Introduction to the Calculus of Variations Problem Sheet 5

Swarnendu Sil

Spring 2021, IISc

1. Show that the Hamilton-Jacobi equations

$$
S_{t}+H\left(t, u, S_{u}\right)=0
$$

can be solved by integration if it can be reduced to the form

$$
\Phi\left(t, S_{t}\right)+\Psi\left(u, S_{u}\right)=0
$$

for some functions Φ and Ψ.
2. Write down and solve the Hamilton-Jacobi equation corresponding to the functional

$$
I[u]=\int_{a}^{b} \dot{u}^{2}(t) \mathrm{d} t
$$

and use the result to find the extremals of $I[u]$.
3. Write down and solve the Hamilton-Jacobi equation corresponding to the functional

$$
I[u]=\int_{a}^{b} \sqrt{1+\dot{u}^{2}(t)} \mathrm{d} t
$$

and use the result to find the extremals of $I[u]$.
4. Write down and solve the Hamilton-Jacobi equation corresponding to the functional

$$
I[u]=\int_{a}^{b} f(u(t)) \sqrt{1+\dot{u}^{2}(t)} \mathrm{d} t
$$

for some given function $f: \mathbb{R} \rightarrow \mathbb{R}$, and use the result to find the extremals of $I[u]$.
5. Write down and solve the Hamilton-Jacobi equation corresponding to the functional

$$
I[u]=\int_{a}^{b} \sqrt{t^{2}+u^{2}(t)} \sqrt{1+\dot{u}^{2}(t)} \mathrm{d} t
$$

and use the result to find the extremals of $I[u]$.
Hint: Try the ansatz $S=\frac{1}{2}\left(A t^{2}+2 B t u+C u^{2}\right)$.
6. Let

$$
I[y]=\int_{a}^{b} \sqrt{\phi_{1}(x)+\phi_{2}(y(x))} \sqrt{1+\left(y^{\prime}\right)^{2}(x)} \mathrm{d} x
$$

for some given functions $\phi_{1}, \phi_{2}: \mathbb{R} \rightarrow \mathbb{R}$. Show that formally the extremals of I can be recovered from the equations

$$
\int \frac{\mathrm{d} x}{\sqrt{\phi_{1}(x)-\alpha}}-\int \frac{\mathrm{d} y}{\sqrt{\phi_{2}(y)+\alpha}}=\beta
$$

where α, β are constants.

