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Chapter 1

Prelude to Direct Methods

1.1 Geodesics: the problem

1.2 Absolute continuity: first encounter with
Sobolev spaces

Recap We have already defined weak derivatives.

Definition 1 (weak derivatives). Let u ∈ L1
(
(0, T );Rd

)
. We say u has a weak

derivative if there exists a function v ∈ L1
(
(0, T );Rd

)
such that

ˆ T

0

〈v, ψ〉 = −
ˆ T

0

〈
u, ψ̇

〉
for any ψ ∈ C∞c

(
(0, T );Rd

)
.

In this case, we say v is the weak derivative of u and we write

v = u̇.

Remark 2. The weak derivative, if it exists, is unique.

Can you see why? Any two weak derivatives of u would be equal a.e. by the
fundamental lemma of calculus of variations and thus would represent the same
L1 function.

1.2.1 Sobolev spaces in dimension one: definition and el-
ementary properties

Definition 3 (W 1,p functions). A measurable function u : (a, b)→ R is said to
be a Sobolev function of class W 1,p if u ∈ Lp ((a, b)) and the weak derivative
u̇ ∈ Lp ((a, b)) for 1 ≤ p ≤ ∞. In this case, we write u ∈W 1,p ((a, b)) .

A measurable function u : (a, b) → RN is said to be a Sobolev function
of class W 1,p if ui ∈W 1,p ((a, b)) for every 1 ≤ i ≤ N.
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Remark 4. Note that by our definition, as soon as an L1 function is weakly
differentiable, it is a Sobolev function of class W 1,1.

Let us now introduce a norm on W 1,p.

Proposition 5. Let u ∈W 1,p
(
(a, b);RN

)
. If 1 ≤ p <∞, then

‖u‖W 1,p((a,b);RN ) := ‖u‖Lp((a,b);RN ) + ‖u̇‖Lp((a,b);RN ) <∞.

For p =∞, we have

‖u‖W 1,∞((a,b);RN ) := ‖u‖L∞((a,b)RN ) + ‖u̇‖L∞((a,b);RN ) <∞.

Moreover, these expressions defines a norm on the vector space of all functions
in W 1,p

(
(a, b);RN

)
.

Proposition 6. The vector space of all function in W 1,p
(
(a, b);RN

)
, equipped

with the norms above is a Banach space, which is reflexive for 1 < p <
∞ and is separable for 1 ≤ p < ∞. We would simply write this space as
W 1,p

(
(a, b);RN

)
.

Proposition 7. The space W 1,2
(
(a, b);RN

)
, equipped with the inner product

〈u, v〉W 1,2((a,b);RN ) : = 〈u, v〉L2((a,b);RN ) + 〈u̇, v̇〉L2((a,b);RN )

=

ˆ b

a

〈u, v〉+

ˆ b

a

〈u̇, v̇〉 ,

is a Hilbert space.

There is another way the Sobolev spaces could have been defined for 1 ≤
p <∞.

Definition 8 (Sobolev spacesH1,p). Let X1,p be the linear subspace of C1
(
(a, b);RN

)
functions such that

‖u‖W 1,p((a,b);RN ) := ‖u‖Lp((a,b);RN ) + ‖u̇‖Lp((a,b);RN ) <∞.

The completion of X1,p with respect to the above norm is called H1,p
(
(a, b);RN

)
.

Extension and density results: W 1,p = H1,p

We are now going to prove that the two spaces W 1,p and H1,p are the same. In
particular, we prove smooth functions are dense in W 1,p. To show this, we shall
also prove that any function u ∈ W 1,p

(
(a, b);RN

)
is actually the restriction of

a W 1,p
(
R;RN

)
function.

Theorem 9 (extension and density). Let (a, b) be a bounded interval of R and
let u ∈W 1,p ((a, b)) with 1 ≤ p <∞. Then
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1. There exists a function U ∈ Lp (R) which has a weak derivative U̇ ∈ Lp (R)
and satisfies U = u in (a, b).

2. u ∈ H1,p ((a, b)) .

Proof. We first prove the first part. Pick ā, b̄ ∈ R with a < ā < b̄ < b and let
η ∈ C1 (R) be such that

η = 1 in (−∞, ā) and η = 0 in (b̄,∞).

Our plan is to write
u = ηu+ (1− η)u.

We can check that

ηu ∈W 1,p ((a,∞)) and (1− η)u ∈W 1,p ((−∞, b)) .

Now we define

U1 (t) =

{
[ηu] (t) , t > a

[ηu] (2a− t) , t < a
and U2 =

{
[(1− η)u] (t) , t < b

[(1− η)u] (2b− t) , t > b.

Clearly, U = U1 + U2 does the job.

Now let us prove the second part. Let U ∈ W 1,p (R) be the above extension of
u ∈ W 1,p ((a, b)) . Pick a nonnegative φ ∈ C∞c ([−1, 1]) such that

´
φ = 1 and

set

φε (t) :=
1

ε
φ

(
t

ε

)
.

Then we can easily check that

Uε := U ∗ φε

is smooth and converges to U in the W 1,p norm on R.

Now we want to investigate the question of boundary values ( or any pointwise
value ) of a W 1,p function. Note since W 1,p functions are only a priory Lp

functions, they are only defined a.e. and thus the pointwise value does not
necessarily make sense! Later, we would resolve this issue by the trace map.
In one dimension, however, we are in luck. As we show now, these functions are
actually continuous in one dimension.

Continuity of Sobolev functions in one dimension

Theorem 10 (Continuity of W 1,1 functions in one dimension). Every function
in W 1,1 ((a, b)) is uniformly continuous in [a, b]. In particular,

W 1,1 ((a, b)) ⊂ C0 ([a, b])
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and

sup
t∈[a,b]

|u| ≤ 1

(b− a)

ˆ b

a

|u|+
ˆ b

a

|u̇| .

Moreover, the fundamental theorem of calculus holds, i.e. for all a ≤ s < t ≤ b,

u (t)− u (s) =

ˆ t

s

u̇ (θ) dθ.

This is something we have already seen implicitly in attempting to solve the
geodesic problem before.

Proof. SinceW 1,1 = H1,1, for u ∈W 1,1 ((a, b)) , there exists a sequence {uν}ν≥1 ⊂
X1,1 such that

uν → u in W 1,1.

Now, using the fundamental theorem of calculus, we obtain

uν(t)− uν(s) =

ˆ t

s

u̇ν(t) dt. (1.1)

Thus, in particular, we have,

|uν(t)− uν(s)| =
∣∣∣∣ˆ t

s

u̇ν(t) dt

∣∣∣∣ ≤ ˆ t

s

|u̇ν(t)| dt.

and

|uν(t)| ≤ |uν (s)|+
ˆ t

s

|u̇ν(t)| dt.

The last inequality implies

|uν(t)| ≤ |uν (s)|+
ˆ b

a

|u̇ν(t)| dt.

Integrating this with respect to s ∈ (a, b), we obtain

|uν(t)| ≤ 1

(b− a)

ˆ b

a

|uν (s)| ds+

ˆ b

a

|u̇ν(t)| dt. (1.2)

Thus {uν} is uniformly bounded in C0 and as

u̇ν → u̇ strongly in L1,

we have

ˆ t

s

|u̇ν(t)| dt→ 0 uniformly in ν as t− s→ 0.
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Indeed, since u̇ ∈ L1, we have

ˆ t

s

|u̇(t)| dt→ 0 as t− s→ 0.

But the strong convergence implies

ˆ t

s

|u̇ν(t)− u̇(t)| dt→ 0 as ν → 0.

These two together implies the claim above.
But the inequality

|uν(t)− uν(s)| =
∣∣∣∣ˆ t

s

u̇ν(t) dt

∣∣∣∣ ≤ ˆ t

s

|u̇ν(t)| dt. (1.3)

together with the fact that

ˆ t

s

|u̇ν(t)| dt→ 0 uniformly in ν as t− s→ 0,

implies
|uν(t)− uν(s)| → 0 uniformly in ν as t− s→ 0.

This implies that {uν} is equicontinuous and thus by Ascoli-Arzela theorem,
up to the extraction of a subsequence which we do not relabel, we have

uν → u in C0.

This shows u is continuous. Now, passing to the limit in (1.3), we deduce that u
is uniformly continuous. The other statements follow by passing to the limit
in (1.1) and (1.2).

In a similar manner, we can prove the following, which is a particular case
of the Sobolev-Morrey embedding.

Theorem 11 (Continuity of W 1,p functions in one dimension). Every function
in W 1,p ((a, b)) with p > 1 Hölder continuous in [a, b]. In particular,

W 1,p ((a, b)) ⊂ C0,1− 1
p ([a, b])

and

sup
t∈[a,b]

|u| ≤

(
1

(b− a)

ˆ b

a

|u|p
) 1

p

+ (b− a)
1− 1

p

(ˆ b

a

|u̇|p
) 1

p

.

Moreoever for all s, t ∈ [a, b], we have,

|u (t)− u (s)| ≤

(ˆ b

a

|u̇|p
) 1

p

|t− s|1−
1
p .
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Proof. The proof is almost the same. The only step where it differs is that we
now need to apply Hölder inequality to

|uν(t)− uν(s)| =
∣∣∣∣ˆ t

s

u̇ν(t) dt

∣∣∣∣ ≤ ˆ t

s

|u̇ν(t)| dt.

to deduce

|uν(t)− uν(s)| ≤
ˆ t

s

|u̇ν(t)| dt

≤
(ˆ t

s

|u̇|p
) 1

p

|t− s|1−
1
p

≤

(ˆ b

a

|u̇|p
) 1

p

|t− s|1−
1
p .

The rest is the same.

1.2.2 Functions with zero boundary values in W 1,p in one
dimension

Now we are going to characterize the functions with zero boundary values.

Definition 12 (W 1,p
0 ). We define the space W 1,p

0

(
(a, b);RN

)
as the completion

of

X1,p
0 :=

{
u ∈ C∞c

(
(a, b);RN

)
: ‖u‖W 1,p((a,b);RN ) <∞

}
with respect to the W 1,p norm.

Clearly, if u ∈ W 1,p
0

(
(a, b);RN

)
, then u (a) = 0 = u (b) . We can prove the

converse as well.

Theorem 13 (Characterization of W 1,p
0 ). Let u ∈ W 1,p

(
(a, b);RN

)
. Then

u ∈W 1,p
0

(
(a, b);RN

)
if and only if u (a) = 0 = u (b) .

Proof. Fix any function G ∈ C1 (R) such that

G(t) =

{
0 if |t| ≤ 1,

t if |t| ≥ 2.

and
|G(t)| ≤ |t| for all t ∈ R.

Set

uν =
1

ν
G (νu) ,
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so that uν ∈ W 1,p
(
(a, b);RN

)
. On the other hand, we can check that the

support of uν is compactly contained in (a, b) since u (a) = 0 = u (b) and u is
continuous. But this implies easily that uν ∈ W 1,p

0

(
(a, b);RN

)
. Finally, one

easily checks that
uν → u in W 1,p

(
(a, b);RN

)
by the dominated convergence theorem.
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