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Chapter 1

Regularity

1.1 Regularity questions in the Calculus of vari-
ations

1.2 L2 regularity

1.2.1 Regularity for harmonic functions

1.2.2 Interior L2 estimate for elliptic systems

Caccioppoli inequality for elliptic systems

Theorem 1 (Caccioppoli inequality for elliptic systems). Let u ∈W 1,2
(
Ω;RN

)
be a weak solution of

− div (A (x)∇u) = f − divF in Ω,

where f ∈ L2
(
Ω;RN

)
, F ∈ L2

(
Ω;RN×n

)
and A ∈ L∞

(
Ω;RN×n × RN×n

)
.

Assume A satisfies the strong Legendre condition, i.e. 〈A (x) ξ, ξ〉 ≥ λ |ξ|2 for
all ξ ∈ RN×n for some λ > 0. Then for every x0 ∈ Ω, 0 < ρ < R < dist (x0, ∂Ω) ,
we have

ˆ
Bρ(x0)

|∇u|2 dx ≤ c

{
1

(R− ρ)
2

ˆ
BR(x0)\Bρ(x0)

|u− ζ|2 dx

+R2

ˆ
BR(x0)

|f |2 dx+

ˆ
BR(x0)

|F |2 dx

}

for all ζ ∈ RN , for some constant c = c (λ, ‖A‖L∞) > 0.

Proof. We first assume f = 0. We choose η as before and set φ := (u− ζ) η2.
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Plugging into the weak formulation, we get using the Legendre condition

λ

ˆ
BR(x0)

|∇u|2 η2 dx

≤
ˆ
BR(x0)

η2 〈A (x)∇u,∇u〉 dx

≤ −
ˆ
BR(x0)

〈A (x)∇u, 2η∇η ⊗ (u− ζ)〉 dx

+

ˆ
BR(x0)

η2 〈F,∇u〉 dx+

ˆ
BR(x0)

〈F, 2η∇η ⊗ (u− ζ)〉 dx

:= I1 + I2 + I3.

Now we estimate all three terms. Let Λ = ‖A‖L∞ . We recall the Young’s
inequality with ε > 0.

2ab ≤ εa2 +
1

ε
b2.

Using Young’s inequality with ε > 0 and Young’s inequality, we have

I1 ≤ εΛ
ˆ
BR(x0)

|∇u|2 η2 dx+
4c2

ε (R− ρ)
2

ˆ
BR(x0)\Bρ(x0)

|u− ζ|2 dx

I2 ≤ ε
ˆ
BR(x0)

|∇u|2 η2 dx+
1

ε

ˆ
BR(x0)

|F |2 dx

I3 ≤
4c2

(R− ρ)
2

ˆ
BR(x0)\Bρ(x0)

|u− ζ|2 dx+

ˆ
BR(x0)

|F |2 dx

Choosing ε > 0 small enough, we deduce from the last four inequalities

ˆ
BR

|∇u|2 η2 dx ≤ c

{
1

(R− ρ)
2

ˆ
BR\Bρ

|u− ζ|2 dx+

ˆ
BR

|F |2 dx

}

This gives

ˆ
Bρ

|∇u|2 dx ≤
ˆ
BR

|∇u|2 η2 dx

≤ c

{
1

(R− ρ)
2

ˆ
BR\Bρ

|u− ζ|2 dx+

ˆ
BR

|F |2 dx

}
.

It remains to prove the theorem when f 6= 0. But we can absorb f inside F
by writing it as a divergence. This is fairly easy, but we want to keep track of
the scaling as well to get the R2 factor. To this end, define

f̃ (y) := R2f (Ry + x0) for all y ∈ B1 (0) .
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Then we find ṽ ∈ W 1,2
0

(
B1 (0) ;RN

)
solving the following problem ( e.g. by

minimization ) {
∆ṽ = f̃ in B1 (0)

ṽ = 0 on ∂B1 (0) .

Since ṽ itself can be used as a test function, we obtain using Young’s inequality
with ε > 0 and Poincaré inequality,

ˆ
B1(0)

|∇ṽ|2 dx ≤
ˆ
B1(0)

∣∣∣〈f̃ , ṽ〉∣∣∣ dx

≤ ε
ˆ
B1(0)

|ṽ|2 dx+
1

ε

ˆ
B1(0)

∣∣∣f̃ ∣∣∣2 dx

≤ cε
ˆ
B1(0)

|∇ṽ|2 dx+
1

ε

ˆ
B1(0)

∣∣∣f̃ ∣∣∣2 dx

Choosing ε > 0 small enough, we obtain,

ˆ
B1(0)

|∇ṽ|2 dx ≤ c
ˆ
B1(0)

∣∣∣f̃ ∣∣∣2 dx.

Now, we set

v (x) := ṽ

(
x− x0

R

)
for all x ∈ BR (x0) .

It is easy to show that v ∈W 1,2
0

(
BR (x0) ;RN

)
and is a weak solution to

div (∇v) = ∆v = f in BR (x0) .

Now scaling back to BR (x0) , we obtain

ˆ
BR(x0)

|∇v|2 dx = Rn−2

ˆ
B1(0)

|∇ṽ|2 dy

≤ cRn−2

ˆ
B1(0)

∣∣∣f̃ ∣∣∣2 dy = R2

ˆ
BR(x0)

|f |2 dx.

This completes the proof.

L2 regularity

Now we prove the so-called interior W 2,2 estimate.

Theorem 2 (Interior L2 estimate). Let u ∈ W 1,2
(
Ω;RN

)
be a weak solution

of the following

−div (A (x)∇u) = f − divF in Ω,
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where f ∈ L2
(
Ω;RN

)
, F ∈W 1,2

(
Ω;RN×n

)
and A ∈W 1,∞ (Ω;RN×n × RN×n

)
satisfies the strong Legendre condition. Then u ∈ W 2,2

loc

(
Ω;RN

)
and for any

Ω̃ ⊂⊂ Ω, we have the estimate∥∥∇2u
∥∥
L2(Ω̃) ≤ c

(
‖u‖L2(Ω) + ‖f‖L2(Ω) + ‖∇F‖L2(Ω)

)
where c > 0 is a constant depending only on Ω̃, Ω and the ellipticity and the
bounds on A.

W 2,2 regularity for the Laplacian

Before starting the proof, first let us show that since the Laplacian has con-
stant coefficients, the previous Caccioppoli inequality is enough to establish the
following special case.

Theorem 3 (Interior L2 estimate for the Laplacian). Let u ∈W 1,2
(
Ω;RN

)
be

a weak solution of the following

−∆u = f in Ω,

where f ∈ L2
(
Ω;RN

)
. Then u ∈ W 2,2

loc

(
Ω;RN

)
and for any Ω̃ ⊂⊂ Ω, we have

the estimate ∥∥∇2u
∥∥
L2(Ω̃) ≤ c

(
‖u‖L2(Ω) + ‖f‖L2(Ω)

)
,

where c > 0 is a constant depending only on Ω̃ and Ω.

Proof. Fix x0 ∈ Ω and 0 < 2R < dist (x0, ∂Ω) . Let uε := u ∗ ρε and fε := f ∗ ρε
for some standard symmetric mollifying kernel ρ. Then we can show that

−∆uε = fε in B2R (x0) .

Now for any 1 ≤ i ≤ n, we deduce

−∆

(
∂uε
∂xi

)
=
∂fε
∂xi

in B2R (x0) .

Thus, writing the weak formulation and integrating by parts, we have for any
φ ∈W 1,2

0

(
B2R (x0) ;RN

)
,

ˆ
B2R(x0)

〈
∇
(
∂uε
∂xi

)
,∇φ

〉
dx =

ˆ
B2R(x0)

〈
∂fε
∂xi

, φ

〉
dx

=

ˆ
B2R(x0)

〈
−fε,

∂φ

∂xi

〉
dx

=

ˆ
B2R(x0)

〈F,∇φ〉 dx,
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where F := (F1, . . . , Fn) with Fi = −fε and Fj = 0 for 1 ≤ j ≤ n with j 6= i.
Note that this is the weak formulation of

−∆

(
∂uε
∂xi

)
= −divF in B2R (x0) .

So applying the Caccioppoli inequality with ζ = 0, we have,

ˆ
BR/4

∣∣∣∣∇(∂uε∂xi

)∣∣∣∣2 dx ≤ c

(
1

R2

ˆ
BR/2\BR/4

∣∣∣∣∂uε∂xi

∣∣∣∣2 dx+

ˆ
BR/2

|F |2 dx

)

≤ c

(
1

R2

ˆ
BR/2

|∇uε|2 dx+

ˆ
BR/2

|fε|2 dx

)
.

But now since

−∆uε = fε in B2R (x0) ,

applying Caccioppoli once again, we deduceˆ
BR/2

|∇uε|2 dx ≤ c
(

1

R2

ˆ
BR

|uε|2 dx+R2

ˆ
BR

|fε|2 dx

)
.

Combining, we get
ˆ
BR/4

∣∣∣∣∇(∂uε∂xi

)∣∣∣∣2 dx ≤ c
(

1

R4

ˆ
BR

|uε|2 dx+
(
R2 + 1

) ˆ
BR

|fε|2 dx

)
.

Choosing R > 0 small enough , we get
ˆ
BR/4

∣∣∣∣∇(∂uε∂xi

)∣∣∣∣2 dx ≤ c

R4

(ˆ
BR

|uε|2 dx+

ˆ
BR

|fε|2 dx

)
.

Since this is true for any 1 ≤ i ≤ n, we deduceˆ
BR/4

∣∣∇2uε
∣∣2 dx ≤ c

R4

(ˆ
BR

|uε|2 dx+

ˆ
BR

|fε|2 dx

)
.

Since uε → u and fε → f, we deduce that
∥∥∇2uε

∥∥
L2(BR/4(x0)) is uniformly

bounded and hence weakly convergent. But the weak limit can only be ∇2u.
Now by passing to the limit ε→ 0, we getˆ

BR/4

∣∣∇2u
∣∣2 dx ≤ lim inf

ε→0

ˆ
BR/4

∣∣∇2uε
∣∣2 dx

≤ c

R4

(ˆ
BR

|u|2 dx+

ˆ
BR

|f |2 dx

)
.

This completes the proof by by a covering argument.

Remark 4. Note that the constant blows up as R→ 0, so we really need Ω̃ ⊂⊂ Ω
for the covering arguement to work. Also, this is how the constant depends on
Ω̃ and Ω.
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Nirenberg’s difference quotient method

Now we attempt the general case. The trouble here is that since the operator
does not have constant coefficients, we can not claim that the derivatives of u
satisfies the same type of equation. So instead we work with difference quo-
tients and use the properties of difference quotients we proved in Lecture 12 (
Characterization of difference quotients theorem ).

Proof. We need to prove just the local estimate on balls. More precisely, for
any x0 ∈ Ω, 0 < R < dist (x0, ∂Ω) , we need to show

ˆ
BR/4(x0)

∣∣∇2u
∣∣2 dx ≤ c

(ˆ
BR(x0)

|u|2 dx+

ˆ
BR(x0)

|f |2 dx+

ˆ
BR(x0)

|∇F |2 dx

)
,

where the constant c > 0 can depend on R, λ and ‖A‖W 1,∞ . The result follows
from this this by a covering argument. Writing f as a divergence ( but this time
using the W 2,2 estimate for the Laplacian ), it is enough to prove for the case
f = 0.

With f = 0, the weak formulation becomes

ˆ
Ω

〈A (x)∇u (x) ,∇φ (x)〉 dx =

ˆ
Ω

〈F (x) ,∇φ (x)〉 dx

for any φ ∈ C∞c
(
Ω;RN

)
. For any 1 ≤ i ≤ n and for h ∈ R with |h| small, we

can plugg φ (x− hei) as the test function and after a change of variables, we
obtainˆ

Ω

〈A (x+ hei)∇u (x+ hei) ,∇φ (x)〉 dx =

ˆ
Ω

〈F (x+ hei) ,∇φ (x)〉 dx

Subtracting the previous identity from this one and diving by h, we obtain

ˆ
Ω

〈A (x+ hei)Dh,i (∇u) ,∇φ〉 dx+

ˆ
Ω

〈(Dh,iA)∇u,∇φ〉 dx

=

ˆ
Ω

〈(Dh,iF ) ,∇φ〉 dx

Note that
Dh,i (∇u) = ∇ (Dh,iu)

Thus, we get

ˆ
Ω

〈A (x+ hei)∇ (Dh,iu) ,∇φ〉 dx+

ˆ
Ω

〈(Dh,iA)∇u,∇φ〉 dx

=

ˆ
Ω

〈(Dh,iF ) ,∇φ〉 dx
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Applying the Caccioppoli inequality, we deduce, for any x0 ∈ Ω, 0 < R <
dist (x0, ∂Ω) ,

ˆ
BR/4(x0)

|∇ (Dh,iu)|2 dx ≤ c

R2

ˆ
BR/2(x0)

|Dh,iu|2 dx

+ c

ˆ
BR/2(x0)

|Dh,iA|2 |∇u|2 dx+ c

ˆ
BR/2(x0)

|Dh,iF |2 dx

Since u and F are both W 1,2 and A is W 1,∞, the RHS stays uniformly bounded
as h→ 0. Thus,

ˆ
BR/4(x0)

|Dh,i (∇u)|2 dx =

ˆ
BR/4(x0)

|∇ (Dh,iu)|2 dx

stays uniformly bounded as h→ 0.
This implies ˆ

BR/4(x0)

∣∣∣∣ ∂∂xi (∇u)

∣∣∣∣2 dx <∞

and letting h→ 0, we obtain

ˆ
BR/4(x0)

∣∣∣∣ ∂∂xi (∇u)

∣∣∣∣2 dx

≤ c

R2

ˆ
BR/2(x0)

|∇u|2 dx+ c ‖∇A‖L∞

ˆ
BR/2(x0)

|∇u|2 dx

+ c

ˆ
BR/2(x0)

|∇F |2 dx.

But since this is true for any 1 ≤ i ≤ n, we have

ˆ
BR/4(x0)

∣∣∇2u
∣∣2 dx ≤ c (R, ‖A‖W 1,∞)

ˆ
BR/2(x0)

|∇u|2 dx

+ c

ˆ
BR/2(x0)

|∇F |2 dx.

Applying Caccioppoli inequality once again to estimate the gradient term,
we obtain

ˆ
BR/4(x0)

∣∣∇2u
∣∣2 dx ≤ c

(ˆ
BR(x0)

|u|2 dx+ c

ˆ
BR(x0)

|∇F |2 dx

)
,

where the constant c > 0 this time depends on R, λ, and ‖A‖W 1,∞ . This com-
pletes the proof.

Now we are going to show another interesting corollary of the Caccioppoli
inequality.
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1.2.3 Hole filling technique

Now we are going to prove a decay estimate for for the gradient. The method
is known as the ‘hole filling technique’ of Widman.

Proposition 5. Let u ∈W 1,2
(
Ω;RN

)
be a weak solution of

−div (A (x)∇u) = 0 in Ω,

where A ∈ L∞
(
Ω;RN×n × RN×n

)
. Assume A satisfies the strong Legendre

condition. Then there exists an α = α (λ, ‖A‖L∞) > 0 such that for every
x0 ∈ Ω, 0 < ρ < dist (x0, ∂Ω) , we have

ˆ
Bρ(x0)

|∇u|2 dx ≤ cρα.

Proof. For every x0 ∈ Ω, 0 < R < dist (x0, ∂Ω) , applying the Caccioppoli
inequality, we get

ˆ
BR/2(x0)

|∇u|2 dx ≤ c 1

R2

ˆ
BR(x0)\BR/2(x0)

∣∣∣u− (u)BR\BR/2

∣∣∣2 dx

Applying Poincaré inequality, this implies
ˆ
BR/2(x0)

|∇u|2 dx ≤ c
ˆ
BR(x0)\BR/2(x0)

|∇u|2 dx.

Filling the hole, we obtain,

ˆ
BR/2(x0)

|∇u|2 dx ≤
(

c

c+ 1

)ˆ
BR(x0)

|∇u|2 dx.

Iterating, we have

ˆ
B
R/2k

(x0)

|∇u|2 dx ≤
(

c

c+ 1

)k ˆ
BR(x0)

|∇u|2 dx.

Since c
c+1 < 1, the last one is a decay estimate. Then for any 0 < ρ < R, we

have by interpolating,
ˆ
Bρ(x0)

|∇u|2 dx ≤ 2α
( ρ
R

)α ˆ
BR(x0)

|∇u|2 dx,

where α := log2

(
c+1
c

)
. This proves the result.

This immediately implies that if u is a weak solution of

−div (A (x)∇u) = 0 in Rn

with finite energy, then u is constant. We also have the
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Theorem 6 (Liouville theorem). Let u ∈W 1,2
loc

(
R2;RN

)
be a weak solution of

−div (A (x)∇u) = 0 in R2,

where A ∈ L∞
(
Ω;RN×n × RN×n

)
and satisfies the strong Legendre condition.

If u is L∞, then u is constant.

Proof. By Caccioppoli inequality, we have for any R > 0, we get

ˆ
BR(0)

|∇u|2 dx ≤ c 1

R2

ˆ
B2R(0)

|u|2 dx ≤ c sup
R2

|u|2 .

Hence, by the inequality we derived in the proof of last result, we have for any
0 < ρ < R,

ˆ
Bρ(x0)

|∇u|2 dx ≤ 2α
( ρ
R

)α ˆ
BR(x0)

|∇u|2 dx ≤ c2α
( ρ
R

)α
sup
R2

|u|2 .

Letting R→∞, we obtain the conclusion.
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