Introduction to the Calculus of Variations Lecture Notes
 Lecture 15

Swarnendu Sil

Spring 2021, IISc

Chapter 1

Sobolev spaces

1.1 Definitions

1.2 Elementary properties

1.3 Approximation and extension

1.4 Traces

1.5 Sobolev inequalities and Sobolev embeddings

1.5.1 Gagliardo-Nirenberg-Sobolev inequalities

1.5.2 Poincaré-Sobolev inequalities

Poincaré inequality on balls
Now we plan to derive a local version of a Poincaré inequality.
Lemma 1 (Local Poincaré inequality). For every $1 \leq p<\infty$, there exists a constant $c>0$, depending only on n and p such that

$$
\begin{equation*}
\int_{B(x, r)}|u(y)-u(z)|^{p} \mathrm{~d} y \leq c r^{n+p-1} \int_{B(x, r)} \frac{|\nabla u(y)|^{p}}{|y-z|^{n-1}} \mathrm{~d} y \tag{1.1}
\end{equation*}
$$

for every ball $B(x, r) \subset \mathbb{R}^{n}$, every $z \in B(x, r)$ and every $u \in W^{1, p}\left(\mathbb{R}^{n}\right)$.
Remark 2. Note that like the Poincaré inequality, here also the estimate controls certain integral related to u by integrals related to ∇u.

Proof. We can obviously assume $u \in C^{1}\left(\mathbb{R}^{n}\right)$. For $y, z \in B(x, r)$, we have,

$$
\begin{aligned}
u(y)-u(z) & =\int_{0}^{1} \frac{d}{d t} u(z+t(y-z)) \mathrm{d} t \\
& =\int_{0}^{1}\langle\nabla u(z+t(y-z)), y-z\rangle \mathrm{d} t
\end{aligned}
$$

Thus, we have,

$$
\begin{equation*}
|u(y)-u(z)|^{p} \leq|y-z|^{p} \int_{0}^{1}|\nabla u(z+t(y-z))|^{p} \mathrm{~d} t \tag{1.2}
\end{equation*}
$$

Let $k>0$ be a number such that $B(x, r) \subset B(z, k r)$ for any $z \in B(x, r)$. Now we plan to integrate this over $y \in \partial B(z, s)$ for any $s>0$ and then integrate w.r.t. s from 0 to $k r$.

Now, for any $s>0$, integrating (1.2) over $y \in \partial B(z, s)$, we have,

$$
\begin{aligned}
& \int_{B(x, r) \operatorname{ap\partial } \partial(z, s)}|u(y)-u(z)|^{p} \mathrm{~d} \mathcal{H}^{n-1}(y) \\
& \leq s^{p} \int_{0}^{1} \int_{B(x, r) \cap \partial B(z, s)}|\nabla u(z+t(y-z))|^{p} \mathrm{~d} \mathcal{H}^{n-1}(y) \mathrm{d} t .
\end{aligned}
$$

Putting $w=z+t(y-z)$ and changing variables, this implies,

$$
\begin{aligned}
& \int_{B(x, r) \cap \partial B(z, s)}|u(y)-u(z)|^{p} \mathrm{~d} \mathcal{H}^{n-1}(y) \\
& \leq s^{p} \int_{0}^{1} \frac{1}{t^{n-1}} \int_{B(x, r) \cap \partial B(z, t s)}|\nabla u(w)|^{p} \mathrm{~d} \mathcal{H}^{n-1}(w) \mathrm{d} t \\
&=s^{n+p-1} \int_{0}^{1} \frac{1}{(t s)^{n-1}} \int_{B(x, r) \cap \partial B(z, t s)}|\nabla u(w)|^{p} \mathrm{~d} \mathcal{H}^{n-1}(w) \mathrm{d} t
\end{aligned}
$$

The RHS of the last inequality is

$$
\begin{aligned}
s^{n+p-1} & \int_{0}^{1} \frac{1}{(t s)^{n-1}} \int_{B(x, r) \cap \partial B(z, t s)}|\nabla u(w)|^{p} \mathrm{~d} \mathcal{H}^{n-1}(w) \mathrm{d} t \\
& =s^{n+p-1} \int_{0}^{1} \int_{B(x, r) \cap \partial B(z, t s)} \frac{|\nabla u(w)|^{p}}{|w-z|^{n-1}} \mathrm{~d} \mathcal{H}^{n-1}(w) \mathrm{d} t \\
& =s^{n+p-2} \int_{0}^{s} \int_{B(x, r) \cap \partial B(z, \theta)} \frac{|\nabla u(w)|^{p}}{|w-z|^{n-1}} \mathrm{~d} \mathcal{H}^{n-1}(w) \mathrm{d} \theta \\
& =s^{n+p-2} \int_{B(x, r) \cap B(z, s)} \frac{|\nabla u(w)|^{p}}{|w-z|^{n-1}} \mathrm{~d} w \\
& \leq s^{n+p-2} \int_{B(x, r)} \frac{|\nabla u(w)|^{p}}{|w-z|^{n-1}} \mathrm{~d} w .
\end{aligned}
$$

So we arrive at

$$
\begin{aligned}
\int_{B(x, r) \cap \partial B(z, s)} & |u(y)-u(z)|^{p} \mathrm{~d} \mathcal{H}^{n-1}(y) \\
& \leq s^{n+p-2} \int_{B(x, r)} \frac{|\nabla u(w)|^{p}}{|w-z|^{n-1}} \mathrm{~d} w
\end{aligned}
$$

Integrating w.r.t s from 0 to $k r$ and noticing that $B(x, r) \subset B(z, k r)$, we deduce

$$
\begin{aligned}
\int_{B(x, r)}|u(y)-u(z)|^{p} \mathrm{~d} y & \leq \int_{B(x, r) \cap B(z, k r)}|u(y)-u(z)|^{p} \mathrm{~d} y \\
& =\int_{0}^{k r} \int_{B(x, r) \cap \partial B(z, s)}|u(y)-u(z)|^{p} \mathrm{~d} \mathcal{H}^{n-1}(y) \mathrm{d} s \\
& \leq \int_{0}^{k r} s^{n+p-2} \mathrm{~d} s \int_{B(x, r)} \frac{|\nabla u(w)|^{p}}{|w-z|^{n-1}} \mathrm{~d} w \\
& \leq c r^{n+p-1} \int_{B(x, r)} \frac{|\nabla u(y)|^{p}}{|y-z|^{n-1}} \mathrm{~d} y
\end{aligned}
$$

This proves the lemma.

Poincaré inequality with mean on balls
We now prove a Poincaré type inequality for $W^{1, p}$ functions.
Theorem 3 (Poincaré inequality with mean on balls). For every $1 \leq p<\infty$, there exists a constant $c>0$, depending only on n and p such that

$$
\begin{equation*}
f_{B(x, r)}\left|u(y)-(u)_{B(x, r)}\right|^{p} \mathrm{~d} y \leq c r^{p} f_{B(x, r)}|\nabla u(y)|^{p} \mathrm{~d} y \tag{1.3}
\end{equation*}
$$

for every ball $B(x, r) \subset \mathbb{R}^{n}$ and every $u \in W^{1, p}\left(\mathbb{R}^{n}\right)$.
Remark 4. Here the integral mean is

$$
(u)_{B(x, r)}:=\frac{1}{|B(x, r)|} \int_{B(x, r)} u(y) \mathrm{d} y
$$

and the notation for averaged integral is defined as

$$
f_{B(x, r)} f(y) \mathrm{d} y=\frac{1}{|B(x, r)|} \int_{B(x, r)} u(y) \mathrm{d} y
$$

Proof. As usual we can assume $u \in C^{1}\left(\mathbb{R}^{n}\right)$. Now we have,

$$
\begin{aligned}
& f_{B(x, r)}\left|u(y)-(u)_{B(x, r)}\right|^{p} \mathrm{~d} y \\
&=f_{B(x, r)}\left|f_{B(x, r)}(u(y)-u(z)) \mathrm{d} z\right|^{p} \mathrm{~d} y \\
& \leq f_{B(x, r)} f_{B(x, r)}|u(y)-u(z)|^{p} \mathrm{~d} y \mathrm{~d} z
\end{aligned}
$$

Now, applying Lemma 1 to estimate the RHS, we deduce

$$
\begin{aligned}
f_{B(x, r)} & \left|u(y)-(u)_{B(x, r)}\right|^{p} \mathrm{~d} y \\
& \leq c f_{B(x, r)} r^{p-1} \int_{B(x, r)} \frac{|\nabla u(z)|^{p}}{|y-z|^{n-1}} \mathrm{~d} z \mathrm{~d} y \\
& \leq c r^{p-1} f_{B(x, r)} \int_{B(x, r)} \frac{|\nabla u(z)|^{p}}{|y-z|^{n-1}} \mathrm{~d} z \mathrm{~d} y
\end{aligned}
$$

Now using Fubini, we deduce

$$
\begin{aligned}
f_{B(x, r)} & \left|u(y)-(u)_{B(x, r)}\right|^{p} \mathrm{~d} y \\
& \leq c r^{p-1} f_{B(x, r)} \int_{B(x, r)} \frac{|\nabla u(z)|^{p}}{|y-z|^{n-1}} \mathrm{~d} z \mathrm{~d} y \\
& =c r^{p-1} \int_{B(x, r)}|\nabla u(z)|^{p}\left(f_{B(x, r)} \frac{1}{|y-z|^{n-1}} \mathrm{~d} y\right) \mathrm{d} z \\
& \leq c r^{p-1} \int_{B(x, r)}|\nabla u(z)|^{p}\left(\frac{1}{r^{n}} \int_{B(z, k r)} \frac{1}{|y-z|^{n-1}} \mathrm{~d} y\right) \mathrm{d} z \\
& =c r^{p} r^{n} \int_{B(x, r)}|\nabla u(z)|^{p} \mathrm{~d} z \\
& =c r^{p} f_{B(x, r)}|\nabla u(z)|^{p} \mathrm{~d} z
\end{aligned}
$$

Poincaré-Sobolev inequality with mean on balls

As a corollary, we derive the Poincaré-Sobolev inequality with mean on balls.
Theorem 5 (Poincaré-Sobolev inequality with mean on balls). For every $1 \leq$
$p<n$, there exists a constant $c>0$, depending only on n and p such that

$$
\begin{equation*}
\left(f_{B(x, r)}\left|u(y)-(u)_{B(x, r)}\right|^{p^{*}} \mathrm{~d} y\right)^{\frac{1}{p^{*}}} \leq c r\left(f_{B(x, r)}|\nabla u(y)|^{p} \mathrm{~d} y\right)^{\frac{1}{p}} \tag{1.4}
\end{equation*}
$$

for every ball $B(x, r) \subset \mathbb{R}^{n}$ and every $u \in W^{1, p}\left(\mathbb{R}^{n}\right)$.
Proof. We first prove the inequality

$$
\begin{aligned}
\left(f_{B(x, r)}|v(y)|^{p^{*}} \mathrm{~d} y\right)^{\frac{1}{p^{*}}} & \\
& \leq c\left(r^{p} f_{B(x, r)}|\nabla v(y)|^{p} \mathrm{~d} y+f_{B(x, r)}|v(y)|^{p} \mathrm{~d} y\right)^{\frac{1}{p}}
\end{aligned}
$$

for every ball $B(x, r) \subset \mathbb{R}^{n}$ and for every $v \in W^{1, p}\left(\mathbb{R}^{n}\right)$ with $1 \leq p<n$.
Note that replacing v by $\frac{1}{r} v(r y)$ and translation, we can assume that $x=0$ and $r=1$. But in this case, the inequality above is just the Poincaré-Sobolev inequality for the bounded domain $B(0,1) \subset \mathbb{R}^{n}$.

This proves the inequality.
Now we apply this inequality to the function $v:=u-(u)_{B(x, r)}$. We obtain

$$
\begin{aligned}
\left(f_{B(x, r)}\left|u-(u)_{B(x, r)}\right|^{p^{*}}\right. &)^{\frac{1}{p^{*}}} \\
& \leq c\left(r^{p} f_{B(x, r)}|\nabla u|^{p}+f_{B(x, r)}\left|u-(u)_{B(x, r)}\right|^{p}\right)^{\frac{1}{p}}
\end{aligned}
$$

Now we use the Poincaré inequality with mean on balls to estimate the last term to obtain

$$
\left(f_{B(x, r)}\left|u-(u)_{B(x, r)}\right|^{p^{*}}\right)^{\frac{1}{p^{*}}} \leq c\left(r^{p} f_{B(x, r)}|\nabla u|^{p}\right)^{\frac{1}{p}}
$$

This proves the theorem.

1.5.3 Morrey's inequality

Now we prove an important inequality.
Theorem 6 (Morrey's inequality). For every $n<p<\infty$, there exists a constant $c>0$, depending only on n and p such that

$$
\begin{equation*}
|u(y)-u(z)| \leq c r\left(f_{B(x, r)}|\nabla u(y)|^{p} \mathrm{~d} y\right)^{\frac{1}{p}} \tag{1.5}
\end{equation*}
$$

for a.e. $y, z \in B(x, r)$ for every ball $B(x, r) \subset \mathbb{R}^{n}$ and for every $u \in W^{1, p}\left(\mathbb{R}^{n}\right)$.

Proof. We use the local Poincaré inequality lemma with $p=1$ to deduce

$$
\begin{align*}
& |u(y)-u(z)| \\
& \leq f_{B(x, r)}(|u(y)-u(w)|+|u(w)-u(z)|) \mathrm{d} w \\
& \leq c \int_{B(x, r)}|\nabla u(w)|\left(|y-w|^{1-n}+|z-w|^{1-n}\right) \mathrm{d} w \\
& \stackrel{\text { Hölder }}{\leq} c\left(\int_{B(x, r)}\left(|y-w|^{1-n}+|z-w|^{1-n}\right)^{\frac{p}{p-1}} \mathrm{~d} w\right)^{\frac{p-1}{p}}\left(\int_{B(x, r)}|\nabla u(w)|^{p} \mathrm{~d} w\right)^{\frac{1}{p}} . \tag{1.6}
\end{align*}
$$

Now, since $p^{\prime}=\frac{p}{p-1}>1$, the function $t \mapsto t^{\frac{p}{p-1}}$ is convex. Hence we deduce,

$$
\left(|y-w|^{1-n}+|z-w|^{1-n}\right)^{\frac{p}{p-1}} \leq 2^{\frac{1}{p-1}}\left(|y-w|^{\frac{p(1-n)}{p-1}}+|z-w|^{\frac{p(1-n)}{p-1}}\right)
$$

Using this, we obtain

$$
\begin{align*}
& \int_{B(x, r)}\left(|y-w|^{1-n}+|z-w|^{1-n}\right)^{\frac{p}{p-1}} \mathrm{~d} w \\
& \leq c\left(\int_{B(x, r)}|y-w|^{\frac{p(1-n)}{p-1}} \mathrm{~d} w+\int_{B(x, r)}|z-w|^{\frac{p(1-n)}{p-1}} \mathrm{~d} w\right) \tag{1.7}
\end{align*}
$$

Now, as before, for any $y \in B(x, r)$, we can find $k>0$ such that $B(x, r) \subset$ $B(y, k r)$. Thus, we can estimate

$$
\begin{aligned}
\int_{B(x, r)}|y-w|^{\frac{p(1-n)}{p-1}} \mathrm{~d} w & \leq \int_{B(y, k r)}|y-w|^{\frac{p(1-n)}{p-1}} \mathrm{~d} w \\
& =\int_{0}^{k r} \int_{\mathbb{S}^{n-1}} \rho^{\frac{p(1-n)}{p-1}} \cdot \rho^{n-1} \mathrm{~d} \rho \mathrm{~d} \theta \\
& =\int_{0}^{k r} \int_{\mathbb{S}^{n}-1} \rho^{(n-1)\left(1-\frac{p}{p-1}\right)} \mathrm{d} \rho \mathrm{~d} \theta=c r^{\frac{p-n}{p-1}}
\end{aligned}
$$

Similarly, we can also establish the estimate

$$
\int_{B(x, r)}|z-w|^{\frac{p(1-n)}{p-1}} \mathrm{~d} w \leq c r^{\frac{p-n}{p-1}}
$$

Combining these last two estimates with 1.7), we obtain

$$
\int_{B(x, r)}\left(|y-w|^{1-n}+|z-w|^{1-n}\right)^{\frac{p}{p-1}} \mathrm{~d} w \leq c r^{\frac{p-n}{p-1}}
$$

Plugging this estimate into (1.6), we arrive at

$$
|u(y)-u(z)| \leq c r^{1-\frac{n}{p}}\left(\int_{B(x, r)}|\nabla u(w)|^{p} \mathrm{~d} w\right)^{\frac{1}{p}}
$$

This proves the inequality.

Sobolev embedding for $p>n$

Morrey's inequality implies that $W^{1, p}$ functions with $p>n$ are Hölder continuous with exponent $\alpha=1-\frac{n}{p}$.

Theorem 7 (Sobolev embedding in \mathbb{R}^{n} for $p>n$). Let $n<p<\infty$. Then $W^{1, p}\left(\mathbb{R}^{n}\right)$ continuously embeds into $C^{0,1-\frac{n}{p}}\left(\mathbb{R}^{n}\right)$.

Proof. By Morrey's inequality, for a.e. $x, y \in \mathbb{R}^{n}$ with $|x-y|=r$, we have,

$$
\begin{aligned}
|u(x)-u(y)| & \leq c r^{1-\frac{n}{p}}\left(\int_{B(x, 2 r)}|\nabla u(w)|^{p} \mathrm{~d} w\right)^{\frac{1}{p}} \\
& =c|x-y|^{1-\frac{n}{p}}\left(\int_{B(x, 2 r)}|\nabla u(w)|^{p} \mathrm{~d} w\right)^{\frac{1}{p}} \\
& \leq c|x-y|^{1-\frac{n}{p}}\left(\int_{\mathbb{R}^{n}}|\nabla u(w)|^{p} \mathrm{~d} w\right)^{\frac{1}{p}}
\end{aligned}
$$

Thus, for a.e. $x, y \in \mathbb{R}^{n}$, we have

$$
\begin{equation*}
\frac{|u(x)-u(y)|}{|x-y|^{1-\frac{n}{p}}} \leq c\left(\int_{\mathbb{R}^{n}}|\nabla u(w)|^{p} \mathrm{~d} w\right)^{\frac{1}{p}} \tag{1.8}
\end{equation*}
$$

This implies that u agrees a.e. with a continuous function \tilde{u}. Indeed, let $A \subset \mathbb{R}^{n}$ be the subset of measure zero such that (1.8) holds for any $x, y \in \mathbb{R}^{n} \backslash A$. Then $\left.u\right|_{\mathbb{R}^{n} \backslash A}$ is continuous and since $\mathbb{R}^{n} \backslash A$ is dense in \mathbb{R}^{n}, there exists a unique continuous extension \tilde{u} such that 1.8 holds for all $x, y \in \mathbb{R}^{n}$ for \tilde{u}. From now on, by a harmless abuse of notation, we simply denote this extension by u itself. Thus, taking supremum as x, y varies in \mathbb{R}^{n}, we have,

$$
\begin{equation*}
[u]_{C^{0,1-\frac{n}{p}}\left(\mathbb{R}^{n}\right)}:=\sup _{x, y \in \mathbb{R}^{n}} \frac{|u(x)-u(y)|}{|x-y|^{1-\frac{n}{p}}} \leq c\|\nabla u\|_{L^{p}\left(\mathbb{R}^{n}\right)} \tag{1.9}
\end{equation*}
$$

This estimates the Hölder seminorm. Now all that remains is to estimate the C^{0} norm. For any $x \in \mathbb{R}^{n}$, using the local Poincaré inequality lemma with $p=1$,
we have

$$
\begin{aligned}
|u(x)| & \leq f_{B(x, 1)}|u(x)| \mathrm{d} y \\
& \leq f_{B(x, 1)}|u(x)-u(y)| \mathrm{d} y+f_{B(x, 1)}|u(y)| \mathrm{d} y \\
& \leq \int_{B(x, 1)}|\nabla u(y)||x-y|^{1-n} \mathrm{~d} y+f_{B(x, 1)}|u(y)| \mathrm{d} y \\
& \stackrel{\text { Hölder }}{\leq}\left(\int_{B(x, 1)}|\nabla u(y)|^{p} \mathrm{~d} y\right)^{\frac{1}{p}}\left(\int_{B(x, 1)} \frac{1}{\left.|x-y|^{\frac{(n-1) p}{p-1}} \mathrm{~d} y\right)^{\frac{p-1}{p}}}\right. \\
& \left.\leq c\left(\int_{B(x, 1)}|\nabla u(y)|^{p} \mathrm{~d} y\right)^{\frac{1}{p}}+c\left(\int_{B(x, 1)} \mid u(y)^{p} \mathrm{~d} y\right)^{\frac{1}{p}}|u(y)|^{p} \mathrm{~d} y\right)^{\frac{1}{p}} \leq c\|u\|_{W^{1, p}\left(\mathbb{R}^{n}\right)} .
\end{aligned}
$$

Taking supremum as $x \in \mathbb{R}^{n}$, we have

$$
\|u\|_{C^{0}\left(\mathbb{R}^{n}\right)}:=\sup _{x \in \mathbb{R}^{n}}|u(x)| \leq c\|u\|_{W^{1, p}\left(\mathbb{R}^{n}\right)}
$$

Thus, we obtain

$$
\|u\|_{C^{0,1-\frac{n}{p}}\left(\mathbb{R}^{n}\right)}:=\|u\|_{C^{0}\left(\mathbb{R}^{n}\right)}+[u]_{C^{0,1-\frac{n}{p}}\left(\mathbb{R}^{n}\right)} \leq c\|u\|_{W^{1, p}\left(\mathbb{R}^{n}\right)} .
$$

This proves the result.
As usual, the result for \mathbb{R}^{n} implies, by extension, the result for bounded domains.

Theorem 8 (Sobolev embedding in bounded domains for $p>n$). Let $\Omega \subset \mathbb{R}^{n}$ be open, bounded and smooth and let $n<p<\infty$. Then $W^{1, p}(\Omega)$ continuously embeds into $C^{0, \alpha}(\bar{\Omega})$ for every $0 \leq \alpha \leq 1-\frac{n}{p}$.

$W^{1, \infty}$ and Lipschitz functions

As a consequence, we can deduce
Theorem $9\left(W^{1, \infty}=C^{0,1}\right)$. Let $\Omega \subset \mathbb{R}^{n}$ be open, bounded and smooth. Then

$$
W^{1, \infty}(\Omega)=C^{0,1}(\bar{\Omega}) \quad \text { (with equivalent norms). }
$$

Proof. Since $W^{1, \infty}(\Omega) \subset W^{1, p}(\Omega)$ for any $n<p<\infty$, by the last theorem, for any $x, y \in \bar{\Omega}$, we obtain

$$
|u(x)-u(y)| \leq c|x-y|^{1-\frac{n}{p}}\|u\|_{W^{1, p}(\Omega)}
$$

Letting $p \rightarrow \infty$ and noting that

$$
\lim _{p \rightarrow \infty}\|u\|_{W^{1, p}(\Omega)}=\|u\|_{W^{1, \infty}(\Omega)}
$$

we obtain the inequality

$$
|u(x)-u(y)| \leq c|x-y|\|u\|_{W^{1, \infty}(\Omega)}
$$

But this implies

$$
[u]_{C^{0,1}(\bar{\Omega})}:=\sup _{x, y \in \bar{\Omega}} \frac{|u(x)-u(y)|}{|x-y|} \leq c\|u\|_{W^{1, \infty}(\Omega)}
$$

Thus, we have established the continuous embedding

$$
W^{1, \infty}(\Omega) \subset C^{0,1}(\bar{\Omega})
$$

The other inclusion is easy and was proved earlier in this chapter. This completes the proof.

