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Chapter 1

Sobolev spaces

1.1 Definitions

1.2 Elementary properties

1.3 Approximation and extension

1.4 Traces

1.5 Sobolev inequalities and Sobolev embeddings

1.5.1 Gagliardo-Nirenberg-Sobolev inequalities

1.5.2 Poincaré-Sobolev inequalities

Poincaré inequality on balls

Now we plan to derive a local version of a Poincaré inequality.

Lemma 1 (Local Poincaré inequality). For every 1 ≤ p < ∞, there exists a
constant c > 0, depending only on n and p such that

ˆ
B(x,r)

|u (y)− u (z)|p dy ≤ crn+p−1

ˆ
B(x,r)

|∇u (y)|p

|y − z|n−1 dy, (1.1)

for every ball B (x, r) ⊂ Rn, every z ∈ B (x, r) and every u ∈W 1,p (Rn) .

Remark 2. Note that like the Poincaré inequality, here also the estimate con-
trols certain integral related to u by integrals related to ∇u.
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Proof. We can obviously assume u ∈ C1 (Rn) . For y, z ∈ B (x, r) , we have,

u (y)− u (z) =

ˆ 1

0

d

dt
u (z + t (y − z)) dt

=

ˆ 1

0

〈∇u (z + t (y − z)) , y − z〉 dt

Thus, we have,

|u (y)− u (z)|p ≤ |y − z|p
ˆ 1

0

|∇u (z + t (y − z))|p dt. (1.2)

Let k > 0 be a number such that B (x, r) ⊂ B (z, kr) for any z ∈ B (x, r) .
Now we plan to integrate this over y ∈ ∂B (z, s) for any s > 0 and then integrate
w.r.t. s from 0 to kr.

Now, for any s > 0, integrating (1.2) over y ∈ ∂B (z, s) , we have,

ˆ
B(x,r)ap∂B(z,s)

|u (y)− u (z)|p dHn−1 (y)

≤ sp
ˆ 1

0

ˆ
B(x,r)∩∂B(z,s)

|∇u (z + t (y − z))|p dHn−1 (y) dt.

Putting w = z + t (y − z) and changing variables, this implies,

ˆ
B(x,r)∩∂B(z,s)

|u (y)− u (z)|p dHn−1 (y)

≤ sp
ˆ 1

0

1

tn−1

ˆ
B(x,r)∩∂B(z,ts)

|∇u (w)|p dHn−1 (w) dt

= sn+p−1

ˆ 1

0

1

(ts)
n−1

ˆ
B(x,r)∩∂B(z,ts)

|∇u (w)|p dHn−1 (w) dt.

The RHS of the last inequality is

sn+p−1

ˆ 1

0

1

(ts)
n−1

ˆ
B(x,r)∩∂B(z,ts)

|∇u (w)|p dHn−1 (w) dt

= sn+p−1

ˆ 1

0

ˆ
B(x,r)∩∂B(z,ts)

|∇u (w)|p

|w − z|n−1 dHn−1 (w) dt

= sn+p−2

ˆ s

0

ˆ
B(x,r)∩∂B(z,θ)

|∇u (w)|p

|w − z|n−1 dHn−1 (w) dθ

= sn+p−2

ˆ
B(x,r)∩B(z,s)

|∇u (w)|p

|w − z|n−1 dw

≤ sn+p−2

ˆ
B(x,r)

|∇u (w)|p

|w − z|n−1 dw.

2



So we arrive atˆ
B(x,r)∩∂B(z,s)

|u (y)− u (z)|p dHn−1 (y)

≤ sn+p−2

ˆ
B(x,r)

|∇u (w)|p

|w − z|n−1 dw.

Integrating w.r.t s from 0 to kr and noticing that B (x, r) ⊂ B (z, kr) , we deduce

ˆ
B(x,r)

|u (y)− u (z)|p dy ≤
ˆ
B(x,r)∩B(z,kr)

|u (y)− u (z)|p dy

=

ˆ kr

0

ˆ
B(x,r)∩∂B(z,s)

|u (y)− u (z)|p dHn−1 (y) ds

≤
ˆ kr

0

sn+p−2ds

ˆ
B(x,r)

|∇u (w)|p

|w − z|n−1 dw

≤ crn+p−1

ˆ
B(x,r)

|∇u (y)|p

|y − z|n−1 dy.

This proves the lemma.

Poincaré inequality with mean on balls

We now prove a Poincaré type inequality for W 1,p functions.

Theorem 3 (Poincaré inequality with mean on balls). For every 1 ≤ p < ∞,
there exists a constant c > 0, depending only on n and p such that

 
B(x,r)

∣∣∣u (y)− (u)B(x,r)

∣∣∣p dy ≤ crp
 
B(x,r)

|∇u (y)|p dy, (1.3)

for every ball B (x, r) ⊂ Rn and every u ∈W 1,p (Rn) .

Remark 4. Here the integral mean is

(u)B(x,r) :=
1

|B (x, r)|

ˆ
B(x,r)

u (y) dy

and the notation for averaged integral is defined as

 
B(x,r)

f (y) dy =
1

|B (x, r)|

ˆ
B(x,r)

u (y) dy.
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Proof. As usual we can assume u ∈ C1 (Rn) . Now we have,

 
B(x,r)

∣∣∣u (y)− (u)B(x,r)

∣∣∣p dy

=

 
B(x,r)

∣∣∣∣∣
 
B(x,r)

(u (y)− u (z)) dz

∣∣∣∣∣
p

dy

≤
 
B(x,r)

 
B(x,r)

|u (y)− u (z)|p dydz

Now, applying Lemma 1 to estimate the RHS, we deduce

 
B(x,r)

∣∣∣u (y)− (u)B(x,r)

∣∣∣p dy

≤ c
 
B(x,r)

rp−1

ˆ
B(x,r)

|∇u (z)|p

|y − z|n−1 dzdy

≤ crp−1

 
B(x,r)

ˆ
B(x,r)

|∇u (z)|p

|y − z|n−1 dzdy

Now using Fubini, we deduce

 
B(x,r)

∣∣∣u (y)− (u)B(x,r)

∣∣∣p dy

≤ crp−1

 
B(x,r)

ˆ
B(x,r)

|∇u (z)|p

|y − z|n−1 dzdy

= crp−1

ˆ
B(x,r)

|∇u (z)|p
( 

B(x,r)

1

|y − z|n−1 dy

)
dz

≤ crp−1

ˆ
B(x,r)

|∇u (z)|p
(

1

rn

ˆ
B(z,kr)

1

|y − z|n−1 dy

)
dz

= c
rp

rn

ˆ
B(x,r)

|∇u (z)|p dz

= crp
 
B(x,r)

|∇u (z)|p dz.

Poincaré-Sobolev inequality with mean on balls

As a corollary, we derive the Poincaré-Sobolev inequality with mean on balls.

Theorem 5 (Poincaré-Sobolev inequality with mean on balls). For every 1 ≤
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p < n, there exists a constant c > 0, depending only on n and p such that( 
B(x,r)

∣∣∣u (y)− (u)B(x,r)

∣∣∣p∗ dy

) 1
p∗

≤ cr

( 
B(x,r)

|∇u (y)|p dy

) 1
p

, (1.4)

for every ball B (x, r) ⊂ Rn and every u ∈W 1,p (Rn) .

Proof. We first prove the inequality( 
B(x,r)

|v (y)|p
∗

dy

) 1
p∗

≤ c

(
rp
 
B(x,r)

|∇v (y)|p dy +

 
B(x,r)

|v (y)|p dy

) 1
p

,

for every ball B (x, r) ⊂ Rn and for every v ∈W 1,p (Rn) with 1 ≤ p < n.

Note that replacing v by 1
rv (ry) and translation, we can assume that x = 0

and r = 1. But in this case, the inequality above is just the Poincaré-Sobolev
inequality for the bounded domain B (0, 1) ⊂ Rn.

This proves the inequality.
Now we apply this inequality to the function v := u− (u)B(x,r) . We obtain

( 
B(x,r)

∣∣∣u− (u)B(x,r)

∣∣∣p∗) 1
p∗

≤ c

(
rp
 
B(x,r)

|∇u|p +

 
B(x,r)

∣∣∣u− (u)B(x,r)

∣∣∣p) 1
p

.

Now we use the Poincaré inequality with mean on balls to estimate the last
term to obtain( 

B(x,r)

∣∣∣u− (u)B(x,r)

∣∣∣p∗) 1
p∗

≤ c

(
rp
 
B(x,r)

|∇u|p
) 1

p

.

This proves the theorem.

1.5.3 Morrey’s inequality

Now we prove an important inequality.

Theorem 6 (Morrey’s inequality). For every n < p < ∞, there exists a
constant c > 0, depending only on n and p such that

|u (y)− u (z)| ≤ cr

( 
B(x,r)

|∇u (y)|p dy

) 1
p

, (1.5)

for a.e. y, z ∈ B (x, r) for every ball B (x, r) ⊂ Rn and for every u ∈W 1,p (Rn) .
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Proof. We use the local Poincaré inequality lemma with p = 1 to deduce

|u (y)− u (z)|

≤
 
B(x,r)

(|u (y)− u (w)|+ |u (w)− u (z)|) dw

≤ c
ˆ
B(x,r)

|∇u (w)|
(
|y − w|1−n + |z − w|1−n

)
dw

Hölder
≤ c

(ˆ
B(x,r)

(
|y − w|1−n + |z − w|1−n

) p
p−1

dw

) p−1
p
(ˆ

B(x,r)

|∇u (w)|p dw

) 1
p

.

(1.6)

Now, since p
′

= p
p−1 > 1, the function t 7→ t

p
p−1 is convex. Hence we deduce,(

|y − w|1−n + |z − w|1−n
) p

p−1 ≤ 2
1

p−1

(
|y − w|

p(1−n)
p−1 + |z − w|

p(1−n)
p−1

)
.

Using this, we obtain
ˆ
B(x,r)

(
|y − w|1−n + |z − w|1−n

) p
p−1

dw

≤ c

(ˆ
B(x,r)

|y − w|
p(1−n)
p−1 dw +

ˆ
B(x,r)

|z − w|
p(1−n)
p−1 dw

)
. (1.7)

Now, as before, for any y ∈ B (x, r) , we can find k > 0 such that B (x, r) ⊂
B (y, kr) . Thus, we can estimateˆ

B(x,r)

|y − w|
p(1−n)
p−1 dw ≤

ˆ
B(y,kr)

|y − w|
p(1−n)
p−1 dw

=

ˆ kr

0

ˆ
Sn−1

ρ
p(1−n)
p−1 · ρn−1 dρ dθ

=

ˆ kr

0

ˆ
Sn−1

ρ(n−1)(1− p
p−1 ) dρ dθ = cr

p−n
p−1 .

Similarly, we can also establish the estimateˆ
B(x,r)

|z − w|
p(1−n)
p−1 dw ≤ cr

p−n
p−1 .

Combining these last two estimates with (1.7), we obtainˆ
B(x,r)

(
|y − w|1−n + |z − w|1−n

) p
p−1

dw ≤ cr
p−n
p−1 .

Plugging this estimate into (1.6), we arrive at

|u (y)− u (z)| ≤ cr1−n
p

(ˆ
B(x,r)

|∇u (w)|p dw

) 1
p

.

This proves the inequality.
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Sobolev embedding for p > n

Morrey’s inequality implies that W 1,p functions with p > n are Hölder contin-
uous with exponent α = 1− n

p .

Theorem 7 (Sobolev embedding in Rn for p > n). Let n < p < ∞. Then
W 1,p (Rn) continuously embeds into C0,1−n

p (Rn) .

Proof. By Morrey’s inequality, for a.e. x, y ∈ Rn with |x− y| = r, we have,

|u (x)− u (y)| ≤ cr1−n
p

(ˆ
B(x,2r)

|∇u (w)|p dw

) 1
p

= c |x− y|1−
n
p

(ˆ
B(x,2r)

|∇u (w)|p dw

) 1
p

≤ c |x− y|1−
n
p

(ˆ
Rn

|∇u (w)|p dw

) 1
p

.

Thus, for a.e. x, y ∈ Rn, we have

|u (x)− u (y)|
|x− y|1−

n
p
≤ c

(ˆ
Rn

|∇u (w)|p dw

) 1
p

. (1.8)

This implies that u agrees a.e. with a continuous function ũ. Indeed, let A ⊂ Rn
be the subset of measure zero such that (1.8) holds for any x, y ∈ Rn \A. Then
u|Rn\A is continuous and since Rn \ A is dense in Rn, there exists a unique
continuous extension ũ such that (1.8) holds for all x, y ∈ Rn for ũ. From now
on, by a harmless abuse of notation, we simply denote this extension by u itself.
Thus, taking supremum as x, y varies in Rn, we have,

[u]
C

0,1−n
p (Rn)

:= sup
x,y∈Rn

|u (x)− u (y)|
|x− y|1−

n
p
≤ c ‖∇u‖Lp(Rn) . (1.9)

This estimates the Hölder seminorm. Now all that remains is to estimate the C0

norm. For any x ∈ Rn, using the local Poincaré inequality lemma with p = 1,
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we have

|u (x)| ≤
 
B(x,1)

|u (x)| dy

≤
 
B(x,1)

|u (x)− u (y)| dy +

 
B(x,1)

|u (y)| dy

≤
ˆ
B(x,1)

|∇u (y)| |x− y|1−n dy +

 
B(x,1)

|u (y)| dy

Hölder
≤

(ˆ
B(x,1)

|∇u (y)|p dy

) 1
p
(ˆ

B(x,1)

1

|x− y|
(n−1)p
p−1

dy

) p−1
p

+ c

(ˆ
B(x,1)

|u (y)|p dy

) 1
p

≤ c

(ˆ
B(x,1)

|∇u (y)|p dy

) 1
p

+ c

(ˆ
B(x,1)

|u (y)|p dy

) 1
p

≤ c ‖u‖W 1,p(Rn) .

Taking supremum as x ∈ Rn, we have

‖u‖C0(Rn) := sup
x∈Rn

|u (x)| ≤ c ‖u‖W 1,p(Rn) .

Thus, we obtain

‖u‖
C

0,1−n
p (Rn)

:= ‖u‖C0(Rn) + [u]
C

0,1−n
p (Rn)

≤ c ‖u‖W 1,p(Rn) .

This proves the result.

As usual, the result for Rn implies, by extension, the result for bounded
domains.

Theorem 8 (Sobolev embedding in bounded domains for p > n). Let Ω ⊂ Rn
be open, bounded and smooth and let n < p < ∞. Then W 1,p (Ω) continuously
embeds into C0,α

(
Ω
)

for every 0 ≤ α ≤ 1− n
p .

W 1,∞ and Lipschitz functions

As a consequence, we can deduce

Theorem 9 (W 1,∞ = C0,1). Let Ω ⊂ Rn be open, bounded and smooth. Then

W 1,∞ (Ω) = C0,1
(
Ω
)

(with equivalent norms).

Proof. Since W 1,∞ (Ω) ⊂ W 1,p (Ω) for any n < p < ∞, by the last theorem,
for any x, y ∈ Ω, we obtain

|u (x)− u (y)| ≤ c |x− y|1−
n
p ‖u‖W 1,p(Ω) .
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Letting p→∞ and noting that

lim
p→∞

‖u‖W 1,p(Ω) = ‖u‖W 1,∞(Ω) ,

we obtain the inequality

|u (x)− u (y)| ≤ c |x− y| ‖u‖W 1,∞(Ω) .

But this implies

[u]C0,1(Ω) := sup
x,y∈Ω

|u (x)− u (y)|
|x− y|

≤ c ‖u‖W 1,∞(Ω) .

Thus, we have established the continuous embedding

W 1,∞ (Ω) ⊂ C0,1
(
Ω
)
.

The other inclusion is easy and was proved earlier in this chapter. This com-
pletes the proof.
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