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Introduction

Finding the minima of a function

We begin with the study of a considerably simpler problem, which we all learned
how to solve in our Calculus courses - finding a minima of a given function.
However, this would already give us a glimpse of what is to come.

Finding the minima of a function Let X ⊂ Rn and let F : X → R be a
given function. Consider the minimization problem

m = inf{F (x) : x ∈ X} (P)

If the problem can be solved at all, there are roughly two methods to solve
the problem. The methods are called the classical method and the direct
method.

Classical Method

Assume F is C1. Then x̄ ∈ X is a stationary point or critical point1 of F if
and only if it solves the equation

∇F (x̄) = 0. (1)

This equation is our first instance of what are known as Euler-Lagrange Equa-
tions. Roughly speaking, the Euler-Lagrange equation is the equation satisfied
by all critical points of the function. In the Calculus of Variations, we would
be interested in finding a minimizer for a functional, rather than in finding a
minima of a function. But the philosophy stays the same. The Euler-Lagrange
equation associated to a functional is the equation all critical points of the
functional must satisfy.

1We would use the phrases ‘stationary points’ and ‘critical points’ interchangeably, since
we have already assumed F to be differentiable. If F is not assumed to be differentiable,
then technically speaking, there is a slight difference between the two notions. The notion of
critical point includes stationary points, but also includes points where F is not differentiable.
On the other hand, a stationary point is where F is differentiable and the gradient is zero.
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The classical method consists of trying to solve the Euler-Lagrange equations
to obtain all critical points and then checking if one ( or several ) of them is a
local minima.

To check if a given critical point x̄ ∈ X is a minima, one checks if we have

F (x̄) ≤ F (y) for all y ∈ Br (x̄)

for some r > 0. If F is C2, then a sufficient criterion, which is much simpler to
check in practice, is the following. If F is C2, then a given critical point x̄ ∈ X
is a minima if

∇2F (x̄) > 0, i.e. the Hessian at x̄ is positive definite. (2)

Remark 1. Some authors call this ‘strictly positive definite’ and denote the
non-strict inequality case as ‘positive definite’. We would use the terms positive
definite and positive semidefinite respectively.

This is exactly how we found minima in Calculus courses! Note that if F is
strictly convex and C2, (2) is automatic. The minima would also be unique in
that case. The classical picture to keep in mind is the function f : R→ R given
by

f(x) = x2,

which is convex, C2 ( indeed, C∞ ) and the origin is the unique global minima.
However, if F is convex and C2, but not necessarily strictly convex, then any
critical point x̄ is a local minima. Such a minima would also be a global
minima, i.e. the value of F at such a minima is globally the minimum value of
F. However, uniqueness of minima does not necessarily hold. Try to think of an
example and see Assignment 1.

Convexity in general plays an important role in minization problems. Though
we are calculating first derivatives of the function and convexity might appear
to be a secondary issue, we shall see soon that convexity is in fact, much more
crucial for minimization problems than differentiability!

Direct Method

Although the method in the previous subsection is probably the only one you
have encountered in your calculus courses, there is another method. Let us first
describe the crux of the method.

Let {xs} ⊂ X be a minimizing sequence for (P), i.e.

lim
s→∞

F (xs) = inf{F (x) : x ∈ X}. (3)

Such sequences must exist, by definition of the infimum! Now suppose the
hypotheses on F allow us to prove sequential compactness of all such minimizing
sequences. Typically, we can deduce an uniform bound

‖xs‖ ≤ C for all s.
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Then up to the extraction of a subsequence that we do not relabel, we get

xs → x̄, for some x̄ ∈ X. (by Bolzano-Weierstrass theorem) (4)

Now if F is lower semicontinuous, we obtain

inf{F (x) : x ∈ X}
since x̄∈X
≤ F (x̄)

lsc
≤ lim

s→∞
F (xs)

min seq
= inf{F (x) : x ∈ X}.

Thus all inequalities must be equalities and x̄ is a minima.

What we have shown above is an abstract existence theorem, i.e. we have proved
the existence of a minima for a function satisfying some condition, namely se-
quential compactness of minimizing sequences and lower semicontinuity. Just
as a remark, one can prove that a convex function is continuous and thus
automatically lower semicontinuous as well. Obtaining the uniform bound for
minimizing sequences is not always easy. But these generally follow from co-
ercivity assumptions on F. Let us first define coercivity. We allow extended
real valued functions as well. The usual definition is as follows.

Definition 2. A function F : Rn → R∩{−∞,+∞} is said to be coercive if we
have

F (x)→ +∞ as ‖x‖ → +∞.

However, this definition clearly works only for extended real valued functions.
For our purposes, we would use another definition, which is weaker and makes
sense even for functions F : Rn → RN ( in fact even for maps between two
normed linear spaces, in particular, Banach spaces). This is usually called
norm-coercivity and is strictly weaker than coercivity for real valued functions
( think of an real-valued function which is norm-coercive but not coercive ), but
we would refer to it coercivity.

Definition 3 (Coercivity or Norm-Coercivity). A function F : Rn → RN is
said to be norm-coercive or simply coercive if we have

‖F (x)‖ → +∞ as ‖x‖ → +∞.

Now let us show that for function which are coercive and bounded below, min-
imizing sequences must be uniformly bounded.

Proposition 4. Let F : Rn → R be coercive and bounded below, i.e.

inf{F (x) : x ∈ Rn} > −∞.

Then any minimizing sequence for F is uniformly bounded.

Proof. Let {xs} ⊂ Rn be a minimizing sequence for F, i.e.

lim
s→∞

F (xs) = inf{F (x) : x ∈ Rn}. (5)
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If there exist no constant C > 0 such that ‖xs‖ ≤ C for all s, then there must
exist a subsequence, which we do not relabel, such that

‖xs‖ → +∞.

Since F is coercive, this implies

‖F (xs)‖ → +∞.

But this contradicts (5).

There are many conditions which imply coercivity of F. For example, F :
Rn → R is said to have superlinear growth at infinity if it satisfies

lim
‖x‖→∞

|F (x)|
‖x‖

= +∞.

Clearly, this implies coercivity and thus implies the uniform bound for minimiz-
ing sequences. (Check!)

A typical example: Consider the function f : R→ R given by

f(x) = |x| .

A glance at the graph of this function is enough to convince you that the function
has a unique, global minima at the origin. In fact, it is fairly easy to establish
the existence of a minima for this function by direct methods ( Try it! ). Note
that the function is not differentiable at the origin, so it is not clear how to use
the classical methods ( However, it can be done. Think about it! )

At this point, the direct method may not look like much. In Assignment 1,
there are a number of results about the existence of minima using the direct
methods which might convince you otherwise.

Finding minima: Comparison of the methods

The classical method

• works by solving the EL equations

• finds all critical points

• needs F to be reasonably regular

The direct method

• works directly with the function, not the Euler-Lagrange equations ( Hence
the name! )

• finds only minima, not all critical points ( There are direct methods for
finding other critical points too, but those are beyond the scope of this
course )
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• F can be less regular, but has to be coercive and lower semicontinuous.

The basic features of the two methods are the same in the calculus of variations
too. But there are some differences as well. For finding minima of a function,
the EL equations are algebraic equations. In the Calculus of Variations, the EL
equations are ODE, system of ODEs, PDE or a system of PDEs.

If they are PDEs or system of PDEs, even proving existence of a solution (let
alone characterizing all solutions!) directly is hard! In fact, PDE theory is one
of the main applications of the Calculus of Variations! Conversely, variational
methods are among the most important tools in PDE theory. If a PDE appears
as the EL equation of some functional (which by the way is often the case), we
usually prove existence of a solution by finding a critical point for the functional
by direct methods, precisely going in the reverse direction as compared to the
classical methods.

Function to functionals

Calculus of Variations: The abstract problem

We now want to pass from functions to functionals. Let us state our model
problem.

Let Ω ⊂ Rn open, bounded, smooth. n,N ≥ 1 are integers. Let A be a
given class of functions u : Ω → RN and f : Ω × RN × Rn×N → R be a given
function. Consider the following minimization problem

inf

{
I(u) :=

ˆ
Ω

f (x, u(x), Du(x)) dx : u ∈ A
}

(P)

• The integral functional I(u) is called the Lagrangian

• The integral f is called the Lagrangian density

• The class A is called the class of admissible functions.

The Lagrangian can depend on higher order derivatives of u. Those however are
somewhat rare, though notable exceptions exist (e.g. Polyharmonic maps).

History of the Calculus of Variations and classical
problems

A brief history of the Calculus of Variations

Antiquity Perhaps the oldest known problem in the calculus of variations is
the isoperimetric problem, which is just the isoperimetric inequality in
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dimension two.
The problem is to find the(?) geometric figure which has the largest area
with a fixed perimeter.

The fact that the circle has this property is probably known since antiquity
in many cultures around the world, including Greece, Egypt, India, Babylon,
China etc. In Europe, it was traditionally known as the Dido problem. Around
200 BCE, Zenodorous proved the inequality for polygons. A number of promi-
nent names worked on the problems, including the likes of Archimedes, Pap-
pus, Euler, Galileo, Legendre, Riccati, Steiner etc. The first proof that
agrees with modern standards is due to Weierstrass. Later improvements
and refinements are due to Blaschke, Carathodory, Frobenius, Hurwitz,
Lebesgue, Liebmann, Minkowski, H.A. Schwarz, Sturm, Tonelli among
others.

Seventeenth century and the Brachistochrone Seventeenth century wit-
nessed the rapid rise to prominence of the calculus of variations. Several prob-
lems was posed and solutions were attempted. Also, from this time onwards,
people started realising the deep connection of physics and engineering with the
calculus of variations. The central problems that were posed and studied in this
era includes

• Fermat (1662) - geometric optics,

• Newton (1685) and Huygens (1691) - bodies moving through a fluid,

• Gallileo (1638) formulated the Brachistochrone problem, solved by
John Bernoulli (1696), James Bernoulli, Newton and Leibnitz.

A significant breakthrough of the subject was achieved when Euler and
Lagrange introduced what is now known as the Euler-Lagrange equation.
Throughout this period, the works of Bliss, Bolza, Carathodory, Clebsch,
Hahn, Hamilton, Hilbert, Kneser, Jacobi, Legendre, Mayer, Weier-
strass and many many others, deepened our understanding of the subject.

Nineteenth century and the Dirichlet integral The Dirichlet integral
and the associated minimzation problems were introduced and several attempts
were made to solve it, most notably by Dirichlet, Gauss, Thompson and
Riemann. However, those attempts remained unsuccessful. Finally Hilbert
solved the problem, extending significant and breakthrough contributions of
Lebesgue and Tonelli.

This problem inspired the development of most of modern analysis, namely
functional analysis, measure theory, distribution theory, Sobolev spaces, partial
differential equations.
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Minimal surfaces: Seventeenth to Twentieth Century This is another
central problem which has inspired a lot of analysis, including subjects like
geometric measure theory. Lagrange first formulated the problem in 1762.

However, this is often called Plateau’s problem in honor of the Belgian
physicist Joseph Plateau, whose experiments with soap films and his
empirical ’Plateau’s laws’ influenced the status of the problem considerably.

Names such as Ampre, Beltrami, Bernstein, Bonnet, Catalan, Dar-
boux, Enneper, Haar, Korn, Legendre, Lie, Meusnier, Monge, Mntz,
Riemann, H.A. Schwarz, Serret, Weierstrass, Weingarten and others
worked on the problem.

Douglas and Rado finally solved the problem in 1930. Douglas was awarded
the fields medal for it in 1936! Later contributions and further refinements are
due to Courant, Leray, Mac Shane, Morrey, Morse, Tonelli etc.

Classical examples

Now we are going to give a few classical examples, almost all of which were
instrumental in driving the early research in the calculus of variations and paved
the way for later developments.

• Fermat’s principle of least time: The basic variational principle in
geometric optics.

• Newton’s problem: Finding the surface of revolution which experiences
least resistance when moving through a fluid.

• Brachistochrone: Almost the iconic example in the classical calculus of
variations.

• Principle of least action: Essentially the heart and soul of Newtonian
mechanics.

• Minimal surface of revolution : The easier version of another iconic
example: the minimal surface problem

• Dirichlet integral: The most celebrated and the protypical example in
all the calculus of variations.

• Minimal surfaces: Another star of the show! Almost as famous as the
Dirichlet integral.

• Isoperimetric inequality
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Fermat’s principle of least time: Find the path of a light ray in a
medium with nonconstant refractive index.
The ray follows the path of least time!
The variational problem:

inf

{
I(u) :=

ˆ b

a

f (x, u(x), u′(x)) dx : u(a) = α, u(b) = β

}
, (6)

where n = N = 1 and the form of the Lagrangian is

f(x, u, ξ) = g(x, u)
√

1 + ξ2.

Newton’s optimal surface of revolution with least fluid resistance:
Find the surface of revolution that experiences the least resistance
while moving through a fluid.
The variational problem:

m = inf

{
I(u) :=

ˆ b

a

f (u(x), u′(x)) dx : u(a) = α, u(b) = β

}
, (7)

where n = N = 1 and the form of the Lagrangian density is

f(x, u, ξ) = f(u, ξ) = 2πu

(
ξ3

1 + ξ2

)
.

Brachistochrone: Find the quickest path between two points for a
point mass moving under gravity.
Let one of the points be the origin (0, 0) ⊂ R2 and the other point is (b,−β) ⊂ R2

with b, β > 0. Gravity is acting downwards in the negative y-axis and the path
is expressed as (x,−u(x)) with 0 ≤ x ≤ b.

The variational problem:

m = inf

{
I(u) :=

ˆ b

a

f (u(x), u′(x)) dx : u ∈ A

}
, (8)

where n = N = 1 and the form of the Lagrangian density is

f(x, u, ξ) = f(u, ξ) =

√(
1 + ξ2

2gu

)
.

The class of admissible paths is

A :=

{
u ∈ C1 ([0, b]) : u(0) = 0, u(b) = β

and u(x) > 0 for all x ∈ (0, b]

}
.

The solution is called a Cycloid, the curve traced by a point on the rim of
a rolling ( without slipping ) wheel. This curve also has another remarkable
property. The time needed for the particle to slide along the cycloid to the final
point (b,−β) is the same for any initial point (x, y) on the cycloid, not just
(0, 0)! For this property, the cycloid is also called a Tautochrone.
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Principle of least action - mechanics of system of point masses: Find
the configuration of M point masses moving under a potential at time
T .
Let mi > 0 be the mass and ui(t) = (xi(t), yi(t), zi(t)) ∈ R3 be the position of
the i-th particles for 1 ≤ i ≤ M. Let u(t) := (u1(t), . . . , uM (t)) ∈ R3M be the
configuration at time t. The potential energy function for the configuration
u(t) is a given function U : R+ × R3M → R.

The variational problem:

m = inf

{
I(u) :=

ˆ T

0

f (t, u(t), u̇(t)) dt : u(0) = u0, u̇(0) = v0

}
, (9)

where n = 1, N = 3M, u0, v0 given and the form of the Lagrangian density is

f(x, u, ξ) = T (ξ)− U (t, u(t)) . ( usually called action )

Here T is the kinetic energy and is given by

T (ξ) :=
1

2

M∑
i=1

miξ
2
i .

This variational problem can be justifiably called the heart and soul of New-
tonian mechanics. In the next chapter, when we would be discussing Euler-
Lagrange equations, we shall see that the Euler-Lagrange equation associated
to this variational problem is nothing but the familiar Newton’s laws of mo-
tion!

Minimal surface of revolution: Determine the one with minimal area
among all surfaces of revolution of the form

v(x, y) = (x, u(x) cos y, u(x) sin y)

with fixed end points u(a) = α, u(b) = β.

Here n = N = 1 and the Lagrangian density is

f(x, u, ξ) = f(u, ξ) = 2πu
√

1 + ξ2

and the variational problem is

inf

{
I(u) =

ˆ b

a

f(u(x), u′(x)) dx : u(a) = α, u(b) = β, u > 0

}
= m.

The solutions are called Catenoids, which is the surface of revolution obtained
by rotating a Catenary curve about its directrix. Euler in 1744 discovered
them and proved them to be minimal surfaces. Apart from the plane, they are
the only other minimal surfaces of revolutions. They can also be thought of as
special cases of a larger family of minimal surfaces ( not necessarily surfaces of
revolutions ) called the Helicoids.
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Dirichlet integral: Arguably the most celebrated problem in all of the cal-
culus of variations. We have here n > 1, N = 1 and

inf

{
I(u) =

1

2

ˆ
Ω

|∇u|2 dx : u = u0 on ∂Ω

}
= m.

The Euler-Lagrange equation is nothing other than the Laplace equation,
namely

∆u = 0.

A generalized version of this is the p-Dirichlet integral,

inf

{
I(u) =

1

p

ˆ
Ω

|∇u|p dx : u = u0 on ∂Ω

}
= m,

where 1 < p < ∞. The Euler-Lagrange equation is the p-Laplace equation,
i.e.

∆pu := div
(
|∇u|(p−2)∇u

)
= 0.

This is quasilinear if p 6= 2, degenerate elliptic if p > 2 and singular elliptic if
1 < p < 2. There are also vectorial versions of both the problems, where N ≥ 2,
whose EL equations are called Laplace system ( more usually, it is still called
Laplace equation though ) and p-Laplacian system.

Harmonic and p-harmonic maps: There are vectorial versions of the Dirich-
let and p-Dirichlet integral which are different ( and much harder to understand
) from the usual vectorial versions. Introducing them requires some knowledge
of geometry. Just very briefly, we consider apparently the same minimization
problem ( since the differential du is exactly what the gradient would be in the
RN case )

inf

{
I(u) =

1

2

ˆ
Ω

|du|2 dx : u = u0 on ∂Ω

}
= m.

However, we require that u takes values in a Riemannian minifold N. That
is the Dirichlet integral for manifold-valued maps. One can also consider the
‘same’ minimization problem for maps u : M → N, where M and N are both
Riemannian manifolds. The minimizers are called harmonic maps between the
manifolds. Although the minimization problem apparently looks the same, there
is a very real difference from the usual vectorial version. The norm of the
differential is calculated using the metric of M and N, which would reduce
to the usual vectorial version when M and N are taken as Ω̄ ⊂ Rn and RN

respectively. p-Harmonic maps between manifolds can be defined in a similar
manner.

Minimal surfaces: The question is to find among all surfaces Σ ⊂ R3

(or more generally in Rn+1, n ≥ 2) with prescribed boundary, ∂Σ = Γ,
where Γ is a simple closed curve, one that is of minimal area.
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A variant of this problem is known as Plateau problem.

One can experimentally realize such surfaces by dipping a wire loop into
soapy water; the surface obtained when pulling the wire out from the water is
a minimal surface.

The precise formulation of the problem depends on the kind of surfaces that
we are considering. We have seen above how to write the problem for minimal
surfaces of revolution. We now formulate the problem for more general surfaces.

Minimal surfaces: Nonparametric surfaces We consider (hyper) surfaces
of the form

Σ =
{
v (x) = (x, u (x)) ∈ Rn+1 : x ∈ Ω

}
with u : Ω→ R and where Ω ⊂ Rn is a bounded connected open set.

These surfaces are therefore graphs of functions.

The fact that ∂Σ is a preassigned curve, Γ, reads now as u = u0 on ∂Ω,
where u0 is a given function. The area of such a surface is given by

Area (Σ) = I (u) =

ˆ
Ω

f (∇u (x)) dx

where, for ξ ∈ Rn, we have set

f (ξ) =

√
1 + |ξ|2 .

The problem is then written in the usual form

(P ) inf

{
I (u) =

ˆ
Ω

f (∇u (x)) dx : u = u0 on ∂Ω

}
,

with

f (ξ) =

√
1 + |ξ|2 for ξ ∈ Rn.

Associated with (P ) we have the so-called minimal surface equation

(E) Mu ≡
(

1 + |∇u|2
)

∆u−
n∑

i,j=1

uxi
uxj

uxixj
= 0

which is the equation that any minimizer u of (P ) should satisfy. In geometrical
terms, this equation just expresses the fact that the corresponding surface Σ
has everywhere vanishing mean curvature.
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Minimal surfaces: Parametric surfaces Nonparametric surfaces are clearly
too restrictive from the geometrical point of view and one is led to consider para-
metric surfaces. These are sets Σ ⊂ Rn+1 so that there exist a connected open
set Ω ⊂ Rn and a map v : Ω→ Rn+1 such that

Σ = v
(
Ω
)

=
{
v (x) : x ∈ Ω

}
.

For example, when n = 2 and v = v (x1, x2) ∈ R3, if we denote by vx1 × vx2 the
normal to the surface (where a× b stands for the vectorial product of a, b ∈ R3

and vx1
= ∂v/∂x1 , vx2

= ∂v/∂x2) we find that the area is given by

Area (Σ) = J (v) =

¨
Ω

|vx1
× vx2

| dx1dx2 .

Isoperimetric inequality: We begin with the simpler case of dimension two
first.

Isoperimetric inequality in dimension two Let A ⊂ R2 be a bounded open
set whose boundary, ∂A, is a sufficiently regular simple closed curve. Denote
by L (∂A) the length of the boundary and by M (A) the measure (the area) of
A. The isoperimetric inequalitystates that

[L (∂A)]
2 − 4πM (A) ≥ 0.

Equality holds if and only if A is a disk (i.e. ∂A is a circle).
We can rewrite this into our formalism (here n = 1 and N = 2) by parametrizing
the curve

∂A =
{
u (x) =

(
u1 (x) , u2 (x)

)
: x ∈ [a, b]

}
and setting

L (∂A) = L (u) =

ˆ b

a

√(
(u1)

′)2
+
(
(u2)

′)2
,

M (A) = M (u) =
1

2

ˆ b

a

(
u1
(
u2
)′ − u2

(
u1
)′)

=

ˆ b

a

u1
(
u2
)′
.

The problem is then to show that

(P ) inf {L (u) : M (u) = 1; u (a) = u (b)} = 2
√
π.

Isoperimetric inequality in any dimension Isoperimetric inequality holds
in any dimension. For open sets A ⊂ Rn with sufficiently regular boundary, ∂A,
and it reads as

[L (∂A)]
n − nn ωn [M (A)]

n−1 ≥ 0

where ωn is the measure of the unit ball of Rn, M (A) stands for the measure
of A and L (∂A) for the (n− 1) measure of ∂A. Moreover, if A is sufficiently
regular (for example, convex), there is equality if and only if A is a ball.
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