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Chapter 1

Sobolev spaces

1.1 Definitions

1.2 Elementary properties

1.3 Approximation and extension

1.4 Traces

1.5 Sobolev inequalities and Sobolev embeddings

1.5.1 Gagliardo-Nirenberg-Sobolev inequalities

1.5.2 Poincaré-Sobolev inequalities

1.5.3 Morrey’s inequality

1.5.4 Rellich-Kondrachov compact embeddings

Compactness in Lp spaces

Now we proceed to the question of compactness of the Sobolev embeddings. But
before stating the result, we first record a criterion for compactness in Lq (Ω) .

Theorem 1 (Kolmogorov-M.Riesz-Frechet). Let F be a bounded subset of Lp (Rn)
with 1 ≤ p <∞ such that

lim
|h|→0

‖τhu− u‖Lp(Rn) = 0 uniformly in u ∈ F .

Then the closure of F|Ω is compact in Lp (Ω) for any measurable Ω ⊂ Rn with
finite measure.

1



Remark 2. Here τh is the translation operator, i.e.

τhu (x) := u (x+ h) for all x ∈ Rn.

Since this result is often proved in measure and integral courses while study-
ing Lp spaces, we omit the proof. A detailed proof can be found at page 111 in
Theorem 4.26 of [1].

Rellich-Kondrachov compact embeddings

Now we state our main result.

Theorem 3 (Rellich-Kondrachov compact embeddings). Let Ω ⊂ Rn be open
bounded and smooth. Then the following injections are all compact

W 1,p (Ω) ↪→ Lq (Ω) for all 1 ≤ q < p∗ for 1 ≤ p < n,

W 1,p (Ω) ↪→ Lq (Ω) for all 1 ≤ q <∞ for p = n,

W 1,p (Ω) ↪→ C
(
Ω
)

for n < p <∞.

Proof. The case p > n follows from Morrey’s inequality and Ascoli-Arzela the-
orem. The case p = n can be deduced from the case 1 ≤ p < n case. So we just
prove this later case. Also, since Ω is bounded, clearly it is enough to prove the
result for p ≤ q < p∗.

By using extension and the Kolmogororv-M.Riesz-Frechet theorem, we only
need to show

lim
|h|→0

‖τhu− u‖Lq(Rn) = 0 uniformly in u ∈ F ,

for any p ≤ q < p∗ and any bounded subset F ⊂ W 1,p (Rn) . But we have, by
interpolation,

‖τhu− u‖Lq ≤ ‖τhu− u‖αLp ‖τhu− u‖1−αLp∗

≤ c |h|α ‖∇u‖αLp ‖u‖1−αLp∗

≤ cM |h|α .

This proves the theorem.

Remark 4. • In fact, using interpolation inequalities, as we did in the proof
above, but for Hölder spaces instead of Lp spaces, we can actually conclude
that if n <∞, W 1,p (Ω) embeds compactly into C0,α

(
Ω
)

for every 0 ≤ α <
1− n

p .

• Note that the theorem does not claim that the embedding of W 1,p into
Lp
∗

in the case 1 ≤ p < n is compact. In fact, this injection, though
continuous, is never compact. See Example 5 for a generic counterexam-
ple. The same counter-example also shows that the continuous injection
of W 1,p into C0,1−n

p is also never compact for n < p < ∞. It also shows
that W 1,n ∩ L∞ also does not compactly embed in L∞.
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Lack of compactness at the critical exponent

Example 5. Let u ∈ C∞c (Bn1 ) with u (0) 6= 0. Set

uε (x) := u
(x
ε

)
and vε (x) :=

(
1

ε

)n−p
p

uε (x) .

Now uε, vε ∈W 1,p (Bn1 ) for every ε > 0.

Case I: the case 1 ≤ p < n,

We compute

‖vε‖Lq(Bn
1 ) =

(
1

ε

)n−p
p

‖uε‖Lq(Bn
1 ) = εn( 1

q−
1
p + 1

n ) ‖u‖Lq(Bn
1 ) .

for any 1 ≤ q ≤ p∗. Similarly, we have

‖∇vε‖Lp(Bn
1 ) = ‖∇u‖Lp(Bn

1 ) .

Thus, the sequence {vε}ε is uniformly bounded in W 1,p (Bn1 ) and vε → 0 as
ε → 0 in Lq (Bn1 ) for any 1 ≤ q < p∗. Thus if {vε}ε admits a convergent
subsequence, by uniqueness of the limit, the limit must be the zero function. But
no subsequence of {vε}ε can converge strongly in Lp

∗
to the zero function, as

we clearly have

‖vε‖Lp∗(Bn
1 ) = ‖u‖Lp∗(Bn

1 ) > 0 for every ε > 0.

So there can be no subsequence which is strongly convergent in Lp
∗

(Bn1 ) at all.

Case II: the case n < p <∞,

We can prove exactly as before that {vε}ε is uniformly bounded in W 1,p (Bn1 ) .
Since p > n, it is also clear that

‖vε‖C0(Bn
1 ) ≤ ε

p−n
p ‖u‖C0(Bn

1 ) → 0 as ε→ 0.

So as before, if subsequential limit must be the zero function. Now it is clear that
supp vε ⊂ B (0, ε) . Now, for any ε > 0 and for any y ∈ ∂B (0, ε) , we compute

|vε (0)− vε (y)|
|y − 0|(1−

n
p )

=
|vε (0)|
|y|(1−

n
p )

=
ε

p−n
p |u (0)|
ε(1−n

p )
= |u (0)| > 0.

Thus, we deduce

[vε]
C

0,1−n
p (Bn

1 )
≥ |vε (0)− vε (y)|
|y − 0|(1−

n
p )

= |u (0)| > 0,

for any ε > 0. Thus, there can be no subsequence of {vε}ε which is strongly

convergent in C0,1−n
p
(
Bn1
)

at all.
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Case III: the case p = n,

Note that for p = n, vε = uε. In general, W 1,n functions need not be L∞.
But here, since u being smooth is L∞, so is vε for every ε > 0. Also, we have,
for every ε > 0,

‖vε‖L∞(Bn
1 ) = ‖u‖L∞(Bn

1 ) .

As before, {vε}ε is uniformly bounded in W 1,n (Bn1 ) and hence by virtue of
the last equality, also in W 1,n (Bn1 ) ∩ L∞ (Bn1 ) . But the same equality tells us
that no subsequence can converge to zero function in the L∞, which is the only
possible candidate for the limit as before. This proves that the embedding of
W 1,n (Bn1 ) ∩ L∞ (Bn1 ) into L∞ (Bn1 ) . can not be compact.

Summary of Sobolev embeddings

Let Ω ⊂ Rn be open bounded and smooth.

• If 1 ≤ p < n, then the injections

W 1,p (Ω) ↪→ Lq (Ω) for all 1 ≤ q ≤ p∗

are continuous. These injections are compact for 1 ≤ q < p∗, but
not for q = p∗.

• The injections

W 1,n (Ω) ↪→ Lq (Ω) for all 1 ≤ q <∞

are all continuous and compact. W 1,n (Ω) does not embed contin-
uously in L∞ (Ω) . Also, the injection of W 1,n (Ω)∩L∞ (Ω) into L∞ (Ω)
is not compact.

• If n < p <∞, then the injections

W 1,p (Ω) ↪→ C0,α
(
Ω
)

for all 0 ≤ α ≤ 1− n

p

are continuous. These injections are compact for 0 ≤ α < 1 − n
p ,

but not for α = 1− n
p .
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Chapter 2

Direct methods

2.1 Dirichlet Integral

Now we are ready to begin our study of the modern direct methods in the
calculus of variations. Let n ≥ 2, N ≥ 1 be integers and let Ω ⊂ Rn be open
bounded and smooth. Let u ∈W 1,2

(
Ω;RN

)
. Then the functional

D [u] :=
1

2

ˆ
Ω

|∇u|2

is called the Dirichlet integral of u. Note that for any u ∈ W 1,2
(
Ω;RN

)
, we

have
D [u] <∞.

Now we want to minimize the Dirichlet integral with a given Dirichlet bound-
ary value.

Theorem 6. Let n ≥ 2, N ≥ 1 be integers and let Ω ⊂ Rn be open bounded and
smooth. Let u0 ∈W 1,2

(
Ω;RN

)
be given. Then the following problem

inf

{
D [u] :=

1

2

ˆ
Ω

|∇u|2 : u ∈ u0 +W 1,2
0

(
Ω;RN

)}
= m

admits an unique minimizer ū ∈ u0 + W 1,2
0

(
Ω;RN

)
. Moreover, ū is a weak

solution of the Dirichlet boundary value problem{
∆ū = 0 in Ω,

ū = u0 on ∂Ω.

i.e. satisfies the weak form of the Euler-Lagrange equation

ˆ
Ω

〈∇ū,∇φ〉 = 0 for all φ ∈W 1,2
0

(
Ω;RN

)
.
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Proof. Let {us}s≥1 ⊂ u0 +W 1,2
0

(
Ω;RN

)
be a minimizing sequence, i.e

D [us]→ m as s→∞.

Uniform bound for minimizing sequence

Since us − u0 ∈W 1,2
0

(
Ω;RN

)
for every s ≥ 1, by Poincaré inequality, we have

‖us − u0‖W 1,2 ≤ c ‖∇us −∇u0‖L2

≤ c
√
D [us] + c ‖∇u0‖L2

≤ c
√
m+ 1 + c ‖∇u0‖L2 .

Thus, we have

‖us‖W 1,2 ≤ ‖us − u0‖W 1,2 + ‖u0‖W 1,2 ≤ c
√
m+ 1 + c ‖u0‖W 1,2 .

This proves that {us}s≥1 is uniformly bounded in W 1,2
(
Ω;RN

)
.

Since W 1,2
(
Ω;RN

)
is reflexive, the uniform bound implies that there exists

ū ∈W 1,2
(
Ω;RN

)
such that up to the extraction of a subsequence, which we do

not relabel, we have

us ⇀ ū weakly in W 1,2
(
Ω;RN

)
.

Sequential weak lower semicontinuity

Now we wish to prove that

lim inf
s→∞

D [us] ≥ D [ū] .

We have,

2D [us] =

ˆ
Ω

〈∇us −∇ū+∇ū,∇us −∇ū+∇ū〉

=

ˆ
Ω

〈∇us −∇ū,∇us −∇ū〉+ 2

ˆ
Ω

〈∇us −∇ū,∇ū〉

+

ˆ
Ω

〈∇ū,∇ū〉

≥ 2D [ū] + 2

ˆ
Ω

〈∇us −∇ū,∇ū〉 .

Since

us ⇀ ū weakly in W 1,2
(
Ω;RN

)
.

implies

∇us ⇀ ∇ū weakly in L2
(
Ω;RN

)
,
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we deduce that

lim
s→∞

ˆ
Ω

〈∇us −∇ū,∇ū〉 = 0.

This proves the weak lower semicontinuity.
Thus, we have

m ≤ D [ū] ≤ lim inf
s→∞

D [us] = m.

Hence ū is a minimzer.

Uniqueness

Suppose ū and v̄ are both minimizers. Then let w̄ := 1
2 (ū+ v̄) . Then we can

see

m ≤ D [w̄] ≤ 1

2
D [ū] +

1

2
D [v̄] ≤ m.

So w̄ is also a minimizer and hence we obtain,

ˆ
Ω

(
1

2
|∇ū|2 +

1

2
|∇ū|2 −

∣∣∣∣∇ū+∇v̄
2

∣∣∣∣2
)

= 0.

But this implies

1

2
|∇ū|2 +

1

2
|∇ū|2 −

∣∣∣∣∇ū+∇v̄
2

∣∣∣∣2 = 0 a.e.

But this is impossible unless u = v by the strict convexity of the function
ξ 7→ |ξ|2 .
Euler-Lagrange equations

Now if ū is a minimizer, we must have

d

dt
(D [ū+ tφ])

∣∣∣∣
t=0

= 0

for any φ ∈ C∞c
(
Ω;RN

)
. Thus we compute

0 = lim
t→0

1

2t

ˆ
Ω

[
|∇ū+ t∇φ|2 − |∇ū|2

]
= lim
t→0

1

2t

ˆ
Ω

[
t 〈∇φ,∇ū〉+ t2 |φ|2

]
=

ˆ
Ω

〈∇φ,∇ū〉 .

But the fact that ∇ū ∈ L2 and the density of C∞c functions in W 1,2
0 implies

that the identity holds for any φ ∈W 1,2
0 as well, i.e.ˆ

Ω

〈∇φ,∇ū〉 = 0 for any φ ∈W 1,2
0

(
Ω;RN

)
.

This completes the proof.
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