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1. Prove Fermat’s theorem that every local extrema of a C1 function is a
critical point. In fact, the theorem is true without the C1 assumption if
by critical point we mean not just stationary points, but also all points
where the function is not differentiable. Give an example of a convex
function which has an unique local minima which is also global at a point
where the function is not differentiable.

2. Suppose F : Rn → R is C1 and x0 ∈ Rn is a critical point of F. If F is C2

in a neighbourhood of x0, then prove that

(a) x0 is a local minima implies ∇2F (x0) ≥ 0.

(b) Conversely, ∇2F (x0) > 0 implies x0 is a local minima.

(c) Let F : R2 → R is defined by

F (x, y) = x2 − y2.

Sketch its graph. Convince yourself that the origin (0, 0) is a non-
degenrate critical point ( i.e. a ciritcal point where the Hessian is
nonsingular ) where the Hessian is indefinite and F have neither a
local maxima nor a local minima at the origin. A critical point which
is not a local extrema is called a saddle point. The graph of this
function is an example of a hyperbolic paraboloid. Prove that the
intersection of the graph with either the xz or the yz-plane passing
through the origin are graphs of two functions from R to R both of
which have a local extrema at 0 ∈ R, one of them being a minima
and the other a maxima.

(d) Let F : R2 → R is defined by

F (x, y) = x2 + y3.

Investigate its critical point at the origin. Is it nondegenerate? Is
it a local extrema or a saddle? Consider the two functions from R
to R whose graphs are obtained by intersecting the graph of F with
axial planes passing through the origin as before. Do they have an
extrema at the origin this time?
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(e) Let F : R2 → R is defined by

F (x, y) = x4 − y4.

Investigate its critical point at the origin. Is it nondegenerate? Is
it a local extrema or a saddle? Consider the two functions from R
to R whose graphs are obtained by intersecting the graph of F with
axial planes passing through the origin as before. Do they have an
extrema at the origin this time?

(f) Let F : R2 → R is defined by

F (x, y) = x3 − 3xy2.

Investigate its critical point at the origin. Is it nondegenerate? Is it
a local extrema or a saddle? The graph is called a monkey saddle.
Consider the two functions from R to R whose graphs are obtained
by intersecting the graph of F with axial planes passing through the
origin as before. Do they have an extrema at the origin this time?
What kind of critical points do they have? Take any vector v ∈ R2 in
the xy-plane and consider the vertical (z-axis ) plane passing through
that vector. Intersect the graph of F by this plane to obtain the graph
of a function from R to R as before. Study what kind of critical points
would this function have and how would it depend on your choice of
v.

3. Let x0 ∈ Rn be a critical point of F : Rn → R, which is convex and C1.

(a) Prove that x0 is a local minima.

(b) Show that it must also be a global minima.

(c) Give examples (with sketches of graphs) of F : R → R to illus-
trate that neither conclusion is valid if the convexity assumption is
dropped.

(d) Give an example (with sketches of graphs) of a convex, smooth func-
tion F : R→ R with multiple minima.

(e) Show that if F : Rn → R is strictly convex, i.e. satisfies

F (tx+ (1− t)y) < tF (x) + (1− t)F (y),

for every x, y ∈ Rn and for every t ∈ (0, 1), then F has at most one
local minima. Of course, if there exists one, it is global.

(f) Give an example (with sketches of graphs) of a strictly convex, smooth
function F : R→ R without a minima.

(g) A function F : Rn → R is called strongly convex if there exists a
constant c > 0 such that

x 7→ f(x)− c ‖x‖2

is convex.
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i. Show that if F is strongly convex, F has an unique local minima
which is also global.

ii. Show that strong convexity implies strict convexity. Can you
think of a function F : R → R which is strictly convex but not
strongly convex?

4. Prove that any convex function F : Rn → R is locally Lipschitz. In fact,
the same result is true if F : Rn → R is only separately convex, i.e.
convex in each variable separately. In particular, a convex function is lower
semicontinuous. (Do not get discouraged if you do not solve it. This one
is not quite trivial.)

5. (Coercivity conditions)

(a) Give example of a function f : R → R which is norm-coercive but
nor coercive. ( This is the only place where we would distinguish
between coercivity and norm-coercivity. Henceforth, coercive would
mean norm-coercive).

(b) Show that a function with superlinear growth at infinity is coercive.
Suppose F : Rn → R satisfies α-growth condition at infinity, i.e.

lim
‖x‖→∞

|F (x)|
‖x‖α

= +∞,

for some α ∈ R. What condition on α is sufficient for coercivity of
F? Give examples to show the optimality of the condition.

(c) Let F : Rn → R be continuous.

i. Show that F is coercive if and only if for every α ∈ R, the set
{x ∈ Rn : ‖F (x)‖ ≤ α} is compact.

ii. Show that if F is coercive, then F either has at least one global
minima or is unbounded below. Give an example to show this is
no longer true without the continuity hypothesis on F. Can you
think of a weaker hypothesis?

(d) Show that if F : Rn → R is strongly convex and C1, then F is both
coercive and bounded below.
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