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1. Fundamental Lemma of the Calculus of Variations

(a) Supply an elementary proof for the following weaker version of the
fundamental lemma of the calculus of variations.

Lemma 1. Let u ∈ C0 ((a, b)) be such that

ˆ b

a

u (t)ψ (t) dt = 0, (1)

holds for all for every ψ ∈ C∞
c ((a, b)) . Then u ≡ 0 in (a, b).

(b) Prove the following general version of the fundamental lemma of the
calculus of variations.

Lemma 2. Let Ω ⊂ Rn be open and u, v ∈ L1
loc

(
Ω;RN

)
be such that

ˆ
Ω

〈u (x) , ψ (x)〉 dx = 0, (2)

holds for all for every ψ ∈ C∞
c

(
Ω;RN

)
satisfying the condition

ˆ
Ω

〈v (x) , ψ (x)〉 dx = 0. (3)

Then there exists a number λ ∈ R such that we have u = λv a.e. in
Ω.

Note that if u, v ∈ L2, the geometric content of the lemma becomes
clear, which is the following: If u is orthogonal to all C∞

c functions
that are orthogonal to v, then u must be along v.

(c) Using the fundamental lemma, supply an elementary proof for the
following one dimensional version of the Du Bois-Raymond’s lemma.

Lemma 3. Let a, b ∈ R and let u ∈ L1
loc ((a, b)) be such that

ˆ b

a

u (t) ψ̇ (t) dt = 0, for every ψ ∈ C∞
c ((a, b)) . (4)

Then u = constant a.e. in (a, b).
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(d) Prove the Du Bois-Raymond’s lemma.

Lemma 4 (Du Bois-Raymond’s lemma). Let Ω ⊂ Rn be open bounded
and connected and u ∈ L1

loc

(
Ω;RN

)
be such thatˆ

Ω

〈u (x) , Diψ (x)〉 dx = 0, for 1 ≤ i ≤ n, (5)

for every ψ ∈ C∞
c

(
Ω;RN

)
. Then u = constant a.e. in Ω.

2. Euler-Lagrange equations

(a) Generalize the Euler-Lagrange equation theorem for the following
variational problem.

inf
u∈X

{
I (u) =

ˆ b

a

f
(
t, u (t) , u̇ (t) , . . . , u(r) (t)

)
dt

}
,

where r ≥ 2 is a positive integer, the notation u(r) means the r-th
derivative of u and

X =
{
u ∈ Cr ([a, b]) : u(j) (a) = αj , u

(j) (b) = βj , 1 ≤ j ≤ r − 1
}
.

(b) Generalize the Euler-Lagrange equation theorem for the following
variational problem.

inf
u∈X

{
I (u) =

ˆ b

a

f (t, u (t) , u̇ (t)) dt

}
,

where
X =

{
u ∈ C1 ([a, b]) : u (a) = α

}
.

3. Poincaré-Wirtinger inequality Let λ ∈ R and T > 0. Set

XDir,0 :=
{
u ∈ C1

(
[0, T ] ;RN

)
: u (0) = 0 = u (T )

}
.

Consider the following variational problem

inf

{
I (u) =

ˆ T

0

f (t, u (t) , u̇ (t)) dt : u ∈ XDir,0

}
= m,

where the Lagrangian density is

f (t, u, ξ) =
1

2
ξ2 − λ2

2
u2.

(a) Derive the Euler-Lagrange equations for this problem.

(b) Find all solutions of those equations.

(c) Discuss the value of m for different values of λ.

(d) Show the following inequality, which is a one dimensional version of
what is called the Poincaré-Wirtinger inequality:

ˆ T

0

(u (t))
2

dt ≤
(
T

π

)2 ˆ T

0

(u̇ (t))
2

dt.
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