Introduction to the Calculus of Variations Lecture Notes Lecture 14

Swarnendu Sil

Spring 2021, IISc

Chapter 1

Sobolev spaces

1.1 Definitions

- **1.2** Elementary properties
- **1.3** Approximation and extension
- 1.4 Traces

1.5 Sobolev inequalities and Sobolev embeddings

1.5.1 Gagliardo-Nirenberg-Sobolev inequalities

Theorem 1 (Gagliardo-Nirenberg-Sobolev inequality). Let $1 \le p < n$. Then there exists a constant c > 0, depending only on n and p such that we have the estimate

$$\left(\int_{\mathbb{R}^n} |u|^{p^*}\right)^{\frac{1}{p^*}} \le c \left(\int_{\mathbb{R}^n} |\nabla u|^p\right)^{\frac{1}{p}}$$
(1.1)

for every $u \in W^{1,p}(\mathbb{R}^n)$.

To prove this inequality, we need a simple lemma.

Lemma 2. Let $n \geq 2$ and let $f_1, \ldots, f_n \in L^{n-1}(\mathbb{R}^{n-1})$. For $x \in \mathbb{R}^n$ and $1 \leq i \leq n$, set

$$\hat{x}_i = (x_1, \dots, \hat{x}_i, \dots, x_n) := (x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n).$$

Then the function

$$f(x) := \prod_{i=1}^{n} f_i(\hat{x}_i) \quad \text{for } x \in \mathbb{R}^n$$

is in $L^{1}(\mathbb{R}^{n})$ and we have the estimate

$$\|f\|_{L^1(\mathbb{R}^n)} \le \prod_{i=1}^n \|f_i\|_{L^{n-1}(\mathbb{R}^{n-1})}.$$

Proof. n = 2 is just Fubini with equality in fact. Indeed,

$$\int_{\mathbb{R}^2} |f| \, \mathrm{d}x_1 \mathrm{d}x_2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |f_1(x_2)| \, |f_2(x_1)| \, \mathrm{d}x_1 \mathrm{d}x_2$$
$$= \left(\int_{-\infty}^{\infty} |f_2(x_1)| \, \mathrm{d}x_1 \right) \left(\int_{-\infty}^{\infty} |f_1(x_2)| \, \mathrm{d}x_2 \right).$$

Now to prove by induction, we assume the result holds for some $n \ge 2$ and show it for n + 1.

Fix $x_{n+1} \in \mathbb{R}$ for now. By Hölder inequality and the induction hypothesis,

$$\begin{split} \int_{\mathbb{R}^n} |f| \ \mathrm{d}x_1 \mathrm{d}x_2 \dots \mathrm{d}x_n \\ &\leq \|f_{n+1}\|_{L^n(\mathbb{R}^n)} \left(\int_{\mathbb{R}^n} |f_1 \dots f_n|^{\frac{n}{n-1}} \ \mathrm{d}x_1 \mathrm{d}x_2 \dots \mathrm{d}x_n \right)^{\frac{n-1}{n}} \\ &\leq \|f_{n+1}\|_{L^n(\mathbb{R}^n)} \prod_{i=1}^n \left\| \tilde{f}_i \right\|_{L^n(\mathbb{R}^{n-1})} \qquad [\tilde{f}_i \text{ is } f_i \text{ with } x_{n+1} \text{ fixed}] \end{split}$$

Integrating w.r.t x_{n+1} and Hölder inequality gives the result.

Proof. First we prove for p = 1.

We can assume $u\in C_{c}^{\infty}\left(\mathbb{R}^{n}\right).$ We have, for each $1\leq i\leq n,$

$$|u(x_1,\ldots,x_n)| \leq \int_{-\infty}^{\infty} \left| \frac{\partial u}{\partial x_i}(x_1,\ldots,x_{i-1},t,x_{i+1},\ldots,x_n) \right| dt := f_i(\hat{x}_i).$$

Thus, we have

$$|u(x_1,\ldots,x_n)|^{\frac{n}{n-1}} \le \prod_{i=1}^n |f_i(\hat{x}_i)|^{\frac{1}{n-1}}$$

Integrating and using the lemma, we deduce

$$\int_{\mathbb{R}^n} |u(x)|^{\frac{n}{n-1}} \, \mathrm{d}x \le \prod_{i=1}^n \left\| |f_i(\hat{x}_i)|^{\frac{1}{n-1}} \right\|_{L^{n-1}(\mathbb{R}^{n-1})} \le \prod_{i=1}^n \left\| \frac{\partial u}{\partial x_i} \right\|_{L^1(\mathbb{R}^n)}^{\frac{1}{n-1}}$$

Thus,

$$\left\|u\right\|_{L^{\frac{n}{n-1}}(\mathbb{R}^n)} \leq \prod_{i=1}^n \left\|\frac{\partial u}{\partial x_i}\right\|_{L^1(\mathbb{R}^n)}^{\frac{1}{n}} \leq c \sum_i^n \left\|\frac{\partial u}{\partial x_i}\right\|_{L^1(\mathbb{R}^n)} = c \left\|\nabla u\right\|_{L^1(\mathbb{R}^n)}.$$

This proves the case p = 1.

Now we choose $f = |u|^{\gamma}$ for some $\gamma > 0$ and apply the inequality for p = 1 to f to deduce,

$$\left(\int_{\mathbb{R}^{n}} |u|^{\frac{\gamma n}{n-1}}\right)^{\frac{n-1}{n}} dx \leq \gamma \int_{\mathbb{R}^{n}} |u|^{\gamma-1} |\nabla u| dx$$

$$\stackrel{\text{Hölder}}{\leq} \gamma \left(\int_{\mathbb{R}^{n}} |u|^{\frac{(\gamma-1)p}{p-1}} dx\right)^{\frac{p-1}{p}} \left(\int_{\mathbb{R}^{n}} |\nabla u|^{p} dx\right)^{\frac{1}{p}}.$$

Now choose $\gamma > 0$ such that

$$\frac{\gamma n}{n-1} = \frac{(\gamma - 1)p}{p-1}$$

and watch the exponents almost magically fall into place for 1 to establish

$$\left(\int_{\mathbb{R}^n} |u|^{\frac{np}{n-p}}\right)^{\frac{n-p}{np}} dx \le c \left(\int_{\mathbb{R}^n} |\nabla u|^p dx\right)^{\frac{1}{p}}.$$

This proves the theorem.

Consequences of the Gagliardo-Nirenberg-Sobolev inequality

We now discuss some consequences of the inequality.

Theorem 3 (Sobolev embedding in \mathbb{R}^n for p < n). Let $1 \leq p < n$. Then $W^{1,p}(\mathbb{R}^n)$ continuously embeds into $L^q(\mathbb{R}^n)$ for every $q \in [p, p^*]$.

Proof. Since $q \in [p, p^*]$, we have

$$\frac{1}{q} = \frac{\alpha}{p} + \frac{1-\alpha}{p^*} \qquad \text{for some } \alpha \in [0,1].$$

Thus, we have, by interpolation inequality and Youngs inequality,

$$\|u\|_{L^{q}} \leq \|u\|_{L^{p}}^{\alpha} \|u\|_{L^{p^{*}}}^{1-\alpha} \leq \|u\|_{L^{p}} + \|u\|_{L^{p^{*}}} \leq c \|u\|_{W^{1,p}}.$$

Our next result might seem surprising, since it concerns $W^{1,n}$. But this result is more of a corollary of the proof and not really of the final result.

Theorem 4 (Sobolev embedding in \mathbb{R}^n for p = n). $W^{1,n}(\mathbb{R}^n)$ continuously embeds into $L^q(\mathbb{R}^n)$ for every $q \in [n, +\infty)$.

Proof. As in the proof, we can easily establish, for any $\gamma > 0$,

$$\left(\int_{\mathbb{R}^n} |u|^{\frac{\gamma n}{n-1}}\right)^{\frac{n-1}{n}} dx \le \gamma \left(\int_{\mathbb{R}^n} |u|^{\frac{(\gamma-1)n}{n-1}} dx\right)^{\frac{n-1}{n}} \left(\int_{\mathbb{R}^n} |\nabla u|^n dx\right)^{\frac{1}{n}}.$$

Note we really have not used the fact p < n up to that point and so we can put p = n. Now let us chose $\gamma = n$. This will prove

$$|u||_{L^{\frac{n^2}{n-1}}} \leq c ||u||_{W^{1,n}}.$$

But now we can iterate this process by choosing $\gamma = n + 1, n + 2, ...$ and so on to keep pushing the exponent.

Now we focus on bounded domains.

Theorem 5 (Sobolev embedding in bounded domains for p < n). Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth and let $1 \leq p < n$. Then $W^{1,p}(\Omega)$ continuously embeds into $L^q(\Omega)$ for every $1 \leq q \leq p^*$.

Theorem 6 (Sobolev embedding in \mathbb{R}^n for p = n). Let $\Omega \subset \mathbb{R}^n$ be open, bounded and smooth. Then $W^{1,n}(\Omega)$ continuously embeds into $L^q(\mathbb{R}^n)$ for every $1 \leq q < \infty$.

Both results can be proved from the \mathbb{R}^n case using extension and noting that Ω has finite measure.

Poincaré-Sobolev inequalities

Note that the Gagliardo-Nirenberg-Sobolev inequality actually says

$$\|u\|_{L^{p^*}(\mathbb{R}^n)} \le c \|\nabla u\|_{L^p(\mathbb{R}^n)} \qquad \text{when } 1 \le p < n.$$

However, the estimate in the result for the bounded, smooth domain says something weaker, namely,

$$||u||_{L^{p^*}(\Omega)} \le c ||u||_{W^{1,p}(\Omega)}$$
 when $1 \le p < n$.

It is in general not possible to improve this. But for functions in $W_{0}^{1,p}(\Omega)$, we can improve the inequality.

Theorem 7 (Poincaré-Sobolev inequality for $W_0^{1,p}$). Let $\Omega \subset \mathbb{R}^n$ be open and let $1 \leq p < n$. Then there exists a constant c > 0, depending only on Ω , n and p such that we have the estimate

$$\|u\|_{L^{p^{*}}(\Omega)} \leq c \|\nabla u\|_{L^{p}(\Omega)} \qquad \text{for all } u \in W_{0}^{1,p}(\Omega) \,.$$

Remark 8. Ω can be an arbitrary open set!

The result follows from the Gagliardo-Nirenberg-Sobolev inequality by an extension, but not the extension operator we constructed in the theorem. There is a far simpler canonical extension operator for $W_0^{1,p}$ which is not available for $W^{1,p}$. This is the *extension by zero*. So the Poincaré-Sobolev inequality would follow easily as soon as we show the following simple lemma, whose proof is skipped.

Lemma 9. Let $\Omega \subset \mathbb{R}^n$ be open and let $1 \leq p < \infty$. Then for any $u \in W_0^{1,p}(\Omega)$, the function

$$\tilde{u}(x) := \begin{cases} u(x) & \text{ if } x \in \Omega, \\ 0 & \text{ if } x \notin \Omega. \end{cases}$$

is in $W^{1,p}(\mathbb{R}^n)$ and obviously extends u to whole of \mathbb{R}^n .

Remark 10. Note that this lemma needs no regularity of the boundary and also does not need Ω to be bounded. However, if $\partial \Omega$ is not regular, there may be no well-defined trace and the identification with zero-trace functions might be meaningless.

From the Poincaré-Sobolev inequality for $W_0^{1,p}$, we can now deduce

Theorem 11 (Poincaré inequality for $W_0^{1,p}$). Let $\Omega \subset \mathbb{R}^n$ be open and bounded and let $1 \leq p < \infty$. Then there exists a constant c > 0, depending only on Ω , nand p such that we have the estimate

$$\|u\|_{L^{p}(\Omega)} \leq c \|\nabla u\|_{L^{p}(\Omega)} \qquad \text{for all } u \in W_{0}^{1,p}(\Omega)$$

Remark 12. This shows that for any $\Omega \subset \mathbb{R}^n$ open and bounded, $\|\nabla u\|_{L^p(\Omega)}$ is an equivalent norm on $W_0^{1,p}(\Omega)$. It is also fairly straight forward to establish that this implies that

$$\langle u, v \rangle_{W_0^{1,2}(\Omega)} := \langle \nabla u, \nabla v \rangle_{L^2(\Omega)}$$

is an equivalent inner product on $W_{0}^{1,2}\left(\Omega
ight).$