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Chapter 1

Direct methods

1.1 Dirichlet Integral

1.2 Integrands depending only on the gradient

1.3 Integrands with x dependence

1.4 Integrands with x and u dependence

Unfortunately, our hypotheses still leave out important problems. For example,
the PDE

∆u = f in Ω

where f 6≡ 0. Indeed, the energy functional is

I [u] =

ˆ
Ω

[
1

2
|∇u (x)|2 + 〈f (x) , u (x)〉

]
dx.

This depends not only on x, but also explicitly on u. However, here at least the
dependence on u is linear. The functional

I [u] =

ˆ
Ω

[
1

2
|∇u (x)|2 +

λ

2
|u (x)|2

]
dx,

which corresponds to the eigenvalue problem

∆u = λu in Ω

is a more general and an important example.
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1.4.1 Weak lower semicontinuity

Scorza-Dragoni theorem

Proving a weak lower semicontinuity result in the general case is quite delicate
and we need some preparations. First, we need a generalization of the classical
Lusin’s theorem for Carathéodory functions. Measurable dependence on x cre-
ates difficulties in handling, so we improve measurability to continuity at the
cost of leaving out a set of controlled small measure.

Theorem 1 (Scorza-Dragoni). Let Ω ⊂ Rn be bounded and measurable and let
S ⊂ RM be compact. Let f : Ω×RM → R∪{+∞} be a Carathéodory function.
Then for every ε > 0, there exists a compact set Kε ⊂ Ω such that

|Ω \Kε| < ε and f
∣∣
Kε×S

is continuous .

Proof. For any natural number i ∈ N, set

ωi (x) := sup

{
|f (x, u)− f (x, v)| : u, v ∈ S, |u− v| ≤ 1

i

}
.

Since f is Carathéodory, we have ωi (x) → 0 for a.e. x ∈ Ω. Thus by Egoroff
( or Egorov ) theorem, for any ε > 0, there exists a compact set K1

ε ⊂ Ω such
that

ωi (x)→ 0 uniformly on K1
ε and

∣∣Ω \K1
ε

∣∣ < ε

2
.

This implies that for any η > 0 and any u ∈ S, there exists a δ1 = δ1 (η, u) > 0
such that for every x ∈ K1

ε and v ∈ S,

|u− v| < δ1 ⇒ |f (x, u)− f (x, v)| < η

4
. (1.1)

Now we choose a sequence {ui}i≥1 which is dense in S. Now, applying Lusin (
or Luzin ) theorem, for each i ∈ N, we can find a compact set Ki ⊂ Ω so that

x 7→ f (x, ui) is continuous in Ki and |Ω \Ki| <
ε

2i+1
.

We set

K2
ε :=

∞⋂
i=1

Ki.

Then we have ∣∣Ω \K2
ε

∣∣ ≤ ∞∑
i=1

|Ω \Ki| <
∞∑
i=1

ε

2i+1
=
ε

2

and we have

x 7→ f (x, ui) is continuous in K2
ε for all i ∈ N.
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Thus, for any η > 0, any x ∈ K2
ε and any ui, there exists a δ2 = δ2 (x, η, ui) > 0

such that for every y ∈ K2
ε ,

|x− y| < δ2 ⇒ |f (x, ui)− f (y, ui)| <
η

4
. (1.2)

Now we set
Kε = K1

ε ∩K2
ε .

Clearly, this implies

|Ω \Kε| ≤
∣∣Ω \K1

ε

∣∣+
∣∣Ω \K2

ε

∣∣ < ε

2
+
ε

2
= ε.

Now we show that f is continuous on Kε × S. Let x ∈ Kε and u ∈ S. We want
to show that given any η > 0, there exists a δ = δ (η, x, u) > 0 such that for any
y ∈ Kε and v ∈ S,

|x− y|+ |u− v| < δ ⇒ |f (x, u)− f (y, v)| < η.

Now we first choose δ1 = δ1 (η, u) as in (1.1) and then by density, pick ui such
that

|u− ui| < δ1.

Now once we have picked ui in this way, we can choose δ2 = δ2 (x, η, ui) as in
(1.2) and set

δ = δ (x, u, η) := min {δ1 (η, u) , δ2 (x, η, ui)} .

Now if
|x− y|+ |u− v| < δ

we have

|f (x, u)− f (y, v)|
≤ |f (x, u)− f (x, ui)|+ |f (x, ui)− f (y, ui)|+ |f (y, ui)− f (y, u)|

+ |f (y, u)− f (y, v)|

<
η

4
+
η

4
+
η

4
+
η

4
= η,

where we have used that the first and third summand is less than η/4 since
|u− ui| < δ1, the fourth summand is less than η/4 since |u− v| < δ1 and the
second summand is less than η/4 since |x− y| < δ2. This completes the proof
of the theorem.

Weak lower semicontinuity: general case

Theorem 2 (Weak lower semicontinuity: the general case). Let n ≥ 2, N ≥ 1
be integers and 1 ≤ p < ∞. Let Ω ⊂ Rn be open, bounded and smooth and let
f : Ω × RN × RN×n → R ∪ {+∞} , f = f (x, u, ξ) be a Carathéodory function
satisfying

f (x, u, ξ) ≥ 〈a (x) , ξ〉+ b (x) + c |u|r

3



for a.e. x ∈ Ω, for every (u, ξ) ∈ RN × RN×n for some a ∈ Lp
′ (

Ω;RN×n) ,
b ∈ L1 (Ω) , c ∈ R, 1 ≤ r < np

n−p if 1 ≤ p < n and 1 ≤ r <∞ if n ≤ p <∞. Let

I [u] :=

ˆ
Ω

f (x, u (x) ,∇u (x)) dx.

Let ξ 7→ f (x, u, ξ) be convex for a.e. x ∈ Ω and for every u ∈ RN . Let us ⇀ u
weakly in W 1,p

(
Ω;RN

)
. Then we have

lim inf
s→∞

I [us] ≥ I [u] .

Proof. We begin by noting that we can assume f ≥ 0. Indeed, we can replace f
by

g (x, u, ξ) := f (x, u, ξ)− 〈a (x) , ξ〉+ b (x) + c |u|r .
By our assumption on the exponent r and Rellich-Kondrachov theorem, we
know

us ⇀ u in W 1,p
(
Ω;RN

)
⇒ us → u in Lr

(
Ω;RN

)
.

This last convergence implies

‖us‖Lr(Ω;RN ) → ‖u‖Lr(Ω;RN ) .

Thus, we easily deduce

lim inf
s→∞

ˆ
Ω

g (x, us (x) ,∇us (x)) dx−
ˆ

Ω

g (x, u (x) ,∇u (x)) dx

= lim inf
s→∞

ˆ
Ω

f (x, us (x) ,∇us (x)) dx−
ˆ

Ω

f (x, u (x) ,∇u (x)) dx.

Thus, it is enough to prove the theorem with the additional assumption that
f ≥ 0.

Now our task is to reduce the proof to the previous case, i.e. integrands
depending only on x and ξ, by ‘freezing’ u. As before, let

L := lim inf
s→∞

ˆ
Ω

f (x, us (x) ,∇us (x)) dx

and passing to a subsequence if necessary, we can assume

L := lim
s→∞

ˆ
Ω

f (x, us (x) ,∇us (x)) dx.

Fix ε > 0. We want to show

Claim 3. There exists a measurable set Ωε ⊂ Ω and a subsequence {sj}j≥1 with
sj → +∞ such that

|Ω \ Ωε| < ε,ˆ
Ωε

∣∣f (x, usj (x) ,∇usj (x)
)
− f

(
x, u (x),∇usj (x)

)∣∣ dx < ε |Ω|

for every j ≥ 1.
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Let us first complete the proof assuming the claim. Set

g (x, ξ) := 1Ωε
(x) f (x, u (x) , ξ) .

By the wlsc theorem for integrands with x dependence, we get

lim inf
j→∞

ˆ
Ωε

f
(
x, u (x) ,∇usj (x)

)
dx ≥

ˆ
Ωε

f (x, u (x) ,∇u (x)) dx.

But since f ≥ 0, we have

ˆ
Ω

f
(
x, usj (x) ,∇usj (x)

)
dx ≥

ˆ
Ωε

f
(
x, usj (x) ,∇usj (x)

)
dx

By the claim, we deduce

ˆ
Ωε

f
(
x, usj (x) ,∇usj (x)

)
dx

≥
ˆ

Ωε

f
(
x, u (x) ,∇usj (x)

)
dx

−
ˆ

Ωε

∣∣f (x, usj (x) ,∇usj (x)
)
− f

(
x, u (x) ,∇usj (x)

)∣∣ dx

≥
ˆ

Ωε

f
(
x, u (x) ,∇usj (x)

)
dx− ε |Ω| .

Combining the last three inequalities, we have

L = lim inf
j→∞

ˆ
Ω

f
(
x, usj (x) ,∇usj (x)

)
dx

≥ lim inf
j→∞

ˆ
Ωε

f
(
x, usj (x) ,∇usj (x)

)
dx

≥ lim inf
j→∞

ˆ
Ωε

f
(
x, u (x) ,∇usj (x)

)
dx− ε |Ω|

≥
ˆ

Ωε

f (x, u (x) ,∇u (x)) dx− ε |Ω|

=

ˆ
Ω

1Ωε
(x) f (x, u (x) ,∇u (x)) dx− ε |Ω| .

Note that by monotone convergence

ˆ
Ω

1Ωε (x) f (x, u (x) ,∇u (x)) dx→
ˆ

Ω

f (x, u (x) ,∇u (x)) dx

as ε → 0. So letting ε → 0, we prove the conclusion. Now it remains to prove
the Claim 3.

Proof of Claim 3
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Fix εj > 0 for now. For any h ∈ Lq
(
Ω;RN

)
for some 1 ≤ q < ∞, from the

Chebyshev’s inequality we deduce the following estimate

|{x ∈ Ω : |h (x)| ≥ t}| ≤ 1

tq

ˆ
|h|≥t

|h (x)|q dx ≤ 1

tq
‖h‖qLq(Ω;RN ) .

Thus, we can choose a number Mεj > 0 large enough and independent of s such
that ∣∣∣Ω \ Ω1

εj ,s

∣∣∣ < εj
3
,

where

Ω1
εj ,s :=

{
x ∈ Ω : |u (x)| , |us (x)| , |∇us (x)| < Mεj for every s ≥ 1

}
.

Now since f is Carathéodory, applying the Scorza-Dragoni theorem, we find a
compact set Ω2

εj ,s ⊂ Ω1
εj ,s such that∣∣∣Ω1

εj ,s \ Ω2
εj ,s

∣∣∣ < εj
3

and f
∣∣
Ω2

εj,s
×Sεj

is continuous,

where
Sε :=

{
(u, ξ) ∈ RN × RN×n : |u| , |ξ| < Mεj

}
.

Hence, by continuity, there exists δ (εj) > 0 such that

|u− v| < δ (εj) ⇒ |f (x, u, ξ)− f (x, v, ξ)| < εj

for all x ∈ Ω2
εj ,s, for all |u| , |v| , |ξ| < Mεj . But by the convergence

us → u strongly in Lr
(
Ω;RN

)
and the Chebyshev’s inequality, we can find sεj ∈ N such that if

Ω3
εj ,s := {x ∈ Ω : |us (x)− u (x)| < δ (εj)} ,

then ∣∣∣Ω \ Ω3
εj ,s

∣∣∣ < εj
3

for all s ≥ sεj .

Now we set
Ωεj ,sεj

:= Ω2
εj ,s ∩ Ω3

εj ,s.

Clearly, we have∣∣∣Ω \ Ωεj ,sεj

∣∣∣ ≤ ∣∣∣Ω \ Ω2
εj ,s

∣∣∣+
∣∣∣Ω \ Ω3

εj ,s

∣∣∣ < 2εj
3

+
εj
3

= εj .

Also, we have,

ˆ
Ωεj,sεj

|f (x, us (x) ,∇us (x))− f (x, u (x) ,∇us (x))| dx

< εj

∣∣∣Ωεj ,sεj

∣∣∣ ≤ εj |Ω|
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for every s ≥ sεj . Now we choose εj := 2−jε for j ≥ 1. For every j ≥ 1, we pick
an natural number sj ≥ sεj such that sj →∞ as j →∞. Finally, we set

Ωε =

∞⋂
j=1

Ωεj ,sεj
.

Thus, we have

|Ω \ Ωε| ≤
∞∑
j=1

∣∣∣Ω \ Ωεj ,sεj

∣∣∣ < ∞∑
j=1

εj = ε

 ∞∑
j=1

1

2j

 = ε.

Also, for every j ≥ 1, we have

ˆ
Ωε

∣∣f (x, usj (x) ,∇usj (x)
)
− f

(
x, u (x) ,∇usj (x)

)∣∣ dx

< εj |Ω| < ε |Ω| .

This proves the claim and finishes the proof of the theorem.

1.4.2 Existence of minimizer: the general case

Theorem 4. Let n ≥ 2, N ≥ 1 be integers, 1 < p <∞ and let Ω ⊂ Rn be open
bounded and smooth. Let u0 ∈W 1,p

(
Ω;RN

)
be given. Let f : Ω×RN×RN×n →

R ∪ {+∞} be a Carathéodory function satisfying

f (x, u, ξ) ≥ c1 |ξ|p + c2 |u|q + b (x)

for a.e. x ∈ Ω, for every (u, ξ) ∈ RN×RN×n for some c1 > 0, c2 ∈ R, b ∈ L1 (Ω)
and 1 ≤ q < p. Assume ξ 7→ f (x, u, ξ) be convex for a.e. x ∈ Ω and every
u ∈ RN . Let

I [u] :=

ˆ
Ω

f (x, u (x) ,∇u (x)) dx.

If I [u0] <∞, then the following problem

inf
{
I [u] : u ∈ u0 +W 1,p

0

(
Ω;RN

)}
= m

admits a minimizer. If (u, ξ) 7→ f (x, u, ξ) is strictly convex for a.e. x ∈ Ω, then
the minimizer is unique.

Proof. Let {us}s≥1 be a minimizing sequence. Then we have,

m+ 1 ≥ I [us]

≥ c1
ˆ

Ω

|∇us (x)|p dx− |c2|
ˆ

Ω

|us (x)|q dx−
ˆ

Ω

|b (x)| dx

= c1 ‖∇us‖pLp(Ω;RN×n) − |c2| ‖us‖
q
Lq(Ω;RN ) − ‖b‖L1(Ω) .
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By Hölder inequality, we have,

‖us‖qLq(Ω;RN ) ≤ |Ω|
p−q
p ‖us‖qLp(Ω;RN ) .

Thus, there exist constants γ1, γ2 > 0 such that

m+ 1 ≥ c1 ‖∇us‖pLp(Ω;RN×n) − γ1 ‖us‖qLp(Ω;RN ) − γ2

≥ c1 ‖∇us‖pLp(Ω;RN×n) − γ1 ‖us‖qW 1,p(Ω;RN ) − γ2.

By Poincaré inequality, we can find constants γ3, γ4, γ5 > 0 such that

m+ 1 ≥ γ3 ‖us‖pW 1,p(Ω;RN ) − γ4 ‖u0‖pW 1,p(Ω;RN ) − γ1 ‖us‖qW 1,p(Ω;RN ) − γ5.

Since 1 ≤ q < p, we can find constants γ7, γ8 > 0 such that

m+ 1 ≥ γ7 ‖us‖pW 1,p(Ω;RN ) − γ8.

This implies {us}s≥1 is uniformly bounded in W 1,p. The rest follows the same
way as before using the weak lower semicontinuity theorem. The inequality in
the hypothesis can be easily verified from the coercivity inequality by taking
a ≡ 0, r = q and the same b. This completes the proof.
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