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Chapter 1

Prelude to Direct Methods

1.1 Geodesics: the problem

1.2 Absolute continuity: first encounter with
Sobolev spaces

1.3 Existence of geodesics

1.4 Regularity questions

1.4.1 Regularity of minimizers

1.4.2 Geodesic equation

As a consequence of the regularity theorem, we infer that the geodesic curves
are smooth. Hence they satisfy the Euler-Lagrange equations, which we now
deduce. The functional is

E (c) =
1

2

ˆ T

0

gij (γ (t)) γ̇i (t) γ̇j (t) dt.

Thus, we calculate

0 =
d

dt
Eγ̇i − Eγi

=
d

dt

[
2gij (γ (t)) γ̇j (t)

]
−
(
∂

∂zi
gkj

)
(γ (t)) γ̇k (t) γ̇j (t)

= 2gij γ̈j + 2
∂

∂zk
gij γ̇kγ̇j −

∂

∂zi
gkj γ̇kγ̇j .
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Writing gij as the entries of the inverse matrix (gij)i,j and using the notation

gij,k :=
∂

∂zk
gij ,

the EL equations become

γ̈i (t) + Γijk (γ (t)) γ̇j (t) γ̇k (t) = 0,

where

Γijk :=
1

2
gil (gjl,k + gkl,j − gjk,l),

are called the Christoffel symbols. Often in differential geometry courses, ex-
istence of geodesic is proved via classical method, i.e. by applying the existence
of solutions of ODE theorem to this ODE.
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Chapter 2

Sobolev spaces

2.1 Definitions

Now we are going to enter the arena of modern direct methods. But before doing
so, we must get ourselves acquainted with Sobolev spaces. We have already seen
Sobolev spaces in dimension one. Now we are going study Sobolev spaces in
general dimensions.

We start with notion of weak derivatives.

Definition 1. Let Ω ⊂ Rn be open and u ∈ L1
loc (Ω) . We say that v ∈ L1

loc (Ω)
is the weak partial derivative of u with respect to xi ifˆ

Ω

v (x)ϕ (x) dx = −
ˆ

Ω

u (x)
∂ϕ

∂xi
(x) dx, ∀ϕ ∈ C∞c (Ω) .

By abuse of notations we write v = ∂u/∂xi or uxi
.

We say that u is weakly differentiable if the weak partial derivatives ux1
, · · · ,

uxn
exist.

Remark 2. (i) If such a weak derivative exists it is unique (a.e.), as a conse-
quence of the fundamental lemma of calculus of variations.

(ii) All the usual rules of differentiation are easily generalized to the present
context of weak differentiability.

(iii) In a similar way we can introduce the higher derivatives.

(iv) If a function is C1, then the usual notion of derivative and the weak
one coincide.

(v) The advantage of this notion of weak differentiability will be obvious
when defining Sobolev spaces. We can compute many more derivatives of func-
tions than one can usually do. However, not all measurable functions can be
differentiated in this way. In particular, a discontinuous function of R cannot
be differentiated in the weak sense ( as we have already seen, W 1,1 functions on
R are continuous. )

3



Example 3. Let Ω = R and the function u (x) = |x| . Its weak derivative is
then given by

u′ (x) =

{
+1 if x > 0

−1 if x < 0.

Example 4 (Dirac mass). Let

H (x) =

{
1 if x > 0

0 if x < 0.

We now show that H has no weak derivative. Let Ω = (−1, 1) . Assume, for
the sake of contradiction, that H ′ = δ ∈ L1

loc (−1, 1) and let us prove that this
is impossible. Let ϕ ∈ C∞c (0, 1) be arbitrary and extend it to (−1, 0) by ϕ ≡ 0.
We therefore have by definition that

ˆ 1

−1

δ (x)ϕ (x) dx = −
ˆ 1

−1

H (x)ϕ′ (x) dx = −
ˆ 1

0

ϕ′ (x) dx

= ϕ (0)− ϕ (1) = 0.

We hence find

ˆ 1

0

δ (x)ϕ (x) dx = 0, ∀ϕ ∈ C∞c (0, 1)

which implies δ = 0 a.e. in (0, 1) . With an analogous reasoning we would
get that δ = 0 a.e. in (−1, 0) and consequently δ = 0 a.e. in (−1, 1) . Let us
show that we have reached the desired contradiction. Indeed, if this were the
case we would have, for every ϕ ∈ C∞c (−1, 1) ,

0 =

ˆ 1

−1

δ (x)ϕ (x) dx = −
ˆ 1

−1

H (x)ϕ′ (x) dx

= −
ˆ 1

0

ϕ′ (x) dx = ϕ (0)− ϕ (1) = ϕ (0) .

This would imply that ϕ (0) = 0, for every ϕ ∈ C∞c (−1, 1) , which is clearly
absurd. Thus H is not weakly differentiable. By weakening even more the
notion of derivative (for example, by no longer requiring that v is in L1

loc), the
theory of distributions can give a meaning at H ′ = δ, it is then called the Dirac
mass. We will however not need this theory.

Definition 5 (Sobolev spaces). Let Ω ⊂ Rn be an open set and 1 ≤ p ≤ ∞.
(i) We let W 1,p (Ω) be the set of functions u : Ω → R, u ∈ Lp (Ω) , whose

weak partial derivatives uxi
∈ Lp (Ω) for every i = 1, · · · , n. We endow this

space with the following norm

‖u‖W 1,p = (‖u‖pLp + ‖∇u‖pLp)
1/p

if 1 ≤ p <∞,
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‖u‖W 1,∞ = max {‖u‖L∞ , ‖∇u‖L∞} if p =∞.

(ii) If 1 ≤ p < ∞, the set W 1,p
0 (Ω) is defined as the closure of C∞c (Ω)

functions in W 1,p (Ω) . By abuse of language, we often say, if Ω is bounded, that
u ∈W 1,p

0 (Ω) is such that u ∈W 1,p (Ω) and u = 0 on ∂Ω.

(iii) We also write u ∈ u0 + W 1,p
0 (Ω) , meaning that u, u0 ∈ W 1,p (Ω) and

u− u0 ∈W 1,p
0 (Ω) .

(iv) We let W 1,∞
0 (Ω) = W 1,∞ (Ω) ∩W 1,1

0 (Ω) .

(v) Analogously we define the Sobolev spaces with higher derivatives as
follows. If k > 0 is an integer we let W k,p (Ω) be the set of functions u : Ω→ R,
whose weak partial derivatives Dau ∈ Lp (Ω) , for every multi-index a ∈ Am ,
0 ≤ m ≤ k. The norm is given by

‖u‖Wk,p =



 ∑
0≤|a|≤k

‖Dau‖pLp

1/p

if 1 ≤ p <∞

max
0≤|a|≤k

(‖Dau‖L∞) if p =∞.

(vi) If 1 ≤ p < ∞, W k,p
0 (Ω) is the closure of C∞c (Ω) in W k,p (Ω) and

W k,∞
0 (Ω) = W k,∞ (Ω) ∩W k,1

0 (Ω) .

(vii) We define W k,p
(
Ω;RN

)
to be the set of maps u : Ω → RN , u =(

u1, · · · , uN
)
, with ui ∈ W k,p (Ω) for every i = 1, · · · , N and similarly for

W k,p
0

(
Ω;RN

)
.

Remark 6. (i) By abuse of notations we write W 0,p = Lp.

(ii) Roughly speaking, we can say that W 1,p is an extension of C1 similar
to that of Lp as compared to C0.

(iii) Note that if Ω is bounded, then

C1
(
Ω
)
⊂
6=
W 1,∞ (Ω) ⊂

6=
W 1,p (Ω) ⊂

6=
Lp (Ω)

for every 1 ≤ p <∞.
(iv) If p = 2, the spaces W k,2 (Ω) and W k,2

0 (Ω) are sometimes respectively
denoted by Hk (Ω) and Hk

0 (Ω) .

Examples

Now we present some examples which are instructive.

Example 7. Let s > 0,

Ω = {x ∈ Rn : |x| < 1} and ψ (x) = |x|−s .

We then have

ψ ∈ Lp ⇔ sp < n and ψ ∈W 1,p ⇔ (s+ 1) p < n .
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This is a typical one about how singular a Sobolev function can be. Another
similar one is the following.

Example 8. Let n ≥ 2 and

Ω = {x ∈ Rn : |x| < 1} and u (x) =
x

|x|
,

then u ∈W 1,p (Ω;Rn) for every 1 ≤ p < n.

We already saw W 1,1 functions for n = 1 are continuous. Our next example
shows W 1,n functions need not be continuous if n ≥ 2.

Example 9. Let 0 < s < 1/2,

Ω =
{
x = (x1, x2) ∈ R2 : |x| < 1/2

}
and ψ (x) = |log |x||s .

We have that ψ ∈ W 1,2 (Ω) , ψ ∈ Lp (Ω) for every 1 ≤ p < ∞, but ψ /∈
L∞ (Ω) .

Another such example is

Example 10. u(x) = log log
(

1 + 1
|x|

)
∈W 1,n (Bn1 ) for n > 1, but is unbounded

near 0.

2.2 Elementary properties

Theorem 11. Let Ω ⊂ Rn be open, 1 ≤ p ≤ ∞ and k ≥ 1 an integer.

(i) W k,p (Ω) equipped with its norm ‖·‖k,p is a Banach space which is sep-
arable if 1 ≤ p <∞ and reflexive if 1 < p <∞.

(ii) W 1,2 (Ω) is a Hilbert space when endowed with the following inner prod-
uct

〈u; v〉W 1,2 =

ˆ
Ω

u (x) v (x) dx+

ˆ
Ω

〈∇u (x) ;∇v (x)〉 dx.

(iii) The C∞ (Ω) ∩W k,p (Ω) functions are dense in W k,p (Ω) provided 1 ≤
p <∞. Moreover, if Ω is a bounded connected open set with Lipschitz boundary,
then C∞

(
Ω
)

is also dense in W k,p (Ω) provided 1 ≤ p <∞.
(iv) W k,p

0 (Rn) = W k,p (Rn) , whenever 1 ≤ p <∞.

Remark 12. (i) Note that as for the case of Lp the space W k,p is reflexive
only when 1 < p <∞ and hence W 1,1 is not reflexive.

(ii) The density result for arbitrary open sets is due to Meyers and Serrin,
known as Meyer-Serrin theorem and is quite delicate. The result for domains
with regular enough boundary is easier and is proved by extension and mollifi-
cation, as in the one dimensional case. But this case is harder than the one
dimensional case.

(iii) In general, we have W 1,p
0 (Ω) ⊂

6=
W 1,p (Ω) , but when Ω = Rn both

coincide.
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We are not going to prove the Meyer-Serrin theorem. The proof of the
density result with regular enough boundary would be sketched later. Now we
first prove a simple characterization of W 1,p which turns out to be particularly
helpful when dealing with regularity problems. It relates the weak derivative
with the difference quotient that characterizes classical derivatives. First we
begin with a notation for difference quotients.

Notation: For τ ∈ Rn, τ 6= 0, we let the difference quotient be defined by

(Dτu) (x) =
u (x+ τ)− u (x)

|τ |
.

Note that if u is C1, the limits of difference quotients are the classical deriva-
tives. So we can expect that the difference quotients are also in Lp for W 1,p

functions, since the weak derivative is in Lp. This is, in fact, true and it actually
characterizes W 1,p.

Theorem 13 (Characterization of difference quotients). Let Ω ⊂ Rn be open,
1 < p ≤ ∞ and u ∈ Lp (Ω) . The following properties are then equivalent.

(i) u ∈W 1,p (Ω) ;

(ii) there exists a constant γ = γ (u,Ω, p) so that∣∣∣∣ˆ
Ω

uϕxi

∣∣∣∣ ≤ γ ‖ϕ‖Lp′ , ∀ϕ ∈ C∞c (Ω) , ∀ i = 1, 2, · · · , n

(iii) there exists a constant γ = γ (u,Ω, p) such that for every open set
ω ⊂ ω ⊂ Ω, with ω compact, and for every τ ∈ Rn with 0 6= |τ | < dist (ω,Ωc)
(where Ωc = Rn \ Ω), we have

‖Dτu‖Lp(ω) ≤ γ.

Furthermore, if (ii) or (iii) holds, then

‖∇u‖Lp(Ω) ≤ γ.

If (i) holds, then γ in (ii) or (iii) can be chosen to be ‖∇u‖Lp and in par-
ticular

‖Dτu‖Lp(ω) ≤ ‖∇u‖Lp(Ω) .

Remark 14. (i) As a consequence of the theorem, it can easily be proved that
if Ω is bounded and open then

C0,1
(
Ω
)
⊂W 1,∞ (Ω)

and the inclusion is, in general, strict. If, however, the set Ω is also convex (or
sufficiently regular ), then these two sets coincide (as usual, up to the choice of a
representative in W 1,∞ (Ω)). In other words, we can say that the set of Lipschitz
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functions over Ω can be identified, if Ω is convex or sufficiently regular, with the
space W 1,∞ (Ω) .

(ii) The theorem is false when p = 1. We then only have (i) ⇒ (ii) ⇔
(iii). The functions satisfying (ii) or (iii) are then called functions of bounded
variations, as we have already mentioned in the setting of Sobolev spaces in
dimension one.

Proof. We prove the theorem only when n = 1 and Ω = (a, b) . Adapting the
proofs to the more general case is straight forward and is given as an exercise
in the problem sheet.

(i) ⇒ (ii). This follows from Hölder inequality and the fact that u has a
weak derivative; indeed∣∣∣∣∣

ˆ b

a

uϕ′

∣∣∣∣∣ =

∣∣∣∣∣
ˆ b

a

u′ ϕ

∣∣∣∣∣ ≤ ‖u′‖Lp ‖ϕ‖Lp′ .

(ii) ⇒ (i). Let F be a linear functional defined by

F (ϕ) = 〈F ;ϕ〉 =

ˆ b

a

uϕ′, ∀ϕ ∈ C∞c (a, b) . (2.1)

Note that, by (ii), it is continuous over C∞c (a, b) . Since C∞c (a, b) is dense in
Lp

′
(a, b) (note that we use here the fact that p 6= 1 and hence p′ 6= ∞), we

can extend it, by continuity (or appealing to Hahn-Banach theorem ), to the
whole Lp

′
(a, b) ; we have therefore defined a continuous linear operator F over

Lp
′
(a, b) , with

|F (ϕ)| ≤ γ ‖ϕ‖Lp′ , ∀ϕ ∈ Lp
′
(a, b) . (2.2)

Sobolev spaces: Properties From Riesz theorem representation theorem for
Lp, we find that there exists v ∈ Lp (a, b) so that

F (ϕ) = 〈F ;ϕ〉 =

ˆ b

a

v ϕ, ∀ϕ ∈ Lp
′
(a, b) . (2.3)

Combining (2.1) and (2.3) we get

ˆ b

a

(−v)ϕ = −
ˆ b

a

uϕ′, ∀ϕ ∈ C∞c (a, b)

which exactly means that u′ = −v ∈ Lp (a, b) and hence u ∈W 1,p (a, b) .

Note also that, since (2.2) and (2.3) hold, we infer

‖u′‖Lp(a,b) = ‖v‖Lp(a,b) ≤ γ.

(iii) ⇒ (ii). Let ϕ ∈ C∞c (a, b) and let ω ⊂ ω ⊂ (a, b) with ω compact and
such that suppϕ ⊂ ω. Let τ ∈ R so that 0 6= |τ | < dist (ω, (a, b)

c
) .
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We then have for 1 < p ≤ ∞, appealing to Hölder inequality and to (iii),∣∣∣∣∣
ˆ b

a

(Dτu)ϕ

∣∣∣∣∣ ≤ ‖Dτu‖Lp(ω) ‖ϕ‖Lp′ (a,b) ≤ γ ‖ϕ‖Lp′ (a,b) . (2.4)

We know, by hypothesis, that ϕ ≡ 0 on (a, a+ τ) and (b− τ, b) if τ > 0 and we
therefore find (letting ϕ ≡ 0 outside (a, b))

ˆ b

a

u (x+ τ)ϕ (x) dx =

ˆ b+τ

a+τ

u (x+ τ)ϕ (x) dx =

ˆ b

a

u (x)ϕ (x− τ) dx. (2.5)

Since a similar argument holds for τ < 0, we deduce from (2.4) and (2.5) that,
if 1 < p ≤ ∞, ∣∣∣∣∣

ˆ b

a

u (x) [ϕ (x− τ)− ϕ (x)] dx

∣∣∣∣∣ ≤ γ |τ | ‖ϕ‖Lp′ (a,b) .

Letting |τ | tend to zero, we get∣∣∣∣∣
ˆ b

a

uϕ′

∣∣∣∣∣ ≤ γ ‖ϕ‖Lp′ (a,b) , ∀ϕ ∈ C∞c (a, b)

which is exactly (ii).

Note that the γ appearing in (iii) and in (ii) can be taken the same.

(i) ⇒ (iii). We have for every x ∈ ω

u (x+ τ)− u (x) =

ˆ x+τ

x

u′ (t) dt = τ

ˆ 1

0

u′ (x+ sτ) ds

and hence

|u (x+ τ)− u (x)| ≤ |τ |
ˆ 1

0

|u′ (x+ sτ)| ds.

Let 1 < p < ∞ (the conclusion is obvious if p = ∞), we have from Jensen
inequality that

|u (x+ τ)− u (x)|p ≤ |τ |p
ˆ 1

0

|u′ (x+ sτ)|p ds

Hence after integration

ˆ
ω

|u (x+ τ)− u (x)|p dx ≤ |τ |p
ˆ
ω

ˆ 1

0

|u′ (x+ sτ)|p ds dx

= |τ |p
ˆ 1

0

ˆ
ω

|u′ (x+ sτ)|p dx ds.
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Since ω + sτ ⊂ (a, b) , we find

ˆ
ω

|u′ (x+ sτ)|p dx =

ˆ
ω+sτ

|u′ (y)|p dy ≤ ‖u′‖pLp(a,b)

and hence
‖Dτu‖Lp(ω) ≤ ‖u

′‖Lp(a,b)

which is the claim.
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