Introduction to the Calculus of Variations Problem Sheet 3

Swarnendu Sil

Spring 2021, IISc

1. Convex functions

(a) Let $f \in C^{1}\left(\mathbb{R}^{n}\right)$. Show that the following assertions are equivalent.
(i) f is convex.
(ii) For every $x, y \in \mathbb{R}^{n}$, the following inequality holds

$$
f(x) \geq f(y)+\langle\nabla f(y), x-y\rangle
$$

(iii) For every $x, y \in \mathbb{R}^{n}$, the following inequality is valid

$$
\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq 0
$$

Such an inequality is called a monotonicity inequality, i.e. the statement says that the gradient of f is monotone.
(iv) If $f \in C^{2}\left(\mathbb{R}^{n}\right)$, then the above statements are also equivalent to the following:
For every $x, v \in \mathbb{R}^{n}$, the following inequality holds

$$
\left\langle\nabla^{2} f(x) v, v\right\rangle \geq 0
$$

(b) Subgradient (This is a slightly advanced topic for the course, so solving this exercise is not strictly required to follow the course. But its fun!)
In view of ($i i$) above, we can define a notion of a 'gradient' for a convex function even when they are not differentiable.
Definition 1. A vector $v \in \mathbb{R}^{n}$ is called a subgradient of a convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at the point $x_{0} \in \mathbb{R}^{n}$ if

$$
f(x) \geq f\left(x_{0}\right)+\left\langle v, x-x_{0}\right\rangle \quad \text { for every } x \in \mathbb{R}^{n}
$$

The set of all subgradients of f at a point $x_{0} \in \mathbb{R}^{n}$ is called the subdifferential of f at x_{0} and is denoted $\partial f\left(x_{0}\right)$.
i. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex and $x_{0} \in \mathbb{R}^{n}$. Show that $\partial f\left(x_{0}\right)$ is a nonempty, compact, convex set.
ii. Let $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be two convex functions and $x_{0} \in \mathbb{R}^{n}$. Show that $f+g$ is convex and

$$
\partial(f+g)\left(x_{0}\right)=\partial f\left(x_{0}\right)+\partial g\left(x_{0}\right),
$$

where the sum of the sets on the right is the Minkowski sum, i.e.

$$
A+B:=\{x+y: x \in A, y \in B\}
$$

iii. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex and $x_{0} \in \mathbb{R}^{n}$. Show that f is differentiable at x_{0} if and only if $\partial f\left(x_{0}\right)$ is a singleton set. Describe $\partial f\left(x_{0}\right)$ in this case.
iv. Calculate $\partial f(x)$ for every $x \in \mathbb{R}^{n}$ when $f(x)=|x|$.
v. Calculate $\partial f(x)$ for every $x \in \mathbb{R}^{n}$ when

$$
f(x)=\max _{1 \leq i \leq n}\left\{\left|x_{i}\right|\right\}
$$

vi. Show that a convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ has a global minima at $x_{0} \in \mathbb{R}^{n}$ if and only if $0 \in \partial f\left(x_{0}\right)$. Combined with iii. above, what does this condition reduce to if f is differentiable at x_{0} ?

2. Legendre Transform

(a) Let $\left.f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}\right)$.

Show the following.
i. If $f \not \equiv+\infty$, then $f^{*}>-\infty$.
ii. f^{*} is convex.
iii. $f^{* *}$ is convex and $f^{* *} \leq f$.
iv. If f is bounded below and finite, then $f^{* *}$ is its convex envelope.
v. If f is convex, bounded below and finite then $f^{* *}=f$.
vi. $f^{* * *}=f^{*}$.
vii. If $f \in C^{1}\left(\mathbb{R}^{n}\right)$, convex and finite, then

$$
f(x)+f^{*}(\nabla f(x))=\langle\nabla f(x) ; x\rangle, \quad \forall x \in \mathbb{R}^{n}
$$

viii. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is strictly convex and if

$$
\lim _{|x| \rightarrow \infty} \frac{f(x)}{|x|}=+\infty
$$

then $f^{*} \in C^{1}\left(\mathbb{R}^{n}\right)$. Moreover, if $f \in C^{1}\left(\mathbb{R}^{n}\right)$ and

$$
f(x)+f^{*}\left(x^{*}\right)=\left\langle x^{*} ; x\right\rangle
$$

then

$$
x^{*}=\nabla f(x) \quad \text { and } \quad x=\nabla f^{*}\left(x^{*}\right) .
$$

(b) i. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by

$$
f(x)= \begin{cases}x & \text { if } x \geq 0 \\ 0 & \text { if } x<0 .\end{cases}
$$

Calculate f^{*}.
ii. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by

$$
f(x)=\left\{\begin{array}{cl}
0 & \text { if } x \in(0,1) \\
+\infty & \text { otherwise } .
\end{array}\right.
$$

Calculate f^{*} and $f^{* *}$.
3. Let $\alpha, \beta \in \mathbb{R}^{N}$ be two given vectors and $f=f(t, u, \xi) \in C^{2}\left([a, b] \times \mathbb{R}^{N} \times \mathbb{R}^{N}\right)$ be a given function. Set

$$
X=\left\{u \in C^{1}\left([a, b] ; \mathbb{R}^{N}\right): u(a)=\alpha, u(b)=\beta\right\}
$$

and consider the problem

$$
\text { (P) } \quad \inf _{u \in X}\left\{I(u)=\int_{a}^{b} f(t, u(t), \dot{u}(t)) \mathrm{d} t\right\}=m
$$

Suppose $\bar{u} \in X \cap C^{2}\left([a, b] ; \mathbb{R}^{N}\right)$ is a minimizer for (P).
(a) Du Bois-Raymond's equation Show that \bar{u} satisfies,

$$
\frac{d}{d t}\left[f(t, \bar{u}(t), \dot{\bar{u}}(t))-\left\langle\dot{\bar{u}}(t), f_{\xi}(t, \bar{u}(t), \dot{\bar{u}}(t))\right\rangle\right]=f_{t}(t, \bar{u}(t), \dot{\bar{u}}(t))
$$

for every $t \in(a, b)$.
(b) Beltrami identity If f does not depend explicitly on t, show that the function $\Phi: \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ given by

$$
\Phi(u, \xi):=f(u, \xi)-\left\langle\xi, f_{\xi}(u, \xi)\right\rangle
$$

is a first integral.
4. Brachistochrone Write down the associated Hamiltonian system and formally solve the brachistochrone problem and show that the solution is a cycloid. As a recap, the variational problem is:

$$
\begin{equation*}
m=\inf \left\{I(u):=\int_{a}^{b} f\left(u(x), u^{\prime}(x)\right) \mathrm{d} x: u \in \mathcal{A}\right\} \tag{1}
\end{equation*}
$$

where $n=N=1$ and the form of the Lagrangian density is

$$
f(x, u, \xi)=f(u, \xi)=\sqrt{\left(\frac{1+\xi^{2}}{2 g u}\right)} .
$$

The class of admissible paths is

$$
\mathcal{A}:=\left\{\begin{aligned}
u \in C^{1}([0, b]): u(0) & =0, u(b)=\beta \\
& \text { and } u(x)>0 \text { for all } x \in(0, b]
\end{aligned}\right\} .
$$

(Hint: Use Beltrami identity together with the Euler-Lagrange equations.)
5. Minimal surface of revolution Write down the associated Hamiltonian system and formally solve the minimal surfaces of revolution problem and show that the solution is a catenoid formed by revolving a catenary. As a recap, a surface of revolution is a surface of the form

$$
v(t, x)=(t, u(t) \cos x, u(t) \sin x)
$$

with fixed end points $u(a)=\alpha, u(b)=\beta$ with $\alpha, \beta>0$. The variational problem is:

$$
\begin{equation*}
m=\inf \left\{I(u):=\int_{a}^{b} f(u(t), \dot{u}(t)) \mathrm{d} t: u \in \mathcal{A}\right\} \tag{2}
\end{equation*}
$$

where $n=N=1$ and the form of the Lagrangian density is

$$
f(x, u, \xi)=f(u, \xi)=2 \pi u \sqrt{1+\xi^{2}} .
$$

The class of admissible curves is

$$
\mathcal{A}:=\left\{\begin{aligned}
u \in C^{1}([a, b]): u(a) & =\alpha, u(b)=\beta \\
& \text { and } u(x)>0 \text { for all } x \in[a, b]
\end{aligned}\right\} .
$$

(Hint: Use Beltrami identity together with the Euler-Lagrange equations.)
6. Mechanics of system of point masses Let $m_{i}>0$ be the mass and $u_{i}(t)=\left(x_{i}(t), y_{i}(t), z_{i}(t)\right) \in \mathbb{R}^{3}$ be the position of the i-th particles for $1 \leq i \leq M$. Let $u(t):=\left(u_{1}(t), \ldots, u_{M}(t)\right) \in \mathbb{R}^{3 M}$ be the configuration at time t. The potential energy function for the configuration $u(t)$ is a given function $U: \mathbb{R}_{+} \times \mathbb{R}^{3 M} \rightarrow \mathbb{R}$. The variational problem:

$$
\begin{equation*}
m=\inf \left\{I(u):=\int_{0}^{T} f(t, u(t), \dot{u}(t)) \mathrm{d} t: u(0)=u_{0}, u(T)=v_{0}\right\} \tag{3}
\end{equation*}
$$

where $n=1, N=3 M, u_{0}, v_{0}$ given and the form of the Lagrangian density is

$$
f(x, u, \xi)=T(\xi)-U(t, u(t))
$$

Here T is the kinetic energy and is given by

$$
T(\xi):=\frac{1}{2} \sum_{i=1}^{M} m_{i} \xi_{i}^{2}
$$

(a) Derive the Euler-Lagrange equations and the associated Hamiltonian system.
(b) Show that along the integral curves, the Hamiltonian can be written as the sum of the potential and kinetic energies, i.e.

$$
T(\dot{u})+U(t, u(t)) .
$$

(c) Is the Hamiltonian function a first integral?
7. Generalize the theorem about criterion of being a first integral to timedependent functions. More precisely, find necessary and sufficient conditions under which a function $\Phi \in C^{2}\left([a, b] \times \mathbb{R}^{N} \times \mathbb{R}^{N}\right), \Phi=\Phi(t, u, v)$, is a first integral of of the Hamilton's equations with Hamiltonian $H=$ $H(t, u, v) \in C^{2}\left([a, b] \times \mathbb{R}^{N} \times \mathbb{R}^{N}\right)$.

