Introduction to the Calculus of Variations Lecture Notes Lecture 10

Swarnendu Sil

Spring 2021, IISc

Chapter 1

Prelude to Direct Methods

1.1 Geodesics: the problem

1.2 Absolute continuity: first encounter with Sobolev spaces

Recap We have already defined weak derivatives.

Definition 1 (weak derivatives). Let $u \in L^1((0,T); \mathbb{R}^d)$. We say u has a **weak** derivative if there exists a function $v \in L^1((0,T); \mathbb{R}^d)$ such that

$$\int_0^T \langle v, \psi \rangle = -\int_0^T \langle u, \dot{\psi} \rangle \qquad \text{for any } \psi \in C_c^{\infty} \left((0, T); \mathbb{R}^d \right).$$

In this case, we say v is the weak derivative of u and we write

$$v = \dot{u}$$
.

Remark 2. The weak derivative, if it exists, is unique.

Can you see why? Any two weak derivatives of u would be equal a.e. by the fundamental lemma of calculus of variations and thus would represent the same L^1 function.

1.2.1 Sobolev spaces in dimension one: definition and elementary properties

Definition 3 ($W^{1,p}$ functions). A measurable function $u:(a,b) \to \mathbb{R}$ is said to be a **Sobolev function** of class $W^{1,p}$ if $u \in L^p((a,b))$ and the weak derivative $\dot{u} \in L^p((a,b))$ for $1 \le p \le \infty$. In this case, we write $u \in W^{1,p}((a,b))$.

A measurable function $u:(a,b)\to\mathbb{R}^N$ is said to be a **Sobolev function** of class $W^{1,p}$ if $u_i\in W^{1,p}\left((a,b)\right)$ for every $1\leq i\leq N$.

Remark 4. Note that by our definition, as soon as an L^1 function is weakly differentiable, it is a Sobolev function of class $W^{1,1}$.

Let us now introduce a norm on $W^{1,p}$.

Proposition 5. Let $u \in W^{1,p}((a,b); \mathbb{R}^N)$. If $1 \leq p < \infty$, then

$$||u||_{W^{1,p}((a,b);\mathbb{R}^N)} := ||u||_{L^p((a,b);\mathbb{R}^N)} + ||\dot{u}||_{L^p((a,b);\mathbb{R}^N)} < \infty.$$

For $p = \infty$, we have

$$||u||_{W^{1,\infty}((a,b);\mathbb{R}^N)} := ||u||_{L^{\infty}((a,b)\mathbb{R}^N)} + ||\dot{u}||_{L^{\infty}((a,b);\mathbb{R}^N)} < \infty.$$

Moreover, these expressions defines a norm on the vector space of all functions in $W^{1,p}((a,b);\mathbb{R}^N)$.

Proposition 6. The vector space of all function in $W^{1,p}\left((a,b);\mathbb{R}^N\right)$, equipped with the norms above is a **Banach space**, which is reflexive for $1 and is separable for <math>1 \leq p < \infty$. We would simply write this space as $W^{1,p}\left((a,b);\mathbb{R}^N\right)$.

Proposition 7. The space $W^{1,2}\left((a,b);\mathbb{R}^N\right)$, equipped with the inner product

$$\langle u, v \rangle_{W^{1,2}((a,b);\mathbb{R}^N)} := \langle u, v \rangle_{L^2((a,b);\mathbb{R}^N)} + \langle \dot{u}, \dot{v} \rangle_{L^2((a,b);\mathbb{R}^N)}$$
$$= \int_a^b \langle u, v \rangle + \int_a^b \langle \dot{u}, \dot{v} \rangle,$$

is a **Hilbert space**.

There is another way the Sobolev spaces could have been defined for $1 \le p < \infty$.

Definition 8 (Sobolev spaces $H^{1,p}$). Let $X^{1,p}$ be the linear subspace of C^1 $((a,b); \mathbb{R}^N)$ functions such that

$$||u||_{W^{1,p}((a,b);\mathbb{R}^N)} := ||u||_{L^p((a,b);\mathbb{R}^N)} + ||\dot{u}||_{L^p((a,b);\mathbb{R}^N)} < \infty.$$

The completion of $X^{1,p}$ with respect to the above norm is called $H^{1,p}\left((a,b);\mathbb{R}^N\right)$.

Extension and density results: $W^{1,p} = H^{1,p}$

We are now going to prove that the two spaces $W^{1,p}$ and $H^{1,p}$ are the same. In particular, we prove smooth functions are dense in $W^{1,p}$. To show this, we shall also prove that any function $u \in W^{1,p}\left((a,b); \mathbb{R}^N\right)$ is actually the restriction of a $W^{1,p}\left(\mathbb{R}; \mathbb{R}^N\right)$ function.

Theorem 9 (extension and density). Let (a,b) be a bounded interval of \mathbb{R} and let $u \in W^{1,p}((a,b))$ with $1 \leq p < \infty$. Then

1. There exists a function $U \in L^p(\mathbb{R})$ which has a weak derivative $\dot{U} \in L^p(\mathbb{R})$ and satisfies U = u in (a, b).

2.
$$u \in H^{1,p}((a,b))$$
.

Proof. We first prove the first part. Pick $\bar{a}, \bar{b} \in \mathbb{R}$ with $a < \bar{a} < \bar{b} < b$ and let $\eta \in C^1(\mathbb{R})$ be such that

$$\eta = 1 \text{ in } (-\infty, \bar{a})$$
 and $\eta = 0 \text{ in } (\bar{b}, \infty).$

Our plan is to write

$$u = \eta u + (1 - \eta) u.$$

We can check that

$$\eta u \in W^{1,p}((a,\infty))$$
 and $(1-\eta) u \in W^{1,p}((-\infty,b))$.

Now we define

$$U_{1}(t) = \begin{cases} [\eta u](t), & t > a \\ [\eta u](2a - t), & t < a \end{cases} \text{ and } U_{2} = \begin{cases} [(1 - \eta)u](t), & t < b \\ [(1 - \eta)u](2b - t), & t > b. \end{cases}$$

Clearly, $U = U_1 + U_2$ does the job.

Now let us prove the second part. Let $U \in W^{1,p}\left(\mathbb{R}\right)$ be the above extension of $u \in W^{1,p}\left((a,b)\right)$. Pick a nonnegative $\phi \in C_c^{\infty}\left([-1,1]\right)$ such that $\int \phi = 1$ and set

$$\phi_{\varepsilon}(t) := \frac{1}{\varepsilon} \phi\left(\frac{t}{\varepsilon}\right).$$

Then we can easily check that

$$U_{\varepsilon} := U * \phi_{\varepsilon}$$

is smooth and converges to U in the $W^{1,p}$ norm on \mathbb{R} .

Now we want to investigate the question of boundary values (or any pointwise value) of a $W^{1,p}$ function. Note since $W^{1,p}$ functions are only a priory L^p functions, they are only defined a.e. and thus the pointwise value does not necessarily make sense! Later, we would resolve this issue by the **trace map**. In one dimension, however, we are in luck. As we show now, these functions are actually **continuous** in one dimension.

Continuity of Sobolev functions in one dimension

Theorem 10 (Continuity of $W^{1,1}$ functions in one dimension). Every function in $W^{1,1}((a,b))$ is uniformly continuous in [a,b]. In particular,

$$W^{1,1}\left((a,b)\right) \subset C^0\left([a,b]\right)$$

and

$$\sup_{t\in[a,b]}|u|\leq\frac{1}{(b-a)}\int_a^b|u|+\int_a^b|\dot{u}|\,.$$

Moreover, the fundamental theorem of calculus holds, i.e. for all $a \leq s < t \leq b$,

$$u(t) - u(s) = \int_{s}^{t} \dot{u}(\theta) d\theta.$$

This is something we have already seen implicitly in attempting to solve the geodesic problem before.

Proof. Since $W^{1,1}=H^{1,1}$, for $u\in W^{1,1}\left((a,b)\right)$, there exists a sequence $\{u_{\nu}\}_{\nu\geq 1}\subset X^{1,1}$ such that

$$u_{\nu} \to u$$
 in $W^{1,1}$.

Now, using the fundamental theorem of calculus, we obtain

$$u_{\nu}(t) - u_{\nu}(s) = \int_{s}^{t} \dot{u_{\nu}}(t) \, dt.$$
 (1.1)

Thus, in particular, we have,

$$|u_{\nu}(t) - u_{\nu}(s)| = \left| \int_{s}^{t} \dot{u}_{\nu}(t) \, dt \right| \le \int_{s}^{t} |\dot{u}_{\nu}(t)| \, dt.$$

and

$$|u_{\nu}(t)| \le |u_{\nu}(s)| + \int_{s}^{t} |\dot{u}_{\nu}(t)| \, dt.$$

The last inequality implies

$$|u_{\nu}(t)| \le |u_{\nu}(s)| + \int_{a}^{b} |u_{\nu}(t)| \, dt.$$

Integrating this with respect to $s \in (a, b)$, we obtain

$$|u_{\nu}(t)| \le \frac{1}{(b-a)} \int_{a}^{b} |u_{\nu}(s)| \, ds + \int_{a}^{b} |\dot{u}_{\nu}(t)| \, dt.$$
 (1.2)

Thus $\{u_{\nu}\}$ is uniformly bounded in C^0 and as

$$\dot{u_{\nu}} \rightarrow \dot{u}$$
 strongly in L^1 ,

we have

$$\int_{s}^{t} |\dot{u_{\nu}}(t)| \, dt \to 0 \quad \text{uniformly in } \nu \quad \text{as } t - s \to 0.$$

Indeed, since $\dot{u} \in L^1$, we have

$$\int_{s}^{t} |\dot{u}(t)| \, dt \to 0 \qquad \text{as } t - s \to 0.$$

But the strong convergence implies

$$\int_{s}^{t} |\dot{u}_{\nu}(t) - \dot{u}(t)| \, \mathrm{d}t \to 0 \qquad \text{as } \nu \to 0.$$

These two together implies the claim above.

But the inequality

$$|u_{\nu}(t) - u_{\nu}(s)| = \left| \int_{s}^{t} \dot{u_{\nu}}(t) \, dt \right| \le \int_{s}^{t} |\dot{u_{\nu}}(t)| \, dt.$$
 (1.3)

together with the fact that

$$\int_{s}^{t} |\dot{u_{\nu}}(t)| \, \mathrm{d}t \to 0 \quad \text{ uniformly in } \nu \quad \text{ as } t - s \to 0,$$

implies

$$|u_{\nu}(t) - u_{\nu}(s)| \to 0$$
 uniformly in ν as $t - s \to 0$.

This implies that $\{u_{\nu}\}$ is equicontinuous and thus by Ascoli-Arzela theorem, up to the extraction of a subsequence which we do not relabel, we have

$$u_{\nu} \to u$$
 in C^0 .

This shows u is continuous. Now, passing to the limit in (1.3), we deduce that u is **uniformly continuous**. The other statements follow by passing to the limit in (1.1) and (1.2).

In a similar manner, we can prove the following, which is a particular case of the Sobolev-Morrey embedding.

Theorem 11 (Continuity of $W^{1,p}$ functions in one dimension). Every function in $W^{1,p}((a,b))$ with p>1 Hölder continuous in [a,b]. In particular,

$$W^{1,p}((a,b)) \subset C^{0,1-\frac{1}{p}}([a,b])$$

and

$$\sup_{t \in [a,b]} |u| \le \left(\frac{1}{(b-a)} \int_a^b |u|^p\right)^{\frac{1}{p}} + (b-a)^{1-\frac{1}{p}} \left(\int_a^b |\dot{u}|^p\right)^{\frac{1}{p}}.$$

Moreoever for all $s, t \in [a, b]$, we have,

$$|u(t) - u(s)| \le \left(\int_a^b |\dot{u}|^p\right)^{\frac{1}{p}} |t - s|^{1 - \frac{1}{p}}.$$

Proof. The proof is almost the same. The only step where it differs is that we now need to apply Hölder inequality to

$$|u_{\nu}(t) - u_{\nu}(s)| = \left| \int_{s}^{t} \dot{u}_{\nu}(t) \, \mathrm{d}t \right| \le \int_{s}^{t} |\dot{u}_{\nu}(t)| \, \mathrm{d}t.$$

to deduce

$$|u_{\nu}(t) - u_{\nu}(s)| \leq \int_{s}^{t} |\dot{u}_{\nu}(t)| dt$$

$$\leq \left(\int_{s}^{t} |\dot{u}|^{p}\right)^{\frac{1}{p}} |t - s|^{1 - \frac{1}{p}}$$

$$\leq \left(\int_{a}^{b} |\dot{u}|^{p}\right)^{\frac{1}{p}} |t - s|^{1 - \frac{1}{p}}.$$

The rest is the same.

1.2.2 Functions with zero boundary values in $W^{1,p}$ in one dimension

Now we are going to characterize the functions with zero boundary values.

Definition 12 $(W_0^{1,p})$. We define the space $W_0^{1,p}\left((a,b);\mathbb{R}^N\right)$ as the completion of

$$X_0^{1,p}:=\left\{u\in C_c^\infty\left((a,b);\mathbb{R}^N\right):\|u\|_{W^{1,p}((a,b);\mathbb{R}^N)}<\infty\right\}$$

with respect to the $W^{1,p}$ norm.

Clearly, if $u\in W_0^{1,p}\left((a,b);\mathbb{R}^N\right)$, then $u\left(a\right)=0=u\left(b\right)$. We can prove the converse as well.

Theorem 13 (Characterization of $W_0^{1,p}$). Let $u \in W^{1,p}\left((a,b); \mathbb{R}^N\right)$. Then $u \in W_0^{1,p}\left((a,b); \mathbb{R}^N\right)$ if and only if $u\left(a\right) = 0 = u\left(b\right)$.

Proof. Fix any function $G \in C^1(\mathbb{R})$ such that

$$G(t) = \begin{cases} 0 & \text{if } |t| \le 1, \\ t & \text{if } |t| \ge 2. \end{cases}$$

and

$$|G(t)| \le |t|$$
 for all $t \in \mathbb{R}$.

Set

$$u_{\nu} = \frac{1}{\nu} G(\nu u),$$

so that $u_{\nu} \in W^{1,p}\left((a,b);\mathbb{R}^{N}\right)$. On the other hand, we can check that the support of u_{ν} is compactly contained in (a,b) since $u\left(a\right)=0=u\left(b\right)$ and u is continuous. But this implies easily that $u_{\nu} \in W_{0}^{1,p}\left((a,b);\mathbb{R}^{N}\right)$. Finally, one easily checks that

$$u_{\nu} \to u$$
 in $W^{1,p}\left((a,b); \mathbb{R}^N\right)$

by the dominated convergence theorem.