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Chapter 1

Sobolev spaces

1.1 Definitions

1.2 Elementary properties

1.3 Approximation and extension

1.3.1 Approximation and extension

In this section we are going to study two results.

• The extension of Sobolev functions from a bounded smooth domain to
the whole of Rn while keeping control over the Sobolev norm.

• The approximation of a Sobolev function in a bounded smooth do-
main, in the Sobolev norm, by functions which are smooth up to the
boundary.

Both the results can be proved for Lipschitz domains, but here we shall be
content with smooth domains.

The approximation result actually follows from the extension result. Also
we are going to explain the ideas involved for the proof of the extension result.
The details can be and should be filled in easily. But first we state the results.

Extension

Theorem 1 (Extension operator). Let Ω ⊂ Rn be open, bounded with smooth
boundary. Then for any 1 ≤ p ≤ ∞, there exists a linear extension operator

P : W 1,p (Ω)→W 1,p (Rn)
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such that for all u ∈W 1,p (Ω) , we have

Pu|Ω = u, (1.1)

‖Pu‖Lp(Rn) ≤ c ‖u‖Lp(Ω) , (1.2)

‖Pu‖W 1,p(Rn) ≤ c ‖u‖W 1,p(Ω) , (1.3)

where the constant c > 0 depends only on Ω.

Global approximation by smooth functions

Theorem 2 (Global approximation by smooth functions). Let Ω ⊂ Rn be open,
bounded with smooth boundary. Let u ∈ W 1,p (Ω) for some 1 ≤ p < ∞. Then
there exists a sequence

{us}∞s=1 ⊂W
1,p (Ω) ∩ C∞

(
Ω
)

such that
us → u in W 1,p (Ω) .

Remark 3. The result is false for p =∞.

Clearly, this result follows from the extension result by mollification.

Flattening the boundary

The first idea is that as the boundary ∂Ω is smooth, it is possible to locally
‘flatten’ the boundary. In precise terms, if x0 ∈ ∂Ω, there exists a neighborhood
Ux0 ⊂ Rn of x0 such that there exists a smooth diffeomorphism

Φ : B1 (0)→ Ux0

satisfying

• Φ (0) = x0.

• Φ
(
B+

1 (0)
)

= Ω ∩ Ux0
.

• Φ (B1 (0) ∩ {xn = 0}) = ∂Ω ∩ Ux0
.

This basically is the coordinate change that maps the point x0 to the origin,
maps the portion of Ω in Ux0

to the upper half ball B+
1 (0), maps the portion of

∂Ω in Ux0 to the portion of the equatorial hyperplane in the unit ball and takes
the inward normal to ∂Ω to the postive direction of the xn coordinate.
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Covering the boundary by local patches

Thus, if we care only about a small neighborhood of a boundary point, we can
transfer our problem to extending from the upper half-ball to the whole ball
and then transfer back.

Now the question is, can we somehow ‘cut’ u into pieces near the boundary,
work with each piece separately and then finally patch them up?

We can! But first we ‘cut’ the boundary into pieces.

Note that by compactness of ∂Ω, it is possible to cover ∂Ω by finitely many
such neighborhoods, i.e.

∂Ω ⊂
M⋃
i=1

Uxi
,

for some integer M > 0 and some neighborhoods Uxi of the boundary points
x1, . . . , xM ∈ ∂Ω.

Localizing and patching them up

To ‘cut’ u into pieces, we use an extremely useful device known as a partition
of unity.

Proposition 4 (partition of unity). Let Γ be a compact subset of Rn and let
U1, . . . , UM be a finite open covering of Γ. Then there exist functions ζ0, ζ1, . . . , ζM ∈
C∞ (Rn) such that

• 0 ≤ ζi ≤ 1 for all 0 ≤ i ≤M and

M∑
i=0

ζi ≡ 1 on Rn,

• supp ζ0 ⊂ Rn \ Γ and

• supp ζi is compact and supp ζi ⊂ Ui for every 1 ≤ i ≤M.

Moreover, if Ω ⊂ Rn is an open bounded set such that Γ = ∂Ω, then we can in
addition arrange that

ζ0|Ω ∈ C
∞
c (Ω) .

Localizing or cutting into pieces How do we use this to ‘cut’ u into pieces?

Note that we have

u =

M∑
i=0

ζiu in Ω.

Thus,
ui := ζiu for 0 ≤ i ≤M,

are the pieces of u.
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Patching up the pieces On the other hand, if we are given functions vi ∈
W 1,p (Ui) for every 0 ≤ i ≤M, then

v :=

M∑
i=0

ζivi ∈W 1,p (Rn) .

Sketch of the proof of the extension result

Now hopefully it is clear what we want to do. Our plan is

• cut u into pieces as discussed,

• locally flatten the boundary, i.e. compose each piece of u near the bound-
ary with the respective diffemorphisms to obtain Sobolev functions defined
on the upper half ball,

• extend those Sobolev functions to the whole ball,

• compose those extensions with the inverse of the diffeomorphisms to get
Sobolev extensions to whole of the neighborhoods Uis and finally

• patch all these pieces together to obtain a Sobolev function on the whole
of Rn.

Note that the u0 piece lives in the interior of Ω, so we can just extend it by zero.

To carry out the plan, all that remains is to figure out how to extend a
Sobolev function on the upper half ball which vanishes near the curved
part of the boundary from the upper half ball to the whole ball.

Extension by reflection

At the level of W 1,p, it is hardly surprising or difficult. We just use reflection
across the flat part of the boundary of the upper half ball.

Lemma 5. Let u ∈ W 1,p
(
B+

1 (0)
)
, where 1 ≤ p ≤ ∞ be such that it vanishes

near the curved part of the boundary, i.e. ∂B1 (0)∩{xn > 0} . Then the function
defined as

ũ (x′, xn) :=

{
u (x′, xn) if xn > 0,

u (x′,−xn) if xn < 0.

belongs to W 1,p (B1 (0)) , extends u to B1 (0) and vanishes near ∂B1 (0) .

The value of the function obviously matches and perhaps slightly less ob-
viously, the tangential derivatives along the equatorial hyperplane match too.
So the only thing to check is whether the normal derivative matches across the
equatorial hyperplane {xn = 0} . You are asked to prove this in the problem
sheets.
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1.4 Traces

Now we want to tackle the problem of defining ‘boundary values’ of a W 1,p

function. Note that ∂Ω has zero n-dimensional Lebesgue measure and so it is
meaningless of talk about the ‘value’ of an Lp function on ∂Ω. However, we
shall see that unlike the case of a general Lp function, there is a precise sense
in which we can define ‘values’ of a W 1,p function on ∂Ω.

Theorem 6 (Existence of Trace operator). Let Ω ⊂ Rn be open, bounded with
smooth boundary and let 1 ≤ p <∞. There exists a bounded linear operator

T0 : W 1,p (Ω)→ Lp (∂Ω)

such that
T0u = u|∂Ω

for any u ∈W 1,p (Ω) ∩ C∞
(
Ω
)
.

For any u ∈ W 1,p (Ω) , we call T0u as the zeroth order Dirichlet trace
on the boundary and is often denoted simply as u|∂Ω.

Remark 7. • Note that Lp (∂Ω) is defined with respect to the surface mea-
sure dσ on ∂Ω. If you are familiar with Hausdorff measure, then you
would have no difficulty understanding that this is essentially the (n− 1)-
dimensional Hausdorff measure Hn−1 restricted to ∂Ω.

• Although we prove the theorem for 1 ≤ p < ∞, this does not mean that
W 1,∞ functions have no bounded trace. In fact, as we shall see later,
W 1,∞ (Ω) = C0,1

(
Ω
)
. Thus, being Lipschitz, these functions have bound-

ary values in the usual sense and those are clearly bounded on the compact
set ∂Ω.

• In fact, T0u = u|∂Ω for any u ∈W 1,p (Ω) ∩ C0
(
Ω
)
.

• As before, smooth boundary is not really necessary and the result holds
for Lipschitz boundaries as well. But some regularity of the boundary is
essential.

We define the operator for smooth functions by assigning the boundary val-
ues. This operator is clearly linear. Since C∞

(
Ω
)

is dense in W 1,p (Ω) , to show
boundedness, it is enough to show the estimate

‖u|∂Ω‖Lp(∂Ω) ≤ c ‖u‖W 1,p(Ω) for every u ∈ C∞
(
Ω
)
.

As before, by using localization, flattening the boundary and patching up, the
proof of the theorem can be reduced to proving the following.

Lemma 8. There exists a constant c > 0 such that(ˆ
Rn−1

|u (x′, 0)|p dx′
) 1

p

≤ c ‖u‖W 1,p(Rn
+) for every u ∈ C∞c (Rn) .
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Proof.
Let F (t) := |t|p−1

t, for all t ∈ R.
Now since u ∈ C∞c (Rn) , we have

F (u (x′, 0)) = −
ˆ +∞

0

∂

∂xn
F (u (x′, xn)) dxn = −

ˆ +∞

0

F ′ (u (x′, xn))
∂u

∂xn
(x′, xn) dxn

Taking absolute values and then Young’s inequality, this implies

|u (x′, 0)|p ≤ p
ˆ +∞

0

|u (x′, xn)|p−1

∣∣∣∣ ∂u∂xn (x′, xn)

∣∣∣∣ dxn

≤ c
(ˆ +∞

0

|u (x′, xn)|p dxn +

ˆ +∞

0

∣∣∣∣ ∂u∂xn (x′, xn)

∣∣∣∣p dxn

)
.

The lemma follows by integrating w.r.t. x′ ∈ Rn−1 and taking p-th roots along
with obvious estimates.

• One can now easily figure out the kernel of the trace map.

Ker (T0) = W 1,p
0 (Ω) .

• Figuring out the exact image of the trace map is delicate. They are how-
ever known, but requires the notion of Sobolev spaces of fractional order.
For example,

T0

(
W 1,p (Ω)

)
= W 1− 1

p ,p (∂Ω) .

• Higher order traces can be defined similarly and requires more Sobolev
regularity for those traces to be in Lp (∂Ω). For example, for u ∈W 2,p (Ω) ,
there is a bounded linear operator

T1 : W 2,p (Ω)→ Lp (∂Ω)

such that

T1u =
∂u

∂xn

∣∣∣∣
∂Ω

for any u ∈W 2,p (Ω) ∩ C∞
(
Ω
)
.

1.5 Sobolev inequalities and Sobolev embeddings

1.5.1 Sobolev embeddings

Now we are going to study an extremely important topic in the theory of Sobolev
spaces, called the Sobolev embeddings.

A W 1,p function is apriori only in Lp. Now we ask the question if the addi-
tional information that the weak derivative is also in Lp implies that the function
enjoys better integrability, i.e. actually is in Lq for some q > p?

There are three different regimes in this discussion, depending on what n
and p is.
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• Sobolev inequality The case 1 ≤ p < n.

• Morrey’s inequality The case n < p <∞.

• The borderline case p = n.

We begin our discussion with the case 1 ≤ p < n.

1.5.2 Gagliardo-Nirenberg-Sobolev inequalities

Sobolev conjugate exponent for 1 ≤ p < n

Suppose we want to prove an inequality of the form

‖u‖Lq(Rn) ≤ c ‖∇u‖Lp(Rn) for all u ∈ C∞c (Rn) . (1.4)

What can the exponent q be? To guess this, we perform what is known as a
scaling analysis. If such a inequality is indeed true, then choose u ∈ C∞c (Rn) ,
u 6≡ 0 and λ > 0 and set

uλ (x) := u (λx) .

Thus, we deduce, using change of variables
ˆ
Rn

|uλ|q dx =
1

λn

ˆ
Rn

|u|q dx

ˆ
Rn

|∇uλ|p dx =
λp

λn

ˆ
Rn

|∇u|p dx.

So, (1.4) applied to uλ implies

‖u‖Lq(Rn) ≤ cλ(1−n
p + n

q ) ‖∇u‖Lp(Rn) . (1.5)

Sobolev conjugate exponent for 1 ≤ p < n

Thus, if

1− n

p
+
n

q
6= 0,

we can easily contradict the inequality by letting λ go to 0 or∞. Thus, we must
have

1

q
=

1

p
− 1

n
.

Definition 9 (Sobolev conjugate exponent). Let 1 ≤ p < n. Then the Sobolev
conjugate exponent of p is defined as

p∗ =
np

n− p
.

Remark 10. Note that we always have p∗ > p.
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Gagliardo-Nirenberg-Sobolev inequality

Theorem 11 (Gagliardo-Nirenberg-Sobolev inequality). Let 1 ≤ p < n. Then
there exists a constant c > 0, depending only on n and p such that we have the
estimate (ˆ

Rn

|u|p
∗
) 1

p∗

≤ c
(ˆ

Rn

|∇u|p
) 1

p

(1.6)

for every u ∈W 1,p (Rn) .
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