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Chapter 1

Sobolev spaces

1.1 Definitions

1.2 Elementary properties

1.3 Approximation and extension
1.4 Traces

1.5 Sobolev inequalities and Sobolev embeddings

1.5.1 Gagliardo-Nirenberg-Sobolev inequalities
1.5.2 Poincaré-Sobolev inequalities

Poincaré inequality on balls

Now we plan to derive a local version of a Poincaré inequality.

Lemma 1 (Local Poincaré inequality). For every 1 < p < oo, there exists a
constant ¢ > 0, depending only on n and p such that

P
u(y) —u(2)|]P dy < erntpl M dy, 1.1
n—1
B(z,r) B(ar) [y — 2]

for every ball B (z,r) C R™, every z € B (z,7) and every u € W1P (R").

Remark 2. Note that like the Poincaré inequality, here also the estimate con-
trols certain integral related to u by integrals related to Vu.



Proof. We can obviously assume u € C* (R™). For y, 2 € B (z,r), we have,

1
wl)—u(e) = [ Gulre—2) a

:/0 (Vu(z+t(y—=2),y—=z)y dt
Thus, we have,
1
lu(y) —u(2)" < |y—»’«’|p/0 [Vu (2 +t(y —2))" dt. (1.2)

Let & > 0 be a number such that B (x,r) C B(z,kr) for any z € B (x,r).
Now we plan to integrate this over y € 9B (z, s) for any s > 0 and then integrate
w.r.t. s from 0 to kr.

Now, for any s > 0, integrating over y € 0B (z,s), we have,

/ u(y) —u ()P 4 (y)
B(z,r)apdB(z,s)

1
< sp/ / |V (z 4+t (y — 2))[F dH" ™ (y)dt.
0 JB(z,r)N0B(z,s)

Putting w = z + t (y — z) and changing variables, this implies,

/ uly) () aH ()
B(z,r)NdB(z,s)
|
< / L / IV (w) [P dHP (w) dt
ot B(z,r)NOB(z,ts)
1
1
= gntpl / — / |Vu (w)[P dH™ ™ (w) dt.
0 (tS) B(z,r)NOB(z,ts)
The RHS of the last inequality is
oo
gt / - / IV (w)? dH" (w) dt
0 (tS) B(z,r)NOB(z,ts)
\V4 P
— n-‘rp 1/ / | u( )| dHn—l (w) dt
B(z,r)NOB(z,ts) |’U) — Z|
P
_ n+p 2/ / ‘VU( )‘ anl (’U)) dg
B(z,r)ndB(z,0) |w — 2|~

p
:5n+p—2/ [Vu (w 12|_1 dw
B(z,r)NB(z,s) |w — Z|

p
S"er*?/ 7‘VU (w)|,1 dw.
B

n
(@) [w = 2|

IN



So we arrive at
/ [ (y) —u ()P 4 (y)
B(z,r)NdB(z,s)

p
< Sn+p72/ ‘V’U, (’UJ)| dw.
B

— n—1
(z,r) |w — 2|

Integrating w.r.t s from 0 to kr and noticing that B (z,r) C B (z, kr) , we deduce

u(y) —u(2)]’ dy < u(y) —u(2)” d
[, o —uer as | uy) -~ u )l dy

B(z,r)NB(z,kr)
kr
-/ u(y) —u () dH (y)ds
0 B(z,r)NdB(z,s)
kr

p
S/ sn+p72ds/ ‘vu (wg‘il dw
0 B(z,r) |w — 2|

P
camnt [ IMOF
B

n—1
(@) |y — 2|

This proves the lemma. U

Poincaré inequality with mean on balls
We now prove a Poincaré type inequality for WP functions.

Theorem 3 (Poincaré inequality with mean on balls). For every 1 < p < oo,
there exists a constant ¢ > 0, depending only on n and p such that

][B(w,r)

for every ball B (z,r) C R™ and every u € WHP (R").

u (y) - (u)B(x,T)

P
<ot f V@l 4 (13)
B(z,r)

Remark 4. Here the integral mean is

1

(U)B(I,T) = W B(z,r)

u(y) dy
and the notation for averaged integral is defined as

1
fW dy=m——= u(y) dy.
7[3(:6,7") ( ) |B (IIT,T’)‘ B(z,r) ( )



Proof. As usual we can assume u € C! (R"). Now we have,

é(l’,’r)

p

dy

u(y) — (U)B(w,r)

:72@” ]i(m)w(y)—u(z)) dz

][ f —u(2)P dydz
B(z,r) (z 7‘)

Now, applying Lemma [l| to estimate the RHS, we deduce

P
dy

p
dy

u (y) - (U)B(ac,r)

P
< c][ Tpfl/ M dzdy
(@ B(a,r) Iy—zl

)
<erP™ 1][ / \Vu dzdy
B(x,r) JBz,r) |y — zl

Now using Fubini, we deduce

][B(wn)

p

u(y) = (Wpe,y| dy

< crP~ 1][ / |VU dzdy
B(z.r) J B(a,r) |y—Z\
B 1
= cr? 1/ [V (2)[” (f T -1 dy) dz
B(z,r) B(z,r) |y - Z|
—1 p 1 1
<er? [Vu ()" | = e ) dz
B(a,r) ™ JB(zkr) [y — 2]

rP »
=c— [Vu (2)|" dz

rn B(z,r)

= crp][ [Vu (2)P dz.
B(z,r)

Poincaré-Sobolev inequality with mean on balls

As a corollary, we derive the Poincaré-Sobolev inequality with mean on balls.

Theorem 5 (Poincaré-Sobolev inequality with mean on balls). For every 1 <



p < n, there exists a constant ¢ > 0, depending only on n and p such that
1

(7[ ’ dy> s(f Vu (y)P dy>, (1.4)
B(x,r) B(z,r)

for every ball B (z,r) C R™ and every u € WP (R").

u(y) — (U)B(I,T)

Proof. We first prove the inequality

O\
(7[ o dy>
B(z,r)

g(f Vo (y)? dy+][ v () dy> ,
B(z,r) B(z,r)

for every ball B (x,7) C R™ and for every v € WP (R") with 1 < p < n.

Note that replacing v by %v (ry) and translation, we can assume that x = 0
and r = 1. But in this case, the inequality above is just the Poincaré-Sobolev
inequality for the bounded domain B (0,1) C R™.

This proves the inequality.
Now we apply this inequality to the function v : = u — (u) B(ar) - We obtain

a
f )
( B(z,r)
1
p\?
<c rp][ [Vul’ +][ .
B(z,r) B(z,r)

Now we use the Poincaré inequality with mean on balls to estimate the last
term to obtain

R :
][ <c rpf [Vaul | .
B(z,r) B(z,r)

This proves the theorem. O

U= (U)B(x,r)

u— (u)B(ar,r)

u— (u)B(x,r)

1.5.3 Morrey’s inequality

Now we prove an important inequality.

Theorem 6 (Morrey’s inequality). For every n < p < oo, there exists a
constant ¢ > 0, depending only on n and p such that

p

juy) = u ()] < or (ﬁ( vur dy) , (15)

for a.e. y,z € B (x,r) for every ball B (z,r) C R™ and for every u € W1P (R").



Proof. We use the local Poincaré inequality lemma with p = 1 to deduce

lu(y) —u ()]
u —u(w u(w) —u(z)]) dw
Sji(m)(l (y) —u(w)|+ |u(w) —u(2)])

<cf vu@ (- wl T vl wl ) du
B(z,r)

—1

Holder B = v
1-n 1-n\r-1 p
< ¢ / (|y—w| + ]z —w| ) dw / |[Vu (w)]” dw | .
B(z,r) B(=z,r)

(1.6)

. _r_ .,
z% > 1, the function ¢ — ¢7-T is convex. Hence we deduce,

1—n 1-n\ 72T B p(1=n) p(1=n)
(ly—wl' ™"+l —w ™) <277 (ly = wl 7 4w ).

Using this, we obtain

/ (|y—w|1_"—|—|z—w|1_")ﬁ dw
B(z,r)

p(1—n) p(l—n)
<c</ ly — w| »=1 dw+/ |z —w| P71 dw) . (17
B(z,r)

. !’
Now, since p =

B(z,r)

Now, as before, for any y € B (z,7), we can find k > 0 such that B (z,r) C
B (y, kr). Thus, we can estimate

p(l—n) p(l—n)
ly —w| =T dw < ly —w| »=7 dw
B(z,r) B(y,kr)

kr p(-n) 1
:/ / p 1 -p" Tt dpdf
0 S§n—1

kr .
= / / p(”_l)(l_ﬁ) dp do = crT,
0 Sn—l

Similarly, we can also establish the estimate

p(l—n) p—n
|z —w| 7T dw <ervrt.
B(z,r)

Combining these last two estimates with (1.7, we obtain

_p_ .
/ ('y_w\17n+lz—w|lfn) T dw < erver
B(z,r)

Plugging this estimate into (1.6]), we arrive at

fuly) —u () <er'™? (/B( )|Vu(w)|p dw>

This proves the inequality.
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Sobolev embedding for p > n

Morrey’s inequality implies that WP functions with p > n are Holder contin-

uous with exponent o =1 — %.

Theorem 7 (Sobolev embedding in R™ for p > n). Let n < p < oo. Then
WP (R") continuously embeds into C*'~ % (R™).

Proof. By Morrey’s inequality, for a.e. x,y € R" with |z — y| = r, we have,

ju(2) — u ()] < er'3 (/B( [P dw>

:c|w—y|17% (/B( , )|Vu(w)|p dw>

§c|x—y|17% (/R [Vu (w)? dw)p

Thus, for a.e. z,y € R™, we have

ele) — vl (/R |V (w)[? dw); . (1.8)

lz —y|" 7

B =

This implies that u agrees a.e. with a continuous function @. Indeed, let A C R™
be the subset of measure zero such that holds for any z,y € R™\ A. Then
ulgn\ 4 is continuous and since R™ \ A is dense in R", there exists a unique
continuous extension @ such that holds for all z,y € R™ for 4. From now
on, by a harmless abuse of notation, we simply denote this extension by w itself.
Thus, taking supremum as x,y varies in R", we have,

=y D)
zyeRn |z —y| P

[U}COJ*%(R?«L) < CHVUHLP(R") : (19)

This estimates the Holder seminorm. Now all that remains is to estimate the C°
norm. For any x € R”, using the local Poincaré inequality lemma with p = 1,



we have

fu ()| s]i( @) ay

<f -l dysf Ju) dy
B(z,1) B(z,1)

s/ Vu )z -y dy+][ lu ()] dy
B(z,1) B(z,1)

p—1

Holder » P 1 b

S weera) ([ ——m
B(z,1) B(w1) |z —y| 71
1
+</ fu ()P dy>
B(z,1)
1 1
<c (/ [Vu (y)[P dy) +ec (/ Ju (y)|” dy) < cllull i @ny -
B(z,1) B(z,1)

Taking supremum as z € R™, we have

lullgogny = sup |u(z)] < ¢llullyrpgn -
weRn
Thus, we obtain
lell g3 gy = Ny + [ s 2 gy < €l -
This proves the result. O

As usual, the result for R™ implies, by extension, the result for bounded
domains.

Theorem 8 (Sobolev embedding in bounded domains for p > n). Let Q C R
be open, bounded and smooth and let n < p < co. Then WP (Q) continuously
embeds into C%¢ (Q) forevery0 <a<1-— %.

W1 and Lipschitz functions
As a consequence, we can deduce

Theorem 9 (W1 = C%1). Let Q C R™ be open, bounded and smooth. Then
whe(Q) ="' (Q) (with equivalent norms).

Proof. Since VKLOO () c WP (Q) for any n < p < oo, by the last theorem,
for any z,y € ), we obtain

1—n
u (@) —u@)| <cle =yl 7 lullwing) -



Letting p — oo and noting that

Jim flullyn i) = lullys o) -

we obtain the inequality

u(z) —u )| < clz =yl llullyreq)-
But this implies

|u(z) —u(y)l

[u]co,l(ﬁ) ‘= sup W < CHUHWI»OC(Q)‘

Lyeﬁ
Thus, we have established the continuous embedding

Whe () € 0% (9).

The other inclusion is easy and was proved earlier in this chapter. This com-

pletes the proof.

O
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