Introduction to the Calculus of Variations Lecture Notes
 Lecture 10

Swarnendu Sil

Spring 2021, IISc

Chapter 1

Prelude to Direct Methods

1.1 Geodesics: the problem

1.2 Absolute continuity: first encounter with Sobolev spaces

Recap We have already defined weak derivatives.
Definition 1 (weak derivatives). Let $u \in L^{1}\left((0, T) ; \mathbb{R}^{d}\right)$. We say u has a weak derivative if there exists a function $v \in L^{1}\left((0, T) ; \mathbb{R}^{d}\right)$ such that

$$
\int_{0}^{T}\langle v, \psi\rangle=-\int_{0}^{T}\langle u, \dot{\psi}\rangle \quad \text { for any } \psi \in C_{c}^{\infty}\left((0, T) ; \mathbb{R}^{d}\right)
$$

In this case, we say v is the weak derivative of u and we write

$$
v=\dot{u} .
$$

Remark 2. The weak derivative, if it exists, is unique.
Can you see why? Any two weak derivatives of u would be equal a.e. by the fundamental lemma of calculus of variations and thus would represent the same L^{1} function.

1.2.1 Sobolev spaces in dimension one: definition and elementary properties

Definition 3 ($W^{1, p}$ functions). A measurable function $u:(a, b) \rightarrow \mathbb{R}$ is said to be a Sobolev function of class $W^{1, p}$ if $u \in L^{p}((a, b))$ and the weak derivative $\dot{u} \in L^{p}((a, b))$ for $1 \leq p \leq \infty$. In this case, we write $u \in W^{1, p}((a, b))$.

A measurable function $u:(a, b) \rightarrow \mathbb{R}^{N}$ is said to be a Sobolev function of class $W^{1, p}$ if $u_{i} \in W^{1, p}((a, b))$ for every $1 \leq i \leq N$.

Remark 4. Note that by our definition, as soon as an L^{1} function is weakly differentiable, it is a Sobolev function of class $W^{1,1}$.

Let us now introduce a norm on $W^{1, p}$.
Proposition 5. Let $u \in W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$. If $1 \leq p<\infty$, then

$$
\|u\|_{W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)}:=\|u\|_{L^{p}\left((a, b) ; \mathbb{R}^{N}\right)}+\|\dot{u}\|_{L^{p}\left((a, b) ; \mathbb{R}^{N}\right)}<\infty
$$

For $p=\infty$, we have

$$
\|u\|_{W^{1, \infty}\left((a, b) ; \mathbb{R}^{N}\right)}:=\|u\|_{L^{\infty}\left((a, b) \mathbb{R}^{N}\right)}+\|\dot{u}\|_{L^{\infty}\left((a, b) ; \mathbb{R}^{N}\right)}<\infty
$$

Moreover, these expressions defines a norm on the vector space of all functions in $W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$.

Proposition 6. The vector space of all function in $W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$, equipped with the norms above is a Banach space, which is reflexive for $1<p<$ ∞ and is separable for $1 \leq p<\infty$. We would simply write this space as $W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$.

Proposition 7. The space $W^{1,2}\left((a, b) ; \mathbb{R}^{N}\right)$, equipped with the inner product

$$
\begin{aligned}
\langle u, v\rangle_{W^{1,2}\left((a, b) ; \mathbb{R}^{N}\right)}: & =\langle u, v\rangle_{L^{2}\left((a, b) ; \mathbb{R}^{N}\right)}+\langle\dot{u}, \dot{v}\rangle_{L^{2}\left((a, b) ; \mathbb{R}^{N}\right)} \\
& =\int_{a}^{b}\langle u, v\rangle+\int_{a}^{b}\langle\dot{u}, \dot{v}\rangle
\end{aligned}
$$

is a Hilbert space.
There is another way the Sobolev spaces could have been defined for $1 \leq$ $p<\infty$.
Definition 8 (Sobolev spaces $\left.H^{1, p}\right)$. Let $X^{1, p}$ be the linear subspace of $C^{1}\left((a, b) ; \mathbb{R}^{N}\right)$ functions such that

$$
\|u\|_{W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)}:=\|u\|_{L^{p}\left((a, b) ; \mathbb{R}^{N}\right)}+\|\dot{u}\|_{L^{p}\left((a, b) ; \mathbb{R}^{N}\right)}<\infty .
$$

The completion of $X^{1, p}$ with respect to the above norm is called $H^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$.
Extension and density results: $W^{1, p}=H^{1, p}$
We are now going to prove that the two spaces $W^{1, p}$ and $H^{1, p}$ are the same. In particular, we prove smooth functions are dense in $W^{1, p}$. To show this, we shall also prove that any function $u \in W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$ is actually the restriction of a $W^{1, p}\left(\mathbb{R} ; \mathbb{R}^{N}\right)$ function.

Theorem 9 (extension and density). Let (a, b) be a bounded interval of \mathbb{R} and let $u \in W^{1, p}((a, b))$ with $1 \leq p<\infty$. Then

1. There exists a function $U \in L^{p}(\mathbb{R})$ which has a weak derivative $\dot{U} \in L^{p}(\mathbb{R})$ and satisfies $U=u$ in (a, b).
2. $u \in H^{1, p}((a, b))$.

Proof. We first prove the first part. Pick $\bar{a}, \bar{b} \in \mathbb{R}$ with $a<\bar{a}<\bar{b}<b$ and let $\eta \in C^{1}(\mathbb{R})$ be such that

$$
\eta=1 \text { in }(-\infty, \bar{a}) \quad \text { and } \quad \eta=0 \text { in }(\bar{b}, \infty) .
$$

Our plan is to write

$$
u=\eta u+(1-\eta) u
$$

We can check that

$$
\eta u \in W^{1, p}((a, \infty)) \quad \text { and } \quad(1-\eta) u \in W^{1, p}((-\infty, b))
$$

Now we define

$$
U_{1}(t)=\left\{\begin{array}{ll}
{[\eta u](t),} & t>a \\
{[\eta u](2 a-t),} & t<a
\end{array} \quad \text { and } \quad U_{2}= \begin{cases}{[(1-\eta) u](t),} & t<b \\
{[(1-\eta) u](2 b-t),} & t>b\end{cases}\right.
$$

Clearly, $U=U_{1}+U_{2}$ does the job.
Now let us prove the second part. Let $U \in W^{1, p}(\mathbb{R})$ be the above extension of $u \in W^{1, p}((a, b))$. Pick a nonnegative $\phi \in C_{c}^{\infty}([-1,1])$ such that $\int \phi=1$ and set

$$
\phi_{\varepsilon}(t):=\frac{1}{\varepsilon} \phi\left(\frac{t}{\varepsilon}\right)
$$

Then we can easily check that

$$
U_{\varepsilon}:=U * \phi_{\varepsilon}
$$

is smooth and converges to U in the $W^{1, p}$ norm on \mathbb{R}.

Now we want to investigate the question of boundary values (or any pointwise value) of a $W^{1, p}$ function. Note since $W^{1, p}$ functions are only a priory L^{p} functions, they are only defined a.e. and thus the pointwise value does not necessarily make sense! Later, we would resolve this issue by the trace map. In one dimension, however, we are in luck. As we show now, these functions are actually continuous in one dimension.

Continuity of Sobolev functions in one dimension

Theorem 10 (Continuity of $W^{1,1}$ functions in one dimension). Every function in $W^{1,1}((a, b))$ is uniformly continuous in $[a, b]$. In particular,

$$
W^{1,1}((a, b)) \subset C^{0}([a, b])
$$

and

$$
\sup _{t \in[a, b]}|u| \leq \frac{1}{(b-a)} \int_{a}^{b}|u|+\int_{a}^{b}|\dot{u}|
$$

Moreover, the fundamental theorem of calculus holds, i.e. for all $a \leq s<t \leq b$,

$$
u(t)-u(s)=\int_{s}^{t} \dot{u}(\theta) \mathrm{d} \theta
$$

This is something we have already seen implicitly in attempting to solve the geodesic problem before.

Proof. Since $W^{1,1}=H^{1,1}$, for $u \in W^{1,1}((a, b))$, there exists a sequence $\left\{u_{\nu}\right\}_{\nu \geq 1} \subset$ $X^{1,1}$ such that

$$
u_{\nu} \rightarrow u \quad \text { in } W^{1,1}
$$

Now, using the fundamental theorem of calculus, we obtain

$$
\begin{equation*}
u_{\nu}(t)-u_{\nu}(s)=\int_{s}^{t} u_{\nu}(t) \mathrm{d} t \tag{1.1}
\end{equation*}
$$

Thus, in particular, we have,

$$
\left|u_{\nu}(t)-u_{\nu}(s)\right|=\left|\int_{s}^{t} u_{\nu}(t) \mathrm{d} t\right| \leq \int_{s}^{t}\left|\dot{u}_{\nu}(t)\right| \mathrm{d} t
$$

and

$$
\left|u_{\nu}(t)\right| \leq\left|u_{\nu}(s)\right|+\int_{s}^{t}\left|i_{\nu}(t)\right| \mathrm{d} t
$$

The last inequality implies

$$
\left|u_{\nu}(t)\right| \leq\left|u_{\nu}(s)\right|+\int_{a}^{b}\left|\dot{u_{\nu}}(t)\right| \mathrm{d} t
$$

Integrating this with respect to $s \in(a, b)$, we obtain

$$
\begin{equation*}
\left|u_{\nu}(t)\right| \leq \frac{1}{(b-a)} \int_{a}^{b}\left|u_{\nu}(s)\right| \mathrm{d} s+\int_{a}^{b}\left|i_{\nu}(t)\right| \mathrm{d} t \tag{1.2}
\end{equation*}
$$

Thus $\left\{u_{\nu}\right\}$ is uniformly bounded in C^{0} and as

$$
\dot{u_{\nu}} \rightarrow \dot{u} \text { strongly in } L^{1}
$$

we have

$$
\int_{s}^{t}\left|\dot{u}_{\nu}(t)\right| \mathrm{d} t \rightarrow 0 \quad \text { uniformly in } \nu \quad \text { as } t-s \rightarrow 0
$$

Indeed, since $\dot{u} \in L^{1}$, we have

$$
\int_{s}^{t}|\dot{u}(t)| \mathrm{d} t \rightarrow 0 \quad \text { as } t-s \rightarrow 0
$$

But the strong convergence implies

$$
\int_{s}^{t}\left|\dot{u}_{\nu}(t)-\dot{u}(t)\right| \mathrm{d} t \rightarrow 0 \quad \text { as } \nu \rightarrow 0
$$

These two together implies the claim above.
But the inequality

$$
\begin{equation*}
\left|u_{\nu}(t)-u_{\nu}(s)\right|=\left|\int_{s}^{t} u_{\nu}(t) \mathrm{d} t\right| \leq \int_{s}^{t}\left|i_{\nu}(t)\right| \mathrm{d} t \tag{1.3}
\end{equation*}
$$

together with the fact that

$$
\int_{s}^{t}\left|\dot{u}_{\nu}(t)\right| \mathrm{d} t \rightarrow 0 \quad \text { uniformly in } \nu \quad \text { as } t-s \rightarrow 0
$$

implies

$$
\left|u_{\nu}(t)-u_{\nu}(s)\right| \rightarrow 0 \quad \text { uniformly in } \nu \quad \text { as } t-s \rightarrow 0
$$

This implies that $\left\{u_{\nu}\right\}$ is equicontinuous and thus by Ascoli-Arzela theorem, up to the extraction of a subsequence which we do not relabel, we have

$$
u_{\nu} \rightarrow u \quad \text { in } C^{0}
$$

This shows u is continuous. Now, passing to the limit in 1.3), we deduce that u is uniformly continuous. The other statements follow by passing to the limit in (1.1) and 1.2 .

In a similar manner, we can prove the following, which is a particular case of the Sobolev-Morrey embedding.

Theorem 11 (Continuity of $W^{1, p}$ functions in one dimension). Every function in $W^{1, p}((a, b))$ with $p>1$ Hölder continuous in $[a, b]$. In particular,

$$
W^{1, p}((a, b)) \subset C^{0,1-\frac{1}{p}}([a, b])
$$

and

$$
\sup _{t \in[a, b]}|u| \leq\left(\frac{1}{(b-a)} \int_{a}^{b}|u|^{p}\right)^{\frac{1}{p}}+(b-a)^{1-\frac{1}{p}}\left(\int_{a}^{b}|\dot{u}|^{p}\right)^{\frac{1}{p}}
$$

Moreoever for all $s, t \in[a, b]$, we have,

$$
|u(t)-u(s)| \leq\left(\int_{a}^{b}|\dot{u}|^{p}\right)^{\frac{1}{p}}|t-s|^{1-\frac{1}{p}}
$$

Proof. The proof is almost the same. The only step where it differs is that we now need to apply Hölder inequality to

$$
\left|u_{\nu}(t)-u_{\nu}(s)\right|=\left|\int_{s}^{t} u_{\nu}(t) \mathrm{d} t\right| \leq \int_{s}^{t}\left|u_{\nu}(t)\right| \mathrm{d} t
$$

to deduce

$$
\begin{aligned}
\left|u_{\nu}(t)-u_{\nu}(s)\right| & \leq \int_{s}^{t}\left|\dot{u_{\nu}}(t)\right| \mathrm{d} t \\
& \leq\left(\int_{s}^{t}|\dot{u}|^{p}\right)^{\frac{1}{p}}|t-s|^{1-\frac{1}{p}} \\
& \leq\left(\int_{a}^{b}|\dot{u}|^{p}\right)^{\frac{1}{p}}|t-s|^{1-\frac{1}{p}}
\end{aligned}
$$

The rest is the same.

1.2.2 Functions with zero boundary values in $W^{1, p}$ in one dimension

Now we are going to characterize the functions with zero boundary values.
Definition $12\left(W_{0}^{1, p}\right)$. We define the space $W_{0}^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$ as the completion of

$$
X_{0}^{1, p}:=\left\{u \in C_{c}^{\infty}\left((a, b) ; \mathbb{R}^{N}\right):\|u\|_{W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)}<\infty\right\}
$$

with respect to the $W^{1, p}$ norm.
Clearly, if $u \in W_{0}^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$, then $u(a)=0=u(b)$. We can prove the converse as well.

Theorem 13 (Characterization of $\left.W_{0}^{1, p}\right)$. Let $u \in W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$. Then $u \in W_{0}^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$ if and only if $u(a)=0=u(b)$.

Proof. Fix any function $G \in C^{1}(\mathbb{R})$ such that

$$
G(t)= \begin{cases}0 & \text { if }|t| \leq 1 \\ t & \text { if }|t| \geq 2\end{cases}
$$

and

$$
|G(t)| \leq|t| \quad \text { for all } t \in \mathbb{R}
$$

Set

$$
u_{\nu}=\frac{1}{\nu} G(\nu u),
$$

so that $u_{\nu} \in W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$. On the other hand, we can check that the support of u_{ν} is compactly contained in (a, b) since $u(a)=0=u(b)$ and u is continuous. But this implies easily that $u_{\nu} \in W_{0}^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)$. Finally, one easily checks that

$$
u_{\nu} \rightarrow u \quad \text { in } W^{1, p}\left((a, b) ; \mathbb{R}^{N}\right)
$$

by the dominated convergence theorem.

