Introduction to the Calculus of Variations Lecture Notes Lecture 16

Swarnendu Sil

Spring 2021, IISc

Chapter 1

Sobolev spaces

1.1 Definitions

- **1.2** Elementary properties
- **1.3** Approximation and extension
- 1.4 Traces
- 1.5 Sobolev inequalities and Sobolev embeddings
- 1.5.1 Gagliardo-Nirenberg-Sobolev inequalities
- 1.5.2 Poincaré-Sobolev inequalities
- 1.5.3 Morrey's inequality

1.5.4 Rellich-Kondrachov compact embeddings

Compactness in L^p spaces

Now we proceed to the question of compactness of the Sobolev embeddings. But before stating the result, we first record a criterion for compactness in $L^{q}(\Omega)$.

Theorem 1 (Kolmogorov-M.Riesz-Frechet). Let \mathcal{F} be a bounded subset of $L^p(\mathbb{R}^n)$ with $1 \leq p < \infty$ such that

$$\lim_{|h|\to 0} \|\tau_h u - u\|_{L^p(\mathbb{R}^n)} = 0 \qquad \text{uniformly in } u \in \mathcal{F}.$$

Then the closure of $\mathcal{F}|_{\Omega}$ is **compact** in $L^{p}(\Omega)$ for any measurable $\Omega \subset \mathbb{R}^{n}$ with finite measure.

Remark 2. Here τ_h is the translation operator, i.e.

$$\tau_h u(x) := u(x+h)$$
 for all $x \in \mathbb{R}^n$.

Since this result is often proved in measure and integral courses while studying L^p spaces, we omit the proof. A detailed proof can be found at page 111 in Theorem 4.26 of [1].

Rellich-Kondrachov compact embeddings

Now we state our main result.

Theorem 3 (Rellich-Kondrachov compact embeddings). Let $\Omega \subset \mathbb{R}^n$ be open bounded and smooth. Then the following injections are all **compact**

$W^{1,p}\left(\Omega\right) \hookrightarrow L^{q}\left(\Omega\right)$	for all $1 \le q < p^*$	for $1 \leq p < n$,
$W^{1,p}\left(\Omega\right) \hookrightarrow L^{q}\left(\Omega\right)$	for all $1 \leq q < \infty$	for $p = n$,
$W^{1,p}\left(\Omega\right) \hookrightarrow C\left(\overline{\Omega}\right)$		for $n .$

Proof. The case p > n follows from Morrey's inequality and Ascoli-Arzela theorem. The case p = n can be deduced from the case $1 \le p < n$ case. So we just prove this later case. Also, since Ω is bounded, clearly it is enough to prove the result for $p \le q < p^*$.

By using extension and the Kolmogororv-M.Riesz-Frechet theorem, we only need to show

$$\lim_{|h|\to 0} \|\tau_h u - u\|_{L^q(\mathbb{R}^n)} = 0 \qquad \text{uniformly in } u \in \mathcal{F},$$

for any $p \leq q < p^*$ and any bounded subset $\mathcal{F} \subset W^{1,p}(\mathbb{R}^n)$. But we have, by interpolation,

$$\begin{aligned} \|\tau_h u - u\|_{L^q} &\leq \|\tau_h u - u\|_{L^p}^{\alpha} \|\tau_h u - u\|_{L^{p*}}^{1-\alpha} \\ &\leq c \, |h|^{\alpha} \|\nabla u\|_{L^p}^{\alpha} \|u\|_{L^{p*}}^{1-\alpha} \\ &\leq cM \, |h|^{\alpha} \,. \end{aligned}$$

This proves the theorem.

Remark 4. • In fact, using interpolation inequalities, as we did in the proof above, but for Hölder spaces instead of L^p spaces, we can actually conclude that if $n < \infty$, $W^{1,p}(\Omega)$ embeds compactly into $C^{0,\alpha}(\overline{\Omega})$ for every $0 \le \alpha < 1 - \frac{n}{p}$.

• Note that the theorem **does not claim** that the embedding of $W^{1,p}$ into L^{p^*} in the case $1 \leq p < n$ is compact. In fact, this injection, though continuous, is never compact. See Example 5 for a generic counterexample. The same counter-example also shows that the continuous injection of $W^{1,p}$ into $C^{0,1-\frac{n}{p}}$ is also never compact for $n . It also shows that <math>W^{1,n} \cap L^{\infty}$ also does not compactly embed in L^{∞} .

Lack of compactness at the critical exponent

Example 5. Let $u \in C_c^{\infty}(B_1^n)$ with $u(0) \neq 0$. Set

$$u_{\varepsilon}(x) := u\left(\frac{x}{\varepsilon}\right)$$
 and $v_{\varepsilon}(x) := \left(\frac{1}{\varepsilon}\right)^{\frac{n-p}{p}} u_{\varepsilon}(x).$

Now $u_{\varepsilon}, v_{\varepsilon} \in W^{1,p}(B_1^n)$ for every $\varepsilon > 0$.

Case I: the case $1 \le p < n$,

We compute

$$\|v_{\varepsilon}\|_{L^{q}\left(B_{1}^{n}\right)} = \left(\frac{1}{\varepsilon}\right)^{\frac{n-p}{p}} \|u_{\varepsilon}\|_{L^{q}\left(B_{1}^{n}\right)} = \varepsilon^{n\left(\frac{1}{q}-\frac{1}{p}+\frac{1}{n}\right)} \|u\|_{L^{q}\left(B_{1}^{n}\right)}.$$

for any $1 \leq q \leq p^*$. Similarly, we have

$$\left\|\nabla v_{\varepsilon}\right\|_{L^{p}\left(B_{1}^{n}\right)}=\left\|\nabla u\right\|_{L^{p}\left(B_{1}^{n}\right)}.$$

Thus, the sequence $\{v_{\varepsilon}\}_{\varepsilon}$ is uniformly bounded in $W^{1,p}(B_1^n)$ and $v_{\varepsilon} \to 0$ as $\varepsilon \to 0$ in $L^q(B_1^n)$ for any $1 \leq q < p^*$. Thus if $\{v_{\varepsilon}\}_{\varepsilon}$ admits a convergent subsequence, by uniqueness of the limit, the limit must be the zero function. But no subsequence of $\{v_{\varepsilon}\}_{\varepsilon}$ can converge strongly in L^{p^*} to the zero function, as we clearly have

$$\|v_{\varepsilon}\|_{L^{p^*}(B_1^n)} = \|u\|_{L^{p^*}(B_1^n)} > 0 \qquad \text{for every } \varepsilon > 0.$$

So there can be no subsequence which is strongly convergent in $L^{p^*}(B_1^n)$ at all. Case II: the case n ,

We can prove exactly as before that $\{v_{\varepsilon}\}_{\varepsilon}$ is uniformly bounded in $W^{1,p}(B_1^n)$. Since p > n, it is also clear that

$$\|v_{\varepsilon}\|_{C^{0}(\overline{B_{1}^{n}})} \leq \varepsilon^{\frac{p-n}{p}} \|u\|_{C^{0}(\overline{B_{1}^{n}})} \to 0 \qquad as \quad \varepsilon \to 0.$$

So as before, if subsequential limit must be the zero function. Now it is clear that $\operatorname{supp} v_{\varepsilon} \subset B(0,\varepsilon)$. Now, for any $\varepsilon > 0$ and for any $y \in \partial B(0,\varepsilon)$, we compute

$$\frac{|v_{\varepsilon}\left(0\right)-v_{\varepsilon}\left(y\right)|}{|y-0|^{(1-\frac{n}{p})}}=\frac{|v_{\varepsilon}\left(0\right)|}{|y|^{(1-\frac{n}{p})}}=\frac{\varepsilon^{\frac{p-n}{p}}\left|u\left(0\right)\right|}{\varepsilon^{(1-\frac{n}{p})}}=|u\left(0\right)|>0.$$

Thus, we deduce

$$\left[v_{\varepsilon}\right]_{C^{0,1-\frac{n}{p}}\left(\overline{B_{1}^{n}}\right)} \geq \frac{\left|v_{\varepsilon}\left(0\right) - v_{\varepsilon}\left(y\right)\right|}{\left|y - 0\right|^{\left(1-\frac{n}{p}\right)}} = \left|u\left(0\right)\right| > 0,$$

for any $\varepsilon > 0$. Thus, there can be no subsequence of $\{v_{\varepsilon}\}_{\varepsilon}$ which is strongly convergent in $C^{0,1-\frac{n}{p}}(\overline{B_1^n})$ at all.

Case III: the case p = n,

Note that for p = n, $v_{\varepsilon} = u_{\varepsilon}$. In general, $W^{1,n}$ functions need not be L^{∞} . But here, since u being smooth is L^{∞} , so is v_{ε} for every $\varepsilon > 0$. Also, we have, for every $\varepsilon > 0$,

$$\left\|v_{\varepsilon}\right\|_{L^{\infty}\left(B_{1}^{n}\right)}=\left\|u\right\|_{L^{\infty}\left(B_{1}^{n}\right)}$$

As before, $\{v_{\varepsilon}\}_{\varepsilon}$ is uniformly bounded in $W^{1,n}(B_1^n)$ and hence by virtue of the last equality, also in $W^{1,n}(B_1^n) \cap L^{\infty}(B_1^n)$. But the same equality tells us that no subsequence can converge to zero function in the L^{∞} , which is the only possible candidate for the limit as before. This proves that the embedding of $W^{1,n}(B_1^n) \cap L^{\infty}(B_1^n)$ into $L^{\infty}(B_1^n)$. can not be compact.

Summary of Sobolev embeddings

Let $\Omega \subset \mathbb{R}^n$ be open bounded and smooth.

• If $1 \le p < n$, then the injections

 $W^{1,p}(\Omega) \hookrightarrow L^q(\Omega) \quad \text{for all } 1 \le q \le p^*$

are continuous. These injections are compact for $1 \le q < p^*$, but not for $q = p^*$.

• The injections

$$W^{1,n}(\Omega) \hookrightarrow L^q(\Omega) \quad \text{for all } 1 \le q < \infty$$

are all **continuous** and **compact**. $W^{1,n}(\Omega)$ **does not** embed continuously in $L^{\infty}(\Omega)$. Also, the injection of $W^{1,n}(\Omega) \cap L^{\infty}(\Omega)$ into $L^{\infty}(\Omega)$ is **not** compact.

• If n , then the injections

$$W^{1,p}\left(\Omega\right) \hookrightarrow C^{0,\alpha}\left(\overline{\Omega}\right) \quad \text{ for all } 0 \le \alpha \le 1 - \frac{n}{p}$$

are continuous. These injections are compact for $0 \le \alpha < 1 - \frac{n}{p}$, but not for $\alpha = 1 - \frac{n}{p}$.

Chapter 2

Direct methods

2.1 Dirichlet Integral

Now we are ready to begin our study of the modern direct methods in the calculus of variations. Let $n \geq 2, N \geq 1$ be integers and let $\Omega \subset \mathbb{R}^n$ be open bounded and smooth. Let $u \in W^{1,2}(\Omega; \mathbb{R}^N)$. Then the functional

$$\mathcal{D}\left[u\right] := \frac{1}{2} \int_{\Omega} \left|\nabla u\right|^2$$

is called the **Dirichlet integral** of u. Note that for any $u \in W^{1,2}(\Omega; \mathbb{R}^N)$, we have

$$\mathcal{D}\left[u\right]<\infty.$$

Now we want to minimize the Dirichlet integral with a given Dirichlet boundary value.

Theorem 6. Let $n \geq 2, N \geq 1$ be integers and let $\Omega \subset \mathbb{R}^n$ be open bounded and smooth. Let $u_0 \in W^{1,2}(\Omega; \mathbb{R}^N)$ be given. Then the following problem

$$\inf\left\{\mathcal{D}\left[u\right] := \frac{1}{2} \int_{\Omega} \left|\nabla u\right|^{2} : u \in u_{0} + W_{0}^{1,2}\left(\Omega; \mathbb{R}^{N}\right)\right\} = m$$

admits an **unique** minimizer $\bar{u} \in u_0 + W_0^{1,2}(\Omega; \mathbb{R}^N)$. Moreover, \bar{u} is a **weak** solution of the Dirichlet boundary value problem

$$\begin{cases} \Delta \bar{u} = 0 & \text{ in } \Omega, \\ \bar{u} = u_0 & \text{ on } \partial \Omega. \end{cases}$$

i.e. satisfies the weak form of the Euler-Lagrange equation

$$\int_{\Omega} \left\langle \nabla \bar{u}, \nabla \phi \right\rangle = 0 \qquad \text{for all } \phi \in W_0^{1,2}\left(\Omega; \mathbb{R}^N\right).$$

Proof. Let $\{u_s\}_{s\geq 1} \subset u_0 + W_0^{1,2}(\Omega; \mathbb{R}^N)$ be a minimizing sequence, i.e

$$\mathcal{D}\left[u_s\right] \to m \qquad \text{as } s \to \infty$$

Uniform bound for minimizing sequence

Since $u_s - u_0 \in W_0^{1,2}(\Omega; \mathbb{R}^N)$ for every $s \ge 1$, by Poincaré inequality, we have

$$\begin{aligned} \|u_{s} - u_{0}\|_{W^{1,2}} &\leq c \, \|\nabla u_{s} - \nabla u_{0}\|_{L^{2}} \\ &\leq c \sqrt{\mathcal{D} [u_{s}]} + c \, \|\nabla u_{0}\|_{L^{2}} \\ &\leq c \sqrt{m+1} + c \, \|\nabla u_{0}\|_{L^{2}} \end{aligned}$$

Thus, we have

$$||u_s||_{W^{1,2}} \le ||u_s - u_0||_{W^{1,2}} + ||u_0||_{W^{1,2}} \le c\sqrt{m} + 1 + c ||u_0||_{W^{1,2}}.$$

This proves that $\{u_s\}_{s\geq 1}$ is uniformly bounded in $W^{1,2}(\Omega; \mathbb{R}^N)$. Since $W^{1,2}(\Omega; \mathbb{R}^N)$ is reflexive, the uniform bound implies that there exists $\bar{u} \in W^{1,2}(\Omega; \mathbb{R}^N)$ such that up to the extraction of a subsequence, which we do not relabel, we have

$$u_s \rightharpoonup \bar{u}$$
 weakly in $W^{1,2}\left(\Omega; \mathbb{R}^N\right)$.

Sequential weak lower semicontinuity

Now we wish to prove that

$$\liminf_{s \to \infty} \mathcal{D}\left[u_s\right] \ge \mathcal{D}\left[\bar{u}\right].$$

We have,

$$\begin{split} 2\mathcal{D}\left[u_{s}\right] &= \int_{\Omega}\left\langle \nabla u_{s} - \nabla \bar{u} + \nabla \bar{u}, \nabla u_{s} - \nabla \bar{u} + \nabla \bar{u}\right\rangle \\ &= \int_{\Omega}\left\langle \nabla u_{s} - \nabla \bar{u}, \nabla u_{s} - \nabla \bar{u}\right\rangle + 2\int_{\Omega}\left\langle \nabla u_{s} - \nabla \bar{u}, \nabla \bar{u}\right\rangle \\ &+ \int_{\Omega}\left\langle \nabla \bar{u}, \nabla \bar{u}\right\rangle \\ &\geq 2\mathcal{D}\left[\bar{u}\right] + 2\int_{\Omega}\left\langle \nabla u_{s} - \nabla \bar{u}, \nabla \bar{u}\right\rangle. \end{split}$$

Since

 $u_s \rightharpoonup \bar{u}$ weakly in $W^{1,2}\left(\Omega; \mathbb{R}^N\right)$.

implies

$$\nabla u_s \rightharpoonup \nabla \bar{u}$$
 weakly in $L^2(\Omega; \mathbb{R}^N)$,

we deduce that

$$\lim_{s \to \infty} \int_{\Omega} \left\langle \nabla u_s - \nabla \bar{u}, \nabla \bar{u} \right\rangle = 0.$$

This proves the weak lower semicontinuity.

Thus, we have

$$m \leq \mathcal{D}\left[\bar{u}\right] \leq \liminf_{s \to \infty} \mathcal{D}\left[u_s\right] = m.$$

Hence \bar{u} is a minimzer.

Uniqueness

Suppose \bar{u} and \bar{v} are both minimizers. Then let $\bar{w} := \frac{1}{2} (\bar{u} + \bar{v})$. Then we can see

$$m \leq \mathcal{D}\left[\bar{w}\right] \leq \frac{1}{2}\mathcal{D}\left[\bar{u}\right] + \frac{1}{2}\mathcal{D}\left[\bar{v}\right] \leq m.$$

So \bar{w} is also a minimizer and hence we obtain,

$$\int_{\Omega} \left(\frac{1}{2} \left| \nabla \bar{u} \right|^2 + \frac{1}{2} \left| \nabla \bar{u} \right|^2 - \left| \frac{\nabla \bar{u} + \nabla \bar{v}}{2} \right|^2 \right) = 0.$$

But this implies

$$\frac{1}{2} |\nabla \bar{u}|^2 + \frac{1}{2} |\nabla \bar{u}|^2 - \left| \frac{\nabla \bar{u} + \nabla \bar{v}}{2} \right|^2 = 0 \quad \text{a.e.}$$

But this is impossible unless u = v by the strict convexity of the function $\xi \mapsto |\xi|^2$.

Euler-Lagrange equations

Now if \bar{u} is a minimizer, we must have

$$\frac{d}{dt} \left(\mathcal{D} \left[\bar{u} + t\phi \right] \right) \bigg|_{t=0} = 0$$

for any $\phi\in C^\infty_c\left(\Omega;\mathbb{R}^N\right).$ Thus we compute

$$0 = \lim_{t \to 0} \frac{1}{2t} \int_{\Omega} \left[|\nabla \bar{u} + t \nabla \phi|^2 - |\nabla \bar{u}|^2 \right]$$
$$= \lim_{t \to 0} \frac{1}{2t} \int_{\Omega} \left[t \langle \nabla \phi, \nabla \bar{u} \rangle + t^2 |\phi|^2 \right]$$
$$= \int_{\Omega} \langle \nabla \phi, \nabla \bar{u} \rangle.$$

But the fact that $\nabla \bar{u} \in L^2$ and the density of C_c^{∞} functions in $W_0^{1,2}$ implies that the identity holds for any $\phi \in W_0^{1,2}$ as well, i.e.

$$\int_{\Omega} \left\langle \nabla \phi, \nabla \bar{u} \right\rangle = 0 \qquad \text{for any } \phi \in W_0^{1,2}\left(\Omega; \mathbb{R}^N\right).$$

This completes the proof.

Bibliography

[1] BREZIS, H. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011.