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Chapter 1

Sobolev spaces

1.1 Definitions

1.2 Elementary properties

1.3 Approximation and extension
1.4 Traces

1.5 Sobolev inequalities and Sobolev embeddings

1.5.1 Gagliardo-Nirenberg-Sobolev inequalities

Theorem 1 (Gagliardo-Nirenberg-Sobolev inequality). Let 1 < p < n. Then
there exists a constant ¢ > 0, depending only on n and p such that we have the
estimate

1

(/ ul”*>p* <c </R |Vu|p>; (1.1)

for every u € WHP (R").
To prove this inequality, we need a simple lemma.
Lemma 2. Let n > 2 and let fi,...,f, € L™} (R"‘l). For x € R™ and
1<i<n, set
Ti = (@1, o Ty @n) = (L1, ooy T, Tty -5 L) -

Then the function

n

f(x):= Hfi (%;) forxz eR"

i=1



is in L' (R™) and we have the estimate

1z ny < TSl pnes oy -

i=1

Proof. n =2 is just Fubini with equality in fact. Indeed,

d = e dxid
[ e = [ [ 1 @l @] deide,

([ il an) ([ 1) a).

Now to prove by induction, we assume the result holds for some n > 2 and show
it for n + 1.

Fix x,+1 € R for now. By Holder inequality and the induction hypothesis,

< ||fn+1HLn(Rn) <‘/]R¢ |f1 . fn

"%1 d.rld]}g . dxn) !

[fl is f; with z,,41 fixed]

< ||fn+1HL"(]R" Lr@1)

Integrating w.r.t x,41 and Holder inequality gives the result. O

Proof. First we prove for p = 1.
We can assume u € CS° (R™). We have, for each 1 < i <mn,

| ou )
|u(x17,mn)|§/ ’ax (3:1,...,xi,l,t,xiﬂ,...,xn) dt := fl(xz)
K3

—00

Thus, we have

n
(@, 2a) |77 < [ i G
i=1

Integrating and using the lemma, we deduce

/n |u(36)\ﬁ dx < ﬁ H‘fz (ji)|"il
i=1

n

Ln— 1Rn 1) H

=1

39:1

Ll ]Rn)
Thus,

n

<)

n

o
8.’1%‘

= CHVU”Ll(Rn)-
L1(R")

lell 2 gy < | ‘axz
=1

L1(R™)



This proves the case p = 1.

Now we choose f = |u|” for some v > 0 and apply the inequality for p = 1
to f to deduce,

(/ |u|’jnl> ' dngy/ lu]" " |Vu| da
n R'n,
p=1 1
Holder (v—=1p P P
< 7(/ |u| »=1 dx) </ |Vul? da:)
Rn n

Now choose v > 0 such that

yn o (y=1)p

n—1 p—1
and watch the exponents almost magically fall into place for 1 < p < n to
establish - )
np \ P P
(/ |unp> dz <c (/ |Vul? dx>
This proves the theorem. O

Consequences of the Gagliardo-Nirenberg-Sobolev inequality
We now discuss some consequences of the inequality.

Theorem 3 (Sobolev embedding in R™ for p < n). Let 1 < p < n. Then
WP (R™) continuously embeds into L9 (R™) for every q € [p, p*].

Proof. Since ¢ € [p, p*], we have

p  p

v
1 1-—
~=2 a for some « € [0, 1].
q

Thus, we have, by interpolation inequality and Youngs inequality,
1—
Il o < NullZe llell e < llllps + llullpe < ellullys, -
O

Our next result might seem surprising, since it concerns W™, But this result
is more of a corollary of the proof and not really of the final result.

Theorem 4 (Sobolev embedding in R” for p = n). Wh" (R"™) continuously
embeds into L1 (R™) for every q € [n,+00).

Proof. As in the proof, we can easily establish, for any v > 0,

o\ (y—1)m e . *
/|u nT dr <« / lu| =1 dx /|Vu\ dz | .




Note we really have not used the fact p < n up to that point and so we can put
p =n. Now let us chose v = n. This will prove

lall a2 < cllullyrn

n

But now we can iterate this process by choosing vy =n+ 1,n+2,... and so on
to keep pushing the exponent. O

Now we focus on bounded domains.

Theorem 5 (Sobolev embedding in bounded domains for p < n). Let Q C R”
be open, bounded and smooth and let 1 < p < n. Then WP (Q) continuously
embeds into L1 (Q) for every 1 < q < p*.

Theorem 6 (Sobolev embedding in R™ for p = n). Let Q@ C R™ be open,
bounded and smooth. Then W1™ (Q) continuously embeds into L1 (R™) for every
1< g < o0

Both results can be proved from the R™ case using extension and noting that
Q has finite measure.
Poincaré-Sobolev inequalities

Note that the Gagliardo-Nirenberg-Sobolev inequality actually says
lull Lox gy < € IVUll Lo e when 1 < p < n.

However, the estimate in the result for the bounded, smooth domain says some-
thing weaker, namely,

[ull Lo~ (@) < ellullwrn @ when 1 <p <n.

It is in general not possible to improve this. But for functions in WO1 (), we
can improve the inequality.

Theorem 7 (Poincaré-Sobolev inequality for VVO1 ). Let Q C R™ be open and
let 1 < p < n. Then there ezists a constant ¢ > 0, depending only on 2, n and p
such that we have the estimate

1,
ull o= () < clIVull o (q) for allu e Wy (Q).
Remark 8. Q can be an arbitrary open set!

The result follows from the Gagliardo-Nirenberg-Sobolev inequality by an
extension, but not the extension operator we constructed in the theorem. There
is a far simpler canonical extension operator for WO1 P which is not available for
WP This is the extension by zero. So the Poincaré-Sobolev inequality would
follow easily as soon as we show the following simple lemma, whose proof is
skipped.



Lemma 9. Let Q C R"™ be open and let 1 < p < co. Then for any u € Wol’p (Q),
the function

N Ju(@) ifzeq
i(z) = {o if ¢ Q.

is in WP (R™) and obviously extends u to whole of R™.

Remark 10. Note that this lemma needs no regularity of the boundary and
also does not need ) to be bounded. However, if 0SX) is not regular, there may
be no well-defined trace and the identification with zero-trace functions might be
meaningless.

From the Poincaré-Sobolev inequality for WO1 P we can now deduce

Theorem 11 (Poincaré inequality for WO1 P). Let Q C R™ be open and bounded
and let 1 < p < oco. Then there exists a constant ¢ > 0, depending only on 2, n
and p such that we have the estimate

||U||Lp(sz) < C||VU||Lp(sz) Jor allu € WoLp (€).

Remark 12. This shows that for any Q@ C R™ open and bounded, |[Vul|p,q)

s an equivalent norm on Wol’p (Q). It is also fairly straight forward to establish
that this itmplies that

<U,U>W01'2(Q) = (Vu, Vo) 15 (g

is an equivalent inner product on Wy > () .
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