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Chapter 1

Sobolev spaces
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1.5.1 Gagliardo-Nirenberg-Sobolev inequalities
1.5.2 Poincaré-Sobolev inequalities

1.5.3 Morrey’s inequality

1.5.4 Rellich-Kondrachov compact embeddings

Compactness in LP spaces

Now we proceed to the question of compactness of the Sobolev embeddings. But
before stating the result, we first record a criterion for compactness in L7 (2) .

Theorem 1 (Kolmogorov-M.Riesz-Frechet). Let F be a bounded subset of LP (R™)
with 1 < p < oo such that

lim 7w — ul o gny =0 uniformly in u € F.
|h|—0

Then the closure of Flq is compact in LP () for any measurable @ C R™ with
finite measure.



Remark 2. Here 1, is the translation operator, i.e.
Thu () = u(xz + h) for all x € R™.

Since this result is often proved in measure and integral courses while study-
ing LP spaces, we omit the proof. A detailed proof can be found at page 111 in
Theorem 4.26 of [1].

Rellich-Kondrachov compact embeddings

Now we state our main result.

Theorem 3 (Rellich-Kondrachov compact embeddings). Let @ C R™ be open
bounded and smooth. Then the following injections are all compact

WhP(Q) — L1(Q)  foralll <q<p* for1 <p<mn,
WP (Q) — L1(Q)  forall1<q<oo forp=n,
Whe (Q) = C (Q) forn < p < oo.

Proof. The case p > n follows from Morrey’s inequality and Ascoli-Arzela the-
orem. The case p = n can be deduced from the case 1 < p < n case. So we just
prove this later case. Also, since §2 is bounded, clearly it is enough to prove the
result for p < g < p*.

By using extension and the Kolmogororv-M.Riesz-Frechet theorem, we only
need to show

lim |[7pu — ul| pogny =0 uniformly in u € F,

|h|—0
for any p < ¢ < p* and any bounded subset F C WP (R"). But we have, by
interpolation,

Irnw =l < llmnw =l 3o llnu =l
1—
< clh* IVullzy llull "
< cM |h|*.

This proves the theorem. O

Remark 4. e In fact, using interpolation inequalities, as we did in the proof
above, but for Holder spaces instead of L spaces, we can actually conclude
that if n < oo, WLP (Q) embeds compactly into C* (Q) forevery 0 < a <
1- 2.

P

e Note that the theorem does mot claim that the embedding of WP into
LP" in the case 1 < p < n is compact. In fact, this injection, though
continuous, is never compact. See Example[3 for a generic counterezam-
ple. The same counter-example also shows that the continuous injection
of WP into C%1=% s also never compact forn < p < oo. It also shows
that Wh™ N L> also does not compactly embed in L.



Lack of compactness at the critical exponent

Example 5. Let u € C° (BY) with u (0) # 0. Set

1 P
ue () :=u (f) and ve () := () Ue () .

€ €

Now ug,v. € WHP (BY) for every e > 0.

Case I: the case 1 <p<n,

We compute
1\ 7 n(l-l41
ol iagory = (5) 7 Moelungogy =" 73) fullaayy.

for any 1 < q < p*. Similarly, we have
HV’UEHLP(BI‘) = ||VUHLP(B;L) .

Thus, the sequence {v.}_ is uniformly bounded in WP (B}) and ve — 0 as
e = 0in LI(BY) for any 1 < q < p*. Thus if {ve.}. admits a convergent
subsequence, by uniqueness of the limit, the limit must be the zero function. But
no subsequence of {ve}_. can converge strongly in LP" to the zero function, as
we clearly have

HUEHLP*(B?) = ||uHLp*(BIL) >0 for every e > 0.

So there can be no subsequence which is strongly convergent in LP" (B?) at all.
Case II: the case n < p < oo,

We can prove exactly as before that {v.}_ is uniformly bounded in W'¥ (B} .
Since p > n, it is also clear that

p—n

||1}e‘|c0(37{z) <egwr H“”CO(]T{L) -0 as € —0.

So as before, if subsequential limit must be the zero function. Now it is clear that
suppve C B(0,¢). Now, for any e > 0 and for any y € OB (0,¢), we compute

0= (0) = v (W) _ Jo- ()] _ "7 Ju(0)]

n - n — n - 0 >0.
y—o0H i an O
Thus, we deduce
|ve (0) — v (y)|
velor a2 7, g~ MOI>0
Yy — P

for any € > 0. Thus, there can be no subsequence of {v.}. which is strongly
convergent in ™'~ % (B}) at all.



Case III: the case p =n,

Note that for p = n, v. = u.. In general, W™ functions need not be L.
But here, since u being smooth is L, so is v. for every € > 0. Also, we have,
for every e > 0,

||/UE||L<>Q(BIL) = ||u||L<>Q(B’{l) .

As before, {v:}_ is uniformly bounded in W™ (B}') and hence by virtue of
the last equality, also in W™ (B}) N L™ (BY}). But the same equality tells us
that no subsequence can converge to zero function in the L, which is the only
possible candidate for the limit as before. This proves that the embedding of
Whn(Bp)N L (BY) into L (BY). can not be compact.

Summary of Sobolev embeddings

Let Q C R™ be open bounded and smooth.

e If 1 < p < n, then the injections
WP (Q) — L1(Q) foralll<gq<p*
are continuous. These injections are compact for 1 < ¢ < p*, but
not for ¢ = p*.
e The injections

Whm(Q) < L1(Q) forall 1 <gq< oo

are all continuous and compact. W1 (Q) does not embed contin-
uously in L (€2) . Also, the injection of W1 (Q)NL> () into L™ ()
is not compact.

e If n < p < o0, then the injections

WhP(Q) = C%*(Q) foral0<a<1-— n
p

are continuous. These injections are compact for 0 < o <1 -2

p?
but not for « =1 — %.




Chapter 2

Direct methods

2.1 Dirichlet Integral

Now we are ready to begin our study of the modern direct methods in the
calculus of variations. Let n > 2, N > 1 be integers and let 2 C R™ be open
bounded and smooth. Let v € W2 (Q; ]RN) . Then the functional

Dlu] = %/Q|Vu|2

is called the Dirichlet integral of u. Note that for any u € W2 (Q;RY) | we
have
D [u] < occ.

Now we want to minimize the Dirichlet integral with a given Dirichlet bound-
ary value.

Theorem 6. Let n > 2, N > 1 be integers and let 2 C R™ be open bounded and
smooth. Let ug € W12 (Q;RN) be given. Then the following problem

inf{D[u] = %/ |Vu|2 Tu € uo—i—WOL2 (Q;RN)} =m
Q

admits an unique minimizer U € ug + Wol’2 (Q;RN) . Moreover, u is a weak
solution of the Dirichlet boundary value problem

i.e. satisfies the weak form of the Euler-Lagrange equation

/ (Va, Vo) =0 for all g € Wy? (RN .
Q



Proof. Let {us} >, Cuo+ Wol’2 (2;RY) be a minimizing sequence, i.e

Dlus] = m as s — 00.

Uniform bound for minimizing sequence

Since us — ug € VVO1 -2 (Q; RN ) for every s > 1, by Poincaré inequality, we have

||Us - UOHw1,2 < C”VUS - VuO”L?

< eV D[us] + ¢ [[Vuol| 12
<evm+1+c|[Vuoll,e -

Thus, we have
luslwo < llus = uollwrz + luollyre < evm + 1+ clluolly -

This proves that {us},, is uniformly bounded in W2 (Q;R") .
Since W2 (Q; RY ) is reflexive, the uniform bound implies that there exists

e Wh? (Q; RN) such that up to the extraction of a subsequence, which we do
not relabel, we have

Us — U weakly in W1? (Q;RN) .

Sequential weak lower semicontinuity

Now we wish to prove that

liminf D [us] > D [a] .

S§—00
We have,
2D [us] = / (Vus — Vu + Vi, Vus, — Vi + Va)
Q
= / (Vus — Va,Vus, — V) + 2/ (Vus — Va, Vi)
Q Q
+/ (Va, Va)
Q
> 2D [u] + 2/ (Vus — Va, Va) .
Q
Since
Us — U weakly in W12 (Q;RN) .
implies

Vus = Vi weakly in L? (;RY)



we deduce that
lim [ (Vus —Va,Va) =0.

S§— 00 Q
This proves the weak lower semicontinuity.
Thus, we have

m < Dlu] <liminf D [ug] = m.

55— 00

Hence @ is a minimzer.
Uniqueness

Suppose @ and ¥ are both minimizers. Then let @ := 1 (@ + ©). Then we can
see

m < D] < ;D[] + D] < m.

2
):0.
2

=0 a.e.

So w is also a minimizer and hence we obtain,

N S R Vu+ Vo
_ 7v e
/Q<2|Vu +2| il ‘ 5

But this implies

Vi + Vo

1o 2, 1, 2

But this is impossible unless © = v by the strict convexity of the function
2

E[€]°.

Euler-Lagrange equations

Now if @ is a minimizer, we must have

LD+ te))

=0
dt

t=0

for any ¢ € C° (Q; RN) . Thus we compute

a1 _ 2 _12
of}%%/ﬂ[wuﬂvm |vu|]

:}13%2%/9 [t (v, Va) + 2]0]’]

= /Q (Vo, Vi) .

But the fact that Vi € L? and the density of CS° functions in VVO1 2 implies
that the identity holds for any ¢ € VVO1 2 as well, i.e.

/ (Vo,Va) =0 for any ¢ € Wy (Q;RN) .
Q

This completes the proof. O
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