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Chapter 1

Direct methods

1.1 Dirichlet Integral
1.2 Integrands depending only on the gradient
1.3 Integrands with z dependence

1.4 Integrands with z and v dependence
Unfortunately, our hypotheses still leave out important problems. For example,

the PDE
Au=f in

where f # 0. Indeed, the energy functional is

1= [ [59u@P + (@) u)] an

This depends not only on x, but also explicitly on u. However, here at least the
dependence on u is linear. The functional

1 A
Il = [ |3 9e@r+ 5 P a.
al2 2
which corresponds to the eigenvalue problem
Au = du in

is a more general and an important example.



1.4.1 Weak lower semicontinuity
Scorza-Dragoni theorem

Proving a weak lower semicontinuity result in the general case is quite delicate
and we need some preparations. First, we need a generalization of the classical
Lusin’s theorem for Carathéodory functions. Measurable dependence on z cre-
ates difficulties in handling, so we improve measurability to continuity at the
cost of leaving out a set of controlled small measure.

Theorem 1 (Scorza-Dragoni). Let Q C R™ be bounded and measurable and let
S C RM be compact. Let f: QxRM — RU{+oco} be a Carathéodory function.
Then for every e > 0, there exists a compact set K. C Q such that

1S continuous .

|Q\ K| <e and f’KaxS

Proof. For any natural number ¢ € N, set
1
w;i () :=supq |f (z,u) — f(z,v)] ;u,v €S |lu—v| < =7
i

Since f is Carathéodory, we have w; (x) — 0 for a.e. x € Q. Thus by Egoroff
( or Egorov ) theorem, for any £ > 0, there exists a compact set K! C Q such
that

w; (£) = 0 uniformly on K} and |Q\K51| < g

This implies that for any 7 > 0 and any u € S, there exists a §; = 1 (1,u) > 0
such that for every z € K! and v € S,

u—v| <8 = \f(x,u)—f(x,v)\<g. (1.1)
Now we choose a sequence {u;},-,; which is dense in S. Now, applying Lusin (
or Luzin ) theorem, for each i € N, we can find a compact set K; C  so that

3
2i+1"

x> f(z,u;) is continuous in K; and |Q\ K;| <

We set -
K2 :=()Ki.
i=1

Then we have
> €

\Q\K§\§Z|Q\Ki|<2%=§
=1

i=1

and we have

x+ f (x,u;) is continuous in K2 for all i € N.



Thus, for any > 0, any € K2 and any u;, there exists a 6 = da (2,1, u;) > 0
such that for every y € K2,

lw—yl <8 = |f(eu) - f(yu)| < (1.2)

Z.
Now we set

K. =K!NnKZ.
Clearly, this implies

|Q\KE|§]Q\K;]+|Q\K§|<%+g:g,

Now we show that f is continuous on K, x S. Let x € K. and u € S. We want
to show that given any n > 0, there exists a 6 = 6 (1, 2, u) > 0 such that for any
ye K.andv €S,

[z —yl+lu—v[<d = |f(z,u)=f(yv)]<n

Now we first choose d; = d1 (n,u) as in (1.1)) and then by density, pick u; such
that
|’LL — ul| < 6.

Now once we have picked w; in this way, we can choose 6o = d2 (2,7, u;) as in

(1.2) and set
6 =0 (x,u,m) = min{d (n,u),d (,n,u;)} -
Now if
|z —y|+ |u—v| <o

we have

|f (2, u) = £ (y,0)]
< (@u) = f (@u) [+ 1f (@,us) = f (g, wi)| + 1 (y,us) = f (y,0)]
+1f (v, w) = [ (y,0)]
n,n, n,n
< Z + Z + Z + Z =1,
where we have used that the first and third summand is less than 7/4 since
|u — ;| < &1, the fourth summand is less than /4 since |u —v| < d; and the

second summand is less than 1/4 since | — y| < d2. This completes the proof
of the theorem. O

Weak lower semicontinuity: general case

Theorem 2 (Weak lower semicontinuity: the general case). Letn > 2, N > 1
be integers and 1 < p < oo. Let 2 C R"™ be open, bounded and smooth and let
i OxRY xRV*? 5 RU {+o0}, f = f(z,u,€) be a Carathéodory function
satisfying

f(@,u,8) 2 (a(z),8) +b(z) +clul”



for a.e. x € Q, for every (u,&) € RN x RN*" for some a € v (Q;RNX"),
bELl(Q),ceR,1§r<%if1§p<n and 1 <r < oo ifn<p<oco. Let

~ [ F@u@) Vu@) do
Q
Let € — f (x,u,&) be convex for a.e. x € Q and for every u € RY. Let uy — u
weakly in WP (Q; ]RN) . Then we have
liminf I [us] > I [u].

S§— 00
Proof. We begin by noting that we can assume f > 0. Indeed, we can replace f
by
9@, u,8) = f(z,u,8) — (a(x),&) +b(z) +clul".
By our assumption on the exponent r and Rellich-Kondrachov theorem, we
know

Us — U inWl’p(Q;RN) = Us — U inLT(Q;RN).
This last convergence implies

”uS”LT(Q;RN) - HUHLT(Q;]RN)'

Thus, we easily deduce

liminf/ (x,us (z), Vus (x)) d:rf/g(:c,u(x),Vu(x)) dz

55— 00

Q
—hmmf/ fz,us (z), Vus (x)) dxf/ﬂf(m,u(:nLVu(x)) dz

Thus, it is enough to prove the theorem with the additional assumption that
f=>0.

Now our task is to reduce the proof to the previous case, i.e. integrands
depending only on x and &, by ‘freezing’ u. As before, let

L::liminf/ [z us (x), Vus (z)) dz

§—00

and passing to a subsequence if necessary, we can assume

L= lim f(x us (z), Vus (2)) da.

5— 00
Fix € > 0. We want to show

Claim 3. There exists a measurable set Q. C Q and a subsequence {s; }j>1 with
$j — 400 such that B

|Q\Qe‘ <g,
/Q ’f (a:,usj (z), Vu, (x)) —f (x,u(x),Vusj (x))’ dz < ¢|9]

for every 7 > 1.



Let us first complete the proof assuming the claim. Set

g(x,ﬁ) = ]]-Qg (:U)f(x,u(x) ,5)

By the wlsc theorem for integrands with = dependence, we get

liminf/Q f(z,u(z), Vus, (z)) dz Z/Q [z, u(z),Vu(zr)) de.

J—00

But since f > 0, we have
/ [ (z,us; (), Vug, (z)) dz > / f (@, us; (), Vus, (z)) dz
Q QE
By the claim, we deduce

/Q f (@, us; (), Vus, (z)) dz

Z/Q f (2, u(z), Vug, (z)) dz—e|Q].

e

Combining the last three inequalities, we have

L=liminf | f(z,us, (2),Vu,, () dzo

Jj—o0 Q
>liminf [ f(z,us, (2), Vus, (z)) dz

Jj—o0 Q.

Jj—o0 Q.

Note that by monotone convergence

/ Lo, (2) f (2,0 (x), Va (2)) dz — / f (@u(z), Vu(z) da
Q Q

as € — 0. So letting € — 0, we prove the conclusion. Now it remains to prove
the Claim Bl

Proof of Claim [3]



Fix €; > 0 for now. For any h € L4 (Q;RN) for some 1 < ¢ < o0, from the
Chebyshev’s inequality we deduce the following estimate
1
e @Iz < g [ @ o< g Il o

Thus, we can choose a number M, > 0 large enough and independent of s such
that

Ej

e, [ <5

where
Lo={zeQ:|u@),|us ()], |Vu, (z)| < M, for every s > 1}.

Now since f is Carathéodory, applying the Scorza-Dragoni theorem, we find a
compact set ng)s C Q;],,S such that

€j

‘Q <3 and f‘ng’SXsEj is continuous,

€j5,8 EJ,

where
S, = {(u,f) e RN x RV*n . lul, €] < ng}.

Hence, by continuity, there exists ¢ (¢;) > 0 such that
|’U,—’U|<(5(<€j) = \f(x,u,ﬁ)—f(x,v,{)\<8j
for all € Q2

2,5 for all [uf, |v],[§] < Mc,. But by the convergence
us — u strongly in L" (Q; RN)

and the Chebyshev’s inequality, we can find s, € N such that if

0 ={r€Q:us () —u(2)] < (e},

then
Ej

‘Q\Qw T oralls > s,

Now we set
2 3
QEJ,SE = Q <N QEJ,,S

Clearly, we have

2€j +€j o

‘Q\ng,ssj 3 3 5]‘.

S ‘Q \ Qij,s

+ ‘Q \Q2 | <

Also, we have,

/Q f (s (2), Vs (2)) — f (@0 (2) , Vg (2))] do

jxsij

<Egj

g251735j

< ¢ 19



for every s > s.,. Now we choose ¢; := 27 J¢ for j > 1. For every j > 1, we pick
an natural number s; > s.. such that s; — co as j — oo. Finally, we set

Thus, we have

SATAES DAY
j=1

o0 oo 1
<Z<€j:5 227 =¢€.

Also, for every j > 1, we have

/ {f (z,us, (x), Vus, () = f (z,u(z), Vus, (x))‘ dz

<e |9 <el.

This proves the claim and finishes the proof of the theorem. O

1.4.2 Existence of minimizer: the general case

Theorem 4. Letn > 2, N > 1 be integers, 1 < p < oo and let Q C R™ be open
bounded and smooth. Let ug € WP (Q;RN) be given. Let f : QxRN x RN*"
R U {400} be a Carathéodory function satisfying

fxu, &) > er |€ + co lul* + b ()

for a.e. x € Q, for every (u, &) € RN xRNX™ for some c; > 0, co € R, b€ L (Q)
and 1 < g < p. Assume & — f(z,u,&) be convex for a.e. x € Q and every
uwe RN, Let

ITu] = / f(z,u(z),Vu(z)) dz.
Q
If T [ug] < oo, then the following problem
inf{][u] cu € ug 4+ WP (Q;RN)} =m

admits a minimizer. If (u,§) — f (z,u,§) is strictly convex for a.e. x € Q, then
the minimizer is unique.

Proof. Let {us} >, be a minimizing sequence. Then we have,
m—+ 1> 1T [ug]
201/ |Vus (z)” dz — \02|/ lus ()] dx—/ b(z)| dz
Q Q Q

=G ||VUSH€/P(Q;RN><TL) = |e2 Huslliq(g;m) - ”b”Ll(Q) :



By Holder inequality, we have,

p—gq
||USHqu(Q;RN) <o ||u8||%P(Q;]RN)‘
Thus, there exist constants 71,72 > 0 such that
m+12c ||vu8||1£p(Q;RN><n) -N ||uSH%p(Q;RN) -2
21 ||VUS||Z£P(Q;RNX71) -Nn ||USH?/V1,1>(Q;RN) - 72-
By Poincaré inequality, we can find constants s, v4,v5 > 0 such that
m+12>73 ||Us||€vl,p Q:RN) T V4 ||U0||€V1,p QRN) TN ||U3H§14/1,p QRNY — V5-

(RN) (RYN) (RYN)
Since 1 < g < p, we can find constants ~y7, g > 0 such that

m+12> HUS||€VLP(Q;RN) — 8-

This implies {us},~, is uniformly bounded in W'?. The rest follows the same
way as before using the weak lower semicontinuity theorem. The inequality in
the hypothesis can be easily verified from the coercivity inequality by taking
a =0, r = q and the same b. This completes the proof. O
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