Introduction to the Calculus of Variations Lecture Notes
 Lecture 14

Swarnendu Sil

Spring 2021, IISc

Chapter 1

Sobolev spaces

1.1 Definitions

1.2 Elementary properties

1.3 Approximation and extension

1.4 Traces

1.5 Sobolev inequalities and Sobolev embeddings

1.5.1 Gagliardo-Nirenberg-Sobolev inequalities

Theorem 1 (Gagliardo-Nirenberg-Sobolev inequality). Let $1 \leq p<n$. Then there exists a constant $c>0$, depending only on n and p such that we have the estimate

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{n}}|u|^{p^{*}}\right)^{\frac{1}{p^{*}}} \leq c\left(\int_{\mathbb{R}^{n}}|\nabla u|^{p}\right)^{\frac{1}{p}} \tag{1.1}
\end{equation*}
$$

for every $u \in W^{1, p}\left(\mathbb{R}^{n}\right)$.
To prove this inequality, we need a simple lemma.
Lemma 2. Let $n \geq 2$ and let $f_{1}, \ldots, f_{n} \in L^{n-1}\left(\mathbb{R}^{n-1}\right)$. For $x \in \mathbb{R}^{n}$ and $1 \leq i \leq n$, set

$$
\hat{x}_{i}=\left(x_{1}, \ldots, \widehat{x}_{i}, \ldots, x_{n}\right):=\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right) .
$$

Then the function

$$
f(x):=\prod_{i=1}^{n} f_{i}\left(\hat{x}_{i}\right) \quad \text { for } x \in \mathbb{R}^{n}
$$

is in $L^{1}\left(\mathbb{R}^{n}\right)$ and we have the estimate

$$
\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)} \leq \prod_{i=1}^{n}\left\|f_{i}\right\|_{L^{n-1}\left(\mathbb{R}^{n-1}\right)}
$$

Proof. $n=2$ is just Fubini with equality in fact. Indeed,

$$
\begin{aligned}
\int_{\mathbb{R}^{2}}|f| \mathrm{d} x_{1} \mathrm{~d} x_{2} & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|f_{1}\left(x_{2}\right)\right|\left|f_{2}\left(x_{1}\right)\right| \mathrm{d} x_{1} \mathrm{~d} x_{2} \\
& =\left(\int_{-\infty}^{\infty}\left|f_{2}\left(x_{1}\right)\right| \mathrm{d} x_{1}\right)\left(\int_{-\infty}^{\infty}\left|f_{1}\left(x_{2}\right)\right| \mathrm{d} x_{2}\right)
\end{aligned}
$$

Now to prove by induction, we assume the result holds for some $n \geq 2$ and show it for $n+1$.

Fix $x_{n+1} \in \mathbb{R}$ for now. By Hölder inequality and the induction hypothesis,

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} & |f| \mathrm{d} x_{1} \mathrm{~d} x_{2} \ldots \mathrm{~d} x_{n} \\
& \leq\left\|f_{n+1}\right\|_{L^{n}\left(\mathbb{R}^{n}\right)}\left(\int_{\mathbb{R}^{n}}\left|f_{1} \ldots f_{n}\right|^{\frac{n}{n-1}}\right. \\
& \left.\mathrm{d} x_{1} \mathrm{~d} x_{2} \ldots \mathrm{~d} x_{n}\right)^{\frac{n-1}{n}} \\
& \leq\left\|f_{n+1}\right\|_{L^{n}\left(\mathbb{R}^{n}\right)} \prod_{i=1}^{n}\left\|\tilde{f}_{i}\right\|_{L^{n}\left(\mathbb{R}^{n-1}\right)} \quad\left[\tilde{f}_{i} \text { is } f_{i} \text { with } x_{n+1} \text { fixed }\right]
\end{aligned}
$$

Integrating w.r.t x_{n+1} and Hölder inequality gives the result.
Proof. First we prove for $p=1$.
We can assume $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$. We have, for each $1 \leq i \leq n$,

$$
\left|u\left(x_{1}, \ldots, x_{n}\right)\right| \leq \int_{-\infty}^{\infty}\left|\frac{\partial u}{\partial x_{i}}\left(x_{1}, \ldots, x_{i-1}, t, x_{i+1}, \ldots, x_{n}\right)\right| \mathrm{d} t:=f_{i}\left(\hat{x}_{i}\right)
$$

Thus, we have

$$
\left|u\left(x_{1}, \ldots, x_{n}\right)\right|^{\frac{n}{n-1}} \leq \prod_{i=1}^{n}\left|f_{i}\left(\hat{x}_{i}\right)\right|^{\frac{1}{n-1}}
$$

Integrating and using the lemma, we deduce

$$
\int_{\mathbb{R}^{n}}|u(x)|^{\frac{n}{n-1}} \mathrm{~d} x \leq \prod_{i=1}^{n}\left\|\left|f_{i}\left(\hat{x}_{i}\right)\right|^{\frac{1}{n-1}}\right\|_{L^{n-1}\left(\mathbb{R}^{n-1}\right)} \leq \prod_{i=1}^{n}\left\|\frac{\partial u}{\partial x_{i}}\right\|_{L^{1}\left(\mathbb{R}^{n}\right)}^{\frac{1}{n-1}}
$$

Thus,

$$
\|u\|_{L^{\frac{n}{n-1}\left(\mathbb{R}^{n}\right)}} \leq \prod_{i=1}^{n}\left\|\frac{\partial u}{\partial x_{i}}\right\|_{L^{1}\left(\mathbb{R}^{n}\right)}^{\frac{1}{n}} \leq c \sum_{i}^{n}\left\|\frac{\partial u}{\partial x_{i}}\right\|_{L^{1}\left(\mathbb{R}^{n}\right)}=c\|\nabla u\|_{L^{1}\left(\mathbb{R}^{n}\right)} .
$$

This proves the case $p=1$.
Now we choose $f=|u|^{\gamma}$ for some $\gamma>0$ and apply the inequality for $p=1$ to f to deduce,

$$
\begin{aligned}
\left(\int_{\mathbb{R}^{n}}|u|^{\frac{\gamma n}{n-1}}\right)^{\frac{n-1}{n}} \mathrm{~d} x & \leq \gamma \int_{\mathbb{R}^{n}}|u|^{\gamma-1}|\nabla u| \mathrm{d} x \\
& \text { Hölder } \\
\leq & \left(\int_{\mathbb{R}^{n}}|u|^{\frac{(\gamma-1) p}{p-1}} \mathrm{~d} x\right)^{\frac{p-1}{p}}\left(\int_{\mathbb{R}^{n}}|\nabla u|^{p} \mathrm{~d} x\right)^{\frac{1}{p}} .
\end{aligned}
$$

Now choose $\gamma>0$ such that

$$
\frac{\gamma n}{n-1}=\frac{(\gamma-1) p}{p-1}
$$

and watch the exponents almost magically fall into place for $1<p<n$ to establish

$$
\left(\int_{\mathbb{R}^{n}}|u|^{\frac{n p}{n-p}}\right)^{\frac{n-p}{n p}} \mathrm{~d} x \leq c\left(\int_{\mathbb{R}^{n}}|\nabla u|^{p} \mathrm{~d} x\right)^{\frac{1}{p}}
$$

This proves the theorem.

Consequences of the Gagliardo-Nirenberg-Sobolev inequality

We now discuss some consequences of the inequality.
Theorem 3 (Sobolev embedding in \mathbb{R}^{n} for $p<n$). Let $1 \leq p<n$. Then $W^{1, p}\left(\mathbb{R}^{n}\right)$ continuously embeds into $L^{q}\left(\mathbb{R}^{n}\right)$ for every $q \in\left[p, p^{*}\right]$.

Proof. Since $q \in\left[p, p^{*}\right]$, we have

$$
\frac{1}{q}=\frac{\alpha}{p}+\frac{1-\alpha}{p^{*}} \quad \text { for some } \alpha \in[0,1]
$$

Thus, we have, by interpolation inequality and Youngs inequality,

$$
\|u\|_{L^{q}} \leq\|u\|_{L^{p}}^{\alpha}\|u\|_{L^{p^{*}}}^{1-\alpha} \leq\|u\|_{L^{p}}+\|u\|_{L^{p^{*}}} \leq c\|u\|_{W^{1, p}} .
$$

Our next result might seem surprising, since it concerns $W^{1, n}$. But this result is more of a corollary of the proof and not really of the final result.

Theorem 4 (Sobolev embedding in \mathbb{R}^{n} for $\left.p=n\right)$. $W^{1, n}\left(\mathbb{R}^{n}\right)$ continuously embeds into $L^{q}\left(\mathbb{R}^{n}\right)$ for every $q \in[n,+\infty)$.

Proof. As in the proof, we can easily establish, for any $\gamma>0$,

$$
\left(\int_{\mathbb{R}^{n}}|u|^{\frac{\gamma n}{n-1}}\right)^{\frac{n-1}{n}} \mathrm{~d} x \leq \gamma\left(\int_{\mathbb{R}^{n}}|u|^{\frac{(\gamma-1) n}{n-1}} \mathrm{~d} x\right)^{\frac{n-1}{n}}\left(\int_{\mathbb{R}^{n}}|\nabla u|^{n} \mathrm{~d} x\right)^{\frac{1}{n}} .
$$

Note we really have not used the fact $p<n$ up to that point and so we can put $p=n$. Now let us chose $\gamma=n$. This will prove

$$
\|u\|_{L^{\frac{n^{2}}{n-1}}} \leq c\|u\|_{W^{1, n}} .
$$

But now we can iterate this process by choosing $\gamma=n+1, n+2, \ldots$ and so on to keep pushing the exponent.

Now we focus on bounded domains.
Theorem 5 (Sobolev embedding in bounded domains for $p<n$). Let $\Omega \subset \mathbb{R}^{n}$ be open, bounded and smooth and let $1 \leq p<n$. Then $W^{1, p}(\Omega)$ continuously embeds into $L^{q}(\Omega)$ for every $1 \leq q \leq p^{*}$.

Theorem 6 (Sobolev embedding in \mathbb{R}^{n} for $p=n$). Let $\Omega \subset \mathbb{R}^{n}$ be open, bounded and smooth. Then $W^{1, n}(\Omega)$ continuously embeds into $L^{q}\left(\mathbb{R}^{n}\right)$ for every $1 \leq q<\infty$.

Both results can be proved from the \mathbb{R}^{n} case using extension and noting that Ω has finite measure.

Poincaré-Sobolev inequalities

Note that the Gagliardo-Nirenberg-Sobolev inequality actually says

$$
\|u\|_{L^{p^{*}}\left(\mathbb{R}^{n}\right)} \leq c\|\nabla u\|_{L^{p}\left(\mathbb{R}^{n}\right)} \quad \text { when } 1 \leq p<n
$$

However, the estimate in the result for the bounded, smooth domain says something weaker, namely,

$$
\|u\|_{L^{p^{*}}(\Omega)} \leq c\|u\|_{W^{1, p}(\Omega)} \quad \text { when } 1 \leq p<n
$$

It is in general not possible to improve this. But for functions in $W_{0}^{1, p}(\Omega)$, we can improve the inequality.

Theorem 7 (Poincaré-Sobolev inequality for $W_{0}^{1, p}$). Let $\Omega \subset \mathbb{R}^{n}$ be open and let $1 \leq p<n$. Then there exists a constant $c>0$, depending only on Ω, n and p such that we have the estimate

$$
\|u\|_{L^{p^{*}}(\Omega)} \leq c\|\nabla u\|_{L^{p}(\Omega)} \quad \text { for all } u \in W_{0}^{1, p}(\Omega)
$$

Remark 8. Ω can be an arbitrary open set!
The result follows from the Gagliardo-Nirenberg-Sobolev inequality by an extension, but not the extension operator we constructed in the theorem. There is a far simpler canonical extension operator for $W_{0}^{1, p}$ which is not available for $W^{1, p}$. This is the extension by zero. So the Poincaré-Sobolev inequality would follow easily as soon as we show the following simple lemma, whose proof is skipped.

Lemma 9. Let $\Omega \subset \mathbb{R}^{n}$ be open and let $1 \leq p<\infty$. Then for any $u \in W_{0}^{1, p}(\Omega)$, the function

$$
\tilde{u}(x):= \begin{cases}u(x) & \text { if } x \in \Omega \\ 0 & \text { if } x \notin \Omega\end{cases}
$$

is in $W^{1, p}\left(\mathbb{R}^{n}\right)$ and obviously extends u to whole of \mathbb{R}^{n}.
Remark 10. Note that this lemma needs no regularity of the boundary and also does not need Ω to be bounded. However, if $\partial \Omega$ is not regular, there may be no well-defined trace and the identification with zero-trace functions might be meaningless.

From the Poincaré-Sobolev inequality for $W_{0}^{1, p}$, we can now deduce
Theorem 11 (Poincaré inequality for $W_{0}^{1, p}$). Let $\Omega \subset \mathbb{R}^{n}$ be open and bounded and let $1 \leq p<\infty$. Then there exists a constant $c>0$, depending only on Ω, n and p such that we have the estimate

$$
\|u\|_{L^{p}(\Omega)} \leq c\|\nabla u\|_{L^{p}(\Omega)} \quad \text { for all } u \in W_{0}^{1, p}(\Omega)
$$

Remark 12. This shows that for any $\Omega \subset \mathbb{R}^{n}$ open and bounded, $\|\nabla u\|_{L^{p}(\Omega)}$ is an equivalent norm on $W_{0}^{1, p}(\Omega)$. It is also fairly straight forward to establish that this implies that

$$
\langle u, v\rangle_{W_{0}^{1,2}(\Omega)}:=\langle\nabla u, \nabla v\rangle_{L^{2}(\Omega)}
$$

is an equivalent inner product on $W_{0}^{1,2}(\Omega)$.

