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1. Convex functions

(a) Let f € C' (R™). Show that the following assertions are equivalent.
(i) f is convex.

(ii) For every z,y € R", the following inequality holds
f@) =)+ (Vi) z—-y).
(iii) For every =,y € R™, the following inequality is valid

(Vf(z)=Vi(y),z—y) =0

Such an inequality is called a monotonicity inequality, i.e. the state-
ment says that the gradient of f is monotone.

(iv) If f € C%(R"), then the above statements are also equivalent
to the following:

For every x,v € R™, the following inequality holds
(V2f (z)v,v) > 0.

(b) Subgradient ( This is a slightly advanced topic for the course, so
solving this exercise is not strictly required to follow the course. But
its fun! )

In view of (i7) above, we can define a notion of a ‘gradient’ for a
convex function even when they are not differentiable.

Definition 1. A vector v € R™ is called a subgradient of a convex
function f:R™ — R at the point xqg € R™ if

f(x) > f(xo) + (v,x —x0)  for every x € R".

The set of all subgradients of f at a point xo € R™ is called the
subdifferential of f at x¢ and is denoted Of (xg) .



ii.

iii.

iv.

vi.

Let f : R™ — R be convex and zy € R™. Show that Jf (x¢) is a
nonempty, compact, convex set.

Let f,¢9 : R — R be two convex functions and xg € R"”. Show
that f + g is convex and

9(f +9) (xo) = 0f (z0) + 99 (20) ,
where the sum of the sets on the right is the Minkowski sum, i.e.
A+B:={z+y:z € Aye€ B}.

Let f : R"™ — R be convex and xg € R™. Show that f is differ-
entiable at x if and only if 9f (z¢) is a singleton set. Describe
Of (o) in this case.
Calculate Of (x) for every € R™ when f () = |z|.
Calculate 0f (z) for every x € R™ when

f(x) = max {|z;|}.

1<i<n

Show that a convex function f : R™ — R has a global minima
at g € R™ if and only if 0 € 9f (z¢) . Combined with iii. above,
what does this condition reduce to if f is differentiable at x(?

2. Legendre Transform

(a) Let f:R" — RU {+o0}).
Show the following.

i
ii.
iii.
iv.
V.
vi.

vii.

viii.

If f # +o0, then f* > —oc.

f* is convex.

f** is convex and f** < f.

If f is bounded below and finite, then f** is its convex envelope.
If f is convex, bounded below and finite then f** = f.

If f € C!(R"), convex and finite, then
f@)+ 7 (Vf(@)=(Vf(z);z), VzeR"
If f:R™ — R is strictly convex and if
lim 1 (@)

|z|—oo ||

= 400

then f* € C' (R™). Moreover, if f € C* (R") and
o)+ 1" (2") = (2" 2)

then
¥ =Vf(r) and z=Vf"(z").



(b) i. Let f:R — R be given by

f(z) = xz ifx >0,
Y70 ifz<o.

Calculate f*.
ii. Let f: R — R be given by

{ 0 ifze(0,1)

400 otherwise.
Calculate f* and f**.

3. Let ar, B € RY be two given vectors and f = f (t,u,£) € C? ([a,b] x RN x RY)
be a given function. Set

X ={ueC" ([a,];R") :u(a) = o, u(b) =B}
and consider the problem

b
(P) inf {I(u) :/ ftu(t),a(t)) dt} =m.

ueX

Suppose @ € X N C? ([a,b]; RY) is a minimizer for (P).

(a) Du Bois-Raymond’s equation Show that u satisfies,

%[f (tut),u®) —(ut), fe @t ut),w®)] = ftul),ud)
for every t € (a,b) .

(b) Beltrami identity If f does not depend explicitly on ¢, show that
the function ® : RV x RY — R given by

@ (uag) = f (u7 5) - <€7f€ (u7£)>
is a first integral.

4. Brachistochrone Write down the associated Hamiltonian system and
formally solve the brachistochrone problem and show that the solution is
a cycloid. As a recap, the variational problem is:

b
minf{[(u) ::/ £ (u(z),u'(z)) dx:uGA}, (1)
where n = N = 1 and the form of the Lagrangian density is
7 B 14 &2
e = 1.6 = (5).



The class of admissible paths is

.o Juecho.E) s u(0) =0, u(d) =
- and u(z) > 0 for all z € (0,b] |

(Hint: Use Beltrami identity together with the Euler-Lagrange equations.)

. Minimal surface of revolution Write down the associated Hamiltonian
system and formally solve the minimal surfaces of revolution problem and
show that the solution is a catenoid formed by revolving a catenary. As a
recap, a surface of revolution is a surface of the form

v(t,x) = (t,u(t) cosz,u(t) sinx)

with fixed end points u(a) = o, u(b) = 8 with «, 8 > 0. The variational
problem is:

b
mzinf{[(u) ::/ f(u(t),u(t)) dt:uEA}, (2)
where n = N = 1 and the form of the Lagrangian density is

f(x’uaf) :f(uag) = 27Uy 1+§2'

The class of admissible curves is

A= {uGCl([me:u(a):a, u(b) = B }

and u(x) > 0 for all z € [a, b]

(Hint: Use Beltrami identity together with the Euler-Lagrange equations.)

. Mechanics of system of point masses Let m; > 0 be the mass and
wi(t) = (z:(t),yi(t), z:(t)) € R® be the position of the i-th particles for
1 <i< M. Let u(t) := (u1(t),...,un(t)) € R*M be the configuration at
time t. The potential energy function for the configuration u(t) is a given
function U : R, x R3™ — R. The variational problem:

T
m:inf{[(u) ::/0 £ (6 u(t), () dt:u(O):uo,u(T):UO}, 3)

where n = 1, N = 3M, ug, vg given and the form of the Lagrangian density
is

fla,u,8) =T (&) = U (¢ ult)) .

Here T is the kinetic energy and is given by

1L,
T (€) := 3 > mgl.
=1



(a) Derive the Euler-Lagrange equations and the associated Hamiltonian
system.

(b) Show that along the integral curves, the Hamiltonian can be written
as the sum of the potential and kinetic energies, i.e.

T (0) + U (t,ult)) .

(c) Is the Hamiltonian function a first integral?

7. Generalize the theorem about criterion of being a first integral to time-
dependent functions. More precisely, find necessary and sufficient condi-
tions under which a function ® € C? ([a,b] x RN x RN) , = (tu,v),
is a first integral of of the Hamilton’s equations with Hamiltonian H =
H (t,u,v) € C?([a,b] x RN x RY).



