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Preface

These solutions are meant to facilitate deeper understanding of the book, Topics
in Algebra, second edition, written by I.N. Herstein. We have tried to stick with
the notations developed in the book as far as possible. But some notations are
extremely ambiguous, so to avoid confusion, we resorted to alternate commonly
used notations.

The following notation changes will be found in the text:
1. use of unity element or simply unity instead of unit element.
2. use of unit element or simply unit in place of only unit.
3. an ideal generated by a is denoted by (a) instead of (a).
4. use of ged(a,b) instead of (a,b) for greatest common divisor of a, b.

Also following symbols are used in the text without any description, unless some
other symbol is specifically described in the problem statement for the same:

1. N is used for natural numbers, i.e. 1,2,3,---.
2. Z is used for integers, i.e. -+, —2,—1,0,1,2,--.
3. W is used for whole numbers, i.e. 0,1,2,---.

4. 7Z, is used for ring of integers with addition modulo p and multiplication
modulo p as its addition and multiplication respectively.

Any suggestions or errors are invited and can be mailed to: rakeshbalhara@gmail.com



Problems (Page 130)

R is a ring in all the problems.

1. If a,b,¢,d € R, evaluate (a + b)(c + d).
Solution: We have
(a+b)(c+d)=alc+d)+blc+d)
= ac+ ad + bc + bd

So (a+b)(c+d)=ac+ad+bc+bd. ||

2. Prove that if a,b € R, then (a + b)?> = a® + ab + ba + b?, where by 22 we
mean xx.
Solution: We have

(a+0)* = (a+b)(a+Db)
=ala+b)+bla+b)
= aa + ab+ ba + bb
=a% +ab+ ba +b?

Hence the result. ||

3. Find the form of the binomial theorem in a general ring; in other words, find
an expression for (a 4+ b)™, where n is a positive integer.
Solution: We claim

(a+b)" = Z Lo Ty

xri=a or b

We establish our claim by induction over n. For base case n = 1, we have

(a+b)l=a+b= > z;. Sofor n = 1, expression is valid. Suppose the
xr1=a or b
expression (a +b)" = > mwg---x, is valid for n = m — 1, we will show
r;=a or b

the expression is then valid for n = m too. We have

(a+b)™=(a+b)"""(a+0)

= < Z xlx2~~mm_1> (a+D)

xr;=a or b

:< Z :clxg---:cm_1>a+< Z x1x2-~-xm_1>b

x;=a or b xr;=a or b

_< 3 x1x2~~~xm1a>+< > xlxg...xm1b>

xr;=a or b xr;=a or b



= E T1X2:  Tm—1Tm

z;=a or b

Thus the expression is equally valid for n = m. So we have for all n € N,

(a+b)" = Z 122 Tn

zr;,=a or b

4. If every x € R satisfies 22 = z, prove that R must be commutative. (A ring
in which 22 = x for all elements is called a Boolean ring.)

Solution: We are given 22 =2 Vz € R. Soforall z, 22 =0 =z =0 as
z2 = x. But we have V z,y € R,

(zy — zyz)® = (ay — zyz)(zy — zy)
= TYTrY — TYTYT — xy:ch + xnyycc
= ayxy — zyxryx — vyxy + ryryr Using 22 =z
—0
But
(xy — zyz)? = 0= 2y — xyr =0 (1)

Similarly, we can see (yz — xyz)? = 0. Therefore
yr —xyr =0 (2)

Using (1) and (2) we have zyz = vy = yz. So xy = yxr VY x,y € R. Hence R
is commutative. |

5. If R is a ring, merely considering it as an abelian group under its addition,
we have defined, in Chapter 2, what is meant by na, where a € R and n is an
integer. Prove that if a,b € R and n, m are integers, then (na)(mb) = (nm)(ab).
Solution: We have

(na)(mb) = (a+---+a)(b+---+b)

n times m times
=ab+--+b)+--+ab+---+b)
————— —————
m times m times
n times

:(ab+...+ab)+...+(ab+...+ab)
——— ——

m times m times

n times

=m(ab) + - -- + m(ab)

n times



— (nm)(ab)

Hence the result. ||

6. If D is an integral domain and D is of finite characteristic, prove that
characteristic of D is a prime number.

Solution: Let the characteristic of D be p, therefore pa =0 Vax € D and p is
the smallest such positive integer. Suppose p is not a prime, therefore p = rs for
some positive integers r and s, with both not equal to 1. Let some a # 0 € D,
therefore a? € D too. So we have

pa2 =0
= (rs)(aa) =0
= (ra)(sa) =0

D being an integral domain, implies 7a = 0 or sa = 0. When ra = 0, we have
VaeeD

(ra)x=0
= (a+a+--+a)x=
~—_—
r times

= (ax+ar+---+ax)=0

r times
=salz+z+--4+2)=0
—_———

r times

= a(rz) =0 (1)

But a # 0 and D an integral domain, therefore (1) implies r& = 0. So we have
re =0 Vaxe&Dwith1l <r < p, which is a contradiction as p is the smallest
such integer. Similarly, when sa = 0 we have contradiction. Thus p = rs is not
possible, thereby proving p is a prime. |

7. Give an example of an integral domain which has an infinite number of ele-
ments, yet is of finite characteristic.

Solution: We define Z,[z] = {amz™ + am-_12™ "1+ -arx +ag | a; € Zp,m €
W}, where Z,, is a field of integers modulo p, p being prime. Clearly pf(z) =
0 V f(z) € Zp[z]. Also Z,[z] has infinite number of elements. So Z,[z] is the
desired example. ]

8. If D is an integral domain and if na = 0 for some a # 0 in D and some
integer n # 0, prove that D is of finite characteristic.
Solution: We are given na = 0 for some a € D with a # 0 and n € N. We



have Vo € D

(na)r =0
=(a+a+--+a)x=0
—_—— ——
n times

= (az+ax+---+azx)=0

n times
=salz+z+---+2)=0
—_—— ——

n times

=a(nz) =0 (1)

With a # 0 and D being integral domain, (1) implies nz = 0. So we have
nr =0 Va € D, showing D is of finite characteristic. |

9. If R is a system satisfying all the conditions for a ring with unit element with
possible exception of a + b = b + a, prove that the axiom a + b = b + a must
hold in R and that R is thus a ring. (Hint: Expand (a4 b)(1+1) in two ways.)
Solution: We have for a,b € R

(a+0)(1+1)=a(l+1)+b(1+1)
=a+a+b+b (1)

Also we have

(a+b)(1+1)=(a+b)1+ (a+D)1
=a+b+a+b (2)

From (1) and (2) we have a+a+b+b=a+b+a+0b,or a+b=>b+a. Thus
axiom a + b = b+ a holds true in R, thereby proving R is a ring. JJ

10. Show that the commutative ring D is an integral domain if and only if for
a,b,c € D with a # 0 the relation ab = ac implies that b = c.
Solution: Suppose D is an integral domain. Now for a # 0, the relation

ab=ac=ab—ac=0
=alb—c)=0

But a # 0 and D an integral domain, imply b — ¢ = 0, or b = ¢. Thus the
relation ab = ac with a # 0 implies b = c.

Conversely, suppose D is a commutative ring with a # 0 and ab = ac implying
b = ¢. Now suppose zy = 0 for some z,y € D. If  # 0, then zy = 0 = z.0.
But xy = 20 with = # 0 implies y = 0. So xy = 0 and = # 0 implies y = 0.
Similarly, zy = 0 and y # 0 implies x = 0. Therefore xy = 0 implies x = 0 or



y = 0. Hence D is an integral domain. [

11. Prove that Lemma 3.3.2 is false if we drop the assumption that the integral
domain is finite.

Solution: When D is infinite, Da = {da | d € D} might not be equal to D
for some a € D, the fact which we had used to prove the Lemma 3.3.2. For
example in the ring of integers Z, which is an infinite integral domain, 27 # Z.
Also Z is not a field. Thus an infinite integral domain might not be a field. |J

12. Prove that any field is an integral domain.
Solution: Let F' be some field and zy = 0 for some x,y € F. If x # 0, then
there must exist 2/, multiplicative inverse of z in F. So we have

xy = 0= 2'(xy) = 2'(0)
= (2'z)y =0
= 1y=0
=y=0

Similarly, when y # 0, we have x = 0. So zy = 0 implies z = 0 or y = 0.
Therefore F is an integral domain. Hence any field is an integral domain. |

13. Useing the pigeonhole principle, prove that if m and n are relatively
prime integers and a and b are any integers, there exist an integer x such

that * = a mod m and x = bmod n. (Hint: Consider the remainders of
a,a+m,a+2m,...,a+ (n—1)m on division by n.)
Solution: Consider the remainders of a,a +m,a+2m, ..., a+ (n—1)m on di-

vision by n. We claim no two remainder is same. Suppose if (a + im) mod n =
(a + jm) mod n, then (a + im) = (a + jm) mod n = m(i — j) = 0 mod n.
But ged(m,n) = 1 implies m mod n # 0. Therefore, (i — j) = 0 mod n, or
1= j mod n. Also 0 < 4,7 < n forces i = j. Thus no two remainders are same.
But we have n terms in the sequence a,a + m,a + 2m,...,a + (n — 1)m and
also for any y, y mod n can have n values, i.e. 0 <y mod n < n — 1. Therefore
invoking pigeonhole principle, we have b mod n must be a remainder for some
i, that is a +im = b mod n. Now let z = a + im, therefore x = a mod m. Also
then x = a 4+ im = b mod n. Thus we have shown there must exist some z,
satisfying = ¢ mod m and x = b mod n. J]

14. Using the pigeonhole principle, prove that decimal expansion of a rational

number must, after some time, become repeating.

Solution: Suppose % be some rational number. We have p = agq + r where



0 < r < q. So dividing by ¢, we have

Do+t witho<t <1 (1)
q q q

Again 10r = byq + r1 with 0 < r; < ¢g. Dividing by 10¢, we have g = % + L
with 0 < 1’”—01(1 < %0. Thus we have

D by T ry 1
- = — 4+ — with0< — < — 2
¢ -0 10 M™M= 104 < 10 2)
Continuing in the similar fashion, we have
p b | b by, no . Tn 1
- = —+ =4+ — th 0 < < — 3
PR TR T A T TR T e T TN T/ (3)
Note that 10r,_1 = b,q + r, with 0 < r,, < g. Also (3) implies that decimal
expression of % is ag.biba---. So we have 0 < r; < ¢ V i. Now consider the
set {r1,ra, -+ ,rqr1}. This set has ¢ + 1 elements with values between —1 and

g. Applying pigeonhole principle, we have ry11 = r; for some ¢ < ¢. Thus
the sequence r; must have repetition. Let 7,, = 7, for some m < n. But
10r, = bp41q9 + Tn41 and 107, = by41q + Tm41. Unique decomposition of
integers by the Euclidean algorithm implies b,411 = bpy1 and 741 = Timt1-
Again r,, 1 = rypy1 will imply by, 49 = by and 1,49 = 1, 12. Continuing the
same we get b, 1; = b,4; for all i > 0. Thus the decimal expression of % is
repeating. ]



Problems (Page 135)

1. If U is an ideal of R and 1 € U, prove that U = R.

Solution: Since we have ur ¢ U VYV u € U & r € R, so if 1 € U, we have
lreU Vre R orreU Vr e R Therefore R C U. But by definition
UCR. Hence U =R. |1

2. If F is a field, prove its only ideals are (0) and F itself.

Solution: Suppose U be some ideal of F. Now either U = {0} or U # {0}.
Clearly U = {0} is an ideal of F. But when U # {0}, then there exists some
a € U such that a # 0. But F being a field and a # 0, therefore there exists a/,
inverse of @ in F. Now a € U and o’ € F, therefore a.a’ € U, or 1 € U. Again
1 €U and any r € F, therefore 1.r € U, or r € U. Thus FF C U. But U C F.
So U = F. Thus the only possible ideals of F' are {0} or F. |}

3. Prove that any homomorphism of a field is either an isomorphism or takes
each element into 0.

Solution: Let F' be some field and R be some ring. Let ¢ : FF — R be some
homomorphism. Let K be kernel of homomorphism ¢. We know K is an ideal
of F. But the only ideals of F' are {0} or F' itself. When K4 = {0}, we claim ¢
is one-to-one mapping. Suppose ¢(z) = ¢(y) for some z,y € F, then we have
for 0 as an additive identity of R

¢(x) = ¢(y) = o(z) — d(y) =0

= ¢z —y)=0
=x—-yecKy
=z—y=0
=>z=y

So when K, = {0}, ¢ is an one-to-one homomorphism (or isomorphism). But
when K4y = F, then ¢(z) =0 V z € F, or ¢ takes every element of F' into
0. Hence any homomorphism of a field is either an isomorphism or takes each
element into 0. |}

4. If R is a commutative ring and a € R,

(a) Show that aR = {ar | r € R} is a two-sided ideal of R.

(b) Show by an example that this may be false if R is not commutative.
Solution:

(a) First we will show aR is subgroup of R. Suppose z,y € aR, therefore x = ary
and y = arg for some r1,ry € R. But then . —y = ar; —ares = a(r; —rq) = ars
for some r3 € R. So x —y € aR. Thus aR is subgroup of R under addition.
Next if some = € aR and r € R, then we have x = ary for some r4 € R. Also
re = xr = aryr = a(ryr) = ars for some r5 € R. So for all z € aR and r € R,



we have rz,zr € aR. Thus aR is an ideal(or two-sided ideal) of R.

(b) Consider R = { <z Z) | a,b,c,d € Z}. We left it to the reader to check R
is a non-commutative ring. Let a = (1) (1) . Again we can easily check aR =

8 8 | a,b € Z ;. Clearly, aR is not a two-sided ideal as for (1) (1) €aR

L1 1 1\ /1 1 11 .
and <1 1>€R7 we have (1 1) (0 0>:<1 1>¢aR. Thus in a non-
i

commutative ring R, aR need not to be an ideal.

5. If U,V are ideals of R, let U+ V = {u+v | u € U,v € V}. Prove that U+ V
is also an ideal.

Solution: Suppose some x,y € U + V, therefore x = u; +v; and y = us + vo
for some uq,uy € U and v1,v9 € V. But then z — y = (ug +v1) — (ug + vg) =
(w1 — u2) + (v1 — v2) = us + vs for some uz € U and vz € V as U,V are the
ideals of R. Sox —y € U+ V. Thus U + V is a subgroup of R under addition.
Next suppose some x € U + V and r € R, then we have x = uyq + v4 for some
ug € U and vg € V. Now we have xr = (ug + v4)r = ugr + v47 = us + vs for
some us € U and vs € V as U,V are the ideals of R. So xr € U + V. Similarly
re € U+ V. Thus we have zr,ra e U+V Ve eU4+V &re R. SoU+V is
an ideal of R.

Remark: We left it to the reader to check U + V is the smallest ideal of R
containing U and V. In other words, (UUV)=U+V. |}

6. If U,V are ideals of R let UV be the set of all the elements that can be
written as finite sums of elements of the form uv where u € U and v € V. Prove
that UV is an ideal of R.

Solution: We first introduce a change in notation. We assume

UV={w|ueU&veV}

Let I = {D ,cauvi | ui € U & v; € V and A being some finite index set}.
So we need to show I is an ideal of R. Suppose some z,y € I, therefore
r =3 catv;and y = > . puw; for u; € U and v; € V for all i € AUT,
where A, T" are some finite index sets. But then we have x — y = ZZ—GA WU;V; —
D oier UWiVi = D ;e n Wi + Y cp(—ui)vi = D, ap wivs, for some uj € U. So
x —y € I showing [ is a subgroup of R under under addition. Also if some
re€landr € R, thenx =}, u;v; for alli € A, where A is some finite index
set. We have or = (D ;o n wili)7 = D c A UiliT = )i A uiv; for some v; € V.
So xr € I for all x € I and r € R. Similarly, ro € I for all x € [ and r € R.
Thus I is an ideal of R.



Remark: We left it to the reader to check I is the smallest ideal of R containing
UV. In other words, I = (UV) |}

7. In Problem 6 prove that UV C UNV.
Solution: In terms of the notations, we developed in previous problem, we need
to show

{UV)ycunv

Suppose some x € (UV), therefore x =}, uv; for u; € U and v; € V for all
1 € ', where IT" is some finite index set. But uw;v; € U Vi €I as U is an ideal
of R. Therefore ), A u;v; € U. Similarly, Y7, A uv; € V as V too is an ideal
of R. Thus z € U and # € V. Therefore x e UNV. So ({UV)cUNV |}

8. If R is the ring of integers, let U be the ideal consisting of all multiples of 17.
Prove that if V' is an ideal of R and R D V D U then either V=R or V =U.
Generalize!

Solution: We have U = 17R and V ideal of R with U C V C R. Now either
V=UorUCV. IfU CV, then there is some x € V such that x ¢ U. But
x ¢ U implies x # 17k for some k € R. But that means 17} x. Also 17 being a
prime, therefore ged(17,2) = 1. Therefore 17i + xzj = 1 for some 4,j € R. But
170 € U C V and zj € V, therefore 17i +2zj € V,or 1 € V. But 1 € V implies
V = R. Hence either V=U or V = R.

We can generalize our result that if p is an irreducible element in R then when-
ever for some ideal V we have pR C V C R, implies either V. =pRorV = R. |}

9. If U is an ideal of R, let 7(U) ={z € R | zu =0 for all w € U} . Prove that
r(U) is an ideal of R.

Solution: Let some z,y € r(U), therefore zu =0 VuecUandyu=0 Vuc€
U. But then (x —y)u = zu —yu = 0—-0 =0 V u € U, therefore im-
plying © —y € r(U). Thus r(U) is a subgroup of R under addition. Next
suppose some z € r(U) and r € R. Therefore z.u =0 V u € U. We have
(zr)u = z(ru) = x(uy) for some uy € U. Therefore (zr)u =a2u; =0 VueU.
So r € r(U). Similarly, we can see rz € r(U). So r(U) is an ideal of R. |}

10. If U is an ideal of R let [R: U] ={x € R| rx € U for every r € R}. Prove
that [R : U] is an ideal of R and that it contains U.

Solution: Suppose some z,y € [R : U], therefore ro € U V r € R and
ry € U VY r € R. But since U being an ideal, we have ra —ry = r(z —y) €
U VreR,showing x —y € [R: U]. Thus [R: U] is a subgroup of R under
addition. Next suppose x € [R : U] and r; € R. Therefore ra € U Vr € R.
Also r(zry) = (rz)ry = uyry for some uy € U. But U being an ideal, there-



fore uyry € U. So r(axry) €e U V r € R, implying zry € [R: U] V1 € R.
Again, r(r1z) = (rr1)z = rox for some ro € R. So r(riz) = rex € U, implying
rz € [R:U]. Soriz € [R:U] Vry € R. Hence [R: U] is an ideal of R.

Also if z € U, therefore ra € U V r € R as U is an ideal of R. But
re€U VreRimpliesz €[R:U]. ThusUC[R:U]. |

11. Let R be a ring with unit element. Using its elements we define a ring R by
defining a b=a+b+ 1, and a-b = ab+ a + b, where a,b € R and where the
addition and multiplication on the right-hand side of these relations are those
of R.

(a) Prove that R is a ring under the operations @ and -.

(b) What act as the zero-element of R?

(c) What acts as the unit-element of R?

(d) Prove that R is isomorphic to R.

Solution:

(a) First note that the both binary operations @ and - are well-defined.

Closure under addition: Since a +b+1 € R = R, therefore a ® b € R for all
a,b € R. So R is closed under addition.

Associativity under addition: We have

a®b@c)=a®(b+c+1)
=a+(b+ect+l)+1
=(@+b+1)+c+1
—(@a®b)+c+1
=(a®b)Dc

Hence associativity under addition holds good.

Ezistence of additive identity: Suppose e be the additive identity, if it exists.
But thena®e=a Va€ R. Soa+e+1=a=e=—-1¢€ R. So the additive
identity exists and is equal to —1.

Existence of additive inverses: Suppose some a € R. If its inverse exists, let it
bea’. SoWehavea ®a' = -1=a+a +1=—-1=a'"=—-2—a € R. So the
inverse element exists for all elements.

Closure under multiplication: We have a-b = ab+a+b € R = R. So R is
closed under multiplication.

Associativity under multiplication: We have

a-(b-c)=a-(bc+b+c)



=albc+b+c)+a+ (bc+b+c)
=abc+ab+ac+a+bc+b+c

=(ab+a+bc+ (ab+a+b)+c
=(a-bc+(a-b)+c

=(a-b)-c

Hence R is a ring with @ and - as addition and multiplication respectively.

(b) Already found in part(a), —1 acts as zero-element of R.

(c) If exists, let the unity element be u. So we have a-u =a V a € R =
aut+a+u=a= (a+1)u=0= u=0€ R. Therefore the unity element exists

and is equal to 0.

(d) Define mapping ¢ : R — R such that ¢(z) = 2 — 1. Clearly the mapping
is well-defined. We have

dz+y)=(@+y) -1
=z-1)+@w-1)+1
=@-1ay-1)
= ¢(z) ® ¢(y)

Also
P(zy) =2y — 1
=@-Dy-D+@@-1+(y—-1)
=(z-1)-(y—1)
= ¢(z) - o(y)

So the mapping ¢ is a ring homomorphism. Also ¢(z) = ¢(y) = =z — 1 =
y—1= x =1y. So ¢ is one-to-one. Also if some y € R, then y +1 € R is
its inverse-image. So inverse-image of every element exists. So mapping is onto
too. Thus ¢ is an isomorphism from R onto R. And hence R ~ R. |

*12. In Example 3.1.6 we discussed the ring of rational 2 x 2 matrices. Prove
that this ring has no ideals other than (0) and the ring itself.
Solution: We denote the ring discussed in Example 3.1.6 as M2 (R). Suppose U

be some ideal of M3(R). So either U = {(8 8)} or U # {(8 g) } When

U;é{(g 8)}7wehavesomeA:(z Z)eUWithA#<8 8)

We took a little digression into defining another notation to represent any ele-

ment of My (R). We define Ey; = (é 8) ,E10 = (8 (1)) ,Eop = (? 8) , Eag =



(8 (1)> So in this notation, we have A = aF11 + bE12 + cEs1 + dE2. Next we

claim
E; ifj=k
EijEy = 0 0\ ...
(O 0) ifj#£k
We left it to the reader to check this result.
. 0 0
Coming back to the problem, we have A # 0 o) Therefore at least one of

the a, b, c,d is non-zero. Suppose a # 0. So a~! exists in R. We have

A =aFE +bEs + cEy + dEy
= AE1 = (aE11 +bE2 + cEy + dE)En
= AFE11 = aF11 + cEy
= EnAEn = Eyi(aFBn + cEa)
= EnAE; = abyy
= (a"'Ey)AE = By

But (a=1E;1)AE;; € (A), therefore

Eyq € (4) (1)
= FE11E15 € (A)
= Fi5 € (A)
= FEy1 Eq5 € (A)
= FEy € (4) (2)
= F11 + Fas € (A) Using (1) and (2)
= I, € (4)

where I, = (é ?) is the multiplicative identity of M>(R). But (A) C U as

(A) is the smallest ideal containing A and A € U. Therefore Iy € (A) C U.
But I € U implies U = M5(R). Also if instead of a some other element, say b
or ¢ or d is non-zero, we can analogously show Iy € (A) C U, thereby implying

U = M>(R). Thus we concluded, either U = 8 8) or U = M>(R). Hence

M5(R) has no ideals other than { (8 8) } and My(R) itself. |

*13. In Example 3.1.8 we discussed the real quaternions. Using this as a model
we define the quaternions over the integers mod p, p an odd prime number,
in exactly the same way; however, now considering all symbols of the form
oo + a1i 4+ asj + ask, where ag, a, as, ag are integers mod p.



(a) Prove that this is a ring with p* elements whose only ideals are (0) and the
ring itself.

**(b) Prove that this ring is not a division ring.

Solution:

(a) We denote the quaternions over integers mod p by Q. It is routine to check
@Qp is aring with 0(= 0+0i+05+0k) as additive identity and 1(= 1+0i+05+0k)
as multiplicative identity. Also o(@,) is equal to the number of ways of choosing
four symbols from p symbols with repetition being allowed. Thus o(Q,) = p?.
Next we aim to prove {0} and @, are the only ideals of @Q,. Suppose U be
some ideal of @,. Either U = {0} or U # {0}. Suppose U # {0}, therefore
some u = a + bi + ¢j + dk € U with u # 0. Since u # 0, therefore at least one
of a,b,c,d is non-zero. Suppose a # 0, therefore a~! exists as p being prime
implies Z,, is a field. So we have

a+bi+cj+dkeU (1)
=ila+bi+cj+dk)ieU
=-—a—-bi+tcj+dkeclU (2)

Subtracting (2) from (1), we have

2a+bi)eU
=a+bieclU (3)
= jla+bi)jeU
=-—a+biecU (4)

Again subtracting (4) from (3), we have

20 €U
=>acU
=aateU
=1eU

But 1 € U implies U = @p. In a similar way we can see if b # 0 or ¢ # 0 or
d # 0, we have 1 € U, thereby implying U = @,. So we conclude if U be some
ideal of @, then either U = {0} or U = Q,,.

(b) Since p # 2, therefore (), is a non-commutative finite ring. But Wedder-
burn Theorem! asserts that a finite division ring must be commutative. So
Qp must not be a division ring. We can also prove the result using Lagrange
Theorem that any positive integer can be expressed as sum of square of four
integers. So we have p = a? + b* + ¢ 4+ d? for some integers a,b,c,d. If
a=b=c=4d =0, then p = 0, which is not the case. So all a,b,c,d can-
not be equal to zero simultaneously. Also if a = b = ¢ = d = 0 mod p, with

Tsee Section 7.2 of the book



a=b=c=d=#0, then p? | (a® + b + ¢* + d?), or p? | p which is not true. So
at least there is some element x out of a, b, c,d such that z # 0 mod p. So if
u=a+bi+cj+dk and v =a—bi —cj — dk, then v # 0 mod p and v # 0 mod
p. But uv = a2+ 0>+ 2 +d? = p =0 mod p. So we have uv = 0 with neither u
nor v a zero element in @,. So @, is not an integral domain, consequently not
a division ring. ||

If R is any ring a subset L of R is called a left-ideal of R if

1. L is a subgroup under addition.

2. r€ R, a€ L implies ra € L.
(One can similarly define right-ideal.) An ideal is thus simultaneously a left-
and right-ideal of R.

14. For a € R let Ra = {za | x € R}. Prove that Ra is a left-ideal of R.
Solution: Suppose z,y € Ra, therefore x = r1a and y = 7rsa for some
r1,72 € R. But then x —y = rja—rya = (ry —r1)a = r3a for some r3 € R. Thus
z—y € Ra. So Ra is a subgroup of R under addition. Next suppose some z € Ra
and r € R. So x = r4a for some ry € R. We have ra = r(rqa) = (rra)a = 150
for some r5 € R. Thus rz € Ra V x € Ra and r € R. So Ra is a left-ideal of
R 1

15. Prove that the intersection of the two left-ideals of R is a left-ideal of R.
Solution: Suppose Uy, Us be two left-ideals of R. Define U = U; NUs. We need
to show U is also a left-ideal of R. Suppose some x,y € U, therefore x € U; and
xr €Uy, y €Uy and y € Us. Since y € Uy so —y € U; too as U; is a left-ideal of
R. So x € Uy and —y € U; implies x —y € Uy. Similarly x € Us and —y € Uy,
implying z —y € Us. Thusz—y e Uy andz—y € Us,. Sox—y e U NU; =U.
Thus U forms a subgroup under addition. Next for z € U and r € R, we have
rx € Uy as Up is a left-ideal of R. Also rx € Uy as Uy is a left-ideal of R. Thus
re € Uy and rz € Uy, or re € Uy NUy. Thusre € U VYax €U and r € R. So
U is a left-ideal of R. |}

16. What can you say about the intersection of a left-ideal and right-ideal of
R?

Solution: Intersection of a left-ideal and right-ideal of R need not to a left-
ideal or a right-ideal. We substantiate our statement with an example. Consider

My(Z) = {(CCL b> | a,b,c,d € Z}. Clearly M>(Z) is a ring. We define

d
a 0
Ul_{(b O)|a,b€Z}



and

ng{(g g) a,beZ}

We left it to the reader to check U is a left-ideal of M»(Z) and Us is a right-

ideal of My(Z). Whereas Uy N Uy = {(8 8) |a € Z}. Clearly U; N U,

is not a left ideal as for (1) 8 € Uy NUs and (1 1) € Ms(Z), we have
(1 }) (é 8) = (} 8) ¢ U; N Us. Similarly U; N Us is not a right-ideal

Lo 11 1 0\ /1 1
as for (0 0) € Uy NUy and (1 1) € My(Z), we have (0 0) (1 1):

<é (1)> ¢ Uy NUsy. So Uy NUs is neither a left-ideal nor a right-ideal. ||

17. If R is aring and a € R let r(a) = {# € R | ax = 0}. Prove that r(a) is a
right-ideal of R.

Solution: Suppose x,y € r(a), therefore ax = ay = 0. But then a(z — y) =
ar —ay =0—0=0. Sox—y € r(a). Thus r(a) is a subgroup of R under
addition. Next if x € r(a) and r € R, we have a(zr) = (az)r = 0r = 0. So
xr €r(a) Vx er(a)&r e R. Hence r(a) is a right-ideal of R. |}

18. If Ris aring and L is a left-ideal of Rlet \(L) ={x € R|za =0 Va € L}.
Prove that A(L) is the two-sided ideal of R.

Solution: Suppose z,y € A(L), therefore za =0 Va € Landya=0 Va € L.
But then (z —y)a =0 Va € L. Thus z —y € A(L) showing A\(L) a sub-
group of R under addition. Next suppose x € A(L) and r € R. We have for
a € L, (xr)a = z(ra) = x(ay) for some a; € L as L is the left-ideal of R. So
(zr)a = x(a1) =0 as ¢ € A(L). Thus 2r € A(L) Vz € A(L) & r € R. Again
forall a € L, (rz)a = r(za) =r0 = 0. Thus re € A(L) Vo € A(L) & r € R.
Hence A(L) is an ideal of R. |}

19. Let R be a ring in which 23 = z for every * € R. Prove that R is a
commutative ring.

Solution: First suppose 22 = 0 for any z € R. But 22 = 0 = 2(2?) = 20 =
2>=0=2=0as 2=z Thus

??=0=12=0 (1)

2

Next, we claim ¢ commute with all elements of R. We have

(a%y — 2®ya®)? = (a%y — 2?ya®)(ay — 2?y2?)

— 22y — 2yrtyr? — 2lyrtaty + o2yrlelya?



— 22ya?y — 22yrdyr? — gty + 2 2yatya?
But z* = 232 = 22 = 22, so
(22y — a2ya?)? = 22yaty — 22yalya? — o2yaty + 2lyelye?
— 22yrty — 22yrlyr? — 2lyrty + plyrlyr?
=0
But then (1) implies 2%y — 2?y2? = 0 too, or
vy = ?ya? (2)
Again we can see (ya? — 2%yx?)? = 0. So y2? — 2%yx? =0, or
ya? = a?yz’ (3)

From (2) and (3) we conclude z%y = yz? Vz,y € R. Finally, we have for all
z,y € R

zy = zy® = (zy®)y = vy
= y*a’y = y’u(2®y) = y’rya®
= yyryze = y(yz)(yx)r = y(yz)’z
= yz(yz)® = (y2)* = ya

So zy =yx VY x,y € R, showing R to be a commutative ring. |J

20. If R is a ring with unit element 1 and ¢ is a homomorphism of R onto R’
prove that ¢(1) is the unit element of R'.

Solution: Let some § € R’. But since ¢ is an onto mapping, so there exist
x € R such that ¢(z) = 5. We have

yo(1) = ¢(x)¢(1) = d(a1) = ¢(z) =y

Similarly,
o)y =7
Hence ¢(1) is the identity element of R'. |}

21. If R is a ring with unit element 1 and ¢ is a homomorphism of R into an
integral domain R’ such that I(¢) # R, prove that ¢(1) is the unit element of
R

Solution: Let 0 represent the additive identity of R’. First, we claim ¢(1) # 0.
Suppose ¢(1) = 0, then we have for all z € R,

¢(z) = ¢(z1) = ¢(z)¢(1) = ¢(x)0 =0



But that means I(¢) = R which is not the case. Hence ¢(1) # 0. Also we have

P(1) = ¢(1-1) = o(1)p(1) (1)

Finally, we claim ¢(1) is the multiplicative identity. We establish our claim by
contradiction. Suppose there exist some § € R’ such that §é(1) # 3. So (1) —
7 # 0. Also ¢(1) # 0 and R’ being an integral domain, so (g¢(1) — §)$(1) # 0.
But

(1) = 7)e(1) # 0
= y¢(1)e(1) — gé(1) # 0
= (1) — yé(1) # 0 Using (1)
= 0 # 0, which is not true.

So there exists no such § € R’ such that g¢(1) # §. Thus go(1) =35 Vye R
Similarly ¢(1)g =¢§ Vg € R’ Hence ¢(1) is the unity element of R’. |]



Problems (Page 139)

1. Let R be a ring with unit element, R not necessarily commutative, such that
the only right-ideals of R are (0) and R. Prove that R is a division ring.
Solution: Clearly R # {0} as 1 € R. Therefore we can assume some a € R
with a # 0. Now consider aR = {ar | r € R}. We can easily prove that aR is a
right-ideal of R. Also it is given that only {0} and R are the only right-ideals of
R. So either aR = {0} or aR = R. Clearly, aR = {0} is not possible as 1 € R,
so al = a € aR. So we have only possibility aR = R. Now 1 € R, so for some
a’ € R we have aa’ = 1. But that means, a’ the inverse element of a exists in R.
Since a is some arbitrarily chosen element with the only stipulation that a # 0,
so all non-zero elements have inverse in R. Thus R is a division ring. ||

2. Let R be a ring such that the only right ideals of R are (0) and R. Prove that
either R is a division ring or that R is a ring with a prime number of elements
in which ab = 0 for every a,b € R.

Solution: We define U = {z € R | 2r = 0 V r € R} and we claim
U is a right-ideal of R. Clearly 0 € U as Or = r V r € R. Suppose
ui,ug € U, therefore u17 = 0 V r € Rand ugr = 0 V r € R. But
(up —u2)r = ugr —ugr = 0—0=0 V r € R, therefore u1 —us € U. So
U forms a subgroup of R under addition. Also for v € U and r € R, we have
ur=0€U. Sour e U VYueU&r e R. Thus U is a right-ideal of R. But
the only right-ideals of R are {0} and R, therefore, either U = {0} or U = R.

Case 1: When U = R, it means ur = 0 V u € Uandr € R ie. ur =
0 V u,r € R. Also multiplicative identity, 1 does not exist as if it had ex-
isted would mean 1 €e U = 1R = {0} = R={0} = 1¢ Ras 1 # 0. Also
any subgroup of R under addition is a right-deal as 0 belongs to all subgroup
of R under addition. Therefore {0} and R are the only subgroup of R under
addition. But that mean either R = {0} or o(R) is a prime. Thus in this case
either R = {0} or a ring with prime order, with no multiplicative identity and
satisfying r1ro = 0 V 71,79 € R. Note when R = {0}, then it is trivially a
division ring.

Case 2: When U = {0}, it means zr =0 V r € R only for z = 0. In other
words, for a # 0 we have ar # 0 at least for some r» € R. Now either R = {0}
or R # {0}. Suppose R # {0}, there exist some a € R with a # 0. But
then aR # {0}. Also aR is a right-ideal; and {0} and R are the only possible
right-ideals, therefore, aR = R. We claim R to be a division ring. To estab-
lish our claim, we need to show existence of multiplicative right-identity 1 and
right-inverse of any any non-zero element, say a. Suppose some z,y € R such
that zy = 0 with  # 0 and y # 0. We have R = R and yR = R as = # 0 and
y # 0. But then (2y)R = 2(yR) = z(R) = R. Sozy =0=0R = Ror {0} =R,
which is not the case. Therefore in R, x # 0 and y # 0 = xy # 0. Reading the
contrapositive of the statement, we have ry =0 = x =0 or y = 0, or R has no



zero-divisors. Now aR = R implies there exist some element uy € R such that
aug = a. Clearly ug # 0 otherwise that would mean a = 0. Also (aug)ug = auyg,
or a(upug — ug) = 0. But R has no zero-divisors and a # 0, so ugug — ug = 0.
Therefore ugug = ug. We claim ug to the required multiplicative right-identity.
Suppose if not, then there must exist some r € R such that rug # r. But then
(rug —r)ug = rugug —rug = rug—rug = 0, i.e. (rug—r)ug =0. Again R has no
zero-divisors, so rug — r = 0 as ug # 0. Thus rug = r which is a contradiction.
Hence rug =r Vr € R, or ug is the multiplicative right-identity of R. Again
aR = R implies that there exist some a’ such that aa’ = ug. So the right-inverse
a’ of an arbitrarily chosen element a # 0 exists in R. This establishes R to be
a division ring. So we have either R = {0} or is a division ring. But {0} itself
is a division ring. So R is a division ring.

Combining both Cases, we have either R is a division ring or R is a ring of
prime order with 7179 =0 V ry,72 € R. Hence the result. JJ

3. Let J be the ring of integers, p a prime number, and (p) the ideal of J
consisting of all multiples of p. Prove

(a) J/(p) is isomorphic to J,, the ring of integers mod p.

(b) Using Theorem 3.5.1 and part (a) of this problem, that J, is a field.
Solution:

(a) We define ¢ : J/(p) — Jp such that ¢((p)

mapping ¢ is well-defined. Suppose some (p) + + 2'. So we have
x = 2’ + mp for some integer m. Therefore ¢(( z) = axzmodp = (' +
mp) mod p = 2’ mod p = ¢({p) +2’). Also ¢({p) +z) € J, V€ J. Thus ¢
is well-defined. We have

x mod p. We claim
)

o({p) + x) = ¢({p) +y) = v =y mod p
=x—y=0modp
= x — y = mp for some integer m
=z —-y€(p
= +z={p) +y

So ¢((p) + =) = ¢((p) +y) implies (p) + = (p) +y. Thus mapping ¢ is one-
to-one. Also if some y € J,, then we have ¢((p) +y) =y, i.e. every element of
Jp has inverse-image in J,/(p). So mapping ¢ is onto too. Finally, we establish
¢ is a homomorphism. We have

o(({p) + ) + ((p) +y)) = ¢({p) + (z +y))
= (z+y) mod p
= (z mod p + y mod p) mod p
=o((p) + )+ o((p) +v)



And

B(((p) + 2)({p) + 1)) = (1) + (&)
= (wy) mod p
= ((z mod p)(y mod p)) mod p
= o((p) + 2)o((p) +v)

So mapping ¢ is a homomorphism too. Concluding ¢ is an onto isomorphism
from J/(p) to J,. So J/(p) = J,.

(b) First we will show that (p) is a maximal ideal of J. Suppose, if possible
there exists some ideal U of R such that (p) C U C J. Since U # (p), therefore
there exists some x € U such that x # (p). So x # pk for some integer k. But
that means p f x. Also p being prime, therefore ged(p, z) = 1. Thus pi+xj =1
for some 4,5 € J. But p € (p) C U, therefore pi € U; also x € U, therefore
zjeU. Sopi+xj€U,or1eU. But 1 € U implies U = J. Thus there does
not exist an ideal U such that (p) C U C J. So (p) is a maximal ideal of J.
Finally, using Theorem 3.5.1, we have J/(p) is a field. But J/{(p) =~ J,, so J,
too is a field. |}

**4. Let R be the ring of all real-valued continuous functions on the closed unit
interval. If M is a maximal ideal of R, prove that there exists a real number ~,
0 <~ <1, such that M = M, ={f(z) € R| f(y) = 0}.

Solution:[Warning: solution is wrong explain why!] Let R denotes the field
of real numbers. Suppose M be some maximal ideal of R. We define A, =
{f(@) |z=a | f(z) € M} where « € [0,1]. Tt is easy to see that A, is an ideal
of R. But R being a field, so either A, = {0} or A, = R. Also we have either
A, = {0} for some a € [0,1] or A, # {0} for all « € [0, 1].

Case 1: Suppose A, = {0} for some o = v(say) € [0,1]. Therefore we have
{f(x) |y | f(z) € M} = {0}. In other words, for all f(z) € M, we have
f(y) = 0. We define M., = {f(z) € R| f(v) = 0}. Therefore M C M,. So
we have M C M, C R. Also it is easy to check that M, is an ideal of R. But
M, # R as there are functions h(z) € R such that h(y) # 0. So M being a
maximal implies M, = M.

Case 2: In this case we have A, # {0} for all & € [0,1]. Therefore A, = R
for all @ € [0,1]. Now since M is maximal ideal in R, so there exists a func-
tion g(z) € R such that g(x) ¢ M. Also for m(z) € M and r(x) € R, we
have m(x)r(x) € M. Therefore g(z) # m(x)r(x) for any m(z) € M and any
r(z) € R. But that also means that there exists some 8 € [0,1] such that
9(x) |z=p # m(x)r(z) |s=p for any m(z) € M and any r(z) € R. Also Ag =R,
so m(f) can assume any value in R. Also r(8) can assume any value in R.
Therefore m(8)r(5) can assume any value in R. So g(8) # m(8)r(8) is not



possible as g(8) € R. So A, =R for all « € [0, 1] is not possible.

Thus we concluded if M is some maximal ideal of R, then M must equal to M,
for some v € [0,1], where M, = {f(z) e R| f(v)=0}. 1



Problems (Page 142)

1. Prove that if [a,b] = [@/,V'] and [¢,d] = [¢/, d’] then [a,b][c,d] = [d/,¥][¢, d].
Solution: We have

[a,b] = [a', V] & ab = a'b (1)
Similarly,

[e,d] =[c,d]| & cd =d (2)
We need to show

[a,b][c,d] = [d, V][, d']
& [ac,bd] = [a'd V' d']
& ach'd =d''bd (3)

We have

ach'd = (ab")(cd)
= (a'b)(dd)

Using (1) and (2)
=d'dbd

Hence [a,b][c,d] = [d/,V][c/,d']. |}

2. Prove the distributive law in F.
Solution: We have

[a,b]([c,d] + [e, f]) = la, b][cf + ed, df]
= [a(cf + ed), bdf]

= lacf + aed, bdf]

= [bacf + baed), b>df]

= [(ac)(bf) + (ae)(bd), (bd)(bf)]
= lac, bd] + [ae, bf]

= [a,0][c, d] + [a, b][e, f]

Similarly the other distributive law hold good. |}

3. Prove that the mapping ¢ : D — F defined by ¢(a) = [a, 1] is an isomor-
phism of D into F.



Solution: We need to show ¢ is an one-to-one homomorphism. Clearly map-
ping ¢ is well-defined. Also we have

¢(a+b) =[a+b,1]
= [av 1] + [bv ”
= ¢(a) + &(b)

Also

So mapping ¢ is a ring homomorphism. Also we have

¢(a) = ¢(b) = [a,1] = [b,1]
=al =01
=a=0b

Thus mapping ¢ is one-to-one too. Hence ¢ is an one-to-one homomorphism. [j

4. Prove that if K is any field which contains D then K contains a subfield
isomorphic to F'. (In this sense F' is the smallest field containing D.)
Solution: We are given D is an integral domain; K some field containing D;
and F field of quotients of D. We define ¢ : F — K such that ¢([a, b]) = ab™!.
We claim mapping ¢ so defined is a well-defined mapping. We have [a,b] €
F=abcDwithb#0=abc Kwithb#0=a,b7' ¢ K=ab"! € K.
Also if [a,b] = [@/,b] with b, b’ # 0, then we have ab’ = a’b = ab/(b=1b'"1) =
a'b(b=1'"1) = ab™! = /b7t = ¢([a,b]) = ¢([a/,b]). Hence the mapping is
well-defined.

Also we have

¢([a,b] + [c, d]) = ¢([ad + cb, bd])
= (ad + cb)(bd)™*
= (ad + cb)(b~td™1)
=adb~td™ ' + cbbtd!
=ab ' +ed !
= ¢([a, b]) + &([c. d])

and

¢([a, b][e, d]) = ¢([ac, bd])



= ac(bd)™*
=achb td!

= (ab~")(ed )
= ¢(la, b])o([c, d])

Thus ¢ is a ring homomorphism. Also we have

#(la,b) = é(le,d)) = ab™" = cd"!
= ab ! (bd) = cd'(bd)
= ad =cb
= [a,b] = ¢, d]

So mapping ¢ is one-to-one too. Thus ¢ is an one-to-one homomorphism. Also
@(F) is a subfield of K (Check). Thus F = ¢(F). Hence the result. |}

*5. Let R be a commutative ring with unit element. A non-empty subset S of
R is called a multiplicative system if

1.0¢ 58

2. 81,89 € S implies that S1,82 € S.

Let M be the set of all ordered pairs (r,s) where r € R, s € S. In M define
(r,s) ~ (r',s") if there exists an element s” € S such that

s"(rs' —sr') = 0.

(a) Prove that this defines an equivalence relation on M.

Let the equivalence class of (r,s) be denoted by [r, s], and let Rg be the set of
all the equivalence classes. In Rg define [rq, s1] + [ra, s2] = [r182 + 7251, $152]
and [rq, $1][re, $2] = [r17r2, s152].

(b) Prove that the addition and multiplication described above are well-defined
and that Rg forms a ring under these operations.

(c) Can R be embedded in Rg?

(d) Prove that the mapping ¢ : R — Rg, defined by ¢(a) = [as, s] is a homo-
morphism of R into Rg and find the kernel of ¢.

(e) Prove that this kernel has no element of S in it.

(f) Prove that every element of the form [s1, so](where s1,s2 € S) in Rg has an
inverse in Rg.

Solution:

(a) A relation is an equivalence if it satisfies reflexivity, symmetry and transi-
tivity properties.

Reflezivity: We have s'(rs —rs) =0 for any s’ € S, which means (7, s) ~ (r, s).
Hence the relation is reflexive.

Symmetry: We are given (r,s) ~ (r',s’). So s”(rs’ — sr’) = 0 for some s” € S.
But s (rs'—sr') = 0= —s"(r's—s'r) =0 = (r',s’) ~ (r, s). Hence the relation
is symmetric too.



Transitivity: We are given (r,s) ~ (r/,s') and (r',s") ~ (v, s").

(r',s’) implies s1(rs’ — r's) = 0 for some s; € S. So we have
sirs’ = sir's
Similarly, (r/,s") ~ (", s"”) implies, for some s € S
SZT/S// — SQT”SI
We need to show

(r7 s) ~ (,r‘//’ S//)
& s3(rs” —r"'s) =0

for some s3 € S. Let s3 = s1s25’, therefore

(r;s) ~ (", ")
< 51528 (rs”" —1"s) =0

< (85178 )s28" — 51828'1"s =0
Using (1),

< (51775) 895" — 51528'1"s =0

< 515(s97"8") — 51828'1"s =0
Using (2),

< 518(501"8") — 8182815 =0
<=0=0

But (r,s) ~

(1)

Thus the relation is transitive too. Hence the relation ~ is an equivalence rela-

tion.

(b) We will first show addition + : Rg x Rg — Rg is well-defined. Suppose
[r1,81] = [}, 81] and [rq, s3] = [rh, s4]. But [r1,s1] = [r], s}] implies

/ !/
83T181 = 837“181,
PR
for some s3 € S. Also [ra, s3] = [rh, sh] implies

!/ /
547289 = S§4T9S2,

(3)

(4)

for some s4 € S. Now in order to prove addition is well-defined, we need to

show

[7‘1, 81] + [T2’ 52] = [rlla 8/1] + [T/2’ 8/2]



& [r152 + 1251, 5182] = ]85 + 1ys], 8] 55

& s5((r1se + rosy)si sy — (rsh +1581)s152) =0
for some s5 € S. Let s5 = s3s4, therefore
[Tla 81] + [T27 52] = [7,/1’ sll] =+ [T/27 5/2]
< 5354((r182 + 1281) 8,55 — (1855 + rhs])s182) =0

But putting values form (3) and (4), we have left-hand side of the above equa-
tion equals to 0. Hence addition is well-defined.

Next we will show multiplication is well-defined. Again suppose [r1, s1] = [r], 1]
and [ra, s2] = [rh, s5]. But these equalities imply (3) and (4) respectively. We
need to show

[Tlv 81] [T27 82] = [rlla 5,1] [rl27 8/2]
& [rira, s182) = [7’/17"/275/15/2]

& s5(riresysh — rirhsi1ss) =0
for some s5 € S. Let s5 = s3s4, therefore

[r1, 81][r2, s2] = [r], s1][r5, s5)]

< s354(r1m28) 8y — rirhs1s2) =0

Putting values from (3) and (4), we have left-hand side of the above equation
equals to 0. Hence multiplication is well-defined too.

Since S is assumed to be non-empty, so some sy € S. Now rest is routine to
check Rg is a commutative ring with unity. Note that [0, so] is the additive
identity and [sg, o] is the multiplicative identity.

(¢) In general no. (See part (d))

(d) We have ¢ : R «+— Rg such that ¢(a) = [as,s]. Easy to check ¢ is well-
defined. Also

dla+0b) =[(a+D)s,s]
= [as® + bs?, s3]
= [as, s] + [bs + s]

= ¢(a) + o(b)

and

¢(ab) = [(ab)s, 5]



Hence ¢ is a ring homomorphism.

Let Ky denotes the kernel of mapping ¢. Now Ky in general depends upon
the choice of S. We illustrate it with example. Suppose some positive integer
n = pq, where p and ¢ are prime integers. Consider R = Z, with addition
modulo n and multiplication modulo n as its addition and multiplication. Let
U,={1<2z<n|gcdxn) =1}. Let S =0U, and S’ = U, U {p}. One
can check both S and S’ are multiplicative system of R. But when we are
working with the multiplicative system S, K, turns out to be {0}. Whereas
when we have S” as our multiplicative system, with ¢(a) = [ap, p], Ky # {0} as
@(q) = [0,p]. As for a given ring, there might be more than one possible multi-
plicative system, so K, in general depends upon the multiplicative system that
we have chosen.

(e) Let ¢ : R — Rg such that ¢(a) = [as, s], where s € S. Let some z € Ky,
therefore ¢(z) = [0,s] = [zs,s] = [0,s] = s'zs> = 0 for some s’ € S. Now if
x €S, then s'zs? #0 Vs € S. Thus if z € K, then z ¢ S. Hence the result.

(f) We have [sq, s1] as the inverse element of [s1, so] for s1, 52 € S as [sa, s1][s1, S2] =
[s,s] where s € S and [s, s] is the multiplicative identity. Hence every element
of form [s1, so] for 51,85 € S has inverse in Rg. |]

6. Let D be an integral domain, a,b € D. Suppose that o™ = b"™ and a™ = b™
for two relatively prime positive integers m and n. Prove that a = b.
Solution: First note that D is given only an integral domain, therefore multi-
plicative identity and inverse of an element under multiplication may not exist.
So for x € D, x™ is defined only for positive integers n.

When a = 0, we have b" = a"™ = 0" = 0 where n is given a positive integer.
If n = 1, then b' = 0 = a, hence the result. But if n > 1, then also we claim
b™ = 0 implies b = 0. Suppose we have b = 0 with b # 0. But then there must
exist 1 < p < n such that b = 0 and b”~! # 0. So we have b = bP~1b = 0,
also D being an integral domain implies b = 0 or b»~! = 0. In both the cases
we have contradiction. Therefore b = 0= b= 0. So if a = 0, then a = b.

When a # 0, we will prove the result by making use of the field of quotients
of D. Let F be the field of quotients of D. Define ¢ : D — F such that
o(z) = [zd,d], where d # 0 € D. It is easy to check that ¢ so defined is an
one-to-one ring homomorphism. Now in the field F', with a # 0 and d # 0, we
have [ad,d] # [0,d] as D has no zero-divisors. So [ad,d]* is well-defined for all



k € Z. So we have

¢(a) = lad, d|
ad, d)'

d,d|™"" as ged(m,n) = 1

=)

(a )mz+n7 dmz-l—n]]

as D is commutative

IS)

[

= |

= |

=

[ mz+n3dml+nj dmz+n1]

= [a™FMid, d]

= [a™a" d, d]

= [(a™)"(a")d, d]

= [(b™)"(b") d, d]
= [pmitnig, d]

= [bd, d]

= o(b)

But mapping ¢ being one-to-one, so ¢(a) = ¢(b) implies a = b. Hence the
result. ||

7. Let R be a ring, possibly noncommutative, in which zy = 0 implies = 0 or
y=0. If a,b € R and o™ = 0™ and a™ = b™ for two relatively prime positive
integers m and n, prove that a = b.

Solution: First note that R may not have multiplicative identity or the inverse
element of all elements. So for z € R, x! is only defined for positive integers I.
Next we claim that in R, 2! = 0 for some positive integer [ implies z = 0. Sup-
pose x # 0. But z! = 0, therefore there exists some positive integer p > 1 such
that 27 = 0 and 2P~ ! # 0. But then we have 2P = 2P~!z = 0, R being having
no zero-divisors, implying P! = 0 or = 0, both of which is a contradiction.
Hence 2! =0 =z = 0.

Next since m and n are relatively prime, so mi+nj = 1 for some i, j € Z. First
suppose i > 0, therefore nj =1 —mi < 0 as m > 1. Note if m or n is equal to
1 then we have nothing to prove, so we have assumed m,n > 1. Therefore for
1 > 0, we have j < 0. Let j = —k, therefore kK > 0 and mi —nk = 1. So we have

amz _ alJrnk:

= (a™)" = a(a™)F
= (™)' = a(b")*
= b = ab™*b

= bmi-i-l _ abnk+1

= bb™ = ab™



= (b—a)b™ =0

So R being having no zero-divisors, we have b —a = 0 or b™ = 0. When
b—a = 0, we have b = a. While "™ = 0 implies b = 0, which in turn mean
a™=b"=0"=0. Soa =0 too. Thus a = b in both cases. Similarly when
i < 0, we can show j > 0 and can proceed in a similar fashion to prove a = b.
Finally if i = 0, then we have nj =1 =n =1 = a! =b'. So a = b in this case
too. Hence a =b. |}



Problems (Page 149)

1. In a commutative ring with unit element prove that the relation a is associate
of b is an equivalence relation.

Solution: A relation is an equivalence relation if it satisfies reflexivity, symme-
try, and transitivity properties.

Reflexivity: Since a = la, and 1 is also a unit element, so a is associate of
a itself. Thus associate relation is reflexive.

Symmetry: Suppose a is associate of b. So a = ub for some unit element w.
u being unit element, therefore u ! exists. So we have @ = ub = b = v laq,

showing b is associate of a. Thus the associate relation is symmetric too.

Transitivity: Suppose a is associate of b, and b is associate of some c.
So we have a = u1b and b = wugc for some units uq; and us. Therefore
a = u1b = ujusc. But ujus is again a unit as (UlUQ)(Ul_l'LLQ_l) =1. Soa
is associate of c. Thus the associate relation is transitive too.

And hence the associate relation is an equivalence relation. ]

2. In a Euclidean ring prove that any two greatest common divisors of a and b
are associates.

Solution: Suppose d; and ds are greatest common divisors of a and b. That
means d; | a and d; | b. But dy being greatest common divisor of a and b, there-
fore if some dy | a and ds | b, then dy must divide dy. So ds |dy. Symmetry of
the argument implies d; | da. But then by Lemma 3.7.2, we have d; and ds are
associates. Hence any two greatest common divisors are associates. ||

3. Prove that a necessary and sufficient condition that the element a in the
Euclidean ring be a unit is that d(a) = d(1).

Solution: First, suppose a is a unit element. We will show d(a) = d(1). Since
in a Euclidean ring, d(b) < d(ba) for all non-zero a and b, so assuming b = 1,
we have d(1) < d(al), or d(1) < d(a). Also a being unit element, so a~! exists.
Again d(a) < d(ab), so putting b = a~!, we have d(a) < d(aa™!) = d(a) < d(1).
Hence d(a) = d(1).

Conversely, suppose for some non-zero a, d(a) = d(1). We need to show «a is a
unit element. In a Euclidean ring, we have 1 = qa + r for some ¢ and r, with
either » = 0 or d(r) < d(a). When r = 0, we have 1 = ga, which means «a is a
unit element. When r # 0, we have d(r) < d(a). But d(a) = d(1), so

d(r) <d(1) (1)

Also d(1) < d(1r), i.e.
d(1) < d(r) (2)



But (1) and (2) implies d(r) < d(r) which is absurd, hence r = 0 is the only
possibility. So a is a unit element. Thus in a Euclidean ring, a is a unit element
if and only if d(a) = d(1). |}

4. Prove that in a Euclidean ring (a,b) can be found as follows:

b = goa + 11, where d(r1) < d(a)
a = qir1 + 72, where d(rq) < d(r1)
T1 = gor2 + 73, where d(r3) < d(rs)

Tn—1 = GnTn

and rn = (a,b).

Solution: We will first show that ged(a,b) = ged(a,b — ga) for all ¢ € R,
where R is assumed to be a Euclidean ring. Suppose di = gcd(a,b) and
dy = ged(a,b — ga). So dy|a and dg|b. Therefore dy|a and dy | (b — qa).
But ged(a,b—qa) = dg, so dy | da. Again dy | a and ds | (b—qa). Therefore ds | a
and ds | b. But ged(a,b) = dy. Therefore dy | di. But dy | dy and ds | dy implies
dy and dg are associates. So ged(a,b) = ged(a,b — ga) upto associates.

Now since R is a FEuclidean ring, therefore b = gpa + r1, where either 7; = 0 or
d(ry) < d(a). If 1 = 0, we are done as a is the required ged. But if vy # 0,
then we have ged(a,b) = ged(a,b — goa) = ged(a,m) = ged(ri,a). Again we
write a = q171 + 72 for some ¢1, 7o with either ro = 0 or d(r2) < d(r1). Again
if 7o = 0, then clearly gcd(a,b) = ged(ri,a) = r1. But if ro # 0, then we have
gcd(a,b) = ged(ry,a) = ged(re,r1). We can continue like this till we get some
Tne1 = 0. Also when r, 11 = 0, we have ged(a,b) = ged(r1,a) = ged(ra,r1) =
coo = ged(rp,Tn—1) = Th as Tp—1 = ¢urn + 0. All left is to show that 7,4
must be equal to 0 for some n € N. But suppose the process keep on going in-
finitely with all r; not equal to 0. But then we get a strictly decreasing sequence
d(a),d(r1),d(r2),--- in N as d(a) > d(r1) > d(rg) > ---. Also d(r;) > 0 V.
So 7,41 must be equal to 0 for some n € N. Hence the result. J]

5. Prove that if an ideal U of a ring R contains a unit of R, then U = R.
Solution: We will make use of the fact that if some v € U and r € R, then
ur € U. Suppose U contains some unit element u. As u is a unit, therefore u =1
exists in R. Now u € U and u_; € R, therefore uu=' € U, or 1 € U. Again
1 € U and let some r € R, so we have 1r € U, or r € U. That is for all r € R,
we have r € U, which means R C U. But by definition, U C R. Therefore
U = R. Hence the result. ||



6. Prove that the units in a commutative ring with a unit element form an
abelian group.

Solution: Let I be the set of all units elements. Ring being commutative
implies I is commutative under multiplication. Suppose u; and us are units.
Therefore uj*,uy " exist. But then (ujus)(uytuy ') = 1. Therefore ujug € I,
or the closure property holds good. I being subset of the ring, therefore asso-
ciativity under multiplication holds for all its elements. Also 1, multiplicative
identity being a unit belongs to I too. Finally suppose some u; € I, therefore
there exists ul_1 in the ring such that uy ul_l = 1. But the equation also tells us
that u; ' is a unit element, or u; ' € I. Therefore existence of inverse of each
element is also shown. So I is an abelian group under the multiplication. |

7. Given two elements a, b in the Euclidean ring R their least common multiple
¢ € R is an element in R such that a|c and b| ¢ and such that whenever a |
and b |z for x € R then ¢|x. Prove that any two elements in the Euclidean ring
R have a least common multiple in R.

Solution: We assume both a and b as non-zero elements, otherwise a | c or b| ¢
would not be defined. We define (a) as the smallest ideal of R containing a.
One can easily see that whenever some ring R is commutative and has unity
element, then we have (a) = aR = {ar | r € R}. So (a) = aR. Similarly we
have (b) = bR. Let U = (a) N (b). Clearly U is an ideal of R. Now we make use
of the fact that R is a principal ideal ring. Note that a Euclidean ring is always
a principal ideal ring. So U = ¢R for some ¢ € R. We claim c is the required
least common multiple of a and b. We have U C (a). Also ¢ = ¢l € ¢R. So
¢ € U C {(a). Therefore ¢ = ary for some r; € R, or a|c. Similarly, c € U C (b),
implying ¢ = brg, or b| c. So a|cand b|c. Next suppose a |z and b |z for some
x € R. Therefore x = arsz and = = bry for some r3,r4 € R. But that would
mean z € aR = (a) and z € bR = (b). So x € (a) N (b) = U. Therefore x = cr5
for some r5 € R. So ¢|x. Thus whenever a |z and b |z implies ¢|z. Thus c is
the least common multiple of @ and b. So we concluded that the least common
multiple of two non-zero elements always exists in a Euclidean ring. |

8. In Problem 7, if the least common multiple of a and b is denoted by [a, b],
prove that [a,b] = ab/(a,b).

Solution: Let ¢ and d be the least common multiple and the greatest common
divisor respectively of a and b in R. We assume R to be a Euclidean ring.
Therefore (¢) = (a) N (b) and (d) = (a,b) = (a) + (b). Also in a commutative
ring we have (xy) = (()(y)). So we have

{ed) = {{c)(d))
= (({a) N (0))({a) + (b)))
= (({a) N (0)){a) + ({a) N (b)) (b)
= (({@){a)) N ((B)(a})) + (({a) (b)) N ((0)(8))))



But {cd) = (ab) implies c¢d = ab(upto associates). Hence the result. |



Problems (Page 152)

1. Find all the units in J[i].

Solution: Using Problem 3 (Page 149 of the book), we have u a unit element
of J[i] if and only if d(u) = d(1). Let w = a + bi, therefore w is a unit element
if and only if d(u) = a® + b = d(1) = 12 + 02 = 1. But the integral solutions of
a?+b>=1area=0,b==+1and a==1,b=0. Thus i, —%, 1, —1 are the only
unit elements of J[i] |}

2. If a + bi is not a unit of J[i] prove that a® + b* > 1.

Solution: We have d(a + bi) € W. If d(a + bi) = a® + b*> = 0, then a + bi = 0.
When d(a+ bi) =1 = d(1), then a + bi is a unit element. So if a + bi is neither
a unit element nor a zero element then d(a + bi) > 1. Hence the result. |

3. Find the greatest common divisor in J[i] of

(a) 3+ 4i and 4 — 3i (b) 114 7i and 18 — 4.
Solution:

(a) Clearly 3 + 4i = i(4 — 3i). So ged(3 + 4i,4 — 3i) = 4 — 3

(b) We resort to Q[i]. We have
18—i (18 —i)(11 — T7i)

1147 (11 +76) (11 — 70)

191 — 137
170
21 33\ .
. 21+ 33¢
:(1—2)+WZQ+7J(S%’) 1)

Note that we have reduced r’ = a + ib (say) such that |a|, [b| < 3. So d(r') <
(1)2+ (%)% < 1. Multiplying (1) by 11+ 74, we have 18 —i = (11 + 7i)q+ (11 +
7)) = (11 + 7i)g+r. So d(r) = d((11 + 7i)r') = d(11 + 7i)d(r") < d(11 + 7i)
as d(r') < 1. Thus we are following the steps of Euclidean algorithm for finding
gcd as described in Problem 4 (Page 149 of the book). So we have 18 — i =
(114 74)(1 —4) 4 r where r can be found by equating both sides of this equation
itself. Thus we have 18 — ¢ = (114 7i)(1 —4) + 3¢ with d(3¢) < d(11+ 7i). Also

ged(18 — 4,11 + 71) = ged(11 + 71, 37)

Again
11470 (11 + 748)(—3d)
3 (30)(=30)
21 — 33i

9



3+ 3
9

=(2—4i) +

So we have 11 4+ 7i = (3i)(2 — 4¢) + (-1 +4) and
ged(11 + 7, 3i) = ged(3i, —1 +4)

Again we have

3 3i(—1—14)
—1+i (=144 (=1—1)
3-3i
2
1—i

So we have 3i = (—1+4)(1 — i) + 4 and
gcd(3i, —1 + i) = ged(—1 +4,1)
But ged(—1+4,i) =1 as ¢ is a unit element of J[i]. Hence

ged(18 — i, 11+ 7)) =1 |

4. Prove that if p is a prime number of the form 4n + 3, then there no x such
that 22 = —1 mod p.

Solution: We need to show there is no x such that 22 + 1 = 0 mod p, when p
is of form 4n + 3. Consider polynomial f(z) = 2% + 1 in Z4[x]. We have

f(x) [z=0 =1
f(@) o=1 =2
f(@) lo=2 =1
(@) |s=3 =2

Thus f(x) # 3 in Z4[z]. Now consider f(x) as a polynomial in Z[z]. So we
have f(z) # 4n + 3 for all x € Z and for any n € Z. So if p is of form 4n + 3,
f(x) =2%+1# 0 mod p for any = € Z. Hence the result.

ALITER: Suppose 22 = —1 mod p has solution, where p = 4n + 3 for some
n € W. We have pT_l 2n + 1. So we have

2z =—1mod p = (172)?2;1 = (fl)pT_1 mod p
= 2P~ = (=1)*"*! mod p



But we have P~1 = 1 mod p, for p a prime number (Fermat Theorem), so

2?=—-1mod p=1=—1mod p

which is only possible when p = 2, which is not case. Hence 2

no solution in z for p prime of form 4n + 3. |

= —1 mod p has

5. Prove that no prime of the form 4n + 3 can be written as a? + b?> where a
and b are integers.

Solution: As in the previous problem we consider a? 4 b? with a,b € Z4. By
brute force, we can see a®+b? # 3 mod 4 for all a,b € Z4[z]. Considering a? +b?
in Z, we have a? + b®> # 4n + 3 for any n € Z. Thus if p is of form 4n + 3, then
it cannot be equal to a? + b? for any a,b € Z. Hence the result. [

6. Prove that there is an infinite number of primes of the form 4n + 3.
Solution: We will adapt the proof given by Euclid. Suppose primes of form
4n+3 are finite. Let 3 = p; < p2 < --- < py, for some k € N, are the all primes of
form 4n+3. Consider a = 4(p1ps - - - px) — 1. Clearly, a = 4((p1p2 - - px) —1)+3,
i.e. is a number of form 4n + 3. Also a > py, so a is a composite number as
P1,D2, -+ , Pk are the only primes of form 4n+3. We have p; fa Viasifp;|a
implies p; | 1 which is not the case. Also 2fa as 2} 1. Thus if a is a composite
number then a = q1¢2 - - - q; where ¢; Vi are primes of form 4n + 1. But prod-
uct of integers of form 4n + 1 is again an integer of form 4n + 1. Thus it leads
to the conclusion that a is an integer of form 4n + 1, which is not true as a is
an integer of form 4n + 3. Thus primes of form 4n + 3 cannot be finite. ||

*7. Prove there exists an infinite number of primes of the form 4n + 1.
Solution: Suppose there are finite number of primes of form 4n + 1. Let
Pp1,P2, - ,pr be all the primes of form 4n + 1 for some k& € N. We define
a= (2pips---pr)? + 1. Clearly a is of form 4n + 1. But a > p; for all 4, there-
fore a must be composite. Let some prime p divides a. Therefore a = 0 mod
p= (2p1p2--pr)?+1=0mod p= (2p1p2---pr)?> = —1 mod p. This means
that the equation 2 = —1 mod p in 2 has solution which is z = 2pi1ps - - - Pi.
But then by Problem 4, p must not be of form 4n + 3. So p is of form 4n + 1
or is equal to 2. When p = 2, we have 2|a = 2|(2p1p2---pr)® + 1. But
2| (2p1p2 - - pr)?, s0 2| a implies 2 | 1 which is not true. So p = 2 is not feasible.
When p is of form 4n + 1, then p = p; for some i as these are the only primes of
form 4n+ 1. But then again p | a leads to conclusion that p | 1 which is not true.
Thus the assumption that primes of form 4n+1 are finite leads to contradiction.
Hence primes of form 4n + 1 must be infinite in number. |

*8. Determine all the prime elements in J[i].



Solution: We first claim if z € J[i] is a prime element(unique upto asso-
ciates), then z|p for some prime p € Z. To establish our claim first note
that zz = d(z) € N. But Z being a Unique Factorization Domain, so we
have zZ = d(z) = p1p1 - - px for some prime elements p; € Z. Also z |2z, so
z|p1p2 - pr. Now z a prime element in J[i] and p; belonging in J[i] too. So z
must divides some p;. Hence our claim. We restate our result again that if z is
prime in J[i], then it must divides some prime element of Z. So to categorize all
prime elements of J[i], we first categorize prime elements in Z and then find all
prime elements in J[i] corresponding to each prime in Z. We categorize prime
elements of Z in three categories; prime elements of form 4n + 1, prime elements
of form 4n + 3, and the prime element 2.

Case 1 p is a prime element of form 4n 4+ 1: We have by Theorem 3.8.2,
p=a’+b? = (a+bi)(a—bi). Sod(p) = d((a+bi)(a—0bi)) = d(a+bi)d(a—bi) =
(a® + v?)(a? + b?). So p? = (a? +b?)2, or p = a® + b* = d(a + bi) = d(a — bi).
But d(a+1ib) = p, a prime element in Z implies a + ib is a prime element in JJi]
as if a + b7 is not a prime element in J[¢] mean a + bi = 2129 with d(z1) # 1 and
d(z2) # 1, which in turn implies p = d(a+bi) = d(z122) = d(21)d(22), showing p
is not a prime element in Z which is not true. Similarly, a —bi is a prime element
in J[i]. Next, we claim a4+ bi and a — bi are not associates because if a + bi and
a — bi are associates that would imply a = +b = a? = b? = p = 2a®> = 2|p
which is not the case. So a+bi and a — bi are not associates in J[¢|. Finally, we
claim that this decomposition of p into the sum of squares of integers is unique
upto signs and the order in which a,b appear. Suppose decomposition is not
unique, therefore p = ¢ + d? = (¢ + di)(c — di). But then we know J[i] is a
Unique Factorization Domain, so ¢+ di = u(a+1b), or ¢+ di = u(a — bi), where
w is the unit element of J[i]. Taking values of v equal to 1, —1,4, —i one-by-one,
one can see either a = £c or a = +d. So decomposition of p into a? + b? is
unique upto sign and the order. Thus we concluded, when p is a prime of form
4n + 1, there corresponds exactly two prime elements(unique upto associates)
(a 4+ bi), (a — bi) € J[i], such that (a + bi) | p and (a — bi) | p.

Case 2 p is a prime of form 4n + 3: We claim p is prime in J[i] too. Suppose
p is composite in J[i], therefore p = 2129 with d(z1) # 1 and d(z2) # 1. Let
21 =a+bi. Sop =222 = d(p) = d(z122) = p? = d(21)d(22) = p = d(z1) =
d(z2) = p = a? + b2. But by Problem 5, p of form 4n + 3 cannot be written as
sum of two squares, hence contradiction. So p is a prime element of J[i]. Thus
we concluded, p is the only prime element in J[i] such that p | p.

Case 3 when p = 2: This case is trivial to check 2 = (14 4)(1 —¢) with 1 +4¢
as prime element in J[i]. Note that 1 — 4 is associate of 1+ 4. Thus 1+ ¢ is the
only prime in J[i] dividing 2.

We summarize our finding that if z is a prime element in J[i], then either
z=ua+bior z=a—bi with d(z) = p where p is a prime of form 4n + 1 in Z;
or z = p where p is a prime of form 4n +3in Z;or z=1+1i. ||



*9. Determine all positive integers which can be written as a sum of two squares
(of integers).
Solution: Clearly, n = 1 = 12 + 0? is expressible as sum of two squares. For
n # 1, we claim that n = pyps - - - p; is expressible as sum of two squares if and
only if every prime factor p; of form 4k + 3 has even multiplicity. First suppose
it is given that n = pyps - - - p; is expressible as sum of two squares, we need to
show that every prime factor p; of form 4k + 3 has even multiplicity. To prove it
by induction, we need to modify our statement to be proved. We assert that for
all n € N, n # 1, we have either n not expressible as sum of two squares or if it
does then its every prime factor of form 4k + 3 has even multiplicity. Note that
we have excluded n = 1. When n = 2, we have 2 = 12 +12 and 2 = 2, having no
prime factor of form 4k + 3. So the result is vacuously valid for n = 2. Suppose
the statement is valid for n = m — 1. We need to show that it is equally valid
for n = m. Now either m cannot be written as sum of two squares or it can be.
If it cannot be, then we have nothing left to prove. So we assume m = a? + b2.
Let m = pipo---p;. Again if m has no prime factor of form 4k + 3, we have
nothing to prove. But suppose some prime factor p;, of m is of form 4% + 3,
then we have p;, |[n = pi, | (a? + b?). Now we will work in J[i] to conclude
that p;, | (a® + %) = p; | a and p; | b. Since p;, is of form 4k + 3 so p;, is also a
prime element in J[i]. But p;, |a® + b% = p;, | (a + bi)(a — bi) = p;, | (a + bi)
or p;, | (a — bi). When p;, | (a + bi), we have (a + bi) = (¢ + di)p;, for some
¢+ di € J[i]. But that means a = ¢p;, and b = dp;,, or p;, | a and p;, | b.
Similarly, when p;, | (a — bi), we have p;, | a and p;, | b. We return back to work
in Z. We have p;, |a and p;, | b, therefore a = p;,a’ and b = p; b’ for some
a' v € Z. So

n=p;,(a” +b?) (1)

From (1) we can conclude n > pfo. So either n = pfo or n > p?ﬂ. If n = p?,
our statement is validated for n = m. But if n > p? , we define n’ = a’* + b2
Using (1), we have n’ = p’i. But n > p7, son’ > 1. Also p? >1,s0n/ <n.
Invoking inductive hypothesis, we have n/ either not expressible as a sum of two
squares or if it does then its every prime factor of form 4k + 3 has even multi-
plicity. But then n = p?o n’ also is either not expressible as a sum of two squares
or if it does then its every prime factor of form 4k + 3 has even multiplicity.
Thus our assertion is true for n = m too. Thus our assertion is valid in general.
From our assertion(or modified statement), we conclude that if n is equal to sum
of two squares, then its every prime factor is of form 4k+3 is of even multiplicity.

Conversely, suppose it is given that n = pips---p; with every prime factor p;
of form 4k + 3 having even multiplicity, then we need to show n is expressible
as sum of two squares. Consider any p;, prime factor of n. Since p; is prime,
so either it is 2, or is of form 4k + 1, or is of form 4k + 3. When p; = 2, then
p; = 12 +12. When p; is of form 4k + 1, then p; = a® + b? for some a,b € Z.
When p; is of form 4k + 3, then it is given to be of even multiplicity, therefore



p?j for some j > 1 must be the factor of n. We can treat p?j = (pg)2 + 02
Thus, we saw n is a product of sum of two squares. Also we observe that
(a% +b?)(c? + d?) = (ac — bd)? + (ad + bc)?, i.e. product of two numbers which
are expressible as sum of two squares is again a number which can be expressed
as sum of two squares. One can apply this observation over and over again to
see product of sum of two squares is again a sum of two squares. Hence n is
a product of two squares. Thus n with its every prime factor of form 4k 4 1
having even multiplicity implies n is expressible as sum of two squares.

Thus n = p1ps - - - p; with n # 1 is expressible as sum of two squares if and only
if every prime factor p; of form 4k + 3 has even multiplicity. With this result
at our disposal, we can determine all integers which can be expressed as sum of
two squares. ]



Problems (Page 158)

1. Find the greatest common divisor of the following polynomials over F', the
field of rational numbers:

(a) 2° — 622 + 2+ 4 and 2° — 6z + 1.

(b) 22 + 1 and 2% + 2% + 2 + 1.

Solution:

(a) Using long division method, we have

25— 6z 41 = (2° - 62% + 2+ 4)(2* + 62 + 35) + 2002* — 652 — 139

So ged(z® — 62 + 1, 2% — 622 + 2 +4) = ged(x® — 622 + 1 +4,2002% — 652 — 139).
Again we have

227 239 447
) — x4+
200 8000 1600 8000

So ged (a3 —622+a+4, 20022 —652—139) = ged (20022 — 65z — 139, — 2394 + 7).
Again we have

23— 622+ x4+ 4= (20022 — 65z — 139)(——

2 44 2 2 1
920022 — 652 — 139 — (_ 39 7> <_3 0000 375 000) 7730176

1600”8000 239 7 57121 57121

2 239 447\ _ 239 447 7730176\ _
i’oéc‘i (20095 — 65z — 139, —q5557 + 8000) = ged (*woox + 80000 — Brizl ) =
. Hence

ged(z® — 6z +1,2% — 622 +24+4) =1

(b) Using long division method, we have
S+ dr+1=(22+ D)2 -2+ +1)
So we have ged(x® + 23 + 2+ 1,22 + 1) = ged(2? + 1,0) = 22 + 1. So we have

ged(x® + 23+ + 1,22 +1)=22+1 |

2. Prove that

(a) 22 + z + 1 is irreducible over F, the field of integers mod 2.
(b) a: + 1 is irreducible over the integers mod 7.

(c) #® — 9 is irreducible over the integers mod 31.

(d) 23 — 9 is reducible over the integers mod 11.

Solution:

(a) We have

22+ 241 |p—0 = 1 mod 2
x2—|—x+1|z:1:1m0d2

Sox?+ax+1#0 Va€Zy, implying 22 + x + 1 is irreducible in Zy[z].



(b) We have

22 +1 |,—0 = 1 mod 7
2241 |p—1 =2mod 7
22 41 |p—0 = 5mod 7
2%+ 1 |,=3 =3 mod 7
22 4+1|p—4 = 3 mod 7
22 41 |p—5 = 5mod 7
22 41 |- =2 mod 7

Sox?2+1#0 Va€Zy Sox?+1is irreducible in Zq[x]

(c) We have

23 — 9 |,—0 = 22 mod 31
23 —9|,—; = 23 mod 31
23 =9 |,—o = 30 mod 31
23— 9 |,—3 = 18 mod 31
23— 9 |,—4 = 24 mod 31
23— 9 |,—5 = 23 mod 31
23— 9 |,—¢ = 21 mod 31
2% — 9 |,—7 = 24 mod 31
23— 9 |,—g = 7 mod 31

23— 9 |,—9 = 7 mod 31

2% =9 |,—10 = 30 mod 31
2% — 9 |,=11 = 20 mod 31
23— 9 |,—12 = 14 mod 31
23— 9 |,—13 = 18 mod 31
2% — 9 |,=14 = 7 mod 31

23— 9 |,—15 = 18 mod 31
23— 9 |,—16 = 26 mod 31
2% — 9 |,—17 = 6 mod 31

23 — 9 |,—18 = 26 mod 31
23 — 9 |z=10 = 30 mod 31
23 — 9 |p—00 = 24 mod 31
2% — 9 |,—01 = 14 mod 31
23 — 9 |p—92 = 6 mod 31



23 — 9 |p—03 = 6 mod 31

23 — 9 |p—24 = 20 mod 31
23 — 9 |,—05 = 23 mod 31
23 — 9 |26 = 21 mod 31
2% — 9 | =27 = 20 mod 31
23 — 9 |p—08 = 26 mod 31
2% — 9 |00 = 14 mod 31
23 — 9 |,—30 = 21 mod 31

Sox®—9#0 Va€Zs. Sox®—9is irreducible in Zs3; [x]
(d) We have

23 =9 |p—0 = 1 mod 11
23— 9 ;=1 =3 mod 11
23 —9|,—2 = 10 mod 11
23 =9 |,—3 = 7mod 11
23 —9|,—4 = 0 mod 11
23— 9 |,—5 = 5 mod 11
23— 9 |p,—¢ =9 mod 11
23 =9 |p—7 = 4 mod 11
23— 9 |,—g =8 mod 11
23 =9 |p—9 = 5 mod 11

2% =9 |p=10 =1 mod 11

So 23 —9 = 0 for = 4. Therefore x — 4, or z + 7 is a factor. We can see by
long division 2% — 9 = (z 4+ 7)(2? + 42 +5). So 3 — 9 is reducible in Z11[z]. |}

3. Let F, K be two fields F C K and suppose f(z),g(z) € Fx] are relatively
prime in F[z]. Prove that they are relatively prime in K{z].

Solution: First we can easily see that if 1 is the multiplicative identity of F',
then it is also the multiplicative identity of K too. Now since f(z), g(z) are rel-
atively prime in F[z], so 1 = A(z)f(z) + p(z)g(x), for some A(z), u(x) € Flz].
But since F' C K, therefore 1, A(z), pu(x), f(x),g(x) are also elements of KJz].
So the relation 1 = A(z)f(x) + p(x)g(x) is equally valid in K[z]. But that
would mean f(x),g(z) as elements of K[z] are relatively prime in K[z]. Hence
the result. JJ



4. (a) Prove that o2 + 1 is irreducible over the field F' of integers mod 11 and
prove directly that F[z]/(2? 4 1) is a field having 121 elements.
(b) Prove that 2% + x + 4 is irreducible over F, the field of integers mod 11 and
prove directly that F[z]/(2? 4+ = + 4) is a field having 121 elements.
*(c) Prove that the fields of part (a) and (b) are isomorphic.
Solution:
(a) We have
22 +1 |p—0 = 1 mod 11
2241 |p—; =2 mod 11
22+ 1 |p=o = 5 mod 11
22 +1 |p—3 = 10 mod 11
2% 41 |p—4 = 6 mod 11
22 +1 |p—5 = 4 mod 11
2% 41 4= = 4 mod 11
22 +1 |p—7 = 6 mod 11
22 +1 |p,—g = 10 mod 11
22 +1 |p=9 = 5 mod 11
22 +1 |p—10 = 2 mod 11

Soz?+1#0 VazeF. Sox?+ 1 is irreducible over F[z].

Now consider F[z]/(x? + 1). Since (2% + 1) is an ideal of F[x], so F[x]/(z* + 1)
is a ring. Also Flz]/(z? +1) = {{(z? + 1) + ax + b | a,b € F}. Since F has 11
elements, so F[x]/(z? 4+ 1) has 11 x 11 = 121 elements. F being commutative
implies F[z]/(x? + 1) is also commutative. Next we will prove F[z]/{z? + 1)
to be an integral domain, which would, in turn will prove F[z]/(z? + 1) to
be a field as every finite integral domain is a field. Suppose ({(z? + 1) + ax +
b)({(x? + 1) + cx + d) = (2? + 1), with ((2% + 1) + az + b) # (z? + 1). But
((x? + 1) + ax + b)({x% + 1) + cx + d) = (2% + 1) implies

(2 +1) + (az + b)(cx + d) = (z? + 1)
= (22 + 1) + acx® + (ad + be)x + bd = (z? + 1)
= (2% + 1) +ac(@® + 1) + (ad + be)x + (bd — ac) = (x* + 1)

= (2?2 + 1) + (ad + bc)x + (bd — ac) = (x* +1)
= (ad + be)x + (bd — ac) € (x* +1)
= ad + bc = bd — ac = 0 mod 11 (1)

((z?+1)+ax+b) # (22 +1) implies a = b # 0 mod 11 simultaneously. Suppose
a = 0 mod 11, therefore b # 0 mod 11. In this case, (1) reduces to

bc = 0 mod 11 (2)
bd = 0 mod 11



But since b # 0 mod 11 and F being a field, so (2) implies ¢ = d = 0 mod 11.
Similarly, if b = 0 mod 11, then also ¢ = d = 0 mod 11. Next if both a,b # 0
mod 11, then (1) reduces to

(a® +b?)e =0 mod 11 3)
(a® 4+ b*)d = 0 mod 11

Let 11 = p. Suppose, if possible a? 4+ b%> = 0 mod p. So a? + b?> = kp for some
positive integer k. Note that p is a prime of form 4n + 3. So using Problem
9 (page 152 of the book) we have p’ with i a positive odd integer as a factor
of k. Thus at least p|k. So at least p?|a® + b*>. Working in J[i], we have
a?+b? = (a+bi)(a—bi). So p?| (a+bi)(a— bi), which gives three possibilities,
1) p|(a+bi); 2) p? | (a+bi); 3) p? | (a — bi). All three possibilities, imply p | a
and p|b (Why). Soa = b = 0 mod 11. Thus a? + b*> = 0 mod 11 implies
a=>b=0mod 11. So when a,b € F — {0}, we have a® + b*> # 0 mod 11. So
c¢=d=0mod 11. Thus we see ((z2+1) +azx +b)((z®> + 1) +cx +d) = (2?2 + 1),
with ((x? + 1) + ax +b) # (2% + 1) implies (x? + 1) + cx +d = (22 + 1). Hence
F[z]/(x? + 1) is an integral domain. Ans so, being finite, it is a field.

(b) We have

2?2+ 244 |p—0 =4 mod 11
2 +x+4|,—1 =6 mod 11
22+ 2+ 4 |,—o = 10 mod 11
2?4+ 2 +4 |,—3 =5 mod 11
22 + 24+ 4 ;=4 =2 mod 11
22+ 244 |,—5 =1 mod 11
2 + 244 |,—¢ =2 mod 11
2+ 2 +4|,—7 =5 mod 11
2?4+ 2 +4 |,—g = 10 mod 11
22 + 244 |,—9 = 6 mod 11
22+ 244 |,—10=4mod 11

Soz?+x+4+#0 Vae€F. Sox?+x+4 is irreducible over F[z].

Again as we see in part (a), F[z]/(z® + z + 4) is a commutative ring with 121
elements. To show F[z]/(x?+x+4) a field we will first prove it to be an integral
domain. Suppose ((#? + x +4) +azx +b)((2% + x +4) + cx +d) = (2% + v + 4)
with (2% + 2 +4) + az + b # (2? + £ + 4). So we have

(2 +x+4) + (az + b)(cx +d) = (2® + z + 4)
= (2? + 2 +4) + acx® + (ad + be)x + bd = (2* + x + 4)



= (2 + 2+ 4) +ac(x® + o +4) + (ad + be — ac)x + (bd — dac) = (z* + x + 4)
= (ad + bc — ac)z + (bd — 4ac) € (x* +x + 4)
= ad + bc — ac = bd — 4ac = 0 mod 11 (1)

If a = 0 mod 11, then b # 0 mod 11 as (22 + 2 +4) + ax + b # (2% + x + 4).
But then (1) reduces to
bc =0 mod 11 2)
bd = 0 mod 11

Since b # 0 mod 11, therefore ¢ = d = 0 mod 11. Similarly if b = 0 mod 11, we
have a # 0 mod 11, and (1) reduces to

a(d—c) =0mod 11 (3)
—4ac =0 mod 11

But a # 0 mod 11, so ¢ = 0 mod 11, which in turn forces d = 0 mod 11. Thus
¢ = d = 0 in this case too. Finally suppose both a,b # 0 mod 11, then (1)
reduces to

(4a® + b? — ba)c = 0 mod 11 4

(4a% + b — ba)d = 0 mod 11 (4)
Now 4a?+b2 —ab = 4a+b*+10ab = 25a%+b?+10ab—21a? = (5a+b)*+a? (We
are working in modulo 11). As in previous part if 4a%+b?—ab = (5a+b)?>+a? = 0
mod 11, then 11 |a and 11| (5a + b). Thus 4a® + b?> — ab = 0 mod 11 implies
a=0b=0mod 11. In other words if a,b # 0 mod 11, then 4a® + b%> — ab # 0
mod 11. But then F being a field makes (4) implying ¢ = d = 0 mod 11.
Thus ((22 + 2 +4) + ax + b)((z® + x +4) + cx + d) = (2% + z + 4) with
(2?2 +x+4)+ax+b# (x? +x+4) implies (2?2 + 2 +4) +cx+d = (x® +x+4).
So F[z]/(z? +  + 4) is an integral domain, and hence is a field.

(c) Define ¢ : Flx]/(z?+1) — F[z]/{x?+2+4) such that ¢((z?+1) +ax+b) =
(22 + 2+ 4) + ax + (b + 6a). We claim ¢ is an one-to-one and onto ring
homomorphism. Firstly, one can easily see that mapping is well-defined. Next
we prove mapping is a ring homomorphism. We have
o(((2* + 1) +az +b) + ((z> + 1) + d'z + V)

=o(((2* + 1) + (a+ a)z + (b+V))

=@ +r+4)+(a+ad)r+ O+V)+6(a+d)

= (2* + 2+ 4) + (ax + b+ 6a) + (d'z + b + 6a’)

=((@* 4z +4)+ (ax+b+6a)) + ((2® + 2 +4) + (d'z + V' +6a"))

= ¢((2® + 1) + az +b) + ¢((2* + 1) + a'z + V')

Also we have

H(((2® + 1) +ax +b)((#® + 1) + dz + V)
= ¢({(x* + 1) + aad’2® + (ab’' + ba)x + bb')



= o({(z? + 1) +ad (z* + 1) + (ab/ + ba')z + (b’ — ad’))
o((x? + 1) + (ab’ + ba')x + (b’ — aa’))

= (2? + 2 +4) + (ab +ba)x + (b — aa’) + 6(ab’ + ba’)

= (22 +x+4) + (ab +ba')x + (b + 6ab’ + 6ba’ — aa’) (1)

Also

d((x? + 1) + ax + b)p({(x* + 1) + d'z + V)

= (@ +z+4) +ar+ (b+6a)((2* +x+4)+dz+ 1 +6d))

= (2 + 2 +4) +adz?® + (a(t/ +6a) + (b + 6a)a’) v+
(b+ 6a)(b’ + 6a’)

= (2 +x+4)+ad(2® +2+4)+ (a(t +6d') + (b+ 6a)a’ — aa’)z+
(b+6a)(b’ +6a’) — 4ad

= (2® + 2 +4) + (ab + 6ad’ + ba' + 6ad’ — aa)x+
(bb" + 6ab’ + 6ba’ + 36aa’ — 4aa’)

= (2® + x+4) + (ab/ + ba')x + (b + 6ab’ + 6ba’ — aa’) (2)

So from (1) and (2) we have ¢(((z? + 1) + ax + b)((x* + 1) + 'z + V) =

d({(x?+1) +ax+b)p((x? +1) +a’z+b") Hence ¢ is a ring homomorphism. Next
we prove mapping ¢ is one-to-one mapping. We have

o((z% +1) + az +b) = ¢((° + 1) + d'z + V)
= @’ +2r+4)+ar+b+6a= (2 +x+4)+dv+b +6d
= (a—a)z+ (b+6a—b —6a) € (2? +x+4)
= (a—ad)r+ (b+6a—b —6a')=0mod 11
= (a—d')=(b+6a—b —6a’) =0 mod 11
= a=a mod 11 and b =b' mod 11
= @+ ) tar+b=(*+ D) +dz+ ¥

Hence ¢ is an one-to-one mapping. Also if some § = (22 + 2 +4) +ax +b €
Flz])/(x?>+x+4), then & = (22 +1)+az+ (b+5a) € F[z]/(x?+1) is the inverse-
image of §. Thus inverse-image of every § € F[z]/{x? + z + 4) exists. So ¢ is
onto too. Thus we have mapping ¢ an one-to-one and onto ring homomorphism.

So
Fle)  Fla]

(x2+1) (22 +x+4)

5. Let F be the field of real numbers. Prove that F[z]/(z? + 1) is a field
isomorphic to the field of complex numbers.

Solution: We have % + 1 a irreducible element of F[z], where F is the field of
real numbers. Therefore (x? + 1) is a maximal ideal of F[x]. So F[z]/(z? + 1)



is field. Moreover F[z]/(z? 4+ 1) = {(z> + 1) + ax + b | a,b € F}. To exhibit an
one-to-one and onto homomorphism, we define mapping ¢ : F[z]/(z?+1) — C
such that ¢((z?+1) +ax +b) = b+ia, where C is the field of complex numbers.
Clearly mapping ¢ is well-defined. Also mapping is one-to-one and onto too.
Next
¢(((z° + 1) + ax +b) + ((2° + 1) + d'z + 1))

= ¢((2® + 1) + (a +a)z + (b+V"))

=b+V +ila+ad)

= (b+ia) + (b +iad)

= ¢((z® +1) + az +b) + o((2* + 1) + 'z + V')

and

d(((x* +1) +ax +b)((2* + 1) + d'z + 1))
= ¢({(+2® +1) + (cw: +b)(d'z +1))
= ¢((x? + 1) + ad’z?® + (ab’ + ba')x + bb')
= ¢({(x* + 1) +ad (z* + 1) + (ab/ + ba')z + bV — aa’)
= ¢((x? + 1) + (abl + ba')z + (b’ — ad’))
= (bb' — aa') +i(ab’ + ba')
= (a+1b)(a’ +ib)
=¢((x? +1) +ax +b)p((x® +1) +d'z + V)

Thus mapping ¢ is a ring homomorphism too. Hence F|z]/(z? + 1) ~ C. |}

*6. Define the derivative f'(x) of the polynomial
flz)=ap+ a1z + - +apa”
as f'(z) = a1 + 2a2z + 3azx® + - + na,x""

Prove that if f(z) € Flx], where F is the field of rational numbers, then f(z)
is divisible by the square of a polynomial if and only if f(z) and f'(x) have a
greatest common divisor d(x) of positive degree.

Solution: We first assert two results which we are going to use in the proof.

L 1f f(z) = g(x)h(z), then f'(x) = ¢'(x)h(x) + g(x)h' (z);
2. If f(z) = (g(x))™ for some n € N, then f’(z) = n(g(x))" g (z).

We left the proof of above results as an exercise for the reader.

Now first suppose, f(z) is divisible by the square of a polynomial, say h(z) with
deg(h(x)) > 1. Therefore, f(z) = (h(z))*g(x). So f'(z) = (2h(z)W (x))g(x) +



(h(x))%g'(x) = h(x)(2h'(x)g(z) + h(z)g'(z)). But that means h(x)| f(z) and
W) | f'(x). So h(z)|ged(f(x), f'(x)), or ged(f(x), f'(x)) = h(x)q(z) for some

4(z) € Fla]. Also deg(h(z)q(x)) = deg(h(x)) + degla(x)) > 1 as deg(h(z)) >
Thus greatest common divisor of f(z) and f’(x) is of positive degree.

Conversely, suppose some ged(f(x), f'(z)) = h(z) with deg(h(z)) > 1. So
f(z) =h(x)g(x )for some g(z) € Flz]. Also f'(z) = K/ (z)g(x)+h(z)g'(z), there-
fore h(z) [ h'(x)g(2)+h(x)g (z) = h(z) | h'(x)g(z). But deg(h'(x)) < deg(h(z)),
so some irreducible factor p(z) of h(x) does not divide h'(z), because if every ir-
reducible factor of h(x) divides h'(x) would imply deg(h’(z)) > deg(h(zx)) which
is not the case. So some p(z)|h(z) and p(z))fh'(z). But h(z)| k' (z)g(zx),
therefore p(x) | h'(z)g(z). So p(z)]|g(x) as p(x)fh'(x). But p(x)|h(z) and
p(x) | g(z) implies (p(x))?| h(z)g(x). Thus (p(x))?| f(z). Also p(z) being irre-
ducible implies deg(p(z)) > 1. Thus we concluded, some f(z) € F[z] is divisible
by the square of a polynomial with positive degree if and only if greatest com-
mon divisor of f(z) and f/(z) is of positive degree. |}

7. If f(x) is in F[z], where F is the field of integers mod p, p a prime, and f(x)
irreducible over F of degree n prove that F[x]/(f(x)) is a field with p™ elements.
Solution: Since f(x) is irreducible, therefore by Lemma 3.9.6 (f(z)) is a
maximal ideal of F[z]. Then using Theorem 3.5.1, we have F[z]/(f(z)) is
a field. Also every element of F[z]/{f(z)) can be uniquely represented as
(f(2)) 4+ an_12" 1 + -+ a1z + ag with a; € F, so the field F[x]/(f(z)) has p"
elements. Hence the result. JJ



Problems (Page 161)

1. Let D be a Euclidean ring, F' its field of quotients. Prove the Gauss Lemma
for polynomials with coefficients in D factored as products of polynomials with
coefficients in F.

Solution: Suppose some f(x) € D[z]|. Therefore f(x) € F[z] too. Also suppose
f(z) = g(x)h(z) for some g(x),h(z) € F[z]. But then using Problem 11 (Page
166 of the book), we have g(x) = @ for some ¢'(x) € D[z] and A € D. Also
if content of ¢'(x) is dy, then ¢'(x) = d1g"”xz, where ¢"(x) € D[x] is a primitive.
So g(z) = %g”(x). Similarly, h(z) = dfh”(:r) where h'’(z) is primitive in D]x]
and do, u € D. So we have

did
@) = A2 g (@' o)
Also content of ¢”(x), h”(z) equal to 1 implies content of ¢”(x)h”(z) is also 1.
Now f(x),¢"(x)h"(x) € D[z] with content 1, therefore % = 1. So we have
f(x) = ¢"(x)h"(x) showing f(z) is reducible in D[z] too. Thus if f(x) € D|x]
is reducible in F[z], then f(x) is also reducible in D[z]. Hence the result. |}

2. If p is a prime number, prove that the polynomial ™ — p is irreducible over
the rationals.

Solution: Let f(z) = 2" —p = apz" +an,_12" 1+ - -+ag. Soa, =1,a9 = —p
and rest a; = 0. We apply Eisenstein criterion. We have f(z) € Z[z], and
plag,plai, - ,p|an_1, and pf a,. Also p? f ag. Therefore f(z) is irreducible
in Q[z]. Hence the result. |

3. Prove that the polynomial 1 4+ 2 + - -- + 2P~!, where p is a prime number, is

irreducible over the field of rational numbers. (Hint: Consider the polynomial

1+ @+ 1)+ (x+1)2+---+ (z+1)?~!, and use the Eisenstein criterion.)

Solution: Let f(x) =1+x+---+aP~L. Now f(z) is irreducible in Q[z] if and

only if f(x + 1) is irreducible in Q[z]. We have 2P — 1 = (z — 1)(aP~! + 2P~ 2 +
-+ 4 1), therefore f(z) = 1::11 (undefined notation?). So we have

(x+1)P -1
)=-—t) ==
f+1) (r+1)—1
1
= E(”Clx—i-"Cgaf + -+ "Cpa?)

="Cy +"Cox + -+ "Cp1aP™2 + "CpaP™!

Now we have "C,r! =p(p—1)---(p—r+1) forr >0. Alsopfr!forr <pasp
is prime. Soif 1 <r <p-—1, we have with pfrland p|p(p—1)---(p—7+ 1),
implying p | *C,.. Thus p divides all coefficient of f(z + 1) except for the coeffi-
cient of P~ which is 1. Also p? J p, the constant coefficient of f(z + 1). So by
Eisenstein criterion f(z+1) is irreducible in Q[z]. And hence f(x) is irreducible



inQ. |

4. If m and n are relatively prime integers and if

m .
(2 =) 1@+ aw+- +aa"),

where the a’s are integers, prove that m | ag and n | a,.
Solution: Let

ap+arx + -+ apx” = (x —m/n)(bg +brx 4+ +b._12" )

(1)

Comparing coefficients of 2, 2!, 22, --- and expressing in terms of a;, we have

n

b() = ——AQp
m
n n

by = —— (a1 + *ao)
m m
n n

by = —— (ag + — (a1 + *Clo))
m m

br—l - (ar—l + — (ar—Q + ))

But we have b,_1 = a,. Therefore

n n
Ay = —— (ar—l + — (ar—2+"'))
m m

Also ged(m,n) = 1, so n|a,. Again comparing coefficients of =", x
(1) and expressing in terms of a;, we have

brfl = Gy
m
br—2 =0r_1+ —0r
n

m m
br—3 =Qr_2+ — (ar—l + *ar)
n n

e 2 o 000)

But we have by = —--ag. Therefore

n m m
7ia0:al+f(a2+i(...)>
m n n

= (o o )

or

Tﬁ]‘ . 1

)



Since ged(m, n) = 1, therefore m | ag. Hence the result. ||

5. If a is rational and x — a divides an integer monic polynomial, prove that a
must be an integer.

Solution: Suppose a is a rational number, therefore we can assume a =
with ged(p,q) = 1. Let f(z) € Z[z] be some monic polynomial. Let f(z) =
™ + apo12™ 1 4+ -+ 4 ag for some m € N. We are give (z — p/q) | f(z).
So f(z) = (z — p/q)g(z) for some g(z) € Q[z]. Since g(z) € Q[z], therefore
g(z) = 4¢/(z), where ¢/(z) is primitive in Z[z] and d,\ € Z. So we have

P
q

- Aiqm ) (@) (1)

Now since ged(p,q) = 1, therefore gz — p is a primitive in Z[z]. Also ¢'(x) is
primitive in Z[z], so (gx — p)g’(x) is primitive in Z[z]. Also f(z) being monic,
therefore is primitive in Z[z]. So from equation (1) we have )\% = 1. So we have

f(z) = (qz — p)g'(x) (2)

Since ¢'(x) € Z|z], therefore let ¢'(z) = by + byx + -+ + by—12™ ! with all
b; € Z. Comparing coefficient of ™ in equation (2), we have 1 = ¢b,,—1. But
that means ¢ is a unit in Z, or ¢ = +1, showing p/q is an integer. Hence a = p/q
is an integer. |



Problems (Page 166)

1. Prove that R[z] is a commutative ring with unit element whenever R is.
Solution: We are given R is a commutative ring with unity element. Suppose
some f(z) = amx™ + -+ ag and g(x) = byz™ + - - - + by are elements in R[z].
Let f(2)g(z) = Crmynz™ ™ + -+ ¢o and g(x) f(z) = dppynz™ ™ + - +dp. So
we have for 0 <i<m+n

%
C; = E ajbi,j
=0

i
= E bi—ja; as R is commutative
j=0
0

= braig

k=i

= braik
k=0
—d;

So f(z)g(x) = g(x) f(z), implying R[z] is commutative too. Also if 1 is the mul-
tiplicative identity of R, we have f(xz)l = 1f(x) = f(z). Thus multiplicative
identity of R is also the multiplicative identity of R[z]. And hence R[z] too is
a commutative ring and has unity element. Jj

2. Prove that R[zy,...,2,] = R[zi,, ..., x;,], where (i1, ..,4,) is a permutation
of (1,2,...,n).
Solution: Let some f(z1,---,z,) € R[z1,...,z,]. Therefore
_E o pTigde o
[y, an) = g1z, 50 T1 T2 Ty, where aj, j, ... j, € R
Jigd2 L gin = gl gdiz L gdin
Also zy'wy? -+~ alr = oty x;'", so we have
72 I A v LI,
f(xla 71771) - Qg1 ja,ejn L1 L Ty'
= aj o gzl adn € Rz z;, |
- 715725 5 In g [ Tn 11ttty M
So Rlx1,...,2n] C Rlxiy,...,x;,]. Similarly, we can show R[x;,...,x;,] C

Rlz1,...,zy,]. Hence R[zy,...,2,) = R[ziy, ... zi,] |

3. If R is an integral domain, prove that for f(z), g(x) in R[z], deg(f(z)g(z)) =

deg(f(2)) + deg(g()).
Solution: Let f(x) = ag + a1z + - -+, with deg(f(z)) = m for some m € N.



b0+b1$+"',

So we have a,, # 0 and a; =0 Vi > m. Also let g(z) =
=0 Vi>n. Let

with deg(g(z)) = n for some n € N. So b, # 0 and b;
h(z) = f(x)g(x) = co + c1z +---. We have

m+n
Cm+n = Z aibpyn—i
i=0
= (aobman + -+ + am—1bny1) + ambp + (@mi1bp_1 + - + amanbo)
=0+ anb, +0
# 0 as R is an integral domain and a,, # 0 and b,, # 0

Also for some integer k > 1 we have

m4+n+k
Cm4n+k = § aibm+n7i
=0
- (aOan-i-n + -+ a7n—1bn+k+1 + a7nbn+k)+

(am+1bn+k71 + -+ aernJrkbO)
=04+0=0

So deg(h(i:)) =m+mn, or deg(f(x)g(z)) = deg(f(x)) + deg(g(x)). Hence the
result.

4. If R is an integral domain with unit element, prove that any unit in R|x]
must already be a unit in R.

Solution: Suppose f(x) be some unit in R[z], therefore there exists some
g(x) € R[z] such that f(z)g(z) =1, where 1 is the multiplicative identity of R.
Now we have deg(1) = deg(f(x)g(z)) = deg(f(x)) + deg(g(x)). But deg(1) =0,
therefore deg(f(x)) + deg(g(x)) = 0. Also deg(f(x)),deg(g(x)) > 0, therefore
we have only possibility that deg(f(x)) = deg(g(xz)) = 0. But that means
f(z) = ap and g(x) = by for some ag, by € R. So f(x)g(z) =1 = apbp = 1. But
that means ag is a unit in R. Thus any unit of R[z] is a unit of R too. Hence
the result. JJ

5. Let R be a commutative ring with no nonzero nilpotent elements (that is, a™
implies @ = 0). If f(x) = ap + a1z + - - - + apz™ in Rx] is a zero-divisor, prove
that there is an element b # 0 in R such that bag = ba; = - - - = ba,,, = 0.

Solution: Since f(z) is the zero-divisor in R[z], therefore there exist g(x) € R|x]
with g(x) # 0 such that f(x)g(x) = 0. Let deg(g(x)) = n. Thus g(z) =
by + bix + -+ + b,2™ with b, # 0. Also for i € N, a' = 0 = a = 0, therefore
b # 0 for alli € N as b, # 0. Let f(z)g9(z) = co + 1z + -+ + Cpna™ ™.
But f(z)g(xz) = 0, therefore ¢; = 0 V i. So ¢pin = amb, = 0. We claim
am,jb;jfl = 0 for all 0 < j < m and we establish our claim by induction
over j. As a,,b, = 0, so the result is true for the base case, j = 0. Suppose



am—jbiT1 =0 for all 0 < j < k — 1. We need to show, result is valid for j = k
too. We have

Cm4n—k = am—kbn + am—k+1bn—1 +- ambn—k =0
= amfkbnb’;; + amkarlbnflbqkl +---+ ambnfkbfy, = Obﬁ
= A1 04 +0=0

= am,kbffl =0 (1)

So the result holds good for j = k too. Thus we have a,,b, = am_lbi =... =
Am— bt = -+ = aqgb™* = 0. But that also means a,,b7" ! = a,,_ 167! =

- = agh™t!t =0, or ayb = ay_1b = --- = agh = 0, where b = b"*+1. Hence
the result. JJ

6. Do Problem 5 dropping the assumption that R has no nonzero nilpotent
elements.
Solution: We choose some g(z) € R[z] from the set {g;(z) | f(x)g:(x) = 0}
such that deg(g(z)) < deg(gi(x)) Vi. Note that the existence of such g(x)
is guaranteed as S = {deg(g;(x)) | g;(x)f(x) = 0} is a non-empty set and is
bounded from below. Now let deg(g(x)) = n for some n € N and therefore,
let g(z) = by + bix + - - - + bpa™ with b, # 0. Also f(x)g(z) = 0. Comparing
coefficient of 2% in f(x)g(x), we have a;,b, = 0. So an(f(z)g(z)) = a,,0 =
(amg(x))f(z) = 0. Let ¢'(x) = amg(x). So ¢'(x) is a polynomial of degree less
than n with ¢’(x) f(x) = 0, which is not possible as g(z) is the polynomial with
degree less than or equal to the degree of all polynomials with g;(x)f(z) = 0.
So

amg(w) = 0 1)

We claim a,,—jg(x) = 0 for 0 < j < m. We establish our claim by induction
over j. Base case with j = 0 has already been shown holding true. Suppose
am—j;g(x) =0for 0 < j < k—1,ie. result holds good upto j = k — 1. We need
to show result holds good for j = k too, i.e. am—kg(x) =0. We have

k-1
f@)g(x) = > am—jz™ 7 g(z) =0
j=0
k-1
= (@) = 3 am-ga™ () =0
j=0
= (ap+ a1z 4+ + ap_pz" Fg(xz) =0
= Qm—rby, =0 (2)

Now we have f(2)g(z) = 0 = am_(9() /() = am_40 = (em_19(2))f(z) =
0. Again let am—rg(z) = ¢'(z), therefore ¢'(x)f(x) = 0. But (2) implies
deg(g'(z)) < deg(g(x)), which is not possible, forcing ¢'(x) = 0. So ap—rg(z) =
0, showing result is valid for j = k too. Hence result is valid for all possible



j. Thus, we have a;g(x) = 0 V i. In particular, a;b, = 0 for all . So if
b=b, # 0, we have apb = a;b = - -- = a;,b = 0. Hence the result. |}

*7. If Ris a commutative ring with unit element, prove that ag+a1z+- - -+a,z"
in R[z] has an inverse in R[z] (i.e., is unit in R[z]) if and only if a¢ is a unit in
R and ay,...,a, are nilpotent elements in R.

Solution: We first prove two results required to prove the main result. First
we claim that in a ring R, if &, 4 are nilpotent, then so is T + . Since T and g
are nilpotent, so #' = 0 and §™ = 0 for some /,m € N. But then (z+7)*™ =0,
showing & + ¢ is also a nilpotent. Hence the result. Secondly, in a ring R, if
4 is unit and Z is nilpotent, then @ + Z is again a unit. If Z is nilpotent, then
ik = 0 for some k € N. We have (a+Z)(a 1 —a =25+ -+ (=) ta—kzk-1) =
1+ (=1)*'a~*#* = 1, showing @ + Z is a unit element in R. Hence the result.

Now suppose ag is a unit element and as,as,--- ,a, are nilpotent. Let f(x) =
ap+ a1z +---+a,x2". But a; are nilpotent implies a;x’ are nilpotent polynomi-
als in R[z]. Also sum of two nilpotent elements is again a nilpotent, therefore
a1z +asx? + - - +a,x™ is a nilpotent polynomial in R[x]. Let f(z) = aop + g(z),
where g(z) = a1z + -+ + apz™ is a nilpotent polynomial in R[z]. But sum of
a unit element and a nilpotent is again a unit, therefore f(z) is a unit in R[z].
So f(z) has inverse in R|x]

Conversely, suppose f(x) = ag + a1 + -+ + apz™ # 0 in R[z] has inverse,
therefore there exists g(x) = by + byx + -+ + b z™ # 0 in R[z] such that
f(x)g(x) = 1. Comparing constant terms of f(x)g(x) = 1, we have agbg = 1.
Thus ag is a unit element in R. Next we aim to show a,, is nilpotent. Comparing
coefficient of "™ in the equation f(z)g(z) = 1, we have apb,, = 0. We claim
a{ﬁ‘lbm,j =0 for all 0 < 57 < m; and we establish our claim by induction over
j. For the base case j = 0, we need to show a,b,, = 0, which we have already
shown. Let a{;“lbn_j =0forall 0 < j <i—1. We aim to show that the
result is valid for j = i too. Comparing coefficient of z"*™~% in the equation
f(z)g(z) =1, we have

anbm—i + an—lbm—i+1 + -+ an—ibm =0
Multiplying by af,, and using induction hypothesis, we have a’"'b,,_; = 0.
Thus result is valid for j = i too. So a{flbm,j =0 for all 0 < j < m. For
j = m, we have a™t1by = 0 = a™! = 0 as by a unit element in R. So a,
is a nilpotent in R. Next we claim a,_j is nilpotent for all 0 < k < n — 1.
We prove our claim by induction over k. When k£ = 0, we have already
seen a, is a nilpotent as a”*! = 0. Suppose the result hold good for all
0 <k <i—1, we will show the result holds good for k = i too. We have
f(x) unit element, and a, ;12" a, ;02" 2 ... a,2™ as idempotent,
s0 f() — ap_ip12" T —ap, ;02" 2 — .. — g, 2" is a unit element in R[z],
or ap + a1z + -+ + am_;a™ " is a unit element. So proceeding as we did for



base case, we get (ay,—;)7 T b,—; =0 for all 0 < j < m. So for j = m, we have
a™ =0 as by is a unit element. Thus we see result is valid for k = 4 too.
Thus a,_ is nilpotent for all 0 < k < n — 1. In other words, a,as,--- ,a, are
nilpotent elements. Thus f(z) = ag + a1z + -+ - + a,x™ is a unit in R[z] if and

only if ag is a unit and rest a; are nilpotent elements in R. |

8. Prove that when F' is a field, F[z1,x2] is not a principal ideal ring.
Solution: We break the problem in two parts. First we will show for F' being
a field implies F[z1] is not a field. Second, if F[z1, 23] is a principal ideal ring
over Fx1], then F[z1] must be a field.

Suppose F[z1] is a field, with given that F' is a field. Therefore if f(z1) #
0 € F[z1], then f(x;) must be a unit element. But f(z1) = la; € F[x;] with
fan)glan) £ 1V gar) € Fla as deg(f(z1)g(z1)) > 1 while deg(1) = 0.
This means that f(z1) = z; has no inverse which is not possible as F[xq] is
assumed to be a field. Hence F[z4] is not a field.

Next suppose F[z1,xs5] is a principal ideal ring over Flxz;]. We define ¢ :
Flzy, 23] — Fla1] such that 9 (fo(21) + fi(z1)z2 + f2(w1)23 + ) = fo(z1).
We left it to the reader to check ¢ so defined is well-defined and is an onto
ring-homomorphism. Thus F[z1,xs]/Ky ~ F|z1], where Ky is the kernel of
mapping 1. Note that Ky, is an ideal in F[z1,x2]. Also

Ky = {f(z1,21) [ (f(21,22)) = 0}
= {0+ g1(z1)m2 + go(z1)23 + -+ | gi(w1) € Flaa]  Vi}
= {z2(g1(z1) + g2(z1)z2+ ) [ gi(21) € Flaa]  Vi}
= {z2g(71,22) | g(w1,72) € Flz1, 72|}

= (22)

Now suppose, if possible there exist an ideal M € F|x1,z2] such that K, C
M C F[z1,x2]. But since Flxy,z3] is assumed to be a principal ideal ring,
therefore M = h(xy,x1)F[x1,22] = (h(x1,21)) as Flz1,zs] is a commutative
ring with unity. Also since (z3) € (h(z1,z2)), therefore zo € (h(x1,z2)) =

2o = h(x1,x9)q(x1,22) for some q(z1,x2) € Fx1, 23]. Therefore

deg(x2) = deg(h(z1, 2)q(1,22))
1 =deg(h(x1,22)) + deg(q(x1,x2))

So either deg(h(x1,z2)) = 1 and deg(q(x1,z2)) = 0, or deg(h(z1,2z2)) = 0
and deg(q(zr1,22)) = 1. When deg(h(z1,22)) = 1 and deg(q(z1,22)) = 0,
29 = h(x1,72)q(21, 2) forces h(z1,x2) = uxe and (w1, z2) = u~!, where u is a
unit element in R[z1]. But then M = (h(z1,22)) = (uza) = (z2) = U which is
not the case. In the second case, with deg(h(z1,22)) = 0 and deg(q(x1,z2)) = 1,
we have only possible solution as h(z1,22) = u and q(x1,22) = u~lzy. But



then M = (h(x1,z2)) = (u) = (1) = F[z1, 22] which contradicts our assump-
tion. Thus U is a maximal ideal of F[z1,x2]. So F[x1,22]/U is a field. But
Flz1,22]/U =~ F[z1]. So F[z1] is also a field.

Combing the two results, we have F[x1,x2] is not a principal ideal ring for F
being a field. ||

9. Prove, completely, Lemma 3.11.2 and its corollary.

Solution: First we show the existence of greatest common divisor in a unique
factorization domain. Let R be some unique factorization domain and some
a,b € R. We avoid a = b = 0 as greatest common divisor is not defined for it.
When either of them is 0 while other not, then trivially their greatest common di-
visor is the non-zero element itself. So we now assume both a and b are non-zero.
If any of them is unit, then their greatest common divisor is equal to 1 trivially.
So we also assume non of them is not unit too. But then R being a unique
factorization domain, so @ = p{*ps? -+ - pd» and b = p?poQ --pBr where a; > 0
and B; > 0, and p; are irreducible factors. Note that such representation with
common irreducible factors is possible as we have in this notation p = 1. We
define v; = Min(o;, 8;) Vi. Let d = p]'p3?---p)». Clearly d is uniquely(upto
associates) determined for the given a,b. We claim d = ged(a,b). Clearly d|a
and d|b. Now suppose some c|a and c¢|b. But c|a implies ¢ = p{*p)* - - - po»
with §; < a;. But ¢|b also, so §; < ;. But that means §; < Min(«;, 3;). So
c¢|d. Also unique decomposition of a and b into irreducible p; guarantees their
greatest common divisor is uniquely determined upto the associates. Hence d is
the required greatest common divisor.

Next suppose ged(a,b) =1 and a | be. We need to show a | ¢. If a is a unit, then
a | ¢ trivially. So we assume a is not a unit. Clearly a /b as if a | b, then adding
a | a, we have a | ged(a,b) = 1 which is not possible as a is not a unit. But if
a f b, then a | be implies a | ¢ as if a [ ¢ too, then a f be too, which is not the case.
Hence a | c.

Finally, if a is irreducible and a | be, then need to show a|b or a|c. In other
words, we need to show that in a unique factorization domain, every irreducible
element is a prime too. If either of b or ¢ is a unit, then we have trivially a
dividing the non-unit element. So we assume a and b are non-unit elements. We
have a | be implies be = ad for some d € R with d not a unit element otherwise
it would mean « is a reducible element which is not true. Also R being a unique
factorization domain, so b = p1pa -+ pn, ¢ = q1q2 -+ G¢m and d = ri79 -+ - 11 for
some irreducible p;, g;, ;. So we have

aryra - TR = pip2- - Pnq1q2 - §m = x(say)

x being an element in R must have a unique representation, therefore a = up;
for some unit v and some 1 < ¢ < n, or a = u/¢; for some unit v’ and 1 < j < m.



When a = up;, we have p; = u~'a = a|p; = a|b as p; | b for all 4. So in this
case, a|b. When a = u'q;, we have ¢; =u’_ja=a|q; = a|cas ¢; | c for all j.
So in this case a | c. Thus we concluded a | be implies a | b or a | c.

10. (a) If R is a unique factorization domain, prove that every f(z) € R[z] an
be written as f(z) = afi(x), where a € R and wheref;(x) is primitive.

(b) Prove that the decomposition in part(a) is unique (up to associates).
Solution:
(a) Let f(x) = ap+arz+- - -+a,x™ for some n € W. Let a be the content of f(x).
Therefore a = ged(ap, a1, -+ ,ay). Note that existence of a, unique upto asso-
ciates is guaranteed as R is a unique factorization domain. Thus we have a | a;
for all i. So a; = aa), for some a € R. And so f(z) = aaj+aajz+- - -+aa,z" =
alay + ajxz + -+ a,z™) = f1(z)(say). Now suppose p be the content of fi(z),
therefore p | a) for all i. So a} = pal for some a] € R. This leads to a; = apa} .
So apla; VY i. But ged(ag,ay,- - ,a,) = a, therefore ap|a = p|1 = pis a
unit, which shows f;(x) is primitive. Thus every f(x) € R[x] can be written as
f(x) = afi(x) where a is the content of f(x) and fi(x) is primitive.

(b) Suppose decomposition is not unique(upto associates). Let f(z) = a1 f1(z) =
as fo(z). But then a, aj, both are the greatest common divisors of non-zero
coefficients of f(z), so are associate of each other. Again note that the great-
est common divisor of elements exists uniquely(upto associates) in a unique
factorization domain. Thus a; = way for some unit v € R. Using this,
a1 fi(x) = az fo(x) implies ufi(z) = fa(x). So a1 is associate of ag and fi(x) is
associate of fo(x).

11. If R is an integral domain, and if F' is its field of quotients, prove that any
element f(x) in Fx] can be written as f(z) = (f(zo)/a), where f(zo) € R[z]
and a € R.

Solution: Let

fl@) =3 3
TEX
where a;, b; € R and ) is some finite index set such that 27 #0 Vi€ A Define
a = lem({b; | i € A\}). Therefore b;|a Vi€ X = a = b} for all i € X and
corresponding b, € R. So
@ i
b;

fz) =

PEN

a a; ;
i (z)
1 a;
(e
o b

|



(Z bibgmi>
TEX

fo(z), where fo(z) = Zbib;xi € R[x]
1EXN

[ = QK

a

Hence the result. ||

12. Prove the converse part of Lemma 3.11.4.

Solution: We are given f(z) € R[z], and f(x) as an element of F[x] is irre-
ducible in F[z]. Suppose f(x) is reducible in R[z], therefore f(x) = g(z)h(x)
with neither g(z) nor h(zx) is a unit or zero element in R[x]. But R[z] C F[x],
so g(x), h(x) € Flx] too. Also if g(x), h(x) are not unit elements in R[z|, then
they are also not unit elements in F[z]. But then the relation f(z) = g(x)h(z)
implies f(z) is reducible in F[x] which is not true. Hence f(x) is irreducible in
R[z] too. |

13. Prove corollary 2 to Theorem 3.11.1.

Solution: If F is a field then F[z;] is a Euclidean domain (Theorem 3.9.1).
But a Euclidean domain is also a unique factorization domain (Theorem 3.7.2).
So F[z1] is a unique factorization domain. But F[x;] being a unique factor-
ization domain implies F[z1, 23] is also a unique factorization domain. Again
F[x1,x2] being a unique factorization domain implies F[z1, zo, x3] is a unique
factorization domain. Continuing this way, we get F[x1,xa,...,2,] is a unique
factorization domain. |

14. Prove that a principal ideal ring is a unique factorization domain.
Solution: First we will prove two lemmas required to prove the main result.

Lemma 1: In a principal ideal ring, an element is prime if and only if it is
irreducible. Let R be some principal ideal ring. First suppose a is prime. So
a is neither a unit or zero element. Suppose a = be, therefore a| (be). But a
being prime implies a | b or a|c. When a | b, it implies b = ad for some d € R.
Therefore a = be = (ad)c = a(dc) = a(l —dc) =0=1—-dc=0=dc=1.
So a|b implies ¢ is a unit. Similarly a|c implies b is a unit. So if a = bc
implies either b or ¢ is unit. Thus we concluded a is an irreducible element.
Conversely suppose a is an irreducible in R. Suppose a | (bc). We define
U= {ax +by | z,y € R}. Easy to check that U is an ideal of R. But R
being a principal ideal ring, so U = dR for some d € R. But a € U, so a = dr
for some r € R. Now a being an irreducible element so a = dr implies ei-
ther d is a unit or r is a unit. When d is a unit, we have U = dR = R. So
1 € U. Therefore we have 1 = ary + bry for some r{,7, € R. But that means
¢ =c(ary) + ¢(bra) = ¢ = a(ery) + (be)ra = ¢ = a(ery +12) = alc. So at least



a | ¢ (a may divides b too). On the other hand when 7 is a unit, U = dR = aR.
But since b € U, therefore b = ars for some r3 € R. So at least a|b in this case.
Thus a | be implies a | b or a|c. So if a is an irreducible then it is a prime too.
Hence the lemma.

We call a sequence of ideals Uy, Us, - - as strictly increasing sequence if U, C

Un+1 Vn € N. We claim in a principal ideal ring, any strictly increasing se-
quence of ideals Uy, Us, -+ must be finite in length. Let U = (JU;. We first

claim U is an ideal. Let some x,y € U, therefore € U,, and y le U, for some
ideals U,,, U,, in the strictly increasing sequence of ideals. So either U, C U,
or U, C Up,. In first case, when U,, C U, we have x —y € U, C U. Also in
second case when U,, C U,,, we havex—y € U,, CU. Sox—ye U Vaz,yeU.
Next, let some x € U, therefore x € U, for some ideal in the strictly increasing
sequence. But ar € U,, CU V r € R. Thus we have shown U is an ideal of
R. But R being a principal ideal ring, therefore U = aR for some a € R. But
1 € R, therefore al € U. So a € Uy, for some ideal Uy, in the strictly increasing
sequence of ideals. But then U = aR C Uy, implying that Uy, is the last member
of the strictly increasing sequence of ideals. Hence in a principal ideal ring, any
strictly increasing sequence of ideals, Uy, Us, - - - must be finite in length.

Lemma 2: In a principal ideal ring, any strictly increasing sequence of ideals,
Ui,Us, - must be finite in length.

Now with the above lemmas at our disposal, we aim to prove that every prin-
cipal ideal ring is a unique factorization domain. Suppose R be some principal
ideal ring. Let some a € R with not a unit or zero-element. First we will
show a is a product of irreducible elements. To prove so, we first show a has
at least one irreducible factor. Now if a itself is an irreducible element, then
we are done. But if not, then a = bya;, where neither b; or a; is a unit or
zero-element. Now again if a; is an irreducible element then we are done, but
if a; is not an irreducible element, then ay; = bsas, where neither by or as is
a unit or zero-element. Continuing this way we get a sequence aj, as,--- with
each element neither a unit nor a zero-element. From this sequence we induce
a sequence of ideals, a1 R, a2 R, --. We claim this sequence of ideals is strictly
increasing, i.e. a1R C agR C ---. Clearly a,R C an+1R as ap, = bpyp1an41-
But a,R = an4+1R implies an+1 = a,r for some r € R. But that means
apt1 = bpt1ant1m = ang1(1 = bpy1r) = 0 = byyp1r = 1 as R is an integral
domain. So b,41 is a unit, a contradiction, implying a, R C a,,+1R. So we have
a strictly increasing sequence of ideals, a1 R, as R, - - - . But Lemma 2 implies this
sequence of ideals must terminate for some a;. But that means a; cannot be
factorized into product into byiiak+1 with both by41 and agy; not equal to 0
or unit. But that means aj is an irreducible element. So we have shown that
a must have an irreducible factor. We now show a is a product of irreducibles.
We have a = pic; where p; is an irreducible element as we have just shown a
must have at least one irreducible factor. Clearly ¢; # 0, otherwise a = 0, which



is not the case. Also if ¢; is a unit, then we are done, but if not, then ¢; = pacs,
where p, is an irreducible element as ¢; too must have at least one irreducible
factor. Continuing this way, we get a sequence ¢y, ca, - - - . From this sequence we
induce a sequence of ideals as ¢1 R, co R, - --. We claim this sequence of ideals is
strictly increasing, i.e. ¢, R C cp41R. To establish our claim, we first note that
(Pnt1Cnt1)R C cpy1R. Also if (ppyicnt1)R = chp1R = Cng1 = PntiCoa?
for some r € R, or ¢;41(1 — ppt17) = 0. R being an integral domain im-
plies 1 = p,417r. But that means p,41 is a unit, which is not the case. So
cnR € cpy1R. Thus the sequence of ideals ¢ R, coR,--- is strictly increas-
ing. But Lemma 2 implies it must terminate for some ¢;. But that means
¢; cannot be factorized into the product p;yicj+1 as otherwise we would have
¢jR C c;j11 R. But that also means c; is an irreducible element. Thus we have
a = p1p2 - - - pjc;, with all factors as irreducibles.

What left to be shown is the uniqueness of this factorization upto the associates
and the order in which the irreducible factors appear. Suppose a = p1ps2 -+ - P, =
q192 -+ - ¢n. We use induction over m, i.e number of irreducible factors, to show
the uniqueness. When m = 1, we have a = p1, i.e. a is an irreducible. Therefore,
a = q1qs---qy implies n = 1 and a = ¢;. Therefore for m = 1, we have n = 1
and p; = ¢1. Suppose the uniqueness(upto the associates and the order) holds
good for m =i — 1. We need to show result is valid for m = ¢ too. We have
a = pip2---pi = q1q2° - qn. But since p | a, therefore p1 | (q1g2- - ¢n). But
since p; is irreducible, so by Lemma 1, p; is prime too. Therefore p; divides
some ¢;, say qi. But ¢ itself is irreducible, therefore qg; = pju for some unit
u. Now we have upips -+ p; = uqiqge - gn = q1(ug2 - - - ¢n. R being an integral
domain, so

P2p3 - Pi = Uq2q3 - qn

But the induction hypothesis implies factors on both sides are same upto the
associates and the order in which they appear as number of irreducible factors
are 7 — 1. Also up; = ¢1. So a is unique upto the associates and the order in
which its factors appear for m = i too. Hence a is uniquely decomposable into
irreducible factors in general. Thus we concluded R is a unique factorization
domain. |

15. If J is the ring of integers, prove that J[z1,...,z,] is a unique factorization
domain.

Solution: J, ring of integers, is a unique factorization domain, so using Corol-
lary 2 of theorem 3.11.1, we have J[z1, 22, ..., 2,] is also a unique factorization
domain. i



