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Chapter 1

Direct methods

1.1 Dirichlet Integral

1.2 Integrands depending only on the gradient

1.3 Integrands with x dependence

1.4 Integrands with x and u dependence

1.5 Euler-Lagrange Equations

1.5.1 Growth conditions

Now we want to derive the Euler-Lagrange equation satisfied by a minimizer.
But this would require certain regularity of the integrand f. So far, we have only
worked with the assumption that f is a Carathéodory function satisfying some
coercivity conditions. Now we need to assume something more, which are called
growth conditions. These tells us how |f (x, u, ξ)| grows when |u| , |ξ| → ∞.

Growth conditions on f

Definition 1 (Growth condition on f). Let 1 < p <∞. A Carathéodory func-
tion

f : Ω× RN × RN×n → R, f = f (x, u, ξ)

is said to satisfy p-growth conditions if there exists α ∈ L1 (Ω) and β ≥ 0
such that

|f (x, u, ξ)| ≤ α (x) + β (|u|p + |ξ|p) (Gp)

for a.e. x ∈ Ω and for every (u, ξ) ∈ RN × RN×n.
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Note that the p-growth conditions automatically implies that

I [u] :=

ˆ
Ω

f (x, u (x) ,∇u (x)) dx <∞

for every u ∈W 1,p
(
Ω;RN

)
.

Growth conditions on the derivatives of f

Now we need some growth conditions on the derivatives of f . There are a few
growth conditions that are used in practice. We only state here the perhaps the
most used one.

Definition 2 (Controllable p-growth conditions). Let 1 < p <∞. A Carathéodory
function f = f (x, u, ξ) is said to satisfy controllable p-growth conditions if
fui and fξiα are Carathéodory functions for every 1 ≤ i ≤ N and 1 ≤ α ≤ n and
these functions satisfy the estimates

|Duf (x, u, ξ)| ≤ α1 (x) + β
(
|u|p−1

+ |ξ|p−1
)

|Dξf (x, u, ξ)| ≤ α2 (x) + β
(
|u|p−1

+ |ξ|p−1
)
 (Gp,cont)

for a.e. x ∈ Ω and for every (u, ξ) ∈ RN ×RN×n for some α1, α2 ∈ L1 (Ω) and
β ≥ 0

1.5.2 Euler-Lagrange equations

Theorem 3 (Euler-Lagrange equations). Let n ≥ 2, N ≥ 1 be integers, Ω ⊂ Rn
be open, bounded, smooth and 1 < p < ∞. Let f : Ω × RN × RN×n → R,
f = f (x, u, ξ) satisfy (Gp) and (Gp,cont). Suppose ū ∈ u0 + W 1,p

0

(
Ω;RN

)
is a

minimizer for

inf
{
I [u] : u ∈ u0 +W 1,p

0

(
Ω;RN

)}
= m

Then for every φ ∈W 1,p
0

(
Ω;RN

)
, we have

ˆ
Ω

[〈Dξf (x, ū,∇ū) ,∇φ〉+ 〈Duf (x, ū,∇ū) , φ〉] dx = 0.

In other words, ū is a ‘weak’ solution for the Dirichlet BVP for the (system of)
PDE {

div [Dξf (x, u,∇u)] = Duf (x, u,∇u) in Ω

u = u0 on ∂Ω.

Proof. By (Gp), we have I [ū+ εφ] is well defined for every ε ∈ R and every

φ ∈W 1,p
0

(
Ω;RN

)
. Since ū is a minimizer, we must have

0 = lim
ε→0

1

ε
(I [ū+ εφ]− I [ū])
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Now we compute

1

ε
(I [ū+ εφ]− I [ū])

=
1

ε

ˆ
Ω

dx

ˆ 1

0

d

dt
[f (x, ū (x) + tεφ (x) ,∇ū (x) + tε∇φ (x))] dt

=

ˆ
Ω

g (x, ε) dx,

where

g (x, ε) :=

ˆ 1

0

[
〈Dξf (x, ū+ tεφ,∇ū+ tε∇φ) ,∇φ〉

+ 〈Duf (x, ū+ tεφ,∇ū+ tε∇φ) , φ〉

]
dt

Clearly, all we need to prove is that we have

0 = lim
ε→0

1

ε
(I [ū+ εφ]− I [ū]) = lim

ε→0

ˆ
Ω

g (x, ε) dx =

ˆ
Ω

lim
ε→0

g (x, ε) dx.

This will follow from dominated convergence theorem as soon as we can
establish a bound of g (x, ε) which is independent of ε and is in L1 (Ω) . Using
(Gp,cont), we have

|〈Duf (x, ū+ tεφ,∇ū+ tε∇φ) , φ〉|
≤ |α1| |φ|+ β |ū+ tεφ|p−1 |φ|+ β |∇ū+ tε∇φ|p−1 |φ|

and

|〈Dξf (x, ū+ tεφ,∇ū+ tε∇φ) ,∇φ〉|
≤ |α2| |∇φ|+ β |ū+ tεφ|p−1 |∇φ|+ β |∇ū+ tε∇φ|p−1 |∇φ| .

From this, it is easy to establish the uniform L1 bound. We just show how
to estimate the term coming from the last summand above. Using Young’s
inequality and the triangle inequality, we have∣∣∣∣ˆ 1

0

|∇ū+ tε∇φ|p−1 |∇φ|dt
∣∣∣∣ ≤ cˆ 1

0

(|∇ū+ tε∇φ|p + |∇φ|p) dt

≤ c
ˆ 1

0

(|∇ū|p + |tε∇φ|p + |∇φ|p) dt.

Now since we are interested in ε→ 0, we can assume |ε| ≤ 1. So we deduce
from the last inequality,∣∣∣∣ˆ 1

0

|∇ū+ tε∇φ|p−1 |∇φ|dt
∣∣∣∣

≤ c
ˆ 1

0

(|∇ū|p + |tε|p |∇φ|p + |∇φ|p) dt

≤ c
ˆ 1

0

(|∇ū|p + |∇φ|p + |∇φ|p) dt

≤ c (|∇ū|p + 2 |∇φ|p) .
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Now the RHS clearly is in L1 (Ω) since ∇ū,∇φ ∈ Lp
(
Ω;RN×n

)
. Other terms

can be estimated in a similar manner. This completes the proof.

1.6 Glimpses of the Vectorial Calculus of Vari-
ations

1.6.1 Necessity of convexity and the vectorial calculus of
variations

Necessary condition for wlsc

In general, for sequential weak lower semicontinuity theorems, convexity of the
map ξ 7→ f (x, u, ξ) plays a crucial role. We have already seen that this is
sufficient for sequential weak lower semicontinuity assuming the usual lower
bounds. Is this a necessary condition for wlsc?

If either n = 1 or N = 1, this is indeed necessary as well. However, this is
far from the case when n,N ≥ 2. This case is usally referred to the vectorial
calculus of variations ( or the vectorial case in the calculus of variations).

We do not have enough time left in the course to prove this result. So we
shall only state the result.

Theorem 4 (Necessary condition for wlsc). Let Ω ⊂ Rn be open. Let f :
Ω× RN × RN×n → R, f = f (x, u, ξ) be a Carathéodory function satisfying

|f (x, u, ξ)| ≤ a (x) + b (u, ξ)

for a.e. x ∈ Ω and for every (u, ξ) ∈ RN × RN×n, where a, b ≥ 0, a ∈ L1 (Rn)
and b ∈ C

(
RN × RN×n

)
. Let

I [u] = I [u,Ω] :=

ˆ
Ω

f (x, u (x) ,∇u (x)) dx

and suppose there exists u0 ∈ W 1,∞ (Ω;RN
)

such that I [u0,Ω] < ∞. If I is

sequentially weakly ∗ lower semicontinuous in W 1,∞ (Ω;RN
)
, then

1

|D|

ˆ
D

f (x0, u0, ξ0 +∇φ (y)) dy ≥ f (x0, u0, ξ0)

for every bounded open set D ⊂ Rn, for a.e. x0 ∈ Ω, for every (u0, ξ0) ∈
RN × RN×n and for every φ ∈W 1,∞

0

(
D;RN

)
.

Quasiconvexity

The necessary condition above was introduced by Morrey. He also showed that
under some standard grwoth assumptions, this is also sufficient.
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Definition 5 (Quasiconvexity). Let f : Ω × RN × RN×n → R, f = f (x, u, ξ)
be a Carathéodory function. f is said to be quasiconvex if it satisfies

1

|D|

ˆ
D

f (x0, u0, ξ0 +∇φ (y)) dy ≥ f (x0, u0, ξ0)

for every bounded open set D ⊂ Rn, for a.e. x0 ∈ Ω, for every (u0, ξ0) ∈
RN × RN×n and for every φ ∈W 1,∞

0

(
D;RN

)
.

Let us now show in a simple setting that

convexity⇒ quasiconvexity.

Proposition 6 (convexity implies quasiconvexity). Let f : RN×n → R, f =
f (ξ) be continuous. Then we have

f convex ⇒ f quasiconvex.

Proof. Note that for any bounded open setD ⊂ Rn and any φ ∈W 1,∞
0

(
D;RN

)
,

integrating by parts we deduce,

ˆ
D

∂φi

∂xα
(y) dy = −

ˆ
D

φi (y)
∂

∂xα
(1) dy = 0

for every 1 ≤ i ≤ N and every 1 ≤ α ≤ n. Thus, we obtain

1

|D|

ˆ
D

∇φ (y) dy = 0.

Since f is convex, by Jensen’s inequality, for any ξ0 ∈ RN×n, we deduce

1

|D|

ˆ
D

f (ξ0 +∇φ (y)) dy ≥ f
(

1

|D|

ˆ
D

[ξ0 +∇φ (y)] dy

)
= f (ξ0) .

This proves f is quasiconvex.

Rank one convexity

However, quasiconvexity generally is hard to check. There is a pointwise condi-
tion that is implied by quasiconvexity.

Definition 7 (Rank one convexity). A function f : RN×n → R, f = f (ξ) is
called rank one convex if for every a ∈ Rn, every b ∈ RN and every ξ ∈ RN×n,
the function

g (t) := f (ξ + ta⊗ b)

is convex in t.
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Note that for an N × n matrix X,

rank (X) = 1 if and only if X = a⊗ b

for some a ∈ Rn, b ∈ RN . Thus this is convexity along rank one matrices.
It can be proved that

f quasiconvex ⇒ f rank one convex .

However, neither quasiconvexity nor rank one convexity implies convexity and
both are significantly weaker than convexity as soon as n,N ≥ 2. In the next
subsection, we discuss a particularly important example which is nonconvex but
is rank one convex an quasiconvex.

1.6.2 The determinant

Rank one convexity of the determinant

Now we give an example of a function which is rank one convex but not convex.

Example 8. Let n = N = 2. Let f : R2×2 → R be defined as

f (ξ) = det ξ.

Then f is rank one convex but not convex.

Indeed, we have

det

(
ξ11 + ta1b1 ξ12 + ta1b2

ξ21 + ta2b1 ξ22 + ta2b2

)
= (ξ11ξ22 − ξ12ξ21) + t (a2b2ξ11 + a1b1ξ22 − a2b1ξ12 − a1b2ξ21) ,

since the terms that are quadratic in t are the same, namely t2a1a2b1b2, but
appear with opposite signs and hence cancel in each other. But this is clearly
affine in t. Consequently, f (ξ) = det ξ is rank one affine ( both f and −f are
rank one convex ). But clearly, for any λ ∈ (0, 1),

λ (1− λ) = det

(
λ 0

0 1− λ

)
> λdet

(
1 0

0 0

)
+ (1− λ) det

(
0 0

0 1

)
= 0.

So det ξ can not be convex.

Weak continuity of the determinants

Now we shall show that the determinant is weakly continuous.

Proposition 9. Let Ω ⊂ R2. Let {us}s≥1 ⊂W 1,p
(
Ω,R2

)
such that

us ⇀ u in W 1,p
(
Ω,R2

)
for some 2 < p <∞. Then up to the extraction of a subsequence,

det∇us ⇀ det∇u in L
p
2 (Ω) .
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Proof. By Hölder inequality, it is easy to show that det∇us is uniformly bounded
in L

p
2 (Ω) and thus up to the extraction of a subsequence, this converges weakly

in L
p
2 to a weak limit. So we just have to identify the weak limit.

So it is enough to show that for every ψ ∈ C∞c (Ω) , we have,ˆ
Ω

det∇us (x)ψ (x) dx→
ˆ

Ω

det∇u (x)ψ (x) dx.

Now if us is C2, we have

det∇us =
∂u1

s

∂x1

∂u2
s

∂x2
− ∂u1

s

∂x2

∂u2
s

∂x1

=
∂

∂x1

(
u1
s

∂u2
s

∂x2

)
+

∂

∂x2

(
−u1

s

∂u2
s

∂x1

)
= div

(
u1
s

∂u2
s

∂x2
,−u1

s

∂u2
s

∂x1

)
.

So integrating by parts, we obtainˆ
Ω

det∇us (x)ψ (x) dx =

ˆ
Ω

div

(
u1
s

∂u2
s

∂x2
,−u1

s

∂u2
s

∂x1

)
(x)ψ (x) dx

= −
ˆ

Ω

〈(
u1
s

∂u2
s

∂x2
,−u1

s

∂u2
s

∂x1

)
(x) ,∇ψ (x)

〉
dx

The last identity is truw for us in W 1,p as well, by density. Now we claimˆ
Ω

〈(
u1
s

∂u2
s

∂x2
,−u1

s

∂u2
s

∂x1

)
,∇ψ

〉
→
ˆ

Ω

〈(
u1 ∂u

2

∂x2
,−u1 ∂u

2

∂x1

)
,∇ψ

〉
.

This is enough to prove the result by another integration by parts. Now we
show ˆ

Ω

u1
s (x)

∂u2
s

∂x2
(x)

∂ψ

∂x1
(x) dx→

ˆ
Ω

u1 (x)
∂u2

∂x2
(x)

∂ψ

∂x1
(x) dx.

By Rellich-Kondrachov, us → u strongly in Lp. Thus, we have,ˆ
Ω

(
u1
s

∂u2
s

∂x2

∂ψ

∂x1
− u1 ∂u

2

∂x2

∂ψ

∂x1

)
dx

=

ˆ
Ω

(
u1
s − u1

) ∂u2
s

∂x2

∂ψ

∂x1
dx+

ˆ
Ω

u1

(
∂u2

s

∂x2
− ∂u2

∂x2

)
∂ψ

∂x1
dx

The second term converges to zero by definition of weak convergence in Lp

and the fact that
∇us ⇀ ∇u in Lp.

Now we can estimate∣∣∣∣ˆ
Ω

(
u1
s − u1

) ∂u2
s

∂x2

∂ψ

∂x1
dx

∣∣∣∣ ≤ ∥∥u1
s − u1

∥∥
Lp

∥∥∥∥∂u2
s

∂x2

∥∥∥∥
Lp
‖∇ψ‖L∞ .

The RHS clearly goes to zero as ∇us is uniformly bounded in Lp and the strong
convergence us → u in Lp. This completes the proof.
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Note that exactly the same proof establishes the following.

Proposition 10. Let Ω ⊂ R2. Let {us}s≥1 ⊂W 1,2
(
Ω,R2

)
such that

us ⇀ u in W 1,2
(
Ω,R2

)
.

Then up to the extraction of a subsequence, {det∇us}s≥1 converges in the sense
of distributions, written as

det∇us ⇀ det∇u in D
′
(Ω) ,

which explicitly means that for every ψ ∈ C∞c (Ω) , we have,

ˆ
Ω

det∇us (x)ψ (x) dx→
ˆ

Ω

det∇u (x)ψ (x) dx.

Remark 11. In this case, i.e. when p = 2, we can not conclude that

det∇us ⇀ det∇u in L1 (Ω) .

It is false in general. Note that since L1 non-reflexive, although {det∇us}s≥1

is uniformly bounded in L1, we can ascertain the existence of a subsequence that
converges weakly in L1.
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