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Preface

These solutions are meant to facilitate the deeper understanding of the book,
Topics in Algebra, 2nd edition. We have tried to stick with the notations devel-
oped in the book as far as possible. But some notations are extremely ambigu-
ous, so to avoid confusion, we resorted to alternate commonly used notations.

The following notation changes will be found in the text:

1. a mapping T operating on an element x is represented through T (x) rather
than xT .

2. subgroup generated by a is represented through 〈a〉 rather than (a)

Any suggestions or errors are invited and can be mailed to: rakeshbalhara@gmail.com
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Problems (Page 35)

1. In the following determine whether the systems described are groups. If they
are not, point out which of the group axioms fail to hold.
(a) G = set of all integers, a · b ≡ a− b.
(b) G = set of all positive integers, a · b = ab, usual product of integers.
(c) G = a0, a1, · · · , a6 where

ai · aj = ai+j if i+ j < 7,

ai · aj = ai+j if i+ j ≥ 7

(for instance, a5 · a4 = a5+4−7 = a2 since 5 + 4 = 9 > 7).
(d) G = set of all rational numbers with odd denominators, a · b ≡ a + b, the
usual addition of rational numbers.
Solution:
(a) Clearly the binary operation is well-defined. Also a− b ∈ G ∀a, b ∈ G. So
the closure property also holds good. Now a · (b · c) = a · (b− c) = a− (b− c) =
a− b+ c. On the other hand (a · b) · c = (a− b) · c = (a− b)− c = a− b− c. So
a · (b · c) 6= (a · b) · c. So the associativity does not hold good. Hence G is not a
group.

(b) Clearly the binary operation is well-defined. Also we can check the binary
operation satisfies closure and associativity too. Again 1 is the required identity
as 1 · a = a · 1 = a for all positive integers a. But we can see inverse of any
element except for 1 does not exist. So the existence of inverses fails. Hence G
is not a group.

(c) We can easily check G is a group with a0 as identity element and a7−i as
inverse element of ai.

(d) Again we can easily check G is a group with 0 as identity and −mn as inverse
element of m

n .

2. Prove that if G is an abelian group, then for all a, b ∈ G and all integers n,
(a · b)n = an · bn.
Solution: We resort to induction to prove that the result holds for positive
integers. For n = 1, we have (a · b)1 = a · b = a1 · b1. So the result is valid for
the base case. Suppose result holds for n = k − 1, i.e. (a · b)k−1 = ak−1 · bk−1.



We need to show result also holds good for n = k. We have

(a · b)k = (a · b)k−1 · (a · b)
= (ak−1 · bk−1) · (a · b)
= (ak−1 · bk−1) · (b · a)

= (ak−1 · bk) · a
= a · (ak−1 · bk)

= ak · bk

So the result holds for n = k too. Therefore, result holds for all n ∈ N. Next
suppose n ∈ Z. If n = 0, then (a·b)0 = e where e the identity element. Therefore
(a · b)0 = e = e · e = a0 · b0. So the result is valid for n = 0 too. Next suppose n
is a negative integer. So n = −m, where m is some positive integer. We have

(a · b)n = (a · b)−m

= ((a · b)−1)m by definition of the notation

= (b−1 · a−1)m

= ((a−1) · (b−1))m

= (a−1)m · (b−1)m as the result is valid for positive integers

= (a−m) · (b−m)

= an · bn

So the result is valid for negative integers too. Hence the result that (a · b)n =
an · bn holds in an abelian group for all n ∈ Z.

3. If G is a group such that (a · b)2 = a2 · b2 for all a, b ∈ G, show that G must
be abelian.
Solution: We have for all a, b ∈ G

(a · b)2 = a2 · b2

⇒ (a · b) · (a · b) = a2 · b2

⇒ a · ((b · a) · b) = a · ((a · b) · b)
⇒ (b · a) · b = (a · b) · b as a−1 exists in G

⇒ b · a = a · b as b−1 exists in G

But b ·a = a · b ∀ a, b ∈ G implies G is an abelian group. Hence the result.

4. If G is a group in which (a · b)i = ai · bi for three consecutive integers i for
all a, b ∈ G, show that G is abelian.



Solution: Let n, n+ 1, n+ 2 be some three consecutive integers. Therefore we
have

(a · b)n = an · bn (1)

(a · b)n+1 = an+1 · bn+1 (2)

(a · b)n+2 = an+2 · bn+2 (3)

Using (2) we have

(a · b)n+1 = an+1 · bn+1

⇒ (a · b)n · (a · b) = an+1 · (bn · b)
⇒ (an · bn) · (a · b) = (an+1 · bn) · b, Using (1)

⇒ ((an · bn) · a) · b = (an+1 · bn) · b
⇒ (an · bn) · a = (an · a) · bn

⇒ an · (bn · a) = an · (a · bn)

⇒ bn · a = a · bn (4)

Again using (3), analogously we have

bn+1 · a = a · bn+1

⇒ b · (bn · a) = a · bn+1

⇒ b · (a · bn) = a · bn+1, Using (4)

⇒ (b · a) · bn = (a · b) · bn
⇒ b · a = a · b

So we have a · b = b · a ∀ a, b ∈ G. And hence G is abelian.

5. Show that the conclusion of the Problem 4 does not follow if we assume the
relation (a · b)i = ai · bi for just two consecutive integers.
Solution: Suppose (a · b)i = ai · bi for i = n and i = n + 1. We claim G
is abelian if and only if (a · b)n+2 = an+2 · bn+2. Clearly, from last Problem
we have (a · b)n+2 = an+2 · bn+2 ⇒ G is abelian. Also if G is abelian, then
(a · b)i = ai · bi ∀ i ∈ Z; in particular result holds for i = n + 2. Thus G is
abelian if and only if (a · b)n+2 = an+2 · bn+2. So the result of Problem 4 might
not follow if we assume (a · b)i = ai · bi for just two consecutive integers.

6. In S3 give an example of two elements x, y such that (x · y)2 6= x2 · y2.
Solution: We assume, as described in Example 2.2.3, S3 = {e, ψ, ψ2, φ, φ · ψ,
ψ · φ} with ψ3 = e, φ2 = e and φ · ψi · φ = ψ−i. We choose x = ψ and y = φ.
We have

(ψ · φ)2 = (ψ · φ) · (ψ · φ) = ψ · (φ · ψ · φ) = ψ · ψ−1 = e



Whereas

ψ2 · φ2 = ψ2 · e = ψ2

Thus (ψ · φ)2 6= ψ2 · φ2.

7. In S3 show that there are four elements satisfying x2 = e and three elements
satisfying y3 = e.
Solution: Again, as in Problem 6, we assume S3 = {e, ψ, ψ2, φ, φ ·ψ,ψ ·φ} with
ψ3 = e, φ2 = e. We have (e)2 = e; (ψ)2 = ψ2; (ψ2)2 = ψ; (φ)2 = e; (φ · φ)2 = e;
(φ · φ)2 = e. Thus e, φ, ψ · ψ,ψ · φ are the elements with their square equal to
identity. Also we have (e)3 = e; (ψ)3 = e; (ψ2)3 = e; (φ)3 = φ; (φ · ψ)3 = φ · ψ;
(ψ ·φ)3 = ψ ·φ. Thus we have e, ψ, ψ2 with their square equal to identity. Hence
the result.

8. If G is a finite group, show that there exists a positive integer N such that
aN = e for all a ∈ G.
Solution: Since G is finite, we assume G = {g1, g1, · · · , gm} for some positive
integer m. For some gi ∈ G, consider the sequence gi, g

2
i , g

3
i , · · · . Since G is

finite and closed under binary operation, so there must be repetition in the se-
quence, i.e. gji = gki for some positive integers j and k with j > k. But that

means gj−ki = e, where e is the identity element. Let j − k = ni. Thus we have
ni corresponding to every gi such that gni

i = e. Let N = n1×n2×· · ·×nm. But
then gNi = e for all i, showing the existence of required positive integer N .

9. (a) If the group G has three elements, show it must be abelian.
(b) Do part (a) if G has four elements.
(c) Do part (a) if G has five elements.
Solution:
(a) Let G be a group of order 3 and some a, b ∈ G with a 6= b.
Case 1 , Either of a or b equals to the identity element: Suppose a = e then
a · b = e · b = b = b · e = b · a. Similarly, if b = e, we have a · b = b · a. Thus if
either a or b equals to e, we have a · b = b · a.
Case 2 , Neither of a or b is identity element: Consider a · b. We have a · b 6= a,
otherwise it would mean b = e. Similarly a · b 6= b as a 6= e. Also G has only
three elements, so a · b has not option but to be equal to the identity element.
Therefore a · b = e. A similar argument will show that b ·a = e. Thus a · b = b ·a
in this case too.
So we have a · b = b · a ∀ a, b ∈ G. Hence G is abelian for o(G) = 3.

(b) Again let G be the group of order 4 and let some a, b ∈ G.
Case 1 , Either of a, b equals to e: In this case, clearly a · b = b · a.
Case 2 , Neither of a, b equals to e. Consider a · b. Clearly, a · b 6= a and a · b 6= b.
But since G has four elements, let c 6= e be the fourth element. So a · b has two



options, either equals to e or equals to c.

• If a · b = e, then a = b−1 ⇒ b ·a = b · b−1 ⇒ b ·a = e. Thus a · b = b ·a = e.

• If a · b = c, then consider b · a. Clearly, b · a 6= a and b · a 6= b. So b · a has
only two options, either b ·a = e or b ·a = c. But if b ·a = e, then it would
imply a · b = e, which is not true. So b · a = c too. Thus a · b = b · a = c.

Thus we have a · b = b · a for all a, b ∈ G. Hence G is abelian for o(G) = 4.

(c) For this part, we have to make use of the material not presented till now
in the book. Since the order of G is prime, therefore it is cyclic. But a cyclic
group is abelian, so G must be abelian for order 5.

10. Show that if every element of the group G has its own inverse, then G is
abelian.
Solution: Let some a, b ∈ G. So we have a−1 = a and b−1 = b. Also a · b ∈ G,
therefore a · b = (a · b)−1 = b−1 · a−1 = b · a. So we have a · b = b · a, showing G
is abelian.

11. If G is a group of even order, prove it has an element a 6= e satisfying a2 = e.
Solution: We prove the result by contradiction. Note that G is a finite group.
Suppose there is no element x satisfying x2 = e except for x = e. Thus if some
g 6= e belongs to G, then g2 6= e, i.e. g 6= g−1. It means every non-identity
element g has another element g−1 associated with it. So the non-identity ele-
ments can be paired into mutually disjoint subsets of order 2. We can assume
the count of these subsets equals to some positive integer n as G is a finite
group. But then counting the number of elements of G, we have o(G) = 2n+ 1,
where 1 is added for the identity element. So G is a group of odd order, which
is not true. Hence there must exist an element a 6= e such that a2 = e for G is
a group of even order.

12. Let G be a nonempty set closed under the an associative product, which in
addition satisfies:
(a) There exists an e ∈ G such that a · e = a for all a ∈ G.
(b) Give a ∈ G, there exists an element y(a) ∈ G such that a · y(a) = e.
Prove that G must be a group under this product.
Solution: In order to show G is a group, we need to show

1. e · a = a ∀ a ∈ G, and

2. If a · y(a) = e, then y(a) · a = e.

Suppose some a ∈ G, therefore there exists y(a) ∈ G such that a · y(a) = e.
Again y(a) ∈ G implies there exists y(y(a)) ∈ G such that y(a) · y(y(a)) = e.



So we have

y(a) · a = (y(a) · a) · e
= (y(a) · a) · (y(a) · y(y(a)))

= ((y(a) · a) · y(a)) · y(y(a))

= (y(a) · (a · y(a)) · y(y(a))

= (y(a) · e) · y(y(a))

= y(a) · y(y(a))

= e

Thus
y(a) · a = e (1)

Now using (1), we have e · a = (a · y(a)) · a = a · (y(a) · a) = a · e = a. Thus

e · a = a (2)

Form (1) and (2), we conclude G is a group.

13. Prove, by an example, that the conclusion of Problem 12 is false if we as-
sume instead:
(a′) There exists an e ∈ G such that a · e = a for all a ∈ G.
(b′) Given a ∈ G, there exists y(a) ∈ G such that y(a) · a = e

Solution: Consider G =

{(
a a
b b

)
| a, b ∈ Q+

}
with usual matrix multiplica-

tion as binary operation ‘·’, where Q+ denotes the positive rational numbers.

We define e =

(
1 1
0 0

)
. Also for M =

(
a a
b b

)
, we define y(M) = 1

a+be. One

can easily see that M · e = M and y(M) ·M = e. Also G is not a group as
inverses do not exist.

14. Suppose a finite set G is closed under an associative product and that both
cancellation laws hold in G. Prove that G must be a group.
Solution: Since G is a finite group, so we can assume G = {g1, g2, . . . , gn}, for
some positive integer n. Let some a ∈ G. Consider S = {a · g1, a · g2, · · · , a · gn}.
We assert each element of S is distinct as if a · gi = a · gj with gi 6= gj , then
left-cancellation implies gi = gj . Therefore, o(S) = o(G), combining with the
fact that S ⊂ G, we conclude S = G. So if a ∈ G, therefore a ∈ S. But that
means a = a · gk, for some gk ∈ G. We claim gk is the right-identity. For
establishing our claim, we consider S′ = {g1 · a, g2 · a, · · · , gn · a}. Again since
right-cancellation too holds good, proceeding in an analogous way, we can see
S′ = G. Let some x ∈ G. So x ∈ S′, therefore x = gi · a for some gi ∈ G.
Now x · gk = (gi · a) · gk = gi · (a · gk) = gi · a = x. Thus we have shown,
x · gk = x ∀ x ∈ G. So gk is the right-identity. Now, since gk ∈ G, therefore



gk ∈ S. So gk = a · gl, for some gl ∈ G. But that shows the existence of right-
inverse gl, for an arbitrarily chosen element a ∈ G. Thus right-inverse exists for
each element in G. With the existence of right-identity and right-inverses, we
concluded that G is group.

15. (a) Using the result of Problem 14, prove that the nonzero integers modulo
p, p a prime number, form a group under multiplication mod p.
(b) Do part (a) for the nonzero integers relatively prime to n under multiplica-
tion mod n.
Solution:
(a) Let G be the set consists of non-zero integers modulo p. We noticed that
G is a finite set with multiplication mod p as well-defined binary operation.
Using Problem 14, G would be a group if we show that the multiplication mod
p is associative and the both cancellation laws hold good. One can easily see
that a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c = abc mod p. So associativity is not an issue.
Next suppose a ⊗ b = a ⊗ c, we need to show that it would imply b = c. But
a ⊗ b = a ⊗ c ⇒ ab = ac mod p ⇒ a(b − c) = 0 mod p ⇒ p | a(b − c). But p
being prime, so either p | a or p | b− c. Since p6 | a, so p | (b− c). Also p 6 | b and
p 6 | c, so p | (b − c) implies b − c = 0, or b = c. Thus left-cancellation law holds
good. Similarly we can see right-cancellation also holds good. Using previous
problem, we conclude G is a group.
(b) Let G be the set consists of non-zero integers relatively prime to n. Clearly
G is a finite set. Also multiplication mod n is well-defined binary operation
over G. To show G is a group under multiplication mod n, we need to show
that associativity and both cancellation laws hold good. It is easy to see that
a⊗(b⊗c) = (a⊗b)⊗c = abc mod n. So associativity holds good. Next suppose
a⊗b = a⊗c. But that means ab = ac mod n⇒ a(b−c) = 0 mod n⇒ n | a(b−c).
But gcd(a, n) = 1, therefore n | a(b−c) implies n | (b−c). Also gcd(b, n) = gcd(c,
n) = 1, therefore n | (b − c) implies b = c. Thus we see left-cancellation holds
good. Similarly, we can check right-cancellation too holds good. And so G is a
group.

16. In Problem 14 show by an example that if one just assumed one of the
cancellation laws, then the conclusion need not follow.
Solution: We construct a set G with n ≥ 2 elements, equipped with a binary
operation · : G×G −→ G such that x · y = y. Clearly the binary operation · is
well-defined. Next, we see x · (y · z) = y · z = z. Also (x · y) · z = z. Thus the
binary operation is associative. Next we check left-cancellation. Suppose we
have x ·y = x ·z. But x ·y = y and x ·z = z. Thus x ·y = x ·z ⇒ y = z, showing
left-cancellation holds good. On the other hand, if we have x · y = z · y, we
cannot conclude x = z as x · y = z · y = y ∀x, z ∈ G. Thus right-cancellation
does not hold good. Finally, we prove G is not a group. Suppose G is group,
therefore it must have the identity element. Let e be the identity element. But
then x ·e = e ∀x ∈ G, showing all elements are identity elements. Thus we get



G = {e}, but we have assumed G has n elements with n ≥ 2, hence a contra-
diction. Thus G has no identity element. Hence G is not a group. So if a finite
set with well-defined binary operation is satisfying associativity and one sided
cancellation law, it need not to be a group under that binary operation.

17. Prove that in Problem 14 infinite examples exist, satisfying the conditions,
which are not groups.
Solution: We define An = {in | i ∈ Z+}, where n is a positive integer greater
than 1. Clearly An with usual multiplication as binary operation satisfies all
conditions of Problem 14, but is not a group as inverses do not exist for all ele-
ments. Also since there are infinite positive integers greater than 1, so we have
infinite examples satisfying the conditions of Problem 14 but are not groups.

18. For any n > 2, construct a non-abelian group of order 2n. (Hint: imitate
the relation in S3)
Solution: Let G be the group that we are going to construct. Let · denotes its
binary operation and let e be its identity element. Thus we have constructed
an element of G, which is e. Next we construct an element a 6= e with order
n ≥ 3. Thus we have constructed n element, which are e, a, a2, · · · , an−1. Fi-
nally we construct an element other than already constructed, b, with order 2,
i.e. b2 = e. We interconnect a, b with the rule: b · a · b−1 = a−1. We claim
we have got 2n elements, i.e. G = {e, a, a2, · · · , an−1, b, b · b, · · · , b · an−1}. To
establish our claim, we first notice that b · ai · b = a−i. With this rule at hand,
one can easily check any expression resulting from the product of ai and bj will
belongs to those 2n elements. To give readers more insight, suppose we have
some expression ai · bj · ak. Now either j = 0 or j = 1. If j = 0, then expression
equals to ai+k, and thus belong to G. Whereas if j = 1, then let x = ai · b · ak.
We have b · x = (b · ai · b) · ak = a−i · ak = ak−i. Left-multiplying by b, we get
x = b · ak−i. Thus x ∈ G. Also a · b = b · a−1; since n 6= 2, therefore a · b 6= b · a.
Thus we have got G, a non-abelian group of order 2n.

19. If S is a set closed under an associative operation, prove that no matter how
you bracket a1a2 · · · an, retaining the order of the elements, you get the same
element in S (e.g., (a1 · a2) · (a3 · a4) = a1 · (a2 · (a3 · a4)); use induction on n)
Solution: Let Xn denote a expression we get by bracketing the n elements,
keeping the order of elements same. We need to show all expressions Xn are
same for all n. We will use induction over n. For n = 1 and n = 2, we have only
one expression possible, so trivially all expressions are same. For n = 3, we have
two ways of bracketing a1a2a3, i.e a1 · (a2 ·a3) and (a1 ·a2) ·a3. Since the binary
operation · is satisfying associativity, therefore both expression are same. Next
suppose the result is true for n ≤ i−1. We need to show that the result is equally
true for n = i. Let Xi be some expression. Then it must be product of some
two shorter expressions, i.e Xi = Yα · Zi−α, where α < i. But all expressions



with number of elements less than i are same. So Yα = a1 · Y
′

α−1, where Y
′

α−1

is some expression consists of α− 1 elements. Similarly, Zi−α = aα+1 · Z
′

i−α−1.
Thus we have

Xi = Yα · Zi−α
= (a1 · Y

′

α−1) · (aα+1 · Z
′

i−α−1)

= a1 ·X
′

i−1,

where Xi−1
′ is some expression of i − 1 terms. But all expressions containing

i− 1 terms are same (order of elements is assumed to remain same). But then
all expression having i elements turns out to be equal to a1 · X

′

i−1. Thus all
expressions having i elements are same. The induction hypothesis implies result
is valid for all n. Hence the result.

20. Let G be the set of all real 2× 2 matrices

(
a b
c d

)
, where ad− bc 6= 0 is a

rational number. Prove that the G forms a group under matrix multiplication.
Solution: It is easy to check that G is a group under matrix multiplication,

with

(
1 0
0 1

)
as identity element and 1

(ad−bc)

(
d −b
−c a

)
as inverse element of(

a b
c d

)
. Note that ad − bc 6= 0 is given and of the inverses exist for all ele-

ments.

21. Let G be the set of all real 2 × 2 matrices

(
a b
0 d

)
where ad 6= 0. Prove

that G forms a group under matrix multiplication. Is G abelian?

Solution: We have G closed under multiplication as

(
a b
0 d

)(
a′ b′

0 d′

)
=(

aa′ ab′ + bd′

0 dd′

)
∈ G. Now since ad 6= 0, therefore G forms a group under ma-

trix multiplication with

(
1 0
0 1

)
as identity element and

(
1/a −b/ad
0 1/d

)
as in-

verse element of

(
a b
0 d

)
. Finally we have

(
a b
0 d

)(
a′ b′

0 d′

)
=

(
a′ b′

0 d′

)(
a b
0 d

)
implies ab′ + bd′ = a′b+ b′d. Since ab′ + bd′ 6= a′b+ b′d for all values of a, b, d,
a′, b′, d′, so G is not an abelian.

22. Let G be the set of all real 2 × 2 matrices

(
a 0
0 a−1

)
where a 6= 0. Prove

that G is an abelian group under matrix multiplication.



Solution: Easy to check G is a group under multiplication. Also we have(
a 0
0 a−1

)(
a′ 0
0 a′−1

)
=

(
a′ 0
0 a′−1

)(
a 0
0 a−1

)
=

(
aa′ 0
0 a−1a′−1

)
Hence G is abelian too.

23. Construct in the G of Problem 21 a subgroup of order 4.

Solution: Let a =

(
1 0
0 −1

)
, b =

(
−1 0
0 1

)
. Clearly a2 = I and b2 = I, where

I =

(
1 0
0 1

)
. Also ab = ba =

(
−1 0
0 −1

)
. Thus H = {I, a, b, ab} forms a

subgroup of G.

24. Let G be the set of all 2 × 2 matrices

(
a b
c d

)
where a, b, c, d are integers

modulo 2, such that ad− bc 6= 0. Using matrix multiplication as the operation
in G, prove that G is a group of order 6.
Solution: Its trivial to check that

G =

{(
1 0
0 1

)
,

(
0 1
1 0

)
,

(
0 1
1 1

)
,

(
1 0
1 1

)
,

(
1 1
0 1

)
,

(
1 1
1 0

)}
Hence o(G) = 6

25. (a) Let G be the group of all 2×2 matrices

(
a b
c d

)
where ad−bc 6= 0 and a,

b, c, d are integers modulo 3, relative to matrix multiplication. Show o(G) = 48.
(b) If we modify the example of G in part (a) by insisting that ad− bc = 1, then
what is o(G)?
Solution: See Problem 26, which is general case of this problem.

∗26. (a) Let G be the group of all 2× 2 matrices

(
a b
c d

)
where a, b, c, d are the

integers modulo p, p being a prime number, such that ad − bc 6= 0. G forms
group relative to matrix multiplication. What is o(G)?
(b) Let H be the subgroup of the G of part (a) defined by

H =

{(
a b
c d

)
∈ G | ad− bc = 1

}
.

What is o(H)?
Solution:
(a) We will first count the number of ways in which ad − bc = 0. We separate



this counting into two cases. In first case we count the ways when ad = bc = 0.
In second case, we will count the number of ways in which ad = bc 6= 0.
Case 1 : ad = bc = 0: When a = 0, we can choose d in p ways; and when d = 0,
we can choose a in p ways. But in this a = d = 0 has been counted twice.
Therefore there are 2p − 1 ways in which ad = 0. Similarly, bc = 0 in 2p − 1
ways. Thus there are (2p− 1)2 ways in which ad = bc = 0.
Case 2 : ad = bc 6= 0: Since ad 6= 0, therefore a 6= 0 and d 6= 0. Similarly,
b 6= 0 and c 6= 0. We chose some value of a 6= 0 in p − 1 ways; some value of
d 6= 0 in p− 1 ways; some value of b in p− 1 ways; then find the value of c with
these chosen values of a, d, b. Since ad = bc mod p has unique solution in c for
non-zero values of a, d, b; thus we get unique value of c. Thus ad = bc 6= 0 can
be chosen in (p− 1)3 ways.
Finally, the number ways of choosing a, b, c, d with ad − bc 6= 0 equals number
ways of choosing a, b, c, d without any restriction minus the number of ways of
choosing a, b, c, d with ad−bc = 0. Thus the number of ways of choosing a, b, c, d
with ad− bc 6= 0 is p4 − (p− 1)3 − (2p− 1)2. On simplification, we get

o(G) = p4 − p3 − p2 + p

(b) We separate our counting of a, b, c, d for which ad− bc = 1 in three separate
cases.
Case 1 : ad = 0: This restrict bc = −1. The number ways of choosing a, d for
which ad = 0 is: 2p − 1. On the other hand, the number of ways of choosing
b, c for which bc = −1 is: p − 1. Thus when ad = 0, we can choose a, b, c, d in
(2p− 1)(p− 1)
Case 2 : bc = 0: Analogous to previous case, we get number of ways of choosing
a, b, c, d as (2p− 1)(p− 1).
Case 3 : ad 6= 0 and bc 6= 0: In this case we get number of ways of choosing
a, b, c, d as (p− 1)(p− 1)
Thus total number of ways of choosing a, b, c, d for which ad− bc = 1 is: 2(2p−
1)(p− 1) +

∑
p−2

(p− 1)2. On simplifying we get

o(G) = p3 − p



Problems (Page 46)

1. If H and K are subgroups of G, show that H ∩ K is a subgroup of G.
(Can you see that the same proof shows that the intersection of any number of
subgroups of G, finite of infinite, is again a subgroup of G?)
Solution: Let some x, y ∈ H ∩K. Therefore x ∈ H and y ∈ H. But H being
a subgroup, so xy−1 ∈ H. Again x ∈ K and y ∈ K. K being subgroup implies
xy−1 ∈ K. But xy−1 ∈ H and xy−1 ∈ K implies xy−1 ∈ H ∩K. Thus we have
for all x, y ∈ H ∩K, xy−1 ∈ H ∩K. Hence H ∩K is a subgroup of G.



Problems (Page 70)

1. Are the following mappings automorphisms of their respective groups?
(a) G group of integers under addition, T : x→ −x.
(b) G group of positive reals under multiplication, T : x→ x2.
(c) G cyclic group of order 12, T : x→ x3.
(d) G is the group S3, T : x→ x−1

Solution:
(a) Yes, as G is an abelian group.

(b) No, as mapping is not a homomorphism.

(c) No, as if G = 〈a〉, then o(a) = 12, while o(T (a)) = 4, showing T is not an
automorphism. Note that an isomorphism preserve the order of elements.

(d) No, as G is a non-abelian group, so the mapping T : x −→ x−1 fails to be a
homomorphism.

2. Let G be a group, H a subgroup of G, T an automorphism of G. Let
T (H) = {T (h) | h ∈ H}. Prove T (H) is a subgroup of G.
Solution: We need to show T (H) is a subgroup of G. Let x, y ∈ T (H),
therefore x = T (h1) and y = T (h2) for some h1, h2 ∈ H. But then xy−1 =
T (h1)(T (h2))−1 = T (h1)T (h−1

2 ) = T (h1h
−1
2 ) = T (h3) for some h3 ∈ H as H is

a subgroup of G. So xy−1 ∈ T (H) ∀ x, y ∈ H. This shows T (H) is a subgroup
of G.

3. Let G be a group, T an automorphism of G, N a normal subgroup of G.
Prove that T (N) is a normal subgroup of G.
Solution: We need to show T (N) is a normal subgroup of G. Clearly by last
Problem, T (N) is a subgroup of G. Let some g ∈ G, therefore g = T (g′) for some
g′ ∈ G as T is an onto mapping. But then gT (N)g−1 = T (g′)T (N)T (g′)−1 =
T (g′)T (N)T (g′−1) = T (g′Ng′−1) = T (N) as N is normal in G. Thus we have
gT (N)g−1 = T (N) ∀ g ∈ G. Hence T (N) is normal in G.

4. For G = S3 prove that G ≈ I (G).
Solution: We have, from Lemma 2.8.2

G

Z
≈ I (G) (1)

Also we claim for Sn with n ≥ 3, we have Z = {I}, where I is the identity map-
ping. We assume A = {x1, x2, · · · , xn} is the set of elements on which mappings
from Sn operate. Suppose some T ∈ Sn with T 6= I, therefore there is some xi
such that T (xi) 6= xi. Let T (xi) = xj , where i 6= j. Since n ≥ 3, therefore we



can have xk with k 6= i and k 6= j. Define T ′ : A −→ A such that T ′(xi) = xi;
T ′(xj) = xk; T ′(xk) = xj ; and T ′(xl) = xl for the rest of xl ∈ A. But then
TT ′(xi) = T (T ′(xi)) = T (xi) = xj ; and T ′T (xi) = T ′(T (xi)) = T ′(xj) = xk,
showing TT ′ 6= T ′T . So if some T 6= I, then TT ′ 6= T ′T for some T ′ ∈ Sn.
Thus T /∈ Z ∀ T 6= I; implying Z = {I}. Finally, using (1), we have
Sn ≈ I (Sn) ∀ n ≥ 3

5. For any group G prove that I (G) is a normal subgroup of A (G) (the group
A (G)/I (G) is called the group of outer automorphisms of G).
Solution: We have some change of notations, so we prefer to give detailed
solution of this problem. We define Tg : G −→ G such that Tg(x) = gxg−1

(Note that this is different from what is given in the book). Clearly Tg ∈ A (G)
for all g ∈ G. Next, we define I (G) = {Tg | g ∈ G}. Let some some Tg1 ,
Tg2 ∈ I (G). But then for all x ∈ G, we have Tg1Tg2(x) = Tg1(Tg2(x)) =
Tg1(g2xg

−1
2 ) = g1(g2xg

−1
2 )g−1

1 = (g1g2)x(g1g2)−1 = Tg1g2(x). Thus Tg1Tg2 =
Tg1g2 . But Tg1g2 ∈ I (G), therefore Tg1Tg2 ∈ I (G). Again let some Tg ∈ I (G),
therefore for all x ∈ G, we have Tg(x) = gxg−1. So we have, for all x ∈ G

Tg(g
−1xg) = g(g−1xg)g−1

⇒ Tg(g
−1xg) = x

⇒ T−1
g (Tg(g

−1xg)) = T−1
g (x)

⇒ g−1xg = T−1
g (x)

⇒ T−1
g (x) = (g−1)x(g−1)−1

⇒ T−1
g (x) = Tg−1(x)

Thus T−1
g = Tg−1 . But Tg−1 ∈ I (G), therefore T−1

g ∈ I (G). Hence I (G) is
a subgroup of A (G). Finally, suppose some T ∈ A (G) and some Tg ∈ I (G),
then we have for all x ∈ G

TTgT
−1(x) = T (Tg(T

−1(x)))

= T (g(T−1(x))g−1)

= T (g)T (T−1(x))T (g−1)

= T (g)x(T (g))−1

= TT (g)(x)

Thus TTgT
−1 = TT (g). But TT (g) ∈ I (G). Thus TTgT

−1 ∈ I (G) ∀ T ∈
A (G). Hence I (G) is a normal subgroup in A (G).

6. Let G be a group of order 4, G = {e, a, b, ab}, a2 = b2 = e, ab = ba.
Determine A (G).



Solution: The possible proper subgroups of G are {e, a}, {e, b}, {e, ab}. We aim
at finding a mapping T which is an automorphism. Since T is homomorphism,
therefore T (e) = e. Also once we have found T (a) and T (b), the value of T (ab)
get decided by itself as T (ab) = T (a)T (b). Now what could be the possible
values of T (a) so that T is an automorphism. Since o(a) = 2, so o(T (a)) must
be 2. The elements with order 2 are a, b, ab, so T (a) has three choices namely
a, b, ab. Once T (a) is decided, what could be the possible values for T (b). Again
order of b is 2, so the order of T (b) must be 2. Again we have three possible
candidates, a, b, ab, out of which one has already been fixed to T (a). So T (b)
has two choices. Thus we have 3× 2 = 6 possible automorphisms. Thus

A (G) =

{(
e a b ab
e a b ab

)
,

(
e a b ab
e a ab b

)
,

(
e a b ab
e b a ab

)
,(

e a b ab
e b ab a

)
,

(
e a b ab
e ab a b

)
,

(
e a b ab
e ab b a

)}

7. (a) A subgroup C of G is said to be a characteristic subgroup of G if T (C) ⊂ C
for all automorphisms T of G. Prove a characteristic subgroup of G must be a
normal subgroup of G.
(b) Prove that the converse of (a) is false.
Solution:
(a) We, for some g ∈ G, define Tg : G −→ G such that Tg(x) = gxg−1. It is
routine to check Tg is an automorphism of G for all g ∈ G. But it is given that
T (C) ⊂ C for all automorphisms T . So Tg(C) ⊂ C ∀ g ∈ G. But that means
gCg−1 ⊂ C, or gcg−1 ∈ C ∀ g ∈ G & ∀ c ∈ C. Thus C is normal in G.

(b) We simply give an example to show that converse of part(a) need not be
true. For G = {e, a, b, ab} with a2 = e, b2 = e and ab = ba; and C = {e, a};

and T =

(
e a b ab
e b a ab

)
, we have C is a normal subgroup of G but T (C) * C.

Note that T defined above is an automorphism of G.

8. For any group G, prove that the commutator subgroup G′ is a characteristic
subgroup of G. (See Problem 5, Section 2.7)
Solution: Let U = {xyx−1y−1 | x, y ∈ G}. So G′ = 〈U〉. Also if some u ∈ U ,
then u−1 ∈ U too. So if some a ∈ G′, then a =

∏
i∈Λ xiyix

−1
i y−1

i , where Λ is



some finite index set. But then

T (a) = T (
∏
i∈Λ

xiyix
−1
i y−1

i )

=
∏
i∈Λ

T (xiyix
−1
i y−1

i )

=
∏
i∈Λ

T (xi)T (yi)T (x−1
i )T (y−1

i )

=
∏
i∈Λ

T (xi)T (yi)(T (xi))
−1(T (yi))

−1

=
∏
i∈Λ

x′iy
′
ix
′−1
i y′−1

i

So T (a) ∈ G′ ∀ a ∈ G′. Thus T (G′) ⊂ G′. Hence G′ is a characteristic sub-
group of G.

9. If G is a group, N a normal subgroup of G, M a characteristic subgroup of
N , prove that M is a normal subgroup of G.
Solution: Let some g ∈ G. We define Tg : G −→ G such that Tg(x) = gxg−1.
Clearly Tg is an automorphism of G. Also Tg(N) = N as N is given to be
normal in G. Now consider Tg : N −→ N . Since Tg(N) = N , one can eas-
ily see Tg is an automorphism of N too. But then Tg(M) ⊂ M as M is
given to be a characteristic subgroup of N . So gMg−1 ⊂ M ∀g ∈ G, or
gmg−1 ∈M ∀ g ∈ G & ∀m ∈M . Hence M is normal in G.

10. Let G be a finite group, T an automorphism of G with the property that
T (x) = x for x ∈ G if and only if x = e. Prove that every g ∈ G can be
represented as g = x−1T (x) for some x ∈ G.
Solution: First note that G is given to be a finite group. We define mapping
φ : G −→ G such that φ(x) = x−1T (x). Clearly mapping so defined is well-
defined. Also

φ(a) = φ(b)⇒ a−1T (a) = b−1T (b)

⇒ T (a)(T (b))−1 = ab−1

⇒ T (ab−1) = ab−1

But T (x) = x implies x = e, so φ(a) = φ(b) implies ab−1 = e, i.e. a = b. Thus
mapping φ is one-to-one. But since G is finite, therefore φ being one-to-one
implies φ is onto too. But onto implies that if some g ∈ G, then it has its
pre-image in G, i.e. g = x−1T (x) for some x ∈ G. Hence every element g of G
can be represented as x−1T (x) for some x ∈ G.



11. Let G be a finite group, T an automorphism of G with the property that
T (x) = x if and only if x = e. Suppose further that T 2 = I. Prove that G must
be abelian.
Solution: Using previous problem, if some g ∈ G, then g = x−1T (x) for some
x ∈ G. So we have T (g) = T (x−1T (x)) = T (x−1)T (T (x)) = (T (x))−1T 2(x) =
(T (x))−1x = (x−1T (x))−1 = g−1. Thus T (g) = g−1 ∀ g ∈ G. Now let
a, b ∈ G. So we have

T (ab) = (ab)−1 = b−1a−1 (1)

Also
T (ab) = T (a)T (b) = a−1b−1 (2)

Using (1) and (2), we have

b−1a−1 = a−1b−1 ⇒ ab = ba

So we have ab = ba ∀ a, b ∈ G. Hence G is an abelian group.

∗12. Let G be a finite group and suppose the automorphism T sends more than
three-quarters of the elements of G onto their inverses. Prove that T (x) = x−1

for all a ∈ G and that G is abelian.
Solution: Define a set H = {x ∈ G | T (x) = x−1}. So we have o(H) > 3

4n.
Let some h ∈ H. Consider the set Hh. Clearly o(Hh) > 3

4n. Therefore
o(H ∩ Hh) > n

2 . Let some x ∈ H ∩ Hh. Therefore x = h1 and x = h2h, for
some h1, h2 ∈ H. Also since x ∈ H ∩Hh ⊂ H, therefore T (x) = x−1. So

T (x) = x−1 = h−1
1 (1)

T (x) = x−1 = (h2h)−1 = h−1h−1
2 (2)

T (x) = T (h2h) = T (h2)T (h) = h−1
2 h−1 (3)

Using (2) and (3), we get h−1h2−1 = h2−1h−1, or hh2 = h2h. Also h2 = xh−1,
so hh2 = h2h⇒ hxh−1 = xh−1h⇒ hx = xh. Thus we have

hx = xh ∀ x ∈ H ∩Hh (4)

Now consider N(h), i.e. normalizer subgroup of h. The equation (4) implies
H ∩ Hh ⊂ N(h). So o(N(h)) > n

2 . But N(h) being a subgroup of G, there-
fore o(N(h)) | o(G), forcing N(h) = G. But that means hg = gh ∀ g ∈ G.
So h ∈ Z ∀ h ∈ H, where Z is the center subgroup of G. So o(Z) > 3

4n.
Again Z being a subgroup of G, so o(Z) | o(G), forcing Z = G. But Z = G
implies G is abelian. Also if G is abelian, then if some x, y ∈ H, we have
T (xy−1) = T (x)T (y−1) = x−1(y−1)−1 = x−1y = (y−1x)−1 = (xy−1)−1, show-
ing xy−1 too belongs to H. Hence with G abelian, H becomes a subgroup of
G. But then o(H) | o(G), therefore H = G as o(H) > 3

4n. But H = G implies



T (x) = x−1 ∀ x ∈ G, what we need to show.

13. In Problem 12, can you find an example of a finite group which is non-
abelian and which has an automorphism which maps exactly three-quarters of
the elements of G onto their inverses?
Solution: Consider the Quaternion group Q = {±1,±i,±j,±k}. Let T =(

1 −1 i −i j −j k −k
1 −1 −i i −j j k −k

)
. We left it to the reader to check T is

an automorphism of Q which transfer exactly 3
4 elements of Q into their in-

verses.

∗14. Prove that every finite group having more than two elements has a non-
trivial automorphism.
Solution: Let G be some group with order greater than 2. Now either G is
non-abelian, or G is abelian. If G is non-abelian, then we have Z 6= G, where Z
is the center subgroup of G. So there is some g ∈ G such that g /∈ Z. We define
for some g /∈ Z, mapping T : G −→ G such that T (x) = gxg−1. We claim T so
defined is an automorphism which is not equal to identity mapping. T is an au-
tomorphism of G is easy to check. Also if T = I, then T (x) = x ∀ x ∈ G. But
that means gxg−1 = x ⇒ gx = xg ∀ x ∈ G, i.e. g ∈ Z which is not the case.
So T 6= I. So for non-abelian groups, we have found a non-trivial automorphism.

When G is abelian, either x2 = e for all x ∈ G or there is some x0 ∈ G such
that x2

0 6= e. If there is some x0 ∈ G such that x2
0 6= e, then we claim that the

mapping T : G −→ G such that T (x) = x−1 is a non-trivial automorphism of
G. Since G is abelian, T surely is an automorphism. Also if T = I, then we
have x−1 = x ∀ x ∈ G, i.e x2 = e ∀ x ∈ G, which is not the case. So T is a
non-trivial automorphism of G.

On the other hand, if G is abelian, with x2 = e ∀ x ∈ G, then for some positive
integer m

G ≈ Z2 × Z2 × · · · × Z2︸ ︷︷ ︸
m times

Note that here we have assumed G to be finite. But then there exist m inde-
pendent symbols, a1, a2, · · · , am with o(ai) = 2 ∀ i. By independent we mean
ai 6=

∏
j∈Λ aj for any index set Λ. So

G = 〈a1〉 × 〈a2〉 × · · · × 〈am〉

Also o(G) ≥ 3 guarantees us the existence of atleast two such independent
symbols, say a1 and a2. We define a mapping T : G −→ G such that T (a1) = a2,
T (a2) = a1 and for the rest of independent symbols ai, T (ai) = ai. Once defined



for independent symbols, we extend it for all elements of G using:

T (
∏
j∈Λ

aj) =
∏
j∈Λ

T (aj)

Clearly extending T this way for all elements of G makes T a homomorphism.
Also we can check T is onto. Thus we have found an automorphism of G which
is not equal to an identity mapping. Hence every finite group with order greater
than 2 has a non-trivial automorphism.

∗15. Let G be a group of order 2n. Suppose that half of the elements of G are
of order 2, and the other half form a subgroup H of order n. Prove that H is
of odd order and is an abelian subgroup of G.
Solution: Let K denotes the set of all elements with order 2. Therefore G =
H ∪ K. Also the index of H in G is 2, so H is a normal subgroup of G (See
problem 2, page 53). Let some k ∈ K, therefore k−1 = k. Also H being
normal in G implies kHk−1 = H. Let some h ∈ H, therefore h = kh1k

−1 for
some h1 ∈ H. So we have h = kh1k

−1 ⇒ hk = kh1; but hk ∈ K (Why), so
hk = (hk)−1. Thus kh1 = hk = (hk)−1 = k−1h−1 = kh−1 ⇒ h1 = h−1. Thus
we have h = kh−1k ∀ h ∈ H. Now let some x, y ∈ H, therefore x = kx−1k,
and y = ky−1k. So

xy = (kx−1k)(ky−1k) = kx−1kky−1k = kx−1y−1k (1)

Also
xy = k(xy)−1k = ky−1x−1k (2)

Using (1) and (2), we have

kx−1y−1k = ky−1x−1k ⇒ x−1y−1 = y−1x−1

⇒ yx = xy

So xy = yx ∀x, y ∈ H. Hence H is an abelian subgroup of G Also since there
is no element with order 2, so order of H is odd (See Problem 11, page 35).

∗16. Let φ(n) be the Euler φ-function. If a > 1 is an integer, prove that
n | φ(an − 1).
Solution: Let G be a cyclic group of order an − 1. The existence of such
G is guaranteed (Why). Therefore G = 〈x〉 for some x ∈ G. Define mapping
T : G −→ G such that T (y) = ya. Now since gcd(a, an−1) = 1, therefore T is an

automorphism of G, i.e T ∈ A (G). Also T 2(y) = TT (y) = T (ya) = ya
2

. So we
have Tn(y) = ya

n

. But ya
n−1 = e, where e is the identity element of G, therefore

ya
n

= y. So Tn(y) = y ∀ y ∈ G. Therefore Tn = I, where I is the identity
mapping. Next suppose for some positive integer m < n, we have Tm = I.
Then we have Tm(y) = y ∀ y ∈ G, in particular, we have Tm(x) = x. But



Tm(x) = x⇒ xa
m

= x⇒ xa
m−1 = e⇒ o(x) < an − 1, which is not true. Thus

n is the smallest possible integer for which Tn = I. Thus o(T ) = n in A (G).
Also G being finite cyclic group, therefore o(A (G)) = φ(o(G)) = φ(an − 1). So
by Lagrange Theorem, we get n | φ(an − 1).

17. Let G be a group and Z the center of G. If T is any automorphism of G,
prove that Z(T ) ⊂ Z.
Solution: We need to show that Z is a characteristic subgroup of G. For some
automorphism mapping T , we need to show T (Z) ⊂ Z. Let some z ∈ T (Z),
therefore there exist some x ∈ Z such that T (x) = z. But x ∈ Z im-
plies xg = gx ∀ g ∈ G. Since mapping T is one-to-one, therefore we have
T (xg) = T (gx) ∀ g ∈ G. But T (xg) = T (gx) ⇒ T (x)T (g) = T (g)T (x) ⇒
zT (g) = T (g)z ∀ g ∈ G. But since T is onto, therefore zT (g) = T (g)z ∀ g ∈
G⇒ zg′ = g′z ∀ g′ ∈ G, which says z ∈ Z. Therefore z ∈ T (Z)⇒ z ∈ Z. So
T (Z) ⊂ Z.

18. Let G be a group and T an automorphism of G. If, for a ∈ G, N(a) = {x ∈
G | xa = ax}, prove that N(T (a)) = T (N(a)).
Solution: We need to show N(T (a)) = T (N(a)) ∀ a ∈ G & T ∈ A (G). We
have N(T (a)) = {x ∈ G | xT (a) = T (a)x}. But since T is an onto mapping,
therefore

N(T (a)) = {T (x′) | x′ ∈ G & T (x′)T (a) = T (a)T (x′)}
= {T (x′) | x′ ∈ G & T (x′a) = T (ax′)}
= {T (x′) | x′ ∈ G & x′a = ax′}; since mapping is one-to-one

= {T (x′) | x′ ∈ N(a)}
= T (N(a))

19. Let G be a group and T an automorphism of G. If N is normal subgroup of
G such that T (N) ⊂ N , show how you could use T to define an automorphism
of G/N .
Solution:
20. Use the discussion following Lemma 2.8.3 to construct
(a) a non-abelian group of order 55.
(b) a non-abelian group of order 203.
Solution:
21. Let G be the group of order 9 generated by elements a, b, where a3 = b3 = e.
Find all automorphisms of G.
Solution: Again, as in Problem 6, we are going to exploit the fact that an
automorphism leaves the order of elements unchanged. G has four non-trivial
subgroups, which are {e, a, a2}; {e, b, b2}; {e, a2b, ab2}; {e, ab, a2b2}. Now the
element e has not choice but has to map to itself, so only 1 choice. The element



a has 8 choices for being get mapped as all elements other than e has same
order as a has. Once image of a is fixed, the image of a2 get fixed by itself as
T (a2) = T (a)T (a). So a2 has no choice. Next after fixing image of e, a, a2, the
element b has only 6 choices left. But fixing the image of a andb fixes the image
of remaining elements. So b2, ab, a2b2, a2b, ab2 have no choices. Thus the total
automorphisms of G are 8× 6 = 48. So o(A (G)) = 48.



Problems (Page 74)

1. Let G be a group; consider the mappings of G into itself, λg, defined for
g ∈ G by λg(x) = xg for all x ∈ G. Prove that λg is one-to-one and onto, and
that λgh = λhλg.
Solution: We start with one-to-one. Suppose λg(x) = λg(y). But λg(x) =
λg(y) ⇒ xg = yg ⇒ x = y. So λg(x) = λg(y) implies x = y, showing λg is
one-to-one mapping. Next we tackle onto. Suppose some y ∈ G. But then for
x = yg−1 ∈ G, we have λg(x) = (yg−1)g = y. This shows x is the inverse-
image of y. Thus λg is onto too. Finally, we have λgh(x) = xgh = (λg(x))h =
λh(λg(x)) = λhλg(x) for all x ∈ G. Thus λgh = λhλg.

2. Let λg be defined as in Problem 1, τg as in the proof of Theorem 2.9.1. Prove
that for any g, h ∈ G, the mappings λg, τh satisfy λgτh = τhλg. (Hint: For
x ∈ G consider λgτh(x) and τhλg(x).)
Solution: We recap our notation, mapping λg : x −→ xg and τh : x −→ hx.
Now we have for all x ∈ G, λgτh(x) = λg(τh(x)) = λg(hx) = hxg = τh(xg) =
τh(λg(x)) = τhλg(x). Thus λgτh = τhλg.

3.If θ is one-to-one mapping of G onto itself such that λgθ = θλg for all g ∈ G,
prove that θ = τh for some h ∈ G.
Solution: We are given θ is an one-to-one and onto mapping with λgθ =
θλg ∀ g ∈ G. So we have λgθ(x) = θλg(x) ∀ g, x ∈ G⇒ θ(x)g = θ(xg) ∀ g,
x ∈ G. Since it holds for all x ∈ G, in particular must hold for x = e. Thus we
have θ(e)g = θ(g). Since θ(e) ∈ G, so we let θ(e) = h for some h ∈ G. Thus we
have θ(g) = hg ∀ g ∈ G. But that means θ = τh, hence the result.

4. (a) If H is a subgroup of G show that for every g ∈ G, gHg−1 is a subgroup
of G.
(b) Prove that W = intersection of all gHg−1 is a normal subgroup of G.
Solution:
(a) Consider gHg−1 for some g ∈ G. Let x, y ∈ gHg−1, therefore x = gh1g

−1

and y = gh2g
−1 for some h1, h2 ∈ H. But then xy−1 = gh1g

−1(gh2g
−1)−1 =

gh1g
−1gh−1

2 g−1 = gh1h
−1
2 g−1 = gh3g

−1 for some h3 ∈ H. Thus xy−1 ∈
gHg−1 ∀ x, y ∈ gHg−1. Hence gHg−1 is a subgroup of G for all g ∈ G.

(b) We have W =
⋂
g∈G

gHg−1. Let some x ∈ G. Consider xWx−1. We

have xWx−1 = x(
⋂
g∈G

gHg−1)x−1 =
⋂
g∈G

x(gHg−1)x−1 =
⋂
g∈G

xgHg−1x−1 =⋂
g∈G

(xg)H(xg)−1. But since the mapping φ : G −→ G such that φ(g) = xg is

an onto mapping, so xWx−1 =
⋂
g∈G

(xg)H(xg)−1 =
⋂
g′∈G

g′Hg′−1 = W . But



xWx−1 = W ∀ x ∈ G implies W is normal in G.

5. Using Lemma 2.9.1 prove that a group of order p2, where p is a prime num-
ber, must have a normal subgroup of order p.
Solution: Let G be a group with order p2. Since p | o(G) and p is a prime num-
ber, therefore the Cauchy’s Theorem guarantees us existence of an element a of
order p. Let H = 〈a〉. Therefore H is a subgroup of order p. Now since p2 6 | p!,
therefore we have o(G)6 | iG(H)!. So using Lemma 2.9.1, we have Kθ 6= {e},
along with Kθ ⊂ H and Kθ normal in G. But then o(H) = p, a prime number,
forces Kθ = H. Thus H is normal in G.

6. Show that in a group G of order p2 any normal subgroup of order p must lie
in the center of G.
Solution: Let H be the normal subgroup of G. Let some h ∈ H and some
g ∈ G. We have ghg−1 ∈ H as H is normal in G. If h = e, then we have
ghg−1 = h, or gh = hg ∀ g ∈ G. Next we assume h 6= e, so H = 〈h〉. Now
since the o(g) | o(G), therefore o(g) = 1, p, p2. When o(g) = 1, then we have
g = e, and so ghg−1 = g, or hg = hg. When o(g) = p, we have ghg−1 ∈ H.
Since H = 〈h〉, therefore ghg−1 = hi for some positive integer i < p. With this
have h = gphg−p = gp−1(ghg−1)g−(p−1) = gp−1(hi)g−(p−1) = · · · = hi

p

. So
hi

p−1 = e, but o(h) = p, therefore p | ip − 1, or ip = 1 mod p. But we have,
from Fermat theorem ip = i mod p. From these two equations, we conclude
i = 1 mod p, or i = 1. Thus we have ghg−1 = h, or gh = hg, for all h ∈ H and
for all g of order p. Finally, when o(g) = p2, we have G = 〈g〉, therefore G is
abelian and we have gh = hg in this case too. Thus we concluded gh = hg for
all h ∈ H and for all g ∈ G. And so h ∈ Z ∀ h ∈ H, where Z is the center
subgroup of G. Hence H ⊂ Z.

7. Using the result of Problem 6, prove that any group of order p2 is abelian.
Solution: Let G be a group with order p2. Problem 5 implies that there exist
a normal subgroup H of order p. But since p is a prime number, therefore
H = 〈a〉 for some a ∈ H. But since o(G) = p2, therefore there exist b ∈ G
such that b /∈ H. Let K = 〈b〉. Now order of b divides order of G, therefore
o(b) = 1 or p or p2. If o(b) = 1, then we have b = e ∈ H, which is contravene our
assumption. So o(b) 6= 1. Next if o(b) = p, then since o(G) 6 | iG(K)!, we have
K too normal in G. Therefore, Problem 6 implies H,K ⊂ Z. And so HK ∈ Z.
But o(HK) = o(H)o(K)/o(H ∩K) = p2 as H ∩K = {e}. Therefore o(Z) ≥ p2,
forcing Z = G, making G an abelian group. Finally if o(b) = p2, then we have
G = 〈b〉 and hence abelian in this case too. So we concluded G is an abelian
group.

8. If p is a prime number, prove that any group G of order 2p must have a



subgroup of order p, and that this subgroup is normal in G.
Solution: Cauchy Theorem guarantees the existence of an element a ∈ G such
that o(a) = p. But then H = 〈a〉 is a subgroup of G with o(H) = p. Also since
2p6 | 2!, therefore o(G)6 | iG(H)!. But then there exists a normal subgroup K of
G inside H with K 6= {e}. So we have o(K) | o(H) and with o(H) being prime
forces K = H. Thus H is normal in G.

9. If o(G) is pq where p and q are distinct prime numbers and if G has a normal
subgroup of order p and a normal subgroup of order q, prove that G is cyclic.
Solution: We are given a group G with o(G) = pq, where p, q are prime
numbers. Also we are given H,K normal subgroups of G with o(H) = p and
o(K) = q. So we have H = 〈a〉 for some a ∈ H; and K = 〈b〉 for some
b ∈ K. Also since p and q are distinct primes, so we have H ∩ K = {e}.
We claim ab = ba. To establish our claim, consider aba−1b−1. We have
aba−1b−1 = a(ba−1b−1) = ah for some h ∈ H. Therefore aba−1b−1 ∈ H. Again,
aba−1b−1 = (aba−1)b−1 = kb−1 for some k ∈ K. Therefore aba−1b−1 ∈ K. So
aba−1b−1 ∈ H ∩ K = {e}. That is aba−1b−1 = e ⇒ ab = ba. Next we claim
o(ab) = pq, so that G = 〈ab〉, i.e. a cyclic group. We have (ab)pq = apqbpq,
as ab = ba. Therefore (ab)pq = apqbpq = (ap)q(bq)p = eqep = e. Therefore
pq | o(ab). Suppose for some positive integer t with t < pq, we have (ab)t = e.
But (ab)t = e ⇒ atbt = e ⇒ at = b−t ⇒ atq = (bq)−t ⇒ atq = e ⇒ o(a) | tq ⇒
p | tq ⇒ p | t as gcd(p, q) = 1. Similarly, we have q | t. But then we have pq | t,
implying t > pq as p 6= 0, which is against our assumption. So we have pq as
the smallest positive integer for which (ab)pq = e, implying o(ab) = pq. Thus
G = 〈ab〉 and is cyclic.

∗10. Let o(G) be pq, p > q are primes, prove
(a) G has a subgroup of order p and a subgroup of order q.
(b) If q 6 | p− 1, then G is cyclic.
(c) Given two primes p, q, q | p− 1, there exists a non-abelian group of order pq.
(d) Any two non-abelian groups of order pq are isomorphic.
Solution:
(a)



Problems (Page 80)

1. Find the orbit and cycles of the following permutations:

(a)

(
1 2 3 4 5 6 7 8 9
2 3 4 5 1 6 7 9 8

)
(b)

(
1 2 3 4 5 6
6 5 4 3 1 2

)
Solution:

(a) Clearly

(
1 2 3 4 5 6 7 8 9
2 3 4 5 1 6 7 9 8

)
= (1, 2, 3, 4, 5)(6)(7)(8, 9). So orbit

of 1, 2, 3, 4 and 5 is the set {1, 2, 3, 4, 5}; orbit of 6 is 6; orbit of 7 is 7; orbit of
8 and 9 is the set {8, 9}. Also (1, 2, 3, 4, 5) and (8, 9) are its cycles.

(b) Again

(
1 2 3 4 5 6
6 5 4 3 1 2

)
= (1, 6, 2, 5)(3, 4). So the orbit of 1, 2, 5 and 6

is the set {1, 2, 5, 6}; and the orbit of 3 and 4 is the set {3, 4}. Also (1, 6, 2, 5)
and (3, 4) are its cycles.

2. Write the permutation in the Problem 1 as the product of disjoint cycles.

Solution: We have

(
1 2 3 4 5 6 7 8 9
2 3 4 5 1 6 7 9 8

)
= (1, 2, 3, 4, 5)(6)(7)(8, 9)

and

(
1 2 3 4 5 6
6 5 4 3 1 2

)
= (1, 6, 2, 5)(3, 4).

3. Express as the product of disjoint cycles:
(a) (1, 5)(1, 6, 7, 8, 9)(4, 5)(1, 2, 3).
(b) (1, 2)(1, 2, 3)(1, 2).

Solution:
(a) Let (1, 5)(1, 6, 7, 8, 9)(4, 5)(1, 2, 3) = τ . So we have τ = τ1τ2τ3τ4, where
τ1 = (1, 5), τ2 = (1, 6, 7, 8, 9), τ3 = (4, 5) and τ4 = (1, 2, 3). Now

τ(1) = τ1τ2τ3τ4(1)

= τ1(τ2(τ3(τ4(1))))

= τ1(τ2(τ3(2)))

= τ1(τ2(2))

= τ1(2)

= 2

Repeating analogously, we have τ(2) = 3; τ(3) = 6; τ(6) = 7; τ(7) = 8; τ(8) = 9;

τ(9) = 5; τ(5) = 4; and τ(4) = 1. Thus we have τ =

(
1 2 3 4 5 6 7 8 9
2 3 6 1 4 7 8 9 5

)
=

(1, 2, 3, 6, 7, 8, 9, 5, 4).

(b) Proceeding as in part (a), we have (1, 2)(1, 2, 3)(1, 2) = (1, 3, 2).



4. Prove that (1, 2, . . . , n)−1 = (n, n− 1, n− 2, . . . , 2, 1).
Solution: One can easily check (1, 2, . . . , n)(n, n− 1, . . . , 1) = I, where I is the
identity permutation. Hence (1, 2, . . . , n)−1 = (n, n− 1, . . . , 1).

5. Find the cycle structure of all the powers of (1, 2, . . . , 8).
Solution: Let (1, 2, 3, 4, 5, 6, 7, 8) = τ . So we have

τ2 = ττ = (1, 2, 3, 4, 5, 6, 7, 8)(1, 2, 3, 4, 5, 6, 7, 8)

= (1, 3, 5, 7)(2, 4, 6, 8)

τ3 = τ2τ = (1, 3, 5, 7)(2, 4, 6, 8)(1, 2, 3, 4, 5, 6, 7, 8, 9)

= (1, 4, 7, 2, 5, 8, 3, 6)

τ4 = τ3τ = (1, 4, 7, 2, 5, 8, 3, 6)(1, 2, 3, 4, 5, 6, 7, 8, 9)

= (1, 5)(2, 6)(3, 7)(4, 8)

τ5 = τ4τ = (1, 5)(2, 6)(3, 7)(4, 8)(1, 2, 3, 4, 5, 6, 7, 8, 9)

= (1, 6, 3, 8, 5, 2, 7, 4)

τ6 = τ5τ = (1, 6, 3, 8, 5, 2, 7, 4)(1, 2, 3, 4, 5, 6, 7, 8, 9)

= (1, 7, 5, 3)(2, 8, 6, 4)

τ7 = τ6τ = (1, 7, 5, 3)(2, 8, 6, 4)(1, 2, 3, 4, 5, 6, 7, 8, 9)

= (1, 8, 7, 6, 5, 4, 3, 2)

τ8 = τ7τ = (1, 8, 7, 6, 5, 4, 3, 2)(1, 2, 3, 4, 5, 6, 7, 8, 9)

= (1)(2)(3)(4)(5)(6)(7)(8) = I

So for i ∈ Z, we have τ i = τ i mod 8


