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1. Convex functions

(a) Let f ∈ C1 (Rn) . Show that the following assertions are equivalent.

(i) f is convex.

(ii) For every x, y ∈ Rn, the following inequality holds

f (x) ≥ f (y) + 〈∇f (y) , x− y〉 .

(iii) For every x, y ∈ Rn, the following inequality is valid

〈∇f (x)−∇f (y) , x− y〉 ≥ 0.

Such an inequality is called a monotonicity inequality, i.e. the state-
ment says that the gradient of f is monotone.

(iv) If f ∈ C2 (Rn) , then the above statements are also equivalent
to the following:

For every x, v ∈ Rn, the following inequality holds〈
∇2f (x) v, v

〉
≥ 0.

(b) Subgradient ( This is a slightly advanced topic for the course, so
solving this exercise is not strictly required to follow the course. But
its fun! )

In view of (ii) above, we can define a notion of a ‘gradient’ for a
convex function even when they are not differentiable.

Definition 1. A vector v ∈ Rn is called a subgradient of a convex
function f : Rn → R at the point x0 ∈ Rn if

f (x) ≥ f (x0) + 〈v, x− x0〉 for every x ∈ Rn.

The set of all subgradients of f at a point x0 ∈ Rn is called the
subdifferential of f at x0 and is denoted ∂f (x0) .
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i. Let f : Rn → R be convex and x0 ∈ Rn. Show that ∂f (x0) is a
nonempty, compact, convex set.

ii. Let f, g : Rn → R be two convex functions and x0 ∈ Rn. Show
that f + g is convex and

∂ (f + g) (x0) = ∂f (x0) + ∂g (x0) ,

where the sum of the sets on the right is the Minkowski sum, i.e.

A+B := {x+ y : x ∈ A, y ∈ B} .

iii. Let f : Rn → R be convex and x0 ∈ Rn. Show that f is differ-
entiable at x0 if and only if ∂f (x0) is a singleton set. Describe
∂f (x0) in this case.

iv. Calculate ∂f (x) for every x ∈ Rn when f (x) = |x| .
v. Calculate ∂f (x) for every x ∈ Rn when

f (x) = max
1≤i≤n

{|xi|} .

vi. Show that a convex function f : Rn → R has a global minima
at x0 ∈ Rn if and only if 0 ∈ ∂f (x0) . Combined with iii. above,
what does this condition reduce to if f is differentiable at x0?

2. Legendre Transform

(a) Let f : Rn → R ∪ {+∞}).
Show the following.

i. If f 6≡ +∞, then f∗ > −∞.
ii. f∗ is convex.

iii. f∗∗ is convex and f∗∗ ≤ f.
iv. If f is bounded below and finite, then f∗∗ is its convex envelope.

v. If f is convex, bounded below and finite then f∗∗ = f.

vi. f∗∗∗ = f∗.

vii. If f ∈ C1 (Rn) , convex and finite, then

f (x) + f∗ (∇f (x)) = 〈∇f (x) ;x〉 , ∀x ∈ Rn.

viii. If f : Rn → R is strictly convex and if

lim
|x|→∞

f (x)

|x|
= +∞

then f∗ ∈ C1 (Rn) . Moreover, if f ∈ C1 (Rn) and

f (x) + f∗ (x∗) = 〈x∗;x〉

then
x∗ = ∇f (x) and x = ∇f∗ (x∗) .
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(b) i. Let f : R→ R be given by

f (x) =

{
x if x ≥ 0,

0 if x < 0.

Calculate f∗.

ii. Let f : R→ R be given by

f (x) =

{
0 if x ∈ (0, 1)

+∞ otherwise.

Calculate f∗ and f∗∗.

3. Let α, β ∈ RN be two given vectors and f = f (t, u, ξ) ∈ C2
(
[a, b]× RN × RN

)
be a given function. Set

X =
{
u ∈ C1

(
[a, b] ;RN

)
: u (a) = α, u (b) = β

}
and consider the problem

(P ) inf
u∈X

{
I (u) =

ˆ b

a

f (t, u (t) , u̇ (t)) dt

}
= m.

Suppose ū ∈ X ∩ C2
(
[a, b] ;RN

)
is a minimizer for (P ) .

(a) Du Bois-Raymond’s equation Show that ū satisfies,

d

dt
[f (t, ū (t) , ˙̄u (t))− 〈 ˙̄u (t) , fξ (t, ū (t) , ˙̄u (t))〉] = ft (t, ū (t) , ˙̄u (t))

for every t ∈ (a, b) .

(b) Beltrami identity If f does not depend explicitly on t, show that
the function Φ : RN × RN → R given by

Φ (u, ξ) := f (u, ξ)− 〈ξ, fξ (u, ξ)〉

is a first integral.

4. Brachistochrone Write down the associated Hamiltonian system and
formally solve the brachistochrone problem and show that the solution is
a cycloid. As a recap, the variational problem is:

m = inf

{
I(u) :=

ˆ b

a

f (u(x), u′(x)) dx : u ∈ A

}
, (1)

where n = N = 1 and the form of the Lagrangian density is

f(x, u, ξ) = f(u, ξ) =

√(
1 + ξ2

2gu

)
.
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The class of admissible paths is

A :=

{
u ∈ C1 ([0, b]) : u(0) = 0, u(b) = β

and u(x) > 0 for all x ∈ (0, b]

}
.

(Hint: Use Beltrami identity together with the Euler-Lagrange equations.)

5. Minimal surface of revolution Write down the associated Hamiltonian
system and formally solve the minimal surfaces of revolution problem and
show that the solution is a catenoid formed by revolving a catenary. As a
recap, a surface of revolution is a surface of the form

v(t, x) = (t, u(t) cosx, u(t) sinx)

with fixed end points u(a) = α, u(b) = β with α, β > 0. The variational
problem is:

m = inf

{
I(u) :=

ˆ b

a

f (u(t), u̇(t)) dt : u ∈ A

}
, (2)

where n = N = 1 and the form of the Lagrangian density is

f(x, u, ξ) = f(u, ξ) = 2πu
√

1 + ξ2.

The class of admissible curves is

A :=

{
u ∈ C1 ([a, b]) : u(a) = α, u(b) = β

and u(x) > 0 for all x ∈ [a, b]

}
.

(Hint: Use Beltrami identity together with the Euler-Lagrange equations.)

6. Mechanics of system of point masses Let mi > 0 be the mass and
ui(t) = (xi(t), yi(t), zi(t)) ∈ R3 be the position of the i-th particles for
1 ≤ i ≤ M. Let u(t) := (u1(t), . . . , uM (t)) ∈ R3M be the configuration at
time t. The potential energy function for the configuration u(t) is a given
function U : R+ × R3M → R. The variational problem:

m = inf

{
I(u) :=

ˆ T

0

f (t, u(t), u̇(t)) dt : u(0) = u0, u(T ) = v0

}
, (3)

where n = 1, N = 3M, u0, v0 given and the form of the Lagrangian density
is

f(x, u, ξ) = T (ξ)− U (t, u(t)) .

Here T is the kinetic energy and is given by

T (ξ) :=
1

2

M∑
i=1

miξ
2
i .
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(a) Derive the Euler-Lagrange equations and the associated Hamiltonian
system.

(b) Show that along the integral curves, the Hamiltonian can be written
as the sum of the potential and kinetic energies, i.e.

T (u̇) + U (t, u(t)) .

(c) Is the Hamiltonian function a first integral?

7. Generalize the theorem about criterion of being a first integral to time-
dependent functions. More precisely, find necessary and sufficient condi-
tions under which a function Φ ∈ C2

(
[a, b]× RN × RN

)
, Φ = Φ (t, u, v) ,

is a first integral of of the Hamilton’s equations with Hamiltonian H =
H (t, u, v) ∈ C2

(
[a, b]× RN × RN

)
.
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