). Let f satisfy the
hypotheses of lemma 9 and let H be its Hamiltonian. Let u, v ∈ C2

(
[a, b] ;RN

)
satisfy,

(H)

{
u̇ (t) = Hv (t, u (t) , v (t)) ,

v̇ (t) = −Hu (t, u (t) , v (t)) ,
for every t ∈ [a, b] .

Then u verifies

(EL)
d

dt
[fξ (t, u (t) , u̇ (t))] = fu (t, u (t) , u̇ (t)) , for every t ∈ (a, b) .

Conversely, if u ∈ C2
(
[a, b] ;RN

)
satisfies (EL) then (u, v) are C2 solutions of

(H) where
v (t) = fξ (t, u (t) , u̇ (t)) , for every t ∈ [a, b] .

Proof. Now that we have done all the hard work in proving lemma 9, the proof
is easy. By lemma 9,

u̇ = Hv implies v (t) = fξ (t, u (t) , u̇ (t)) .

But then,
d

dt
fξ = v̇ = −Hu = −〈v − fξ, ξu〉+ fu = fu,

which is the (EL) equations. Conversely, if u ∈ C2
(
[a, b] ;RN

)
satisfies (EL)

then
v (t) = fξ (t, u (t) , u̇ (t)) implies u̇ = Hv.

Also,

v̇ =
d

dt
fξ = fu = 〈v − fξ, ξu〉 −Hu = −Hu,

verifying (H).
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First Integrals

We begin with a few definitions.

Definition 11 (Integral Curves). An integral curve of the vector field is a curve
which is tangent to the vector field at each point. Mathematically, given a vector
field X on RN , the map φ : [a, b] → RN is an integral curve of the vector field
X if it satisfies

φ̇ (t) = X (φ (t)) for each t ∈ [a, b]. (2)

Clearly, (2) is a system of ODEs. φ is also called an integral curve for the
system of ODEs in this case as well.

Definition 12 (First Integral). A first integral of a system of differential
equations is a function which has a constant value along each integral curve of
the system.

Remark 13. Note that it is perfectly allowed for a first integral to have two
different constant value along two different integral curves and thus in particular,
can be far from a constant function. Of course, all constant functions would
automatically be a first integral of any system of differential equations. But
these are of little use. So in spite of the definition, by first integral we almost
always mean nontrivial ( i.e. not globally constant ) first integrals.

Remark 14. First integrals are usually called conserved quantities in physics
literature, for obvious reasons. Finding first integrals often make solving the
Hamilton’s equations ( or, at least formally equivalently, the Euler-Lagrange
equations ) simpler. So this is an extremely useful technique. See the assign-
ments for seeing this technique being used to solve the Brachistochrone and the
minimal surface of revolution problem.

Now our task is to find a simple, algebraic, necessary and sufficient criterion for
deciding when a given function is a first integral. The criterion is best expressed
in the Hamiltonian formulation. In fact, one of the principal theoretical advan-
tage of the Hamiltonian formulation is this criterion, which are not so crisp in
terms of the Lagrangian formulation.

Theorem 15 (First Integral). A function Φ ∈ C2
(
RN × RN

)
, Φ = Φ (u, v) , is

a first integral of the Hamilton’s equations with Hamiltonian H = H (t, u, v) ∈
C2
(
[a, b]× RN × RN

)
if and only if the Poisson Bracket

{Φ, H} := 〈Φu, Hv〉 − 〈Φv, Hu〉 :=

N∑
i=1

∂Φ

∂ui
∂H

∂vi
− ∂Φ

∂vi
∂H

∂ui

vanishes identically.
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Proof. Along each integral curve (u(t), v(t)) of the Hamilton’s equations, we
have

Φ̇ (t) =
d

dt
Φ = 〈Φu, u̇〉+ 〈Φv, v̇〉 = {Φ, H} .

Remark 16. The Poisson bracket is an example of a commutator bracket.
So it satisfies all the usual properties of commutator brackets like bilinearity,
Leibnitz rule1 and the Jacobi’s identity2. Clearly, this is anticommutative. It is
intimately related to another extremely useful bracket operation in mathematics,
the Lie Bracket via the construction of Hamiltonian vector fields in symplectic
geometry. In fact, the precise relationship is

X{f,g} = − [Xf , Xg] ,

where the notation X· denotes the Hamiltonian vector field associated to a func-
tion and [·, ·] denotes the Lie Bracket of vector fields.

Note that the last theorem was about finding first integrals which does not
depend explicitly on t. See Assignments for a general result which involves first
integrals Φ = Φ (t, u, v) with explicit t-dependence.

If the Hamiltonian H does not depend explicitly on t, the previous theorem
tells us that H itself is a first integral, since

{H,H} ≡ 0.

In physics, this is usually stated as the fact that the Hamiltonian ( i.e. the total
energy ) of a mechanical system is a conserved quantity.

This however, is not a coincidence! This is just a special instance of a
profound general fact known as Noether’s theorem, to which we shall trun our
attention to in the next section.

1The Leibnitz rule means products distribute as derivatives do. More precisely,

{fg, h} = {f, h} g + f {g, h} .

2The Jacobi’s identity is about the associative law and says that the sum of all cyclic
permutation of three arguments vanishes. More precisely,

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.
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