Introduction to the Calculus of Variations Problem Sheet 2

Swarnendu Sil

Spring 2021, IISc

1. Fundamental Lemma of the Calculus of Variations

(a) Supply an elementary proof for the following weaker version of the fundamental lemma of the calculus of variations.
Lemma 1. Let $u \in C^{0}((a, b))$ be such that

$$
\begin{equation*}
\int_{a}^{b} u(t) \psi(t) \mathrm{d} t=0 \tag{1}
\end{equation*}
$$

holds for all for every $\psi \in C_{c}^{\infty}((a, b))$. Then $u \equiv 0$ in (a, b).
(b) Prove the following general version of the fundamental lemma of the calculus of variations.
Lemma 2. Let $\Omega \subset \mathbb{R}^{n}$ be open and $u, v \in L_{\text {loc }}^{1}\left(\Omega ; \mathbb{R}^{N}\right)$ be such that

$$
\begin{equation*}
\int_{\Omega}\langle u(x), \psi(x)\rangle \mathrm{d} x=0 \tag{2}
\end{equation*}
$$

holds for all for every $\psi \in C_{c}^{\infty}\left(\Omega ; \mathbb{R}^{N}\right)$ satisfying the condition

$$
\begin{equation*}
\int_{\Omega}\langle v(x), \psi(x)\rangle \mathrm{d} x=0 \tag{3}
\end{equation*}
$$

Then there exists a number $\lambda \in \mathbb{R}$ such that we have $u=\lambda v$ a.e. in Ω.
Note that if $u, v \in L^{2}$, the geometric content of the lemma becomes clear, which is the following: If u is orthogonal to all C_{c}^{∞} functions that are orthogonal to v, then u must be along v.
(c) Using the fundamental lemma, supply an elementary proof for the following one dimensional version of the Du Bois-Raymond's lemma.
Lemma 3. Let $a, b \in \mathbb{R}$ and let $u \in L_{l o c}^{1}((a, b))$ be such that

$$
\begin{equation*}
\int_{a}^{b} u(t) \dot{\psi}(t) \mathrm{d} t=0, \quad \text { for every } \psi \in C_{c}^{\infty}((a, b)) \tag{4}
\end{equation*}
$$

Then $u=$ constant a.e. in (a, b).
(d) Prove the Du Bois-Raymond's lemma.

Lemma 4 (Du Bois-Raymond's lemma). Let $\Omega \subset \mathbb{R}^{n}$ be open bounded and connected and $u \in L_{\text {loc }}^{1}\left(\Omega ; \mathbb{R}^{N}\right)$ be such that

$$
\begin{equation*}
\int_{\Omega}\left\langle u(x), D_{i} \psi(x)\right\rangle \mathrm{d} x=0, \quad \text { for } 1 \leq i \leq n \tag{5}
\end{equation*}
$$

for every $\psi \in C_{c}^{\infty}\left(\Omega ; \mathbb{R}^{N}\right)$. Then $u=$ constant a.e. in Ω.

2. Euler-Lagrange equations

(a) Generalize the Euler-Lagrange equation theorem for the following variational problem.

$$
\inf _{u \in X}\left\{I(u)=\int_{a}^{b} f\left(t, u(t), \dot{u}(t), \ldots, u^{(r)}(t)\right) \mathrm{d} t\right\}
$$

where $r \geq 2$ is a positive integer, the notation $u^{(r)}$ means the r-th derivative of u and

$$
X=\left\{u \in C^{r}([a, b]): u^{(j)}(a)=\alpha_{j}, u^{(j)}(b)=\beta_{j}, 1 \leq j \leq r-1\right\}
$$

(b) Generalize the Euler-Lagrange equation theorem for the following variational problem.

$$
\inf _{u \in X}\left\{I(u)=\int_{a}^{b} f(t, u(t), \dot{u}(t)) \mathrm{d} t\right\}
$$

where

$$
X=\left\{u \in C^{1}([a, b]): u(a)=\alpha\right\}
$$

3. Poincaré-Wirtinger inequality Let $\lambda \in \mathbb{R}$ and $T>0$. Set

$$
X_{\mathrm{Dir}, 0}:=\left\{u \in C^{1}\left([0, T] ; \mathbb{R}^{N}\right): u(0)=0=u(T)\right\}
$$

Consider the following variational problem

$$
\inf \left\{I(u)=\int_{0}^{T} f(t, u(t), \dot{u}(t)) \mathrm{d} t: u \in X_{\operatorname{Dir}, 0}\right\}=m
$$

where the Lagrangian density is

$$
f(t, u, \xi)=\frac{1}{2} \xi^{2}-\frac{\lambda^{2}}{2} u^{2}
$$

(a) Derive the Euler-Lagrange equations for this problem.
(b) Find all solutions of those equations.
(c) Discuss the value of m for different values of λ.
(d) Show the following inequality, which is a one dimensional version of what is called the Poincaré-Wirtinger inequality:

$$
\int_{0}^{T}(u(t))^{2} \mathrm{~d} t \leq\left(\frac{T}{\pi}\right)^{2} \int_{0}^{T}(\dot{u}(t))^{2} \mathrm{~d} t
$$

