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Chapter 1

Sobolev spaces

1.1 Definitions

1.2 Elementary properties

1.3 Approximation and extension

1.4 Traces

1.5 Sobolev inequalities and Sobolev embeddings

1.5.1 Gagliardo-Nirenberg-Sobolev inequalities

Theorem 1 (Gagliardo-Nirenberg-Sobolev inequality). Let 1 ≤ p < n. Then
there exists a constant c > 0, depending only on n and p such that we have the
estimate (ˆ

Rn
|u|p

∗
) 1
p∗

≤ c
(ˆ

Rn
|∇u|p

) 1
p

(1.1)

for every u ∈W 1,p (Rn) .

To prove this inequality, we need a simple lemma.

Lemma 2. Let n ≥ 2 and let f1, . . . , fn ∈ Ln−1
(
Rn−1

)
. For x ∈ Rn and

1 ≤ i ≤ n, set

x̂i = (x1, . . . , x̂i, . . . , xn) := (x1, . . . , xi−1, xi+1, . . . , xn) .

Then the function

f (x) :=

n∏
i=1

fi (x̂i) for x ∈ Rn
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is in L1 (Rn) and we have the estimate

‖f‖L1(Rn) ≤
n∏
i=1

‖fi‖Ln−1(Rn−1) .

Proof. n = 2 is just Fubini with equality in fact. Indeed,

ˆ
R2

|f | dx1dx2 =

ˆ ∞
−∞

ˆ ∞
−∞
|f1 (x2)| |f2 (x1)| dx1dx2

=

(ˆ ∞
−∞
|f2 (x1)| dx1

)(ˆ ∞
−∞
|f1 (x2)| dx2

)
.

Now to prove by induction, we assume the result holds for some n ≥ 2 and show
it for n+ 1.

Fix xn+1 ∈ R for now. By Hölder inequality and the induction hypothesis,

ˆ
Rn
|f | dx1dx2 . . . dxn

≤ ‖fn+1‖Ln(Rn)

(ˆ
Rn
|f1 . . . fn|

n
n−1 dx1dx2 . . . dxn

)n−1
n

≤ ‖fn+1‖Ln(Rn)

n∏
i=1

∥∥∥f̃i∥∥∥
Ln(Rn−1)

[f̃i is fi with xn+1 fixed]

Integrating w.r.t xn+1 and Hölder inequality gives the result.

Proof. First we prove for p = 1.

We can assume u ∈ C∞c (Rn) . We have, for each 1 ≤ i ≤ n,

|u (x1, . . . , xn)| ≤
ˆ ∞
−∞

∣∣∣∣ ∂u∂xi (x1, . . . , xi−1, t, xi+1, . . . , xn)

∣∣∣∣ dt := fi (x̂i) .

Thus, we have

|u (x1, . . . , xn)|
n
n−1 ≤

n∏
i=1

|fi (x̂i)|
1

n−1

Integrating and using the lemma, we deduce

ˆ
Rn
|u (x)|

n
n−1 dx ≤

n∏
i=1

∥∥∥|fi (x̂i)|
1

n−1

∥∥∥
Ln−1(Rn−1)

≤
n∏
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥ 1
n−1

L1(Rn)

Thus,

‖u‖
L

n
n−1 (Rn)

≤
n∏
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥ 1
n

L1(Rn)

≤ c
n∑
i

∥∥∥∥ ∂u∂xi
∥∥∥∥
L1(Rn)

= c ‖∇u‖L1(Rn) .
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This proves the case p = 1.

Now we choose f = |u|γ for some γ > 0 and apply the inequality for p = 1
to f to deduce,(ˆ

Rn
|u|

γn
n−1

)n−1
n

dx ≤ γ
ˆ
Rn
|u|γ−1 |∇u| dx

Hölder
≤ γ

(ˆ
Rn
|u|

(γ−1)p
p−1 dx

) p−1
p
(ˆ

Rn
|∇u|p dx

) 1
p

.

Now choose γ > 0 such that

γn

n− 1
=

(γ − 1)p

p− 1

and watch the exponents almost magically fall into place for 1 < p < n to
establish (ˆ

Rn
|u|

np
n−p

)n−p
np

dx ≤ c
(ˆ

Rn
|∇u|p dx

) 1
p

.

This proves the theorem.

Consequences of the Gagliardo-Nirenberg-Sobolev inequality

We now discuss some consequences of the inequality.

Theorem 3 (Sobolev embedding in Rn for p < n). Let 1 ≤ p < n. Then
W 1,p (Rn) continuously embeds into Lq (Rn) for every q ∈ [p, p∗].

Proof. Since q ∈ [p, p∗], we have

1

q
=
α

p
+

1− α
p∗

for some α ∈ [0, 1].

Thus, we have, by interpolation inequality and Youngs inequality,

‖u‖Lq ≤ ‖u‖
α
Lp ‖u‖

1−α
Lp∗ ≤ ‖u‖Lp + ‖u‖Lp∗ ≤ c ‖u‖W 1,p .

Our next result might seem surprising, since it concerns W 1,n. But this result
is more of a corollary of the proof and not really of the final result.

Theorem 4 (Sobolev embedding in Rn for p = n). W 1,n (Rn) continuously
embeds into Lq (Rn) for every q ∈ [n,+∞).

Proof. As in the proof, we can easily establish, for any γ > 0,(ˆ
Rn
|u|

γn
n−1

)n−1
n

dx ≤ γ
(ˆ

Rn
|u|

(γ−1)n
n−1 dx

)n−1
n
(ˆ

Rn
|∇u|n dx

) 1
n

.
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Note we really have not used the fact p < n up to that point and so we can put
p = n. Now let us chose γ = n. This will prove

‖u‖
L
n2
n−1
≤ c ‖u‖W 1,n .

But now we can iterate this process by choosing γ = n+ 1, n+ 2, . . . and so on
to keep pushing the exponent.

Now we focus on bounded domains.

Theorem 5 (Sobolev embedding in bounded domains for p < n). Let Ω ⊂ Rn
be open, bounded and smooth and let 1 ≤ p < n. Then W 1,p (Ω) continuously
embeds into Lq (Ω) for every 1 ≤ q ≤ p∗.

Theorem 6 (Sobolev embedding in Rn for p = n). Let Ω ⊂ Rn be open,
bounded and smooth. Then W 1,n (Ω) continuously embeds into Lq (Rn) for every
1 ≤ q <∞.

Both results can be proved from the Rn case using extension and noting that
Ω has finite measure.

Poincaré-Sobolev inequalities

Note that the Gagliardo-Nirenberg-Sobolev inequality actually says

‖u‖Lp∗ (Rn) ≤ c ‖∇u‖Lp(Rn) when 1 ≤ p < n.

However, the estimate in the result for the bounded, smooth domain says some-
thing weaker, namely,

‖u‖Lp∗ (Ω) ≤ c ‖u‖W 1,p(Ω) when 1 ≤ p < n.

It is in general not possible to improve this. But for functions in W 1,p
0 (Ω) , we

can improve the inequality.

Theorem 7 (Poincaré-Sobolev inequality for W 1,p
0 ). Let Ω ⊂ Rn be open and

let 1 ≤ p < n. Then there exists a constant c > 0, depending only on Ω, n and p
such that we have the estimate

‖u‖Lp∗ (Ω) ≤ c ‖∇u‖Lp(Ω) for all u ∈W 1,p
0 (Ω) .

Remark 8. Ω can be an arbitrary open set!

The result follows from the Gagliardo-Nirenberg-Sobolev inequality by an
extension, but not the extension operator we constructed in the theorem. There
is a far simpler canonical extension operator for W 1,p

0 which is not available for
W 1,p. This is the extension by zero. So the Poincaré-Sobolev inequality would
follow easily as soon as we show the following simple lemma, whose proof is
skipped.
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Lemma 9. Let Ω ⊂ Rn be open and let 1 ≤ p <∞. Then for any u ∈W 1,p
0 (Ω) ,

the function

ũ (x) :=

{
u (x) if x ∈ Ω,

0 if x /∈ Ω.

is in W 1,p (Rn) and obviously extends u to whole of Rn.

Remark 10. Note that this lemma needs no regularity of the boundary and
also does not need Ω to be bounded. However, if ∂Ω is not regular, there may
be no well-defined trace and the identification with zero-trace functions might be
meaningless.

From the Poincaré-Sobolev inequality for W 1,p
0 , we can now deduce

Theorem 11 (Poincaré inequality for W 1,p
0 ). Let Ω ⊂ Rn be open and bounded

and let 1 ≤ p <∞. Then there exists a constant c > 0, depending only on Ω, n
and p such that we have the estimate

‖u‖Lp(Ω) ≤ c ‖∇u‖Lp(Ω) for all u ∈W 1,p
0 (Ω) .

Remark 12. This shows that for any Ω ⊂ Rn open and bounded, ‖∇u‖Lp(Ω)

is an equivalent norm on W 1,p
0 (Ω) . It is also fairly straight forward to establish

that this implies that

〈u, v〉W 1,2
0 (Ω) := 〈∇u,∇v〉L2(Ω)

is an equivalent inner product on W 1,2
0 (Ω) .
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