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Foreword

The distinguished authors of this book on ‘Partial Differential Eguations’
have written a most valaable account of the subject, which gives a really
comprehensive introduction to all those parts of the theory of partial diffe-
rential equations that are needed in practical applications of that theory,
whether in the physical sciences or in the different branches of engineering,
The book is also set out excellently as a body of mathematical analysis of
wide general interest, All the essential ideas of the subject are explained with
great clarity. We can particularly admire the way in which ideas are first in-
troduced in relatively simple cases and then gradually extended to more
complicated cases and to more advanced applications.

There has long been a deeply felt need for a high-class textbook at this
level giving a comprehensive introduction to the theory of partial differential
equatiions. That significant gap in the existing p.d.c. literature is now admi-
rably filled by the excellent work which Dr. Prasad and Dr. Ravindran have
jointly produced. .

Sir JAMES LiGHTHILL






Preface

_ The theory of partial differential equations is a subjéct that has grown beyond
all expectations. Tt has found its way into all branches of science and engi-
neering due to its wide range of applications.

It is difficult to choose suitable material for an introductory course on
partial differential equations. This is due-not only to the extensive material
available on the subjéct, but also to the fact that there is more than one
approach to the study of the subject. On the one hand we have a classical
treatment of wellknown equations, including those arising in physics and
mechanics. On the other hand we have new and powerful methods, such as
Fourier analysis and distribution theory, to deal with more general linear
equations. '

The people who study partial differential equations are also a varied group-
students of M. Sc. and M. Phil. degrees in Mathematics, M. Tech. and M.E.
in the engineering disciplines, research scientists and engineers and teachers
in universities. A large proportion of this group is interested in a basic intro-
ductory course, in which theory and application are interrelated and devélop
side by side. This requires not only rigorous, but also constructive proofs,
emphasising the structure and properties of solutions. With this i mind, we
have had to omit the more general approach through the study of linear
operators. We have preferred to bring out the effect of nonlinear terms in
the equations from the very beginning of the book as the study of nonlinear
phenomena is fast gaining in importance. .

This book has grown out of our experience of teaching partial differential
equations at the Indian Institute of Science for the last fourteen years to
students and research workers in mathematics, science and engineering. Our
aim has been to present in this book not only a rigorous introduction to the
theory of partial differential equations, but also the material useful for appli-
cations. The book can be covered in a two semester course on partial diffe-
rential equations. Tt could also be used for a one semester course, if the
starred sections are omitted.

The authors are grateful to Prof. V.G. Tikekar who has rendered most
valuable help through constructive criticism of the original manuscript. -
The authors thank Dr. B.1, Venkatachala for providing Fig. 8,%.in Chapter 3.
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CHAPTER 1

Single First Order Partial
Differential Equations

§ 1 MEANING OF A PARTIAL DIFFERENTIAL EQUATION

A partial differential equation for a function #(xx) of m independent vari-
ables xy (x=1, 2, ..., m)} is a relationship between the function and its par-
tial derivatives ux,, #x,xg, -+ . We represent this relationship in the form

F(xb veey KXoy U ux]s Tt uxm; ”xlxIQ uJClxz"‘) =0 ‘ (1.1)
or briefly
F(xa, tt, Uy Ungrgy ++-)=0

where only a finite number of derivatives occur on the left hand side and
the function ¥ is defined over a domain Ds in the space of the variables
appearing in its arguments.” The order of the partial differential equation is
the order of the highest derivatives appearing in the function F.

A classical {or genuine) solution of the partial differential equation is a
function #=u(x,) defined over a domain D of (x.)-space such that all partial
derivatives of u appearing in the equation exist and are continuous in D,

(xac, u(xrx), li’xﬁ(xoc)s ux'gx,,(Xm): ) & D;

when x. € D and _
Fxa, t(¥a), the{Xa), ttege(Xa), ) =0

for all (xx) € D. We also say that the function u(x.) satisfies equation {1.1).
We shall refer to a genuine solution simpiy as a solation.

In the discussion of partial differential equations, we shall assume that all
functions are real-valued functions with real arguments unless otherwise
stated.

The simplest partial differential equations to study are those of the first
order for the determination of just one unknown function. Apart from the

* D denotes a domain in (x¢)-space where a solution is defined, D, is a domain where
the coefficients of a linear equation are defined, D, is a domain in (xw, #)-space and
Dy is a domain in (x, , #, He,, Wegap, ---) SPACE



2 Single First Order Partial Differential Equations

fact that they form the basis of the study of a class of higher order equa-
tions, called hyperbolic equations (see Chapter 2 § 1, and Chapter 3), they
are the simplest kind of equations for which methods of solution are avail-
able and for which the existence, uniqueness, and stability can be discussed
in great detail. In this chapter, we shall present some basic results concern-
ing first order partial differential equation.

§ 1.1 First Order Partiai Differential Fquations in Two Independent
Variables and the Canchy Problem

general form is given by
F(xs Yy U, tx, uy)=0 : . (12)

where Fis a known fanction of its arguments. When the function ¥ is not
a linear expression in u, and uy, the equation (1.2) is said to be g nonlinear
equation. When F is a linear expression in ux and u,, but not necessarily
linear in # the equation is ‘

alx, v, Wus+b(x, y, 1, = c(x, p, u) (1.3)

where ¢ and b depend on ¥ also, This equation is called a quasilinear equa-
tion, A first order semilinear equation is an equation of the form

a(x, Y+ b(x, y)uy=c(3c, ¥, u) (1.4)

where the coefficients of w, and ty do not depend on  and the nonlinearity
in the equation is présent only in the inhomogeneons term on the right hand
side of (1.4). A Iinear first order equation is of the form '

a(x, y)ux+b(x, y)u3f= eilx, P)u+ exflx, ) ' ¢! .5)

‘where the dependent variable u and its partial derivatives iy, ty ail appear
linearly with a, 5, ¢, and 2 as functions of x and Yy only. B

The solution u=u(x, y) represents a surface in (x, y, ) space. This sur-
face is cailed an integral surface of the partial differentia] equation.

While dealing with partial differential equationg appearing in science and
engineering, we rarely try to {ind out or discuss properties of a solution in its
most general form. Almost always we dea] with those solutions of differential
equations which satisfy certain conditions. Tn the case of first order partial
differential equations, the search for these specific solutions can be formu-
lated as a Cauchy problem, .

The Cauchy Problem. Consider an interval I on the real line and three arbi-
trary functions x4(n), yo(n) and uo(n) of a single variable 7 < 7 such that the
derivatives x,(n) and Yo(n) are piecewise continnous and (xt’,)2+(y(;)2 # (.
A Cauchy problem for a first order equation (1.2) is to find a domain D in
(x. ¥) plane containing (xy(n), yo(7)) for allm € 7 and a solytion = u(x, y)



21 ' Semilinear Fquations 3

of the equation such that

- a(x(n), yolm)) = ua() 4 (1.6)
for all values of n = 1. o '
Geometrically, x = xo(1), ¥ = yo(n) represent a curve y in (x, y) plane, We
call this curve a datum curve. The Cauchy problem is to determine a solu-
tion of F(x, y, u, ux, #)=0 in a neighbourhood of y such that « takes pres-
cribed values (%) on v,
The solution of the Cauchy problem aiso involves such questions as the

conditions on the functions F, xo(7), yg(n) and uﬂ('q) under which a solution
exists and is unique. :

§ 2 SEMILINEAR AND QUASILINEAR EQUATIONS IN TWO
INDEPENDENT VARIABLES

We start with a semilinear equation instead of a linear equation as the
theory of the former does not require any special treatment as compared to
that of the latter,

§ 2.1 Semilinear Equations

Consider a single semilinear first order equation in two independent vari-

ables (x, ») for a single unknown. quantity: )

alx, e +b(x, Yy =clx, y,u). 1)
We assume that a, b, ¢, are continuously differentiable functions of their
arguments and @ and » are not simultaneously zero, a, b & C'(Dy) ard
¢ € CY(D2), where Dy and D2are domains in{x, y)-plane and (x, y, u)-space
respectively, such that whenever (x, y, u) & Dy, (x, V) € Dy,

At a given point (x, ) & Dy the left hand side of {2.1) represents a deri-
vative of u{x, y) in the direction of the vector {a{x, ), b(x, ¥)). Therefore,
if we consider a one parameter family of curves whose tangent at each point
is in the above direction i.e., the family of curves defined by the ordinary
differential equation : :

dy _blx, y)
A it B 2.2
a(x: Y) : ( )
‘the variation of u 'élong these curves is given by %= tx+ fi—y = ai{%-bﬂ,
which with the help of {2.1) gives ' o
du _ c(x, y,u) :
o o 2.
dx  al(x, y) 2.3)

Consider a curve represenied by a solution of equation (2.2). We can choose
a variable o such that this curve has a parametric representation x = x(c),
y=y(o) and x(o) and () satlsfy a pair of ordmary differential equatlons

Dodiny, Dby, @4
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Then the variation of # along the curve is given by
% =c(x, y, u). (2.5)

Equations (2.2) or (2.4) are called characteristic equations. The solution

of (2.2) can be written in the form

. S, y, O)=0 (2.6)
where C is a constant of integration. This equation represents a one-paras
meter family of curves with C as the parameter. We call these curves the
characteristic curves of the partial differential equation, In the domain Dy
consider another curve x = xO (), y=yO(n) such that it is nowhere tangen-
tial to the characteristic curves, Solving (2.4) with the condition x = x'0(n),
¥=y%n) at c=0, we get a solution of the form

¥=x(@, ), y=y(,q). 2.7

Because of the equivalence of (2.2) and (2.4), the equation (2.7) also repre-
sents the one-parameter family of characteristic curves of equation (2.1), In
the parametric representation (2.7), ¢ varies along a characteristic curve. 7
remains constant along a characteristic curve and different values of 4
determine different characteristic curves. The equation (2.3) or {2.3) is
called compatibility condition along a characteristic curve,

Suppose that u(x, y) is assigned an initial value u, at a point (xg, 1) in
(x, y)-plane. Since a(x, ¥}, b(x, ) and c(x, y, u) are C' functions of their
arguments, the initial value problem for the ordinary differential equations
(2.4) and (2.5) with initial values, xg, yo, wohas a unique solution, Therefore,
through the point (x,, Jo) there passes a unique characteristic curve given by

x=x(x0, o, @),  y=3(x0, yo, 0) (2.8)
and along this curve : P
=u(xo, Yo, 1y, ) 2.9

is uniquely determined by the equation {2.5). This shows that, if » is given

-.at any point, it is uniquely determined everywhere along the characteristic
curve (denoted by C,) passing through the point as long as it does not pass
through a singular point* and as long as (x, y, #) remains in Da, where
e(x, , u)is defined. This suggests the following method of solution of the
Cauchy problem stated in §1.1.

We take an arbitrary point Po(xo(m), yo(2) on the datum curve y. The
value of u at Py is uy(n). Solving the characteristic equations and the com-
patibility condition with initial values x = xo(m), ¥= po(n), =uy(n) at o= 0
we get

x = x(xo(n), yo(n), @), p=(xo(n), yo(), o) (2.10)
and
u=ulxo(n), yo(n), u(m), o), _ (2.11)

*In the present case, when a, b€ (D), a singular point cortesponds to a point
where both ¢ and » vanish simultaneously,
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Solving the pair of equations (2.10) for o and % in terms of x, y and substi-
tuting in (2.11) we get a solution of the Cauchy problem in a neighbour-
hood of the curve y.

Yl

/

5/{>/ ' X

Fig, 2.1. Solution of a cauchy problem with the
help of characteristic Curves C..

Y

As shown in Theorem 2.1 on page 10, the method fails if the curve ¥ coin-
cides with a characteristic curve. From the compatibility condition (2.5) we
also note that if ¥ is a characteristic curve, the variation of the Cauchy data
(%) on y is constrained by the relation (2.5) and so cannot be arbitrarily
prescribed on it.

Example 2.1 Consider a Cauchy problem for the partial differential equation
20+ 3up=1 ' (2.42)

with Cauchy data prescribed on the straight line y : Bx —ay =0, where « and
8 are constants. A parametric representation of the Cauchy data is

x=an, y=pBn, ulen, fy)=f(1) (2.13)

where f(7) isa given function.

The characteristic curve passing through a point (¢, fy) is obtained by
solving the equations (2.4) with a= 2 and b=3 in the form -
: x=20+ay, yp=3c+fn (2.14)
The compatibility condition- giving the rate of change of the variable u
along a characteristic is (2.5) with ¢= 1. Integrating it with the initial ‘con-
dition u=f(n) at c=0, we get

u=0a+f(n).

Solving o and 7 from (2.14) and substituting in the above we get

_oty—.ﬁx 3x—2y
u—3m__2'8+f( 3m_2ﬁ) (2.15)

provided we assume that ‘
3a—28 5 0, ' (2.16)



given function Sy s continuously differentiable, Then tz and uy are C?
functions in the entire (x, y)-p]an¢ and satisfy the equation (2.12).

When the constants « and £ are such that 3« —2B8=0 the above method
of finding the solution breaks down. In this Case the straight line y js itself

a characteristic curve, Along a characteristic curve gfzz. Comparing with

the first equation in (2.13), we cantake the variable o to be the same as % 7.

The compatibility condition (2.5) shows that the function f(9) in the

above Cauchy problem cannot be arbitrarily prescribed but must satisfy the
relation '

__f’;f;_ﬁg’?) =F2°°_. o (2.17)

This condition completely ‘determines the function J(n) except for a constant
of integration: ' ’

f(v})z%n.- . S @18

It is simple to check that this “characteristic Cauchy problem” with the
Cauchy data

= -—i & = g
( ‘ x.‘.'“"?s —2 s u_z Ui
has solutions of the form
u=%x-l—g(3x—2y) _ (2.19)

where g(#) is an arbitrary C* function of ¢ and satisfies
' g(0)=0,

This example verifies a general property, namely, the solution of a characte-

tistic Cauchy problem when jt exists, is nonunique in that i l'nvolvcs:i an
_arbitrary function,

EXERCISE 2.1

‘1. Show that g characteristic of the equation yy — g, = touches the
branch of the hyperbola xp =1 in the first quadrant of the (x, y)-plane at
at the point 2(1, 1), Verify that the point P divides the hyperbola into
two portions such that the Cauchy data prescribed O one portion
determines the value of % on the other portion,

2. Find the characteristics of the equations

(i) yux—"xuy:O,
(D) 2xpuy—(x2 4 2y, = 0,
(iii) (x2— P2 Dy + 2xpuy=10,
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3. Traw the characteristics of 2(i) and hence show that every solution
- of the equation is an even function of both variables x and y.
4 Find the solution of the equation 2(i) given that

o u(x, 0)=x% — o< x < 0.

5. Show that if u is prescribed on the interval 0 < y < 1 of the y-axis,
the solution of 2(iii) is completely determined in the first quadrant of
the (x, y)-plane. - _ _ '

6. Find the solution of the partial differential equation

_ 1Pt (- D=
satisfying the condition u(x, 0)= —1—x for —1-<< x <<oo. .
Discuss the nature of the characteristics starting from the various
points of the x-axis and show that the solution is determined in the
domain bounded by the curves xy=—1, x= -1 and y=1.

7 Tind the solutions of the following Cauchy problems and the domains

in which they are determined in the (x, y)-plane:

(i) yus -+ xuy = 20 with u(x, 0)= f(x) forx > 0,
(i) yux+Xuy=2u with #(0, y)=g(y) for y > 0,
(i) wx+up=2u? with u(x, 0)=1 for ~00 < X < 0o,

§2.2 Quasilinear Equations

Now, we pass on to the general quasilinear equation of the first order
alx, p, Wtz b(x, y, huy=c(x, ¥, ¥) (2.20)

_where the coeflicients @ and b depend on the dependent variable # also. e
assume that a, b, ¢ are C! functions in a domain D of (x, y, t)-space. We
recall here the geometrical interpretation of a solution 1 = u(x, y) as a surface
in (x, v, w)-space, called integral surface. The direction ratios of the normal
to the surface are (ux, iy, — 1), so that writing (2.20) as

(a, b, €) (ux, tty,—1)=0 {2.21)
where the left hand side is the scalar product of two vectors, we can inter-
pret the equation as being equivalent to a condition that the integral surface
at each point has the property that the vector (a, b, ¢) is tangential to the
surface. : . ,

At any point (x, y, u) in Da, the vector (alx, y, u), b(x, v, ), c(x, ¥, ¥)
defines a direction, called Monge direction.* Therefore, the coeflicients in the
equation (2.20) define a direction field, i.e. the field of Monge directions in
the domain Dz of (x, y, u)-space. A surface = u(x, ¥) is an integral surface,

#I 1 most of the books the Monge direction and Monge curve are called characteristic
direction and characteristic curve; these terms we reserve for the projections of the
Monge direction and the Monge curve on the (x, y)-plane respectively. Similarly, instead
of calling all the three equations given by (2.23) and (2.24) as characteristic equations we
shall. calt only the two equations (2.23 characteristic equations and the equation (2.24)
- the compatibility condition. . ) ‘



8 Single Fipst Order Partigl Diferential Equarigns

Monge direction at that point. Thys at a given point (x ¥, u} the tangent
plane of the integral surface has one degree of freedom, ie, jt can rotate

dx H_ﬁ__iy__ﬁ__ © du
%, v, 1)~ B(x, y,m) - clx, ¥, u) " (2‘22)

In terms of a parameter o, such that do is the common value of the three
ratios in (2.22), we can write the characteristic equations and the compati-
bility condition respectively as

d d) '

—df— =alx, y, u), gf} =b(x, y, w) (2.23)
and

dd: c(x, », u), (2.249)

u=u%mny, n,), such that it nowhere touches a Monge curve. Solving the
system of equations (2.23) and (2.24), with the condition x=x9n1, 5,)
y=3y%n, n,), u=un,, 1,) at o = » We get a representation of the Monge
curves, in the form '

x=x(c, 1y, ), p= (o, W M)y u=ula, 9, q.), (2.25)

The totality of ‘Monge curves form 5 two-parameter family of curves with
patameters u; and »,, '

The projection of 5 Monge curve on (x, y)-plane is called g characteristic

(in (x, y)-plane) of 3 quasilinear equation form a two parameter family of
curves. For a given solution, -y js g known function of x and y, and the

curves in the (x, ¥)-plane,

Example 2.2 Consider the partial differentia] equation
Uyt uy=0.
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The Monge curve thrbugh the point (xg, yo, up) is ther straight line given by
the equations

x—Xo=ug(y—yo)s u=uy.

~ The characteristic curves through an arbitrary point (xq, yo) in (x, ¥)-plane
is the one parameter family of straight lines passing through the point and
depending on the parameter u,,

.Counsider a surface generated by a one parameter sub-family of Monge
curves. The tangent plane at a point of the surface contains the Monge
direction at that point. Therefore, every surface generated by a one parameter
sub-family of Monge curves is an integral surface of (2.20). The converse of this
statement is also true. Let u =u(x, y) be an integral surface S, Let x = xg{7),
y=yo(n), u=1uy(n} == u(xo(n), yo(n)) be a space curve lying on § and sup- -
pose that the functions x¢(7), va(n) are so prescribed that this curve is not a
Monge curve. Consider the solution of '

j_j =alx, y, u(x, y)), %= b(x, y, u(x, ) (2.26)

with x =xo(n), y=yo(n) at ¢=0 in the form x=x(e, 1), y=¥(o, 7). In (2.26)
u is a known function of x, y from the equation of the integral surface .
Then along the one parameter family of curves

x=x(a, n), y=y(o, n), u=ulx(o, 1), y(o, 7)); (2.27)
with % as parameter

[ 9
lying on S, we have
du dx  d
T ot = au buy=o(x, y, u). (2.28)

In view of (2.26) and (2.28), we infer that the curves (2.27) are Monge
curves. These Monge curves generate the integral surface S as 7 varies. We
have shown that starting from a non-Monge curve on an integral surface,
we can determine a one-parameter sub-family of Monge curves that generate
the surface. Thus any integral surface S is generated by a family of Monge
curves depending on a single parameter 7. ‘

Now we have also proved that through an arbitrary point of an integral
surface there passes a Monge curve which lies entirely on the integral sui-
face. This with the uniqueness theorem of the solution of an initial value
problem of the ordinary differential equations (2.23) and (2.24) implies, that
if a Monge curve is tangential to an integral surface at any point, it lies
entirely on the integral surface. :

We can now present a method for the solution of a Cauchy problem for
the quasilinear equation (2.20). We first note that geometrically x = xq(1),
¥=po(m), u=uln) represents a curve I in (x, y, u)-space. We call this curve
an initial curve. The datum curve ¥, on which the Cauchy data is prescribed,
is the projection of I" on the (x, y)-plane. A geometrical interpretation of a
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Cauchy problem for a first order partial differential cquation is to find an
integral surface of the equation passing through the initial curve I". The
results of the last two paragraphs show that in order to solve a Cauchy
problem we just have to find the surface generated by the one parameter
family of Monge curves, starting from the points (xo(n), yo(m), uo(n)), in the
form ‘

x=x(o, n), y=y(o, 7), u= u(a, 7). | (2.29)

This is a parametric representation of the equation of the required integral
surface, We shall again have to exclude datum curves which are tangential
to the characteristic curves, We present here a precise formulation in the
following theorem.

Theorem 2.7 Let xo(1), yu(n) and ty(m) be continuously differentiable func-
tions of % in a closed interval, say [0, 1] and @, b, ¢ be functions of x, »,ou
having continnous first order partial derivatives with respect to their argu-~
ments in some domain D, of (x, y, u)-space containing the initial curve

s x=xo(m), y=yu(m), u=un); 0 <9 < 1 ' (2.30)

and satisfying the condition

dydng ) a(xo(m), yo(n), uo(n))—d—?él)b(xﬂ(n), 7o), wo(m)#0,  (2.31)

Then there exists a solution u=u(x, y) of the quasilinear equation (2.20) in
- the neighbourhood of the datum curve y ; x=xo(m), p= Yo(n} and satisfying
the condition (1.6), namely

() = m(xo(n), po(m)), 0 < 7 < 1 (2.32)

. and the solution is unique.

Nate The condition (2.31) excludes the possibility that y could be a charac-
teristic curve..

Proof Since a, b, ¢ have continuous partia] derivatives with respect to x,

>, #; the ordinary differential equations (2.23) and (2.24) have a unique
continuously differentiable solution (see Coddington and Levinson, 1958,
Chapter 1, §5) of the form (2.29} satisfying the initial condition

%0, ) =xo(7), ¥(0, %) = yo(m), %(0, = upl(n). - (2.33)

As xo(1), yo(m), uy{n) are continuously differentiable, the solution (2.29) is
continuously differentiable with respect to v also (see Coddington and
Levinson, 1955, Chapter 1, §7). Tn view of our assumption (2}31) the
Jacobian

x 1) | xe e _ -
3—(0:’5_)_: —(ayn bxar]) (234)

yu y mn
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does not vanish at o=0Tfor 0 < n < 1. Therefore*, in a neighbourhood of
o=1{, we can uniquely solve for ¢ and % in terms of x and y from the first
. two relations in (2.29) and substitute in the third relation to get # as a
function of x and y: :
, ulx, yy=ul(alx, ), 7{x, ¥) (2.35)
gﬁ-ajgzz —x_an.( ) = ulofx y()u % y,)
' t any point of the datum curve, u(xq(q yo(n)) (0, 7)) =uwuy(m), which
shows that the initial condition (2.33) is satisfied.

From (2.24), i.e. u.=c, we have uxxo+ipyo=c¢ oOr auy+buy=c showing
.that the function u(x, ¥) given by (2.33) satisfies the equation (2.20).

To prove the unigueness of the solution we first note that if a Monge
curve is tangential to an integral surface at any point, it lies entirely on the
surface. L.et us assume now that there are two integral surfaces S and §’
passing through an initial curve I', given by (2.30). Then for an arbitrary
given value of %, the Monge curve (2.29) starting from the point (xo(7),
yolm), wo(n)) lies entirely on both surfaces S and S’. Hence § and §' are
generated by the same subfamily of Monge curves which implies that the
twa integral surfaces are the same,

Example 2.3 Consider the equation o
s +uy=0 : {2.36)
with the Cauchy data
wlx, 0)=x0 < x < L.

prescribed orﬂy on a portion of the x-axis. The .,Cauchy data can be put in

the form (2.30): .
x=1,y=0,u=70<7 gl (237
Solving the characteristic equations and the compatibility condition
dx dy du

T e Bl

with initial data (2.37) we get
x=1(g+1), y=0,u=n, (2.38)

The characteristic curve paséing through a point x=7 on the x-axis is a
straight line x=%(y+1). These characteristics for all admissible but fizxed
values of 7(i.e. 0 < % < 1) pass through the same point (0, — 1) and cover

*The notation u(z, ) implies that & is 2 function of o and =, while u#(x, p) signifies that
it is a function of x and y. The functional form is not necessarily the same in each case,
in fact, u(x, y)=u{a(x, »), 2x, ¥)) and u(s, My=u(x(s, W), ¥, ). '

Theorem: If X (s,n) and ¥{s, n) € C* in & neighbourhood of a point (5%, n*) and X(o*,

M)=x*, ¥(c*, "*)=p* and the Jacobian :E‘f’ T]l;) = 0 at (a*, %*), then there exists a

neighbourhood N(x*, y*) of the point (x*, ¥*) and a unique pair of functions o=Z(x,
), n=H{x, ¥) such that :
() x=X(Z(x, »), H(x, »). y=Y(Z(x, ), H(x, »)
(D) o*=Z(x*, »%), 1= (x*, y*)
(i) 2(x, y), H(x, y) € CUW(x*, y*)).

F’[c\y@ \'&?@5@”\-
s 1'g cqﬂs«g AR T SR éﬁ'tmc
(U' \;Sa xyaw\i-\ c»ﬂow AT @j( \m/\\;; "{?-\W\Chofr

—tRosfon .




12 Single First Order Partial Differential Equations

the wedged shaped portion D of the (x, y)-plane bounded by two extreme
characteristics x=0 and x=y+1. # =75 in (2.38) shows that u is constant on
those characteristics, being equal to the abscissa of the point where the
characteristic intersects the x-axis. The solution is determined in the wedged
shaped region D as shown in the Fig. 2.2,

Y4

(116, 0) (#2,0) (34,0)
° (1,0} rs

Fig, 2.2. The solution is determined in the wedge shaped region 9 of the (x, ¥)-plane.

~'We note two very impostant aspects of the quasilinear equations from
this example. ' -

(i) The domain D in the (x, y)-plane in which the solution is determined
depends on the data prescribed in the Cauchy problem. Had we prescribed
‘u(x, 0)=constant=1, say, for 0 < x < 1, the characteristics would have
been a family of parallel straight lines y — 2x = ~ 27 and the domain D would
have been the infinite strip bounded by the extreme characteristics y=2x=0"
and y—2x = —2 as shown in the Fig. 2.3.

{ii) Even though the coefficients in the equation (2.36) and the Cauchy
data (2.37) are regular, the solution develops a singularity at the point
©, -1. Geometrically, this is evident from the fact that the characteristics
which carry different values of u all intersect at (0, —1). Analytically, this is
clear from the explicit -form of the solution obtained from (2.38) after
eliminating o and »:

= —. » (2.39)
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The appearance of a singularity in the solution of a Cauchy problem for

certain Cauchy data is a property associated with nonlinear differential
equations,

&t

Fig. 2.3. The domain 2 when the Cauchy data is u(x, )=1/2for 0 < x < 1

§2.3 The Characteristic Canchy Problem .

We have just scen that if the datum curve ¥ is such that the Cauchy data
satisfies (2.31), then a unique solution of the Cauchy problem exists in a
neighbourhood of the curve. Now suppose that

B o), 70, o)~ L5 b, o, ) =0 (2.40)

everywhere along the curve v, i.e. ¥ is a characteristic curve for a possible
solution. Let us suppose further that a solution; u=u(x, y), of the Cauchy
problem exists. Then from (2.40) and (2.20) it follows that

duy(m) _ d _ dxy L A
dn —dn u(xo(n), o(n)) = an w{x0, yo) + pr y(Xg, Yo}

must be proportional to co{xo(m), yo(n), ux(n)). Therefore, the functions xo(7),
Yo(m), uo(v) satisfy thé equations _ ,
s de = R dy() - du(]
alxo(n), yo@), 1a(m) — blxo(m). yolm), uslm)  cxolm), Yol7), o))
and the initial curve I is necessarily a Monge curve.
Consider now another curve I" in (x, y, 1)-space which is not a Monge
curve and which intersects I" at some point. Then we can obtain an integral
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surface S passing through I". As one point of I' lies on S, the entire origi-
nal initial curve I' will lie on S” and hence S’ is an integral surface passing
through I", Consider now another curve I, which is not a Monge curve
and which intersects I', but does not lie on S’. Then we gét another integral
surface $” containing I" and different from 5°.

Therefore, the solution of a characteristic initial value problem, if it
exists, is nonunique. '

Fig. 2.4. Integral surface containing an initial curve I
which is'a Monge curve

§2.4 General Solution

Uptil now we have discussed only those solutions of a first order differen-
tial equation which satisfy certain prescribed conditions (i.e. solution of a
Cauchy problem). In general these particular solutions are completely deter-
mined, For a single quasilinear equation of first order it is possible to get an
explicit form of a general solution which is defined to be a solution from
which all particular solutions can be obtained.

A relation of the form f(x, y, u}= C, where C is a constant, is caIIed a

.. first integral of the system of first order ordinary differential equations (2.22)

(61 (2.23) and (2.24)), if the function f(x, y, ») has a constant value along
an integral curve of (2.22) (i.c. along a Monge curve). It follows, therefore,
that if f(x, y, ) =C be a first integral of (2.22) and x = x(c), y=y(c), u=u(s)
be any solution of these equations, then f(x{s)}, 3{s}, u(s)) is independent of o.

The general solution of the ordinary differential equations (2.22) consrsts‘
of any two independent first integrals

plx, p, W)=Ci  and . ¥(x, y, W=Cs o (2.41)

which together also constitute another representation of the two parameter
family of Monge curves of (2.20). The surface represented by a first integral,
say p(x, p, ) =Cy, is generated by a one parameter family of Monge curves
by varying the parameter Cz and hence represents an integral surface of {2.20).
Now it follows that each one of the two equations in (2.41) represents a
one parameter family of integral surfaces of (2.20). Next we prove a theo-
rem which connects any two independent families of integral surfaces to the
general solution of the quasilinear equation.
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3
Theorem 2.2 If p(x, y, w)=Cr and ¥(x, y, u)=C2 be two indeper}’dent first
mtegrals of the ordinary differential equations (2.22), and Putiu # O the
general solution of the partial differential equation (2.20) is given by

Wp(x, y, u), $(x, y, ) =0 : _ (2.42)

where / is an arbitrary function.

Proof Since the first integral p(x, y, u) = C1 represents an integfal surface,
the equation (2.20} is satisfied by uy = —py/py, ty= - py/Pu. This gives

ag. +bpy -+ epy=0. (2.43)
Similarly . ‘ .
a‘;bx+ bi,by + C’,lfu = 0. ' (2.44)

If f{x, j), u) =0 be the equation of any integral surface of (2.20), we also
have '

afs+bfy+cfu=0 (2.45)
Since a?+32+c2 =0, it follows from (2.43)—(2.45) that the Jacobian
gg% =0. This implies that /= /(p, ) where % is an érbitrary function

of its arguments, showing that the equation of any integral surface is given
by (2.42), o

The two parameter family of Monge curves in (x, y, u)-space is repre-
sented by the equations (2.41). The integral surface (2.42) is generated by a
one parameter sub-family of the Monge curves, obtained by restricting the
values of Ci and 2 by the relation - - -

HCy, C2)=0. (2.46)

For a given Cauchy problem it is simple to determine the one parameter
sub-family of the Monge curves which generate the integral surface passing
through the initial curve I' represented by (2.30). The parameters Ct and
C2 for which the Monge curves intersect the curve I', satisfy

p(xo(n), yolm), () = C,
and

P(xo(m), yo(n), wo(n) = Co.
Eliminating 7 from these two, we get a relation of the form (2.46) between
C, and C;. This determines the function 4. The solution of the Cauchy
problem is obtained by solving « in terms of x and y from (2.42),
Examplé 2.4 Consider the differential equation

(4 2ux)ue— (X + 2uy)uy = J(x2 - 12), (2.47)

The characteristic equations and the corhpatibility condition are

_dx Ay  _ du
yr2ux —(x+2up)  I0E-P -
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To get one first integral we derive from these
' xdetydy  2du
2u{x2—y*)  xP—y*
which immediately leads to
plx, y, Wy=x2+y*— 4wt = Cy. (2.48)
For another independent first integral we derive a second combination

ydxtxdy 2du
PE—xE | xR

which leads to
Plx, y, W=xy+2u=Ca (2.49)
The general integral of the equation (2.47) is given by

B(x2+ 32— 4i2, xy+2u)= 0}

or (2.50)

X2+ 32 —4u? =f(xy +2u}
where k or f are arbitrary functions of their arguments.
Consider a Cauchy problem in which « is prescribed to be zero on the
straight line x —y =0. Parametrically, we can write it in the form
x=7,py=1u=0.

From (2.48) and (2.49) we get 2%%=Crand #*= Ca which gives C1=2C2.
Therefore, the solution of the Cauchy problem is obtained, when we take
h(p, i} =p— 2. This gives

u= (/=L -1, (251

We note that the solution of the Cauchy problem is determined uniquely

“-at all points in the (x, y)-plane.

EXERCISE 2.2

1. Show that all the characteristic curves of the partial differential
equation . '
Ox+ s+ Qy+iwduy=u

through the point (1, 1) are given by the same straight line x~y=0.
2. Discuss the solution of the differential equation

utty -ty =10, yp >0, —wo<l x <w
with Cauchy data

w2—x2 for|x| <«
u(x, 0)= { 0 for]x|>
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3. Find the solution of the differential equation

( 1—-"? u)ux——mMuy=0

satisfying
My
0, y)=—""—
(0, y) Py
where m, r, p, M are constants, in a neighbourhood of the point
x=0, y=0.

4. Find the general integral of the equation
(2% — V)¥2ux+ B(y — 2x)x%uy = 2(4x2 + y®)u

and deduce the solution of the Cauchy problem when u(x, 0) =§1—JE on

a portion of the x-axis. :
5. Show that the result of elimination of an arbitrary function i(p, ¥) of
two arguments from the relation

hp(x, y, ), $(x, y, u))=0

where ¢ and # are two known functions is a quasilinear equation (2.20).
This is the converse of the result contained in the theorem 2.2,

§3 FIRST ORDER NONLINEAR EQUATIONS IN TWO
INDEPENDENT VARIABLES

. . . L
Now we pass on to a discussion of the most general first order equation,
i.e. an equation of the form

| F(x, p,u,p, )=0 (@D
where Fis a given function of its argnments and
D=Ux, =~ =y (3.2)

In this section we shall consider a nonlinear partial differential equation, i.e.
equation (3.1) where F is not linear in p and ¢. We assume here that the
function F' possesses continuous second order partial derivatives over a
domain D3 of (x, », u, p, g)-space with F,% +F§ # 0. Let the projection of
D5 on the (x, y, u)-space be denoted by Da.

§3.1 Monge Strip and Charpit Equations "

Let u#=u(x, y) represent an integral surface S of (3.1) in (x, y, u)-space,
then (p, g, — 1) are the direction ratios of the normal to S. The differential
equation (3.1) states that at a given point P(xg, yo, #p} on S, there is a rela-
tion between py and go. This relation #(x,, Yos Yo, Po, go) =0 between py and
qois not linear. Hence, unlike the case of a quasilinear equation, all tangent
planes to possible integrai-surfaces through P do not pass through a fixed
line but form a family of planes enveloping a conical surface, calléd the
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Monge Cone, with P as its vertex. The differential equation thus assigns a
Monge cone at every point, i.e. a field of Monge cones in the domain Ds of
(x, y, w)-space. The problem of solving the differential equation 3.0 is 1o
Jind surfaces which fit in this field, i.e. surfaces which touch the Monge cone at
“each point along a generator,
“We note that the Monge cone need not be closed as seen in Problem I,
Exercise 3.1.

Example 3.1 Consider the partial differential equation
P-g*=1. (3.3)

At every point of the (x, y, u)-space the relation (3.3) can be expressed
parametrically as .

Po=cosh A, go=sinh A, — 00 < A <, 3.4)

The equation of the tangent planes at (x,, o, #,) are .
(x ~ Xo) cosh A+ (y~ ;) sinh A~ (w—uy)=0. (3.5
The envelope of these planes is A-eliminant of (3.5) and .
(> — x0) sinh A+ (y — y,) cosh A=0 (3.6)

which is obtained by differentiating (3.5) partially with respect to A, There-
fore, the Monge cone of (3.3) is

(x = x)? ~(—=r = (—up)2=0. (3.7
This is a right circular cone with semi-vertical angle 7/4 and whose axis
is the straight line passing through (x,, Yo, 1) and paraliel to the x-axis.

Since an integral surface is touched by a Monge cone along a generator,
we proceed to determine the equations to a generator of the Monge cone
of (3.1). At a given point (x,, Yo, i), the relation between Py and gy can be
expressed parametrically in the form '

Do = pol%o, Yo, o, A), q0=qol(x0, Yo, tto, A) (3.8)
which satisfy ‘
F(xo, Yo, to, polxo, Yo, 1o, X), golixo, Yo, tip, A} =0 (3.9)

for all values of the parameter A for which Poand gp in (3.8) are defined.
The equations of the tangent planes for A and A+ X are
2o(xos Yo, o, N)(x = x0) + go(xa, ¥o, t, Ay~ yo) =u~ug (3.10)
-and ' -
PolX0, Yo, thg, A+8N)(x — x0} + go(xa, o, g, A+BA)(y— yo) = u - u, (3.11)
The limiting position of the line of intersection of these planes as 84 — 0 is

a generator of the Monge cone at (x,, g, uy). Expanding py and g, in (3.11)
in powers of 8A, using (3,10) and retaining only the first degree terms, we get

d d
e =x)+ B - ) =0, (3.12)
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(3.10) and (3.12) are the equations to the generators in terms of the

po and 4y with “the help

X We .. I
parameter A, We can.eliminate the derivatives by p7Y

of (3.9) which gives

Do .40_ .
(174;;)‘1T {Fod'\ =0, (3.13)
From (3.10), (3.12) and (3.13) we get the following equations of the gene-
rators of the Monge cone at (xo, Y4, o)

Ao VYo HZH (3.14)
(Fp)c' ch)e Q’Fp+qu’) o
If we replace x — Xy, ¥~ Yo, 4 — t by dx, dy, du, respectively, corresponding
to an infinitesimal movement, x —xo=dx, ¥— yo=dy, u—tp=du, from (xa,
Yo, o) along the generator, then (3.14) tends to

dx dy du
3.15)
Fp ~F, pFrtaf, ¢

We note that, for the quasilinear equation (2.20), equations (3.15) reduce
to (2.22) showing that the Monge cone degenerates into the Monge line
element.

Suppose wé are given an integral surface S': u=u(x, y), where u(x, y) has
continuous second order partial derivatives with respect to x and y. At the
points of S we know », p and ¢ as functions of x and y. Also at each point
of the surface S, there exists a Monge cone which touches the surface alongs
a generator of the cone. The lines of contact between the tangent planes of

S and the corresponding cones, that is, the generators along which the surface
is touched, define a direction field on the surface, which we shall call Monge

_directions on S (Fig. 3.1). Monge directions for a quasilinear equation and
Monge directions on an integral surface for a nonlinear equation have the
common property that they are special directions tangential to the integral
surface. However, in the nonlinear case, they have no existence of their own
but are defined only when an integral surface is prescribed.

Fig. 3.1, Monge directions on an integral
surface S.
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The above direction field also defines a one parameter family of curves on
S, we call these curves Monge curves on S, and these curves generate S,
Denoting the ratios in (3.15) by do, we notice that the Monge curves on §
can be determined by solving the ordinary differential equations

d

o= Blx, y, ulx, p), welx, »), w(x, ) 3.16)
and

dy

2= Fal%, 3, u(x, 3), udx, y), up(x, ) (3.17)
in the form

x=x(cr, X0, yﬂ)s y=y(0= Xo, yﬂ) (3-18)

~and then determining » from

u=u(9, X0, yo) = u(x(o, xo, yo), ¥(a, X0, Y0))- (3.19)

Here (xo, yo, u(xg, ¥o)) is 2 point on the surface S and the Monge curve on
S given by (3.18) and (3.19) passes through this point. Since

du_  dx  dy
E»—ux a.;‘f'uygg,

it follows from (3.16) and (3.17) that along these curves u varies according
to
du _

Jo = PEtaF, (3.20)

where u=u(x, ¥) has been substituted in the expression on the right hand
side,

Example 3.2 Consider the function

_ u=x cos p+y sin @, # = constant (3.21)
" -which represents an integral surface of the equation
F=pt+g2-1=0. (3.22)
Then (3.16) and (3.17) give
dx
P 2p=2cosg
D nymng
da—«2q—251n P.

Therefore, the Monge curves of (3.22) on the integral surface (3.21) are
given by

x=x¢+20 cos p, y=¥+2csinp
and

u¥xo cos @+ g sin ¢+ 2o,

Along the Monge curves on S the variations of pand g are known from
. the expressions p = ux(x(g, xq, po), 1<, xo, ) and g = u,(x(a, x0, ), (0, %o 7o)
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respectively. Now we shall determine the rates of change of p and g along a
Monge curve on S. Since (3.1) is identically satisfied by » =u(x, ), differen-
tiating it with respect to x we get the identity

Fx"‘Fuﬂx"{'Fpuxx"l"Fquyx:O on S. (3.23)

Along Monge curve on S
du dx d
chx = lxx HTJ'. + uxyzé = Mxpr +usypFy.
For a sufficiently smooth. solution, #xy = tyx so that from (3.23), we get
p .
‘E‘i= "'(Fx +pFu)- (324)
Similarly the variation of g along a Monge curve on 5 is
d.
EZ% = —(Fy+qFy). . (3.25)

Given an integral surface, we have shown that there exists a family of
Monge curves, which generate the surface and along which x, y, u, p, ¢
vary according to

% =Fp (.29
d

—;Z =F, : 3.27
du ) .
& pFyt oy (.29)
g%= — Fy—pFa (3.29)

and
?—;= —Fy--un._ (3.30)

In what we have discussed uptil now, Monge curves exist only on a given
integral surface. We now reverse the process by disregarding the fact that
the system of ordinary differential equations (3.26)-(3.30) was derived with
the help of an integral surface. We can do so since, for a given function £,
the equations (3.26)-(3.30) form a complete set of five equations. In
literature, these equations are called system .of characteristic equations.
However, we shall call the first two equations (3.26) and (3.27) characteristic
equations, the last three equations (3.28)-(3.30) compatibility conditions and
the system formed with all the five equations (3.26)-(3.30), Charpit's
equations. o

A set (x(0), y(0), u(s), plo), g(o)) of five differentiable functions is said
to be a strip, if when we consider the curve x=x{(e), y=x{(0), u=u(o), the
planes with normalis given by (p(e), g(s), — 1) are tangential to it.
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A solution x =x(0), y=3(v), u=u(e), p=p(a) and g = g(o) of the Charpit’s
equations satisfies the strip condition :

du_ di, o dy - 3
=) () 2 (331)

Note that not every set of five functions can be interpreted as a strip (Fig. 3.2).
A strip requires that the planes with normals P.4q,— 1) be tangent to the curve,
Le. they must satisfy the strip condition (3.31) and the normals should vary
continuously along the curve. For a solution of Charpit’s equations (3.26)-
{3.30), the strip condition is guaranteed by the first three equations.

Along a solution of the Charpit’s equations, we have

dF _  dx dy du dp dgq :
E—Fx E}“"‘Fy 'd—o_'+Fu B;;-I-F}, da+Fq s (3.32)

which becomes identically equal to zero when we use (3.26)-(3.30). There-
fore, F remains constant along an integral curve of the Charpit’s equations
in (x, y, u, p, g)-space. If F=01is satisfied at an initial poimt =0, F=0
everywhere along the solution of Charpit’s equations,

(b)

Fig. 3.2. Any set of five functions does not form a strip as in (a).
The planes must be tangent to the curve and their normal
should vary continuously (b},

The initial values for a solution of Charpit’s equations can be prescribed
by specifying x, y, v, p and g on afour-dimensional surface in (x, v, u, p, q)-
space (where ¢ can be chosen 0). Therefore, the system of Charpit’s equa-
tions defines a four parameter family of strips. From this four parameter
family we choose a three parameter sub-family of strips by imposing the
condition that F=0 at o =0, which implies F=0 along these strips. We call
this three parameter sub-family of strips Monge strips and the projections on
(x, p)-plane of the corresponding space curves in (x, », «)-space (on neglecting
p and g), characteristic curves. Thus, the characteristic curves of a nonlinear
partial differential equation form a three-parameter family of curves in (x, »)-
plane, However, we note that in the case of quasilinear and nonijnear equa-
tions, it is meaningless to say without any reference to a solution that a
particular curve in the (x, ¥)-plane is a characteristic curve, Different solu-
tions give different families of characteristic curves,
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We shall show that if @ Monge strip, say M, has one element (i.e. the values
of x(a), ¥(0), u(s), p(s), g(o), for some o, say ¢ =0) common with an iniegral
surface S : u=1u(x, y), then the strip belongs entirely to the integral surface.
Let us suppose that at the point P, the integral surface S and the strip M
have common values of (x, y, u, p, ). Since S is an integral surface, we
can find a unique Monge curve on S passing through P. This, together .
with p and ¢ at points on this curve, gives a Monge strip M’ on §. Since
both strips M and M’ satisfy the Charpit’s equations (3.26)~(3.30) with the
same initial conditions at P, it follows from the uniqueness theorem of
solutions of ordinary differential equations that M and M’ are the same. As
M’ belongs entirely to the integral surface, the result follows. '

EXERCISE 3.1

1. Show that the Monge cone of the equation
p=q*
is an open cone which is generated by a one parameter family of
straight lines whose one end is fixed but the other end moves on a

parabola.
2. Consider the partial differential equation

F=u(p*+gH)—1=0.
(i) Show that the general solution of the Charpit equations is a four
parameter family of strips represented by .

" x=Xp +% uy(20)*2 cos 8, y=1y, +—§- #o(20)%2 sin 6

cos ¥ sin 6
u=2u, P=J-2-—-, q=,f_ra—
where xp, Yo, to and @ are the parameters.
(i) Find the threc parameter sub-family representing the totality of

all Monge strips.
(iif) Show that the characteristic curves consist of all stralght lines in

the (x, ¥)-plane.

Problem 3 Find a representatlon of Monge strips of the equation

2pgr’y’ —pr —qy —u =10
in the form

z={2my— mge")_l vy = (2mq — m4e")—1 ,
p = (2mg — mge")2 , g =y (2my — m4e")2 ,

’ o
u = —2mymy + (mymg + mamy)e’,

where one of the arbitrary constants ml, My, Ma, and 1y cani_b%&b—
sorbed in in a choice of 0. Setube 7 Enf\TVL(’YIbUR *J2.



Solution Charpit eguations of (1) are

dz B 5 9 dy -

o Ty (3), 7o = 2pz’y® —y (4),
dp _ 2 dg 2

oo = 2pgey” (5), o = 2pary -y (6),

du
i 2pqrys — px —qy (7).

In the results below, my, mo, m3, and my are arbitrary constants.

d;

$£ —2pgz®y® —pzr) = —2(u+ qy) (using(1)), (8)

d
similarly p:; =u-+qy. (9)
O

d
mdp:—Q = pz=my (10), similarly qy® = mg. (11)
pdzx

From (3) using (11)

dz 1
Y (9mez — 1 - (12
do (2moz ):1: =T 2y — mae®’ (12)

similﬂ,ﬂy iy = m. (13)
From (10) and (12}, and (11} and (13) we get the expressions for p

and ¢. Using the pde {1),
u = 2pqzy’ — pr — qy = —2myma + Ymymy = mgmy)e® (14).

(2) is not the general solution of the Charpit equations (3)-(7),
since we have used (1) at many steps, for example in derivation of
(8). Note also that we have not used the equation (7). Instead we
have used {1) to derive the expression (14) of u. Thus we have got a
general form of equations of a Monge strip, which has four arbitrary
constants, one more than what one should have.

One of the four constants my, my, ms, my can be absorbed in the
choice of the origin of ¢. For example, we write (13) in the form
(2may — 1)/y = me” = exp(o + In{my)) and set ¢’ = o + In{ma).
In the derivation of (8), (9), (10}, (11) and (12); the only integration
with respect to ¢ appears in (12). This remains same when replace
o by o’

Thus we have derived the equations representing the Monge strip in
the question.
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§3.2 Solution of a Cauchy Problem

- We are now in a position to discuss a method of solution of a Cauchy
-problem. If there exists an integral surfaces passing through a space curve I':

x=x0(n), y=yo(n), 11=1(m); : (3.33)

the first order partial derivatives p=po(1) and g=go("), evaluated from the
equation of the integral surface at the points of I, satisfy the equation
(3.1), i.e. :

Flxo(n), po(n), uolm), polm), go(n)) =0. (3.34)

Moreover since uo(n) = u(xe(®), yo(n)), differentiating with respect to 7, we
find that the strip condition with respect to #;

uo(m) = poln} x0(m) + qolm)po(n) (3.35)

is satisﬁéd at every point of I'. Therefore, irrespective of the choice of 5, we
can now solve for po(n) and go(%) from (3.34) and (3.35) to get an initial strip

x=xo(m), ¥=po(n), u=1up(m), p=po(m), g=qo(n). (3.36)

We can solve the Charpit’s equations (3.26)-(3.30) with initial values of X, ¥,
u, p and g at ¢=0 given by (3.36) and get the Monge strips starting from
the various points of I'. Since py, go satisfy the strip condition (3.35) with
respect to v, these Monge strips smoothly join to form a surface. Due to
(3.34), Fis identically zero along each Monge strip, hence the surface thus
generated is an integral surface of (3.1) passing through I We note that
there can be more than one integral surface passing through I', since there
can be more than one pair of functions py(7), go(n) satisfying the equations
(3.34) and (3.35). However, once a set of values of py and gy are sclected,
we expect fo get a unique solution of the Cauchy problem: In order that
the solution exists and’ is unique, it will be necessary to impose some res-
trictions on the initial curve I'. The precise formulation of the theorem is
given below,

Theorem 3.1 Suppose the function #(x, y, u, p, q) & CHDs) where Ds is a
domain in (x, y, 4, p, ¢)-space. Further suppose that along a datum curve
x=xo{1), y=yo(m), on I={n:0 < 1 < 1} the initial values u=u,(y) are
assigned. Let the functions xy(), pe{%), uy(7) belong to CXI); the functions
o), qo(m), satisfying the two equations (3.34) and (3.35), belong to C'(1)
and the set (xo(7), vo(n), us2), Po(2); qo{m)} = D3 for v & I and satisfies

d. d
z":;‘OFq(XU’ Yo, Ho, Pos f{o)“‘ EJ,'%)FP(X% Yo, o, Pos Q'O)'?éo- ‘ (3-37)

Then we can find a domaia D in (x, y)-plane containing the datum curve -
and a unique solution in D:

u=u(x, y) (3.38)
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such thé.t forne T ]
u(xo(m), o) = wa(m) N (3.39)
wxo(m), yo(m) =po(m) and uy(xo(n), yo(m)) = goln)- (3.40)

Note Unless xo(m), yo(n), uo(n) are assumed to be CXJ) the solutions pg, go
of (3.34) and (3.35) cannot be CX(I). Further, the condition (3.37) implies
that the datum curve v is not a characteristic curve of a possible solution.

Proof Since the functions appearing on the right hand side of the Charpit’s

equations (3.26)-(3.30) belong to C'(Ds} and xo(n), yo(m), to(m), po(m), qo(n)
are C)(I), there exists a unique solution of the Charpit’s eqguations with

initial condition (x, y, #, p, ¢)= (xo(n), o(1); o> P, go(n)) at o=0:

x=X(o, ), y= Yo, n), u=Ulo, 0), p=Plo,n), g=0@, M (3.41

whose partial derivatives with respect to o and 7 exist and are continuous.
From (3.26), (3.27) and (3.37) it follows that

Hx, Y d d
7((;?—;)“)’0:0: “deo «(X0, Yo, Yo, Po> Go)— E%)Fp(xo, Yo. s Do» qo) 7 0.

(3.42)

Therefore, there exists a neighbourhood N(xo, yo) of a poiat (xo(n), yofm))
on the datum curve in (x, y)—plane (corresponding to o =0), such that in
N(xo, yo) We can solve the first two equations of (3.41) uniquely in the form

o=o(x, ¥}, n="(x, y). " (3.43)
Substituting (3.43) in the expressions for », p and ¢ in (3.41) we get .
u=U(o(x, y), 7(x, ¥)) = ulx, ») (3.44)
p=P(o(x, ), 2(x, 1) = p(x, ») (3.45)
q=Qo(x, p), 2(x, N =g, . (3.46)

which are continuously differentiable functions* of x and y. We shall now
show that (3.44) is the solution of the Cauchy problem. It is obvious that
on the datum curve o=0, the function (3.44) takes the prescribed value
uo(m). Further, on the family of Monge strips (3.41), F(x, y, u, p, g) has a
constant value F(xg, ¥o, 4o, Po, o) Which is zero, ie.

Fix, y, 1(x, ¥), p(x, ), g(x, 1)) =0 for (x, y) & N{xq, yo) (3.47

Therefore, the function u(x, ¥) in (3.44) is a solution of the differential
equation (3.1) provided, we can show that

_ us(x, p)=p(x, p), ufx, )=q(x, ph (348
. Consider the function
W(e, 1)=Un— PXs— QY4 - (3.49)

_ Wverse fuy cf:'an_—lﬂ?o'f oM,
*From the " . - -, it follows that o(x, ), 0(x, ») are C1{(N(xg, o).
Now, U being a C* function of « and 7 it follows that u € CY{N(xy, yo))
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whose value, (0, ), on the datum curve is zero. Differentiating (3.49) with
respect to o
%/“= Uﬂu"PXﬂu“"QYna "'PaXﬂ"QuYTi

2 .
=3__‘7(UU—PXU‘_QYQ)"{'PTIXO_I'QTIYO-_PDXTI“QUYT]

=0+ PuFy+OuFy+- Xa(Fx+ PF) 4 Yol Fy+ OF,)
where we have used the Charpit’s equations in the last result. Adding and
subtracting #U; we get
d
TI;V“ = (FxXTi +FyYﬂ +Furfn +F_an+FqQ‘n) - Fu( - PX’J]— QYT;"‘ U'n)
= Fn - Fa Wo

Since F is identically zero along each of the Monge strips (3.41), F=0. The
function W now satisfies the following linear homogeneous ordinary differ-
ential equation '
i
E]T-_— —Fu(a’ n)W (3.50) .
with solution
W=w(0, %) exp {— L Fulo, 1) do } (3.51)

Since W(0,m)=0, W(o, 4)=0 for all values of (7, %) such that (x, ») € N(xp, vy).
Therefore, : ‘

Un=PXo+(QVn (3.52)
From the Charpit’s equations we also have
Ue=PX,+QYo. {(3.53)

From (3.44) we get
T = Ut Unle = 0i(P Xy + Q) + 1a(PXo -+ QY.)
= P(Xoo'x + X"n"]x) + Q(Yuo'x + Y’U"?x)

dx d
=Pt 0 =P-14.0-0=P(o, )= p(x, ) (3.54)

where we have used the expressions of x and y from the first two equations
(3.41). Similarly we can show that _

uy=q(x, y). (3.55)

Therefore, from (3.47) it follows that u(x, y) given by (3.44) is a solution of
the differential equation (3.1), in the domain N(xq, vo).

To prove the uniqueness of the solution, let us assume that S is another
integral surface represented by the solution w= u'(x, y) of the Cauchy
problem. The surface S can be covered (or generated) by a family of Monge
strips after solving (3.16) and (3.17) with u replaced by u#’. These Monge
strips satisfy the same initial conditions at their points of intersection with
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the initial curve I', as the strips (3.41). From the uniqueness theorem for a
solution of the Charpit’s ordinary differential equations, it follows that this
family of Monge strips on the integral surface ' must be the same as the
strips (3.41). Therefore, the integral surface § coincides with 8, i.e. u=u"in
N(xo, yo).

Example 3.3 Consider the equation
Pt \ (3.56)
and a strajght line in (x, y)-plane.

X=xo=7sin B cos o, y=yo = 7 sin B sin « (3.57)

on which u is prescribed by
U=ty =mncos f (3.58)

where « and B are constants.
The Monge cone at (xq, Yo, #o) is the envelope of the planes
(x— x0) cos A+{y~yo) sin A—(u—uo) =0.
The Monge cone is therefore represented by the equation
(x = xof* + (r—yo)* = (u—m)?
which gives a right circular cone with vertex at (xo, yo, %), axis parallel to
u-axis and semi-vertical angle =/4. '
For the initial strip we have to solve the equations
po-i-qa—l . (3.59)
and
Po sin B cos o +gq sin B sin @ =cos B. (3.00)
If B < wj4, the equations (3.59) and (3.60) do not possess a real solution
for po and g, showing that the solution of the Cauchy problem does not
exist. This can be explained (see Fig. 3.3, case (a)) from the fact that the

Monge cone at
-the origin

<Y

E

Fig. 3.3. Case {a): When g < =/4 the initial curve I' is in the interior
of the Monge cone.
Case (b): When g>=/4, I' is ouiside the Monge cone,
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space curve given by (3.57) and (3.58) through which the integral surface
should pass, lies in the interior of the Monge cone at the origin. Naturally,
it is not possible for an integral surface to touch the Monge cone along a
generator of the cone and also to pass through a line within it.
For m/4 << B < /2, we get two sets of values of p, and g,
Po = cot §cos o % sin er(1 — cot? 3)1/2 (3.61)
g0 = cot Fsina F cosar(1 — cot? §)1/? (3.62)
which are independent of 7.
The Charpit’s equations are
dx _
o~
dy

do=

gg =2(p%- ¢%) =2, (using 3.56)

b_,
and

dg _
7, =0

Solving these with the initial values (3.57), (3.58(, (3.61) and (3.62), we get
x=2peo -+ sin B cos o, y=2g¢0 +7 sin § sin oc}
u=20-+ cos 8, p=py, g=q,.
Eliminating o and 7 from (3.63) we get the two solutions of the Cauchy
problem corresponding to the two sets of values of py and gy:

(3.63)

y = cob Bz cos e + ysine) £ V1= cot? Blzsina — yeosw).  (3.64)

They represent two planes which pass through the initial line I' and touch
the Monge cones along two generators.

§3.3 Solution of a Characteristic Cauchy Preblem

We have scen that when the condition (3.37) is satisfied, i.e. when the
data is such that the datum curve y in (x, ¥)-plane is nowhere tangenfial to
the characteristic curves for a possible solution, the solution of the Cauchy
problem exists and is unique. However, when Foxo(m)— Fppo(m)=0 holds
everywhere along v and the initial manifold M: (xo(n), yo(n), (%), po(n),
go(m)) belongs to an integral surface S, then following the arguments of §3.1
for the derivation of Charpit equations (3.26)-(3.30) we can show that the
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strip M must be a Monge strip on § with the parameter o replaced by 7.
Hence in the exceptional case, Fqxo— Fpyo="0, a necessary condition for the
existence of a solution of the Cauchy poblem is that the initial strip M is
a Monge strip. This condition is also sufficient. In fact, if this condition is
satisfied, there exists not only one but an infinite number of solutions of the
characteristic Cauchy problem.

If Fyxo— Fpye=0 and the initial strip is nota Monge strip, then it follows
from above that there exists no solution of the Cauchy problem having
continuous derivatives up to the second order in a neighbourhood of the
datum curve, )

EXERCISE 3.2 -

1. Solve the following Cauchy problems:
o 1
@) (P +¢%) =u
with Cauchy data prescribed on the circle x2+3?=1 by
ulcos 9, sin f)=1,0 < 8 < o

(i) p2+q2+(p—-—124 x )( q——;— )—u=0 :
with Cauchy data prescribed on the x-axis by
w(x, N=0
(iii) 2pg—u=0 _
with Cauchy data prescribed on the y-axis by

1
(0, y) =5 7

(iv) 2p%x+qgy—u=0
with Cauchy data

u(x, )= -—17 x.

2. Consider a two parameter family of functions # = olx, y, 4, b), where
@ is a known function of its argumenis and a, b are parameters. If
the rank of the matrix -

[ Pa  Pxa  Pra ]
Ps Pxb  Prb
is 2, show that the result of the elimination of ¢ and b from the rela-

tions p(x, y,a, b)=u, @s(x, v, a, b)=us, py(x, y, a, b)=uy leads to a
first order nonlinear equation

F(x, y, 4, tx, thy) = 0.
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- 3. Two first order partial differential equations are said to be compatible,
if they have a common solution. Show that the necessary and suffi-
cient condition for the two equations

F(x,y, 4, p, 9)=0 and G(x, y, u, p, ) =0
to be compatible is that

a(F, G) AF, G) | &F, G) oF, G) _ 0
W) P W) T T H

is satisfied either identically or as a consequence of relations F=0 and
G=0,

§4 COMPLETE, INTEGRAL

The method of characteristics developed in previous sections for solving
a-first order partial differential equation gives a very deep insight into the
conditions under which the solution of a Cauchy problem exists and is
unique. For the present we shall be concerned with a powerful but g formal
technique of solution with the help of a “general solution”. In problem 2
of the Exercise 3.2 we saw that the result of elimination of two arbitrary
constants g and b from a relation :

u=p(x, y,a,b) (4.1)
leads to a nonlinear equation
FCe, p, u, ux, w) =0, : (4.2)

We note that (4.1} satisfies (4.2) for all valucs of @ and b.

We shall show that a solution of the form (4.1) of {4.2) is sufficiently
general in the sense that all other solutions of this equation can be obtained
from it merely by simple operations of differentiation and elimination of
the constants, - '

Definition: A two parameter family of solutions (4.1) of the equation (4.2)
is called a complete integral of the equation if the rank of the matrix

[ I?’a Pxa  Pya ] I
P Pxp  Pw
is two in an appropriate domain of the variables x, y, a, b.
The condition that the above matrix has rank two assures that the func-

tion ¢ depends on two independent parameters and the elimination of g
and & from (4.1) and

Mx=Px(x_, ¥y, a, b), uy=py(x, ¥, a, b) (43)
leads to the eguation (4.2))_‘* ‘
* If @ and b be combined into one parameter ¢ = c(a,b), then two rows
of the matrix become linearly dependent and its rank rank beconies one.
** Tf the rank is two, ¢ and b can be solved from (4.3) and these can be

“substituted in (4.1).
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§4.1 Determination of a. Complete Integral

It is simple to determine a complete integral for a given partial differen-
tial equation (4.2). The problem 3 of fixercise 3.2 gives a condition for the
existence of a common solution of two equations F(x, y, #, ux, 1,)=0 and

©G(%, y, u, ux, y)=0. Once these two equations have a common solutioz
we first solve them simultaneously for ux and uy in terms of x, y and u:

wx=h(x, y, u) and wy=k(x, y, w)
and then the differential relation

h(x, y, u) dx+k(x, y, ) dy=du (4.4)
) fef o coamMent ,s&éuhc’ﬁa . . .
-will possess an intégrating factor and can be integrated giving a relation

between x, y and « and an arbitrary constant b. Therefore, a complete inte-
gral of (4.2) can be determined if we can determine a compatible equation
G(x, y, u, p, q}=0 containing -an arbitrary constant a. But this is simple,
since the result of problem 3, of exercise 3.2 shows that any G satisfying
the equation:

G aG oG 9G
Fp T +F, “3? +(pFy+qFg) Pu —(Fs +PF")—5E_

G _
—(Fy+aF) =0 (4.5)

would be a compatible equation.

This is a first order linear homogeneous partial differential equation for
G in five independent variables x, y, u, p and ¢. The theory of this equatton
(as indicated in the next section, i.e. §5) is similar to that of a linear equa-
tion in two independent variables. For the equation {4.5), the characteristic
equations and the compatibility conditionsare ‘

de _dy  de __ dp g
Fr Fo  pFp+aFy  —(FxtpFy) —{(Fy+qF)

Since the compatibility condition implies that G =constant on the charac-
teristic curves in (x, ¥, u, p, g)-space, it follows that if we can get any
first integral, say s{x, y,u, p, g}=& of the characteristic equations, then
G == s(x, v, u, P, g)—a= 0 is the required equation containing an arbitrary
constant @ and compatible with F(x, , u, ttx, #;)=0.

We note here that the characteristic equations of (4.5) are nothing but
the Charpit equations (3.26)-(3.30) of the equation (4.2).

FExample 4.2: The Charpit equations for the pE[rtial differential equation
X2p? 4 y2g2—4=0 “.7)
are
dx dy du dp dg

Sxip g 2P EgY | —2apr | —2pgE

V. dG =, (4.6)
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. dx _  dp s
We take the relation Ty —igR which gives
= xp = constant = a, say. {4.8)

Taking one set of values 0f p and g from (4.7) and (4.8) and substituting
in (4.4), we get
vVi-a?
¥y

%" dx+ dy=du.

Integrating this we get a complete integral
u=aln x+1v4—a*ln p+b 4.9)

containing two arbitrary constants ¢ and b.

EXERCISE 4.1

\

1. Show that a complete integral of

(a) F(p, g)=0, where F involves only pand g and F(p, Q(p))=0 is
w=ax+Q{a)y+b.

(b) F=f(x,p)—g(y, q)=0 is obtained by solving p and g from
fx, p)=a, g(y, g) =a and integrating du = pdx + qdy,

(©) F=u—px—qy—f(p, q)=01is u=ax+by+f(a,b).

2. 1If the independent variables x and y do not appear in the equation
F(u, p, q)=0, then show that the complete integral can be obtained
by solving p from. F(u, p, ap) 0, taking g=ap and integrating du=
pdx+qgdy.

§4.2 New Solutiens from a Complete Integral

Let us try to generate some new solutions from the complete integral.
Consider a function which is obtained from (4.1} by replacing the constants
a and b by some functions of x and y:

u=p(x, y, alx, p), b(x, ). (4.10)
Then o
Uy = P.t+¢&ax+Pbbx, uy"?y"l’?aay’*“?bby. (411)

The new function (4.10) will also satisfy the equation (4.2) if and only if .
and u, are the same as those given in the relations (4.3). For this to be
true, we have

Patlx T Pbbx = 0, Baay+ ?bby =0. (412)
(4.12) is automatically satisfied, provided ' '

Case A:a =constant, b=constant (4.13)
Case B : px, v, a, b)=0, gs(x, 3, g, b)=0. 4.14)
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In the case A, when @ and b are both constants, we get back the complete
integral (4.1) itself. : :

' Tn the case B, the two relations in {4.14) can be used to solve aand b in
terms of x and y. This, when substituted in (4,10) gives a new solution,
called a singular solution of (4.2). Geometrically, the singular solution, ob-
tained by the elimination of a and & from (4.1) and (4.14) represents the
envelope of the two parameter family of surfaces given by (4.1) (see Goursat
§219, 1959). (4.12) can also be satisfied by non-zero values of ¢ and ¢z,
provided ' :
Aa, b) _
o o(x, 7)
The equation (4.15) implies that there is a relation between g and b of the
form .

Case C:

0. (4.15)

b=w(a) (4.16)

where  is an arbitrary function of its argument. Substituting b=w(a) in
{4.12), we get

s . @, ol@)+ pol, 3. @, oa)a' (@) =0, (417

For every choice of the function @ in (4.16), we can solve a and b in
terms of x and y from (4.16) and (4.17) and substitute in (4.10) to get a
new solution. Geomeirically, the new solution represents an envelope of
the one-parameter subfamily of integral surfaces

u=g(x, y, a, w(a)) : (4.18),

obtained by selecting » as a function of a. The solution thus obtained
depends on an arbitrary function w(a) and is called a general solution. We
shall show in the next section that given a noncharacteristic Cauchy pro-
blem, it is simple to choose the function w(a) so that the solution thus
obtained solves the Cauchy problem. ) _

. The envelope of a two-parameter family or a one-parameter subfamily
of a complete integral is always an integral surface, since x, y, u, p and g at
any point of the envelope coincides with that of some member, which is
itself an integral surface. '

Lef us view the relations (4.17) and (4.18) in a slightly different way. >~
Since the function (a) is arbitrary, we can choose a, the value w(a) of « at
a and .the derivative «'(a) as independent of each other. Denoting w(a) by
b and '(a) by ¢ we find that the two equations :

u=p(x, y, a, b) and pa(x, y, a, b)+cps(x, y, a, b)=0  (4.19)

together represent a three parameter family of curves in (x, y, u)-space, the
parameters being now a, b, and . Consider any three values of @, b and c.

Then there exists a function o, such that w(a)= b, and «'(a)=c. For these
values of @ and b, (4.18) is a member of a family of surfaces, whose enve-

lope is obtained by this choice of w, This member touches the envelope
along a curve of contact given by the equations (4.19). Therefore a member

. * An alternative explanation: Since the function w is arbitrary, we can!

Cwrite w(C) = b+ e(C —a) +d(¢—a)? + -, where b,e.d, -+ are arbitrary.:
lience setting w'(a) = ¢ in (4.17), we find that the two equations
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of the three parameter family of curves (4.19)is the curve of contact of two
integral surfaces, one of them being a member of the family (4.18) and, the
other being the envelope of the family, and hence must be a Monge curve.
Along this Monge curve the variations of p and g, forming the Monge strlp,

" 1is given by .
!D = P"x(X, ¥ a!_ b)s quy(xs y: a, b) : (420)

Therefore, the four equations (4.19) and (4.20), from which any four of x,
4, p, g can be expressed in terms of remaining one and the three para-
meters a, b and c, represent the complete set of the three parameter family
of Morige strips of the equation (4.2). The four equations are the faur inde--
pendent first integrals of the Charpit equations. Thus, we have 1’“"30
Theorem A three-parameter solution of Char pit’s ODEs (3.26) cmd
(3 30), representing the set of all Monge strips, can be obtained f1om
a complete mteoml of the PDE merely by differentiation.

§4.3 Solution of a Cauchy Preblem

"

We shall now show that once we know a complete integral, by simple
operations of differentiation and elimination alone, we can fin d the solution
of a Cauchy problem. Let us proceed by geometrical arguments.

We are required to construct an integral surface S of (4.2) passing through
an initial curve

. Iy x=xo(n), y=yo(n), u=uyn). ' (4.21)
If S is either a member of the two parameter family (4.1) or it is the singu-
lar integral surface represented by the a, b-eliminant of the equations (4.1)
and (4.14), this can be verified by direct substitution. In casc it is neither
then let us try to see if S can ¢oincide with the envelope £ of a one para-
meter subfamily 7" given by (4.18) for a suitable choice of the function w(g)
in (4.16). Given a point P on an envelope E, we can always find a member
"Ty-of the subfamily such that 7}, touches E along a curve passing through
P. Therefore, if we assume that the envelope E passes through the initial
curve I and choose the point P on I', then 7, which touches £ must also
touch the curve I’ at P. At the points of intersection of I and any member
of (4.1) the parameter 7 satisfies

olzo(n), yoln), a.b) = ugln) @ﬂ)

For the subfamily 7" of (4.1), the condition that I" and 7, touches at £ im-
lies that "the equation (4.22) must give two equal roots for x which is the
same thing as saying that the equation (4.22) and

iﬂmeW&m“:%W‘ (4.23)

must have a common root. Eliminating » from these two equatlons we get
the relation (4.16) between g and b for which the envelope E passes through
I’. This envelope is the required integral surface, Letus explain thls method
with the help of an example '
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Example 4.2 Consider the prob]cm number 1(iv) in the exercise 3.2. The
partial differential equation is

2pxc+qy—u=0 429
and the Cauchy data can be pui in the form

x=xo(m) = 1, y=yo(n) = 1, u= uo(n)— —% (4.25)

To derive a complete integral, we write the Charpit’s equations:

dx _dy__ du dp : . ,
4px y Tdpixtqy —2p+p &ﬂcﬁclc},’:@)

which immediately gives a compatible equation

: g=a (4.26)
containing an arbitrary constant. From {(4.24) and (4.26) we get
u-ay :
p= J oA 4.27)

We rewrite the equation du = pdx +qdy with p and ¢ glven by (4.26) and .
(4.27) in the form

a’ur—ady= dx
Viu—ay V2IVx

which gives a complete integral

\/u—ay \/"\/x+b

or _
x 2 '
(u —ay= 5= b) =2bx. {4.28)
Substituting (4.25) in (4.28), we get
' (1+a-+ bR =2b7 | (4,29)
which after differentiation with respect to n gives ) .
2n+a+b)=2b. ' (4..30}
_ Ehmmatmg % from (4.29) and {4.30), we get
. b=-2a. (4.31)

Substituting b from (4.31) in {4.28) and forming the envelope of the Vone
parameter family thus obtained, we get the solution of the Cauchy problem:

2(;6 Y 5 (4.32)

U=
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EXERCISE 4.2

1. Use the method of complete integrals to solve the following Cauchy
problems; ‘

I

. - 1
() 2pg~u=0, uln, 1)= 57

, 1
(ii) p~q= %(x2+y2); uln, == for —0 <4 < 0

(i) p*-+g%=wu, u(cos 1, sin ) =1for 0 < v < 2
(iv} u=px-+qy+p+q-2pg,
' u(m, n)=2n for —o0 < o <7 o,

2. Given any two complete integrals: u=p(x, y, a, b), u=(x, ¥, ¢, d} of
a first order partial differential equation, show that one complete
integral can be derived from the other. -

(Hint: Take an initial curve I’ lying on u=v{x, y, ¢, d} and depending
on the two constants ¢ and d. Solve the Couchy problem using the
first complete integral.)

3. Find a complete integral of

Hp+g)u—xp—yg)=1

and use it to find the equations representing the complete set of three

parameter family of Monge strips as discussed in the end of the
section 4.2, '

*§5. FIRST ORDER EQUATIONS IN MORE THAN TWO
_ INDEPENDENT VARIABLES

Before we pass on to the theory of first order partial differential equatiéns
in more than two independent variables, we shall discuss here a few concepts
in the m dimensional space of variables x, x, ..., Xm, collectively. denoted
by x«. We shall make a convention that the range of a sufiix a,Boryis], 2,
.-+, i and that of the suffix r be 1, 2, ..., m— 1. We shall also use the som-
mation convention that a repeated suffix in a term will imply sum over the
range of the suffix. : :

*$5.1' Differentiation in Higher Dimensions

Let us consider a direction field (2,(x«), aa(xa), ..., am(¥+)) defined in a
domain D1 of the m-dimensional space (xo) and we ‘assume that

. . o
i+ tah & 0 Dy If u=u(xs) be a C! function, then g, 55?"’ where we
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use the summation convention for the suffix «, represents differentiation of
the function u at (x.) in the direction given by the vector (g.). Since . are
continuously differentiable functions, the ordinary differential equations

| % = @uf Xp) | (5.1)

\ can be solved in the form _ :
' Xe=Xalo, W), ¥=1,2, .., m—1 (5.2)

where n,'s are (m—1) arbitrary constants. Equation (5.2) represents an
(m — 1) parameter family of curves, a member of which passes through every
point of D1,

Then

du_ du
%_Q“Em S (5.3)

denotes the differentiation in the direction of a member of the family oj’
curves (5.2).

Let us consider an m — 1 dimensional manifold (hypersurface} S: p(x.) =0
in (xo)-space such that p is C! in a neighbourhood of S and ¢ x, Px, 7 0
on S. The vector (p, ) at the points of S is in the direction of the normalto . h
S. The expression s

Puyliz, ' (5.9

evaluated -at the points of S is a derivative in the_dz‘réctibﬁ of the normal

and .

P/ (Pagp ) Pty . (.5
evaluated at the points of S is normal derivative of . If . ‘
A
ame (5 6)

. at a point Pon S, the vector (@) is orthogonal to the vector (Pxy ) and hence

lies in the tangent planc of S at the point P. When (5. 6) is satisfied, du/da
given by (5.3) is called a tangential derivative pm 5 : On
- -the other hand, when

rT&fﬂf)U ey gqx aa.an ?é 0 (5.7)
we call dujoo a . 4derivative. Where az=A>g,,, where A is a scalat
function # 0, the outward directional derivative (5.3} is in the direction of
the normal. - '

We ‘can easily verify that the operator
0 F : ,

Pra s TP Gy _ ' (5.8)
for each pair of values of o and 8, «#5, represents a tangentlal derivative,
© i.e. a derivative within the surface p(xa)=0.

We shall now indicate a procedure, by which we can easily obtain a-
parametric representation of the equation of a surface § which is initially
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 represented by a relation p(x,)=0. Let n{xe) € C1, = L2 ...,m—1be
o m— 1_ funqtions such that the Jacobian

d veey By
=901, M2, .y By, P)

351, 72, vory 3m) (59)

is nonzero and finite at every point of the surface 5. Since J # 0ondS, we
can express Xu in terms of 7, and ¢. Then the parametric representation of
& is given by -

Xa % Xag{T1, My oeny M) = ia(??x, N2y ooy Nen-1, =0), (5.10)

When 1, 72, ..., 9wy vary in a s_ui_table domain, the_: surfaces S is described.
. We now prove the following theorem.

Theorem 5. The t'angential derivatives of « at a point P on the surface S

depend only on the distribution of the values of % on the surface itseif in the
neighbourhood of P. :

Proof: The values of # on S can be expressed in the form
w=tig(nr) = w(xal(nr, p=0)). : (5.11)

The expression dug/é7, represents the rate of change of the function # as we
move along the line of intersection of m— 1 hyper surfaces ¢ =0, %, = cons-
tant, ..., 7,_p=constant, #y4q= constant, ..., 7,1 =constant. Therefore,
D/, =1, .., m~1 are m— 1 independent tangential derivatives on S.
Further, du/dp is an outward derivative (not necessarily a normal derivative).

) . . . al[o - 3x.z 31{0 . _aXQL
The same can be verlﬁec_l using (5.6) by se_ttmg Gnr  Bny Omg 6 Ga 7,
. . Ou_dxa Ou . _ Oxy
and using (5.7 by setting EY A e el EN e Let (@x) be a vector
o Satisfying (5.6) then the.  derivative in its direction is
- Su _ Ip dn, )]
daz—on §= [am (u,p —a?;-!-un, Bxa)lpeo
. 37},- ' 31{0
=ay T By : (5.12)

(5.12) expresses any derivative onqhe leftqﬁand side in terms of m—1
inner derivatives dug/d7,, which can'be caleulated from (5.11) expressing the
distribution of # on S, This proves the theorem, ’

We have shown that for an (m— 1)-dimensional anjfold S, there are
only m—1 independent . derivativ‘ég‘amﬁﬁonfﬁn%r ; "w‘c'{é'r‘fﬁ{ive an
be expressed as a linear combination of these derivatives, Further all Hist
order partial derivatives of a fu ction # on S can be obtaineg ifm—1
mutually independent ﬁrstt&'&T?;;:f derivatives and 2 Y e‘évative

such as #, a.re_ prescribed on S. : mal: feun q< rbP lvechan
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Let us explain the concepts introduced above with the help of the geo-
metry of two-dimensional space (x, ¥). Let ¢(x, y)=0 be a curve in {x, ¥)-
plane. The direction ratios of the normal and tangent to the curve are

~direction ratios of normal: {Px, 01, ) (5.13)
~ direction ratios of tangent: (py, —Px)- (5.14)
Let #(x, y) be a function of x, ¥ such that  _
¥, 9) '
J= 2oL, 5.15
o(x, ») ” 513

Then 'for transformation from (x, y) to (%, ) and vice-versa we have the
following relations .

a__1f ¢ _ 2

'an” J(jy o nxay) (5.16)
and 7

8 1( 3 a)

9= L, Z-pan-). N (5.17)

an J\Vex oy A Qovivative

On the curve ¢ =0, we can get x= x(n) gmd y=¥{n).

a functiona . . . L © e \"aav\c?%l- v r,\_"’.u#
. du 1 dul Ju ;
15 %_T(?’y g;"?xé;) - (5.18)
. oy ou [ TRYVSO .ef.gc'fq C
© or simply @y 3;—%5;- A Aderwatwe is an expression of the form
ag_;f + bg—i 7 _ (5.19)

[y

where apx+ by 7 0. _
In particular, the derivative in the normal direction

0 du +o du

. x 75 'y A

Fransve g ¥ O dy : :

is ar o derivative. Also dufd¢ given by (5.16) isa ‘HC\“S W'EY:CK»Q
derivative, since from (5.15),

py— Pyl 7 0.

" Example 5.1 1f we take the function ¢ to be

p = x2—y*-1 o (5.20)
then an independent function is
. p=x2+1% {5.21)
We can verify that J= — 8xy is not zero in the neighbourhood of the curve
-0 ] 2_ 2 : . .
am derm,atws(xs P = "‘H} (y e + v@)

= . . bu L du_ du
<, }.Yq g Vdyr Qi. derivative is . —45(;;__ y@;)



40 Single First Order Partial Differential Equations

and

o

. T ... Ou
a derivative in normal direction is Xz —Yz- .
y “ay

We note that the outer derivative du/dp is not same as a derivative in the
direction of the normal. However, by choosing the function 7 suitably, say
1=2xy we can make Su/dp to be a derivative in the normal direction. In
this case the two families of curves P =constant and n=constant intersect
orthogonally,

Now we pose the Cauchy problem for a single first order partial diffe-
rential equation in more than two independent variables. The equation is

F(xs, , pu) =0 (5.22)
where
Do =tx,. . (5.23)

Cauchy Problem: Given m--1 arbitrary functions xue(n,), o} of m—1
variables % such that the rank of the (m—=1) ¥ m matrix

[ 9% dwmo ]
oy 2n
A=l . (5.24)

is m =1, the Cauchy problem for the first order equation (5.22)is to find a
solution u= u(x,) in a domain D containing (xuo(7-)) and satisfying

to{1e) = t(xa0(7)) {5.25)

for all values of 7, for which the functions Xug, 4p are defined.
We give here a geometrical interpretation of the above statement. We noie
- that_ ‘

Xo = Xgo(nr) ) (526)

represents an (m— 1)-dimensional datum manifold y in (xa)-spaée, on which
the values of i are prescribed by :

= ). G

The condition that the matrix 4 in (5.24) has rank m~1 for all values of 7,
implies that the datum manifold is free from singular points. We denote the
datum manifold by ¢(x,)=0. '
. Together, equations (5.26), (5.27) represent an (1 — 1)-dimensional mani-
fold I'in m+ 1 dimensional (e, u)-space and the Cauchy problem is to find
an m-dimensional integral manifold (integral hypersurface) in this space
passing through the initial manifold I, '
In the next two sections we shall briefly discuss first order equations in
more than two independent variables,
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§5.2 Semilinear and Quasilinear Equations in More than Two
Independent Variables

We first consider here the semilinear equation of the type
cu

| % Ty ¢
where ax are functions of x. only and ¢ may depend on u. The left hand
side of the equation represents a directional derivative in the direction (aq)

in (xa)-space. As in § 2.1, the characteristic ordinary differential equations
- are given by

(5.28)

dxa
. do
Followingthe discussion of equation (5.1), the solution of (5.29) gives a

(m— 1)-parameter family of characteristic curves and along these curves the
variation’ of # is given by '

= . , {5.29)

du :
—7{& ={. (5.30)

Equation (5.30) is the compatibility condition along the characteristic curves.
Equations (5.29) and (5.30) together give the Monge curves in (xe, u)-space.

Unlike the case of two independent variables, where every noncharac-
teristic Cauchy problem has a unique solution, we face here a more compli-
cated case: the characteristic curves defined above are one-dimensional mani-
folds and the Cauchy data has been prescribed on an (m— I)-dimenisional
manifold (5.26). To make a statement analogous to that in the case of twd
independent variables we define the characteristic surface of (5.28) in the
following way. The characteristic surface, C, is an m—1 dimensional mani-
fold in (xz)-space such that a Cauchy problem in which the data is prescri-
bed on C, does not have a unique solution. Suppose the data is prescribed
on the mamfo]d y whose equation is

plx)=0. . (5.31)

From the Cauchy data on y we can determine all inner derivatives. If the
~ solution exists uniquely, we should be able to determine one exterior deri-
vative uniquely with the help of the partial differential equation.

Introducing a new set of independent variables (1, ) mstead of (xu) and
substifuting in (5.28) we have

(tapx )ty + aa -g-ﬂi.u =g, (5.32)

The derivatives um, when evaluated atp = 0 are inner derivatives for the datum
manifold ¥ and hence they are known from the prescribed values of « on y.
The exterior derivative w, cannot be determmed uniguely from (5.32) if on

p=0

ToPx, = 0 : (5.33)
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which is, therefore, the condition that the manifold ¢ =0 is a characteristic
surface. The equation (5.33) is called the characteristic equatwfz We note
following points:

(i) In the case of two mdependent varlabIes the characterlstlc surface
coincides with a characteristic curve.

(ii) The characteristic equation (5.33) is asingle first order h'omogcrrous
partial differential equation in m independent variables. The principal part
of the operator in the original equation (5.28) is the same as that operating
" on the function ¢ in (5.33). '

(iii) From (5.29) and (5.33) it follows that the characteristic curves are
tangential to the characteristic surface C: =0. The left hand side of (5.28)
is now an inner derivative for the surface € and this inner derivative is in
the direction of the characteristic curves along which the compatibility
condition '

37)? . e
(73 ‘—a‘;; un, = . - (5.34)

must be satisfied by the value of # on C.

We can prove that the charateristic surface € can be generated by an
(#1--2)-parameter family of the characteristic curves and vice-versa (see
Problem 5, Exercise 5.1). Following the procedure of § 2.2, we can show that
every integral surface S of (5.28) is generated by an m-parameter fantily of
Monge curves and vice-versa.

Now we shall briefly mention here a method of solving a noncharacteris-
tic Cauchy problem; Suppose the datum manifold y is represented parame-
'tncally in the form (5.26) and the values of u are prescribed as in (5.27)
where Xxq0, t0 are continuously differentiable functions. Solving the ordmary
differential equations (5.29) and (5.30) with. initial conditions

Xe = Xao(1r), u= uo("?r) at o=0 (5.35)
w"e*ggt. . '
xg=xg(o, ), u=ulo, n). (5.36)
If the mairix ' '
r_a_xl Oxm ] |— ar - v e . L/ —|
Gy e
Gy FXm 91 O
3771 ......... 87)1 _ ‘ a'ql wea ena - Eﬁh (5.37)
dx; Ixm _ 0xy OXem
Lotm—y 7 Ot domo. LOmey T T sy oo

is nonsingular, we can use (5.36) to solve o, % in terms of x, and express u
as a function of x« in a neighbourhood of the initial manifold. We can easily
show that this gives a unique solution of the Cauchy problem. The non-
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vanishing of the determinant of the above matrix is a condition that the
datum manifold is not a characteristic manifold.

For the discussion of the equation (5.28) when the coefficients are func-
tions of u also, the analysis presented in this section remains unchanged
with slight modifications and hence we need not repeat the whole thing
again. We only note that the characteristic curves and characteristic surfa-
ces now depend on the solution itself. ‘

Uptil now we have discussed only solutions of the Cauchy problem. For
a quasilinear system it is easy to deduce the forin ofthe general selution,
A first integral of the system of (m+ 1) ordinary differential equations (5.29),
(5.30) represents an integral surface of the equations (5.28). We know that
this system has 2 independent first integrals. Let us assume that

fﬂ(xﬂs u)= Ca» ﬁ = 19 2} Ha) m (5'38)

where ¢p are the constants, are these m independent relations representing
integral surfaces of equation (5.28). Therefore we have

R ) (5.39)
Xoy i
Let ' ' o
D(xe, )=0 - (5.40)
be the equation of any other integral surface, then
od . pP

429 _a*)a +CTu— =0, ) 7 (541)

Since a@q, ¢ are not all identically zero, from (5.39) and (5.40) we dedmce
that _ : - _
a(gpsflafﬁl"":ﬁn)_'_ ’ 4
a(xls X2y o0y xﬂhu)_o' o . (5- 2)
- Therefore '
®=@(f1,""_, m) . (543)

where @ is an arbitrary function of its arguments. This shows that if inde-
pendent functions fi, .., fm are known such-that (5.38) are equations of in-
tegral surfaces, then the general solution of (5.28) is of the form

B(fs, for -res fi)=0. (5.44)

As discussed in the end of the section 2 for the case of two independent
variables, the general solution given by (5.44) can be easily used to solve a
Cauchy problem.

*§5.3 Nonlinear First Order Equations.

We consider here equations of the form (5.22) where the function F is
nonlinear in p«. The theory of Monge cones (an m-dimensional hypercone
in (x«, t)-space) and Monge strips can be introduced exactly in the same
manner as in the case of two independent variables and this gives the system

" of Charpit’s equations

-
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d;: = Fps, , (m equations) (5.45)
du .
% Pufps , (one equation) (5.46)
and ' ' -
dpa- . . . .
do =~ Fxe = paku, (i equations). (5.47)

Solution of the Charpit’s equations satisfy the strip condition with respect
to o, namely : :
du _  Ox,
da P 5g
and if they further satisfy the partia] differential equation (5.22), we get a
(2m —1)-parameter family of Monge strips in (xs, u)-space. The projection of
the curve associated with a Monge strip on (xw)-space is a characteristic
curve which can be determined only for a given solution. As in the case of
two independent variables we can casily develop the corresponding theorems
giving relationship between the Monge strips and an integral surface and
also discuss the existence, uniqueness and method of solation of a Caunchy
problem when the datum manifold is not g characteristic manifold. - We-
omit these but ask the question ‘what are characteristic manifolds or surfaces?’
~ We take a datum manifold y: ¢(x,) = 0, where u is prescribed as wy(n,).
Consider now a set of values pug(%,) of P satisfying the strip condition with
- respect to 7,: ' '

(5.48)

auo . axb‘.o _ . V
B A (549
and the differential equation_ (5.22) on y. The interior derivatives of u on y,

.0 T .
1.€; —3% are known from the distribution of # on ¥. To get the exterior
r

. .. Ou . .
derlvat;vegg—g- on y from the above data, we have to Introduce new indepen-

dent variables 95,'77; as in § 5.1. Then the partial differential equation on y
becomes:

(o, 602+ (22) 2o s

‘where the subscript y denotes the value of the quantity on y and where all
quantities except (%)v are known. Equation (5.50) can be solved for (%)»
uniquely if _
b Fp, 70 on y. - (5.51)
f PuFpy=0 ony \ - (552)
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we do not get a unique solution for (Z’%), from (5.50) and the manifold y
is called a characterisiic surface of the partial differential eqution.

We can show that (5.51) is also the condition that all higher order (if
they exist) partial derivatives of u can be determined from the equation
(5.22) and the strip condition (5.49). : '

The discussion of the present chapter shows that for first order pattial
differential equations (it is meaningful to consider only those first order
equations which are satisfied for real values of ps in a domain D3 of
(x«, 1, pa)-space the characteristic curves are always real and the solution of
the Cauchy problem (with smooth Cauchy data) exists and is unique provided
the datum manifold is nowhere tangential to the characteristic curves. From
the method of construction of the solution of a noncharacteristic Cauchy
problem (i.¢. solution with the help of Charpit equtions), it is clear that in
any finite domain the solution depends continuously on the Cauchy data, i.e.
the solution is stable. Eguations, for which the solution of a Cauchy prob-
lem have these three properties: existence, uniqueness, and- stability, are
classified as hyperbolic equations. A detailed theory of such equations will
be discussed in the section 4 of the Chapter 2 and in the Chapter 3. Here
we only note that the first order partial differential equations are the simp-
lest examples of hyperbolic equations. Moreover, we have seen that the
problem of finding a solution of a first order equation can be reduced to that
of finding the solution of a set of ordinary differential equations, which
consists of characteristic equations and the corresponding compatability
conditions. .

EXERCISE 5.1

1. Ifu= u(:«lcl, X3, -+, Xm) be any solution of the differential equation
Xylhy, b Xothy, Foee o Xanlly = 0U
where « is constant, show that for any constant k#0
ulkexy, kxz, -, kxm)=£k* ul(Xg, X2, vy Xoo)-
Note: The above equation is called Euler’s differential equation for

homogeneous functions. ,
2. Show that the general solution of the partial differential equation

(v — 2tz -+ (2 — Xty + (x = Ytz = X2y + iz +z%x — xy?— yz? - zx2
is u=xyz+f(x+y+z, x243% 2%
where f is an arbitrary function of its arguments.
3. Show that the genuine solution of the following Caunchy problem:
ity + ttty -+ =0, -0 < X, Y < 0] 0<tz<<c0

1
U 2. 0= Gy TP SRS
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ceases to exist for values of z > zp, where

Z4 - min w .
x»n 2| x+y|
Determine zgexplicitly. ,

4. Let g(x1, x2, ..., xm)=1 be a one parameter family of surfaces in (x.)-
space depending on ¢ as the parameter and assume that these surfaces
represent the successive positions of a wave front in the propagation
of light waves, so that ¢ satisfies :

1
P+ PL ot pE, =

where ¢ is the velocity of light in the medium. Assuming that ¢ is
constant, show that the surface S for a given time # can be obtained
- from its initial position S, by passing through S, straight lines which
are normal to it and then measuring along these lines a constant dis-
tance cf (see also section 7.7 of Chapter 3). -
5. For the semilinear partial differential equation

aaguxa =c

show that a characteristic surface #(xo) =0 can be generated by an
(m—2)-parameter subfamily of characteristic cuvres,

*§6-APPLICATIONS OF THE THECORY OF A
SINGLE FIRST ORDER EQUATION

A first order equation directly appears in a large number of practical
problems in science and technology, especially in physical problems involving
wave propagation [Whitham (1974)]. In this section we shall briefly indicate
a-few applications. We shall start with the simplest first order equation and
interpret the properties of the solution in the language of wave propagation.
We shall single out one of the independent variables and denote itby 7 repre--
senting time coordinate and all other independent variables by x,, xz, -+, Xm
spatial coordinates.

- *§6.1 An Example: A Wave Equation

Consider the partial differential equation
Ur+ Catly, = Ktt, =0 < xq < 0, £ >0, a=1, 2, e, N (6.1)

where ¢z and K are constants. : ‘
Solving the characteristic equations and the compatibility condition, i.e,
the ordinary differential equations '

. vy du

g G g Ku
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we get
: Xo = Cqf = constant=1,, ue *' =constant= wo.

Therefore, the general solution of (6.1) is .
: u=eXt f(x,— ey, X2— Calyeee, Xm™— Cmit) (6.2)
where f is an arbitrary function of its arguments. We note that the value of
the function f remains unchanged when x. and 7 are replaced by xo+caT, -
¢+ showing that the solution (6.2) represents a wave which moves with a
constant velocity given by the vector (), €2, <+, €m) in (X1, X2, -, X -SPACE.
Due to the presence of the factor ¢¥, the amplitude of the wave increases or
decreases exponentially with time depending on whether K > 0 or K < 0.

We can define a wave front to be a moving surface in (x.)-space - such
that on the wave front the “phase function” f maintains the same constant
value. At any time ¢, the unit normal to the wave front is given by (ne)
where

fxa:
Ho=———
V fegfxg
The ‘wave front velocity’, i.e. the velocity of displacement of a wave front
in its normal direction is

(6.3)

10 Cafry
NoCo =77 19 *
T (g fa )P
The initial manifold =0 is a noncharacteristic manifold and we can
prescribe the initial state of the system described by the function (x4, 1) by
the Cauchy data - o *

(6.4)

X, 0) =}fo(xa), — 0 < xg < O, (65)
In this case we can determine the arbitrary function f in equation (6.2) as
f= Ho. : (6.6)
When K=0, equation {(6.1) becomes '
‘ -+ Catlxy, = 0 6.7)

which represents a wave motion free from “diffusion”, ‘dispersion” and
deformation. It is to be noted that (6.7) is the simplest “wave equation” in
m space-dimensions, This comment is important due to the fact that in
almost all discussions of a wave motion in a textbook on partial differential
equations, what is treated is a very special equation, the so-called wave
equation ' :

=iy - (68)

#$6.2 The Hamilton-Jacebi Theory

Our discussion .of equation (5.22) or (5.28) has shown that the solution
of a partial differential equation of first order can be obtained with the
help of the solution of a system of ordinary differential .equations, namely
the characteristic .equations and compatibility copditions. Hamilton and
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Jacobi recognised that this process can be reversed for a special class of the
system of ordinary differential equations, i.e. their solutions can be obtained
with the help of a ceriain partial differential equation of the first order. This

special class consists of 2m equations of the form . -
dx - dpa _ |
& =T g T @2
where :
H=H{t; X1, <oy Xm} P1y =+ Pm) (6.10)

is a known funciion of its arguments.

The system (6.9} is referred to as Hamilton’s canonical equations of a
conservative mechanical system with m degrees of freedom (Goldstein
(1950)). The motion of the mechanical system is described by m generalised
coordindtes X1, Xa, =+, Xm and the corresponding m generalised momenta p),
D2, v, Pm. The mdependent variable ¢ is time and the function I is the
Hamtltoman of the system.

If we look at the Charpit’s equations (5. 45) (3.47) little more carefully,
we can easily construct a first order partial differential equation for a func-
tion u=1u{x«, ) of m+1 independent variables x{, X2, -.., xm, ¢ such that
equations (6.9} are nothing but its Charpil’s equations. Defining g and pa by

g=1, Do =, 6.11)

we find that the partial differential equation in question is
q+H(r; xl’ x21 LA} x”!;pla PZ, '--,Pni)=0 (6.]2)
where the dependent variable does not appear explicitly. Equation (6.12) is

called the Hamilton-Jacobi equation.
The Charplt s equations of (6.12) are

—— ‘iff--Hpa | (6.13)
‘%— 1, | (6.14)
du _

e =g+ pafp, ‘ (6.1 3)
d
_d%as, - —H,, } (6.16)
and '
%=—H;. . (6.17)

Equation (6.14) shows that in the Charpit equations we can repldce the
variable ¢ by ¢ Then equations (6.13) and (6.16) are nothing but the
Hamiiton’s canonical equations (6.9). Since # and ¢ do not appear in the
arguments of the function H, equations (6.13) and (6.16) form a completely
determined system of equations and it is not necessary to retain the
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equations (6.15) and (6.17). In fact once x, and p, have been determined
from Hamilton’s canonical equations, g and # can be determined afterwards
from (6.12) and (6.15).
The totality of all Monge strips of (6.12) form a (2m + 1)-parameter family
-of strips(see §5.3). Since u does not. appear explicitly in the equations the
strips depend only on 2m parameters. Therefore, the set of all Monge strips
. give all possible 2m parameter solutions of the Hamilton’s canonical equa-
tions (6.9). In order to show a complete equivalence between the solutions
of (6.9) and the Monge strips of (6.12) we only have to show now that
every solution of (6.9) leads to a Monge strip. This is simple. We know that
the function g+ H remains constant along every solution of the Charpit’s
-equations. Therefore, once solutions xu=xx(f), pu= pal?) of (6.9) are given
we select the initial value (at £=0) of ¢such that ¢(0) -+ H(0, x«(0), p(0)) =0
and solve {6.17) and ihen solve (6.13) with an arbitrary initial value of u.
This gives a (2m+1)-parameter Monge strips of the Hamilion-Jacobi
equations, : :

Now we proceed to prove the statement which we made in the beginning
of this section, namely “all solutions of the ordinary differential eqna-
tions (6.9) can be obtained with the help of a partial differential equation”,
We first note that if u be any solution of the partial differential equation
(6.12), then for any constant b, #+5 is also a solntion of (6.12). Let us take
a solution u=p(x,, X2, -, X3 £ '@y, G2, +vy @) Of (6.12) depending on m
arbitrary parameters a;, d,, ---, da such that the determinant

_ , A=py as|# 0. - (6.18)a
Then :

U=P(X1, X2, ++, X3 £ A1, @2, +o-, Am)+D (6.19)

depending on m -+ 1 parameters ax, b, is a complete integral of (6.12). The
general solution of (6.12) is obtained by assuming b= b(a;, aa, ++-, @) as an
. arbitrary function of @ and forming the envelope of the m-parameter family
of solutions (6.19) thus obtained. This is given by eliminating .a,, as, ..., an
from (6.19) and the m relations obtained by differentiating (6.19) with res-
pect to ax

Puy +H2=0 (6.20)
.y ' ’
where by = T, (ai, az, --., aw).

As we discussed in the end of the section 4.2, if we treat @z, b and by as
arbitrary constants, then we can show that the m+1 relations (6.19) and

(6.20) represent the (2m+ 1)-parameter family of Monge curves of (6.12) in
(X, t, #)-space. The variation of P« and g along these curves is given by '

Po= Py X1y X2y voey X3 5 Qg5 @2, <y (i) (6.21)

and (6.12), i.e. for constant values of a., b and b, the equations (6.12),.
(6.19), (6.20) and (6.21) gi've_ the (2m + 1)-parameter family of Monge strips
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of (6.12). We note that u, ¢ and b do not appear in (6.20) and (6.21).
Therefore these equations together represent the 2m-parameter family of
solutions of the Hamilton’s canonical equations (6.9) (for a more explicit
and direct proof of this statement, reference may be made to Courant and
Hilbert—Methods of Mathematical Physics, Vol. 11, § 8.3 Chapter II, pages
108 and 109), Thus we have Hamilton and Jacobi’s result that all solutions
of (6.9} can be obtained with the help of a complete integral of the partial
differential equation (6.12).

*86.3 Traffic Flow

Let us discuss here an interesting kinematical theory of the movement of
heavy traffic on a highway. This example shows how a simple mathematical
model can be constructed for a very complex problem. More than this, it
also shows how new information of great practical value can be obtained
by the use of the simple theory of first order quasilinear equations. .

Consider the heavy traffic flow on a very long stretch of a highway with-
out enfries or exifs, Let x represent the distance along the highway from
some fixed point. In such a case, the number of cars (or other vehicles) per
unit length (in kilometres) is quite high and we may develop a mathemati-
cal model based on continuum hypothesis for the flow of traffic in terms
of the density p(x, #) of the cars per unit length and the associated flux
g(x, 1) of cars crossing a position x at a given time 7. The fotal number

X1
of cars between two poinis x; and x; at a given time ¢ is f p(x, 1) dx. In

Xz
the stretch of the highway without entries and exists the total number of
cars remains constant. The excess of the cars entering into a segment
x; < x << xz of the highway from the end at x; over the cars leaving the
same segment from the end at x2 in time 87 is 81{g(x,, ) —g(x2, 1)}. From

“-._the law of conservation of the number of cars on the highway, difference

in the flux multiplied by 8¢ must be equal to the increase in the number of
cars in the segment (x, x;) in the time 8¢, This gives

| bt ) dx =g, =g, . (6.2

If p(x, 1) and g(x, t) have continuous partial derivatives, we may let x, — xy
and deduce from {6.22) the equation
. ap o ‘
+ Ix =0, : {6.23)
This is a single partial differential equation in two guantities p and ¢. In
order that the traffic flow is fully determined, we need further either a
relation between p and ¢ or ancther differential equation . connecting their
partial derivatives, To achieve this we put forward the following simplified
argument assuming that the highway contains maximum number of cars it
can afford without accidents at any given speed. It is a common experience
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that in such a traffic movement, smaller the free space between two cars,
lower the speed with which they move since there must be sufficient time
for the driver of the following car to respond to the changes in the speed
of the car just ahead. When the space between the two cars is zero, i.e. the
cars are bumper to bumper, i.e. when p=pmux, the flow velocity must be
zero. Therefore, to the first approximation we can assume the flow ve]oc1ty,
i.e. the velocity » of the cars to be a function of the local density, i.e.
v=12(p) where #(p) is a decreasing function of p and 2(Pmax) =0. The flux ¢
is also a function of p and related to » by
o(p) =22 (6249
Further, when the road is free, there is maximum velocity with which the
cars can move, i.¢. as p tends fo zero, » attains a maximum value

2(0) = Umas. (6.25)

Figure 6.1 shows the graph of the relation between ¢ and p. The function
g(p} has a maximum value for some value of p, say p=pp.

94
b
! N
i
|
I
) t
7 S :
; tan ¢
0 ?=%m .s fmax €
Fig. 6.1 Graph of the function g(s).
Substltutmg the relation (6.24) in (6. 23) we get )
pe+(v+pv)px= (6.26)
showing that the changes in the density p propagates with a velocity ¢
c(p)=g"(p) = v(p) +pv'(s). 6.27)

Any acceleration or deceleration of a car is felt by other drivers and iis
effect travels with the ‘sound speed’ ¢ given by (6.27). Since v is a decreasing
function of p, ¢'(p} << 0 and hence the velocity of propagation relative
to the velocity of the traffic is negative, i.e. the effect is felt by the drlvers
of the following cars,
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From the graph of the ¢{(p) it is evident that the maximum traffic flow
ocecurs not at the maximum traffic velocity (where p=0) but at p=p,, satis-
fying 0 < pm << pmax. FOTr p << pu, the figure shows that ¢=¢’(p) > 0 and
for p > py it is less than zero. Therefore the signals moving with the sound
velocity ¢ in the traffic flow, move forward or backward relative to the road
according as p << pm OF P > P

o} % ‘9 -
(a) | L T | {b)
o CKZNI
0 K‘ 'xﬁ
{c)

Fig. 6.2. Nonlinear deformation.

Assame that the initial car density in the traffic in a certain portion of
the road be as shown in the Fig. 6.2a. If the velocity ¢(p) was independent
of p, all parts of the traffic would have been moving with a constant velocity
and the given distribution of the cars would have propagated without any
change in the shape (in this case the governing equation would have been
"“linear). However, we notice that when ‘g depends on p asshownin the
Fig. 6.1, the signal velocity c is a decreasing function of p as p increases from
0 to pmax. In this case, a portion of the pulse (Fig. 6.2a) where p is larger
propagates with smaller velocity than that where p is smaller. The result is
that the portion of the pulse where the slope dp/0x is negative becomes less
steep and that where the slope 3p/dx is positive becomes more steep (as in
Fig. 6.2b). This nonlinear deformation of the pulse continues till it folds
itself at the back in the profile as shown in Fig. 6.2c. In this case there is a
portion of the x-axis where there are three values of p, for the same value
of x. This [eads to a catastrophic situation not acceptable in a normal tra-
fiic flow. However, much before this happens the “diffusive effects’ such
as drivers awareness of the conditions ahead and the time lag in the response
of the driver and his car to changes in the flow conditions become impor-
tant. Since these effects . are not taken account of in our model, our equa-
tion (6.26) ceases to be valid even before the above unrealistic sitnation
occurs [Whitham (1974), (§3.1)].



CHAPTER 2

Linear Second Order Partial
Differential Equations

§1 CLASSIFICATION OF SECOND ORDER PARTIAL
DIFFERENTIAL EQUATIONS

Solutions of partial differential equations. of: order higher than the first
exhibit distinctive types of behaviour, that it is worthwhile to classify these
equations according to their different properties and method of construction
of solutions. We will start with a brief comment on the simplest case, namely
the semilinear second order equation in two independent variables. The dis-
cussion of this case will give us the insight to the method of classification
of equations in a space of higher dimensions.

§1.1 Linear Equation in Two Independent Variables .

We consider an equation of the form
a (x, ¥) e+ 26 (x, y) tspt-¢ (%, YIuyy +d (x, 3, 8, 1, ) =0 (1.1)
: where a(x, ), b(x, y) and ¢(x, y) are real-valued differentiable functions of

x and v, in a domain D, This form of (1.1) is typ1ca1 of a class of equatlons
referred to as semilinear equations. If

d(x, y, u, ux, uy) = e(x, Yhux +f(x, Puyt g(x »u+h(x, y) (1.2)

then (1.1) is said to be a linear equation.

Our object is to transform the differential equatlon (1. 1) into a simple
standard or normal form by 1ntroducmg new independent variables £, 7
through a real transformation:

: £=£x,9),- - m=1(x, y) N (1.3)
The transformed equation is of the form- o : :
A(¢, Mg +2BE, m) g, +CE, Mt + DE, m, w1, u)=0 (1.4)
where ~ A=ati+2bkby+ e _ |
B= gt byt ) Febmy | (1.5) -

C= a’?i +2b1?x7]y + C?']i
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One of the relations satisfied by 4, B, Cand q, b, ¢ is
AC~ B%=(ac—b?) (Exny— £ )2 (1.6)
If we confine ourselves to transformations that are locally one-to-one, then

the Jacobian J ( i ; ) = (Exmy—£ymy) is different from zero. Equation (1.6)

therefore shows that the sign of the expression 52—ge remains invariant
under the transformation. This fact will help us to classify sccond order
semilinear equations based on the sign of 52— ac. :

With equation (1.1), we associate a polynomial—‘a characteristic qua-
dratic form’—defined by

O, m)=al*-+- 2blm + cm?. (1.7

If we substitute
I=)‘§x+l-'-77x_, m=A§y+P7Ty _ (18)
in {1.7), we obtain :

O, m)= AR+ 2B+ Cp2 {1.9)
which is precisely the polynomial associated with the transformed equation
(1.4). Since two real functions ¢ (x, y) and n(x, y) are at our disposal, we
choose two conditions on the coefficients of the transformed equation aim-
ing at simple normal forms of the transformed equation (1.4)%, This leads to

exactly three different cases as will be shown under the heading “method of
reduction to normal form™:

Case I : O, m) = A2+ p2)
(1.10)
ie. A=C, B=0
Case Il : U, m)= AN — 2
o (1.11)
. i.e. A=—-C, on
or -éﬁuivalently :
O, m)=BAypey
(1.12)
fe. A=A—p, py=2-+tp, 4=C=0
‘Case 111 : O, my=4x _
(1.13)
i.e. B=C= 07

Case I corresponds 1o the case where the discriminant of the quadratic
form (1.7), i.e. ac—b* > 0. This arises when the associated real symmetric
matrix M =( ‘;
equations (1.1) with ac—5? > 0, can be reduced to (1.4) with A=C,

b .. ,
. )_has non-zero characteristic roots of the same sign. All

*This can be regarded as a transformation of Q(f, m} to principal axes. By the Princi-
pal Axes Theorem (Finkbeiner, 1970), any real quadratic form can be reduced to the _
algebraic sum of squares by an appropriate linear transformation:
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B=0. Geometrically, in the (/, m)-plane for fixed (x, y) the quadratic curve
O(l, m)=1 is an ellipse. We call equation (1.1) in Case 1 an elliptic equa-
tion. Its normal form is

uff+u1m+Dl(§s U, ufs u.,.')=0 (1,14)

Case I arises when QO(l, m) has the algebraic property that its discrimi-
nant ac—b? < 0. This corresponds to the casec when the matrix M has non-
zero characteristic roots of different signs.

Here O(l, m)=1 represents a hyperbola in the /, m plane. We call equa-
tion (1.1} in Case II as a Ayperbolic equation. Its normal form is '

usf'_u_m]'l"D]_ (é, 7?, u, uE, u“)=0 . (1.15)
or, equivalently,
uzs +DAE, %, u, ui, 1) =0 (1.16)
where
E=E+n)2, a=E-n)2

Case 1II arises when the discriminant ac— b? of Q(/, m) is zero. In this
case the matrix M has one Zero characteristic root, Q(/, m)=1 represents
two parallel lines in the I, m plane. We call equation (L.1) in Case Il as a
parabolic equation. Its normal form is

tgg + DAE, n, u, 1, un)=0. -(L:17)
‘Method of reduction to normal form ’

We assign to the quadratic form (1.7), the partial differential equation @f
the first order given by

O(Ps, Py} == apspx+2bpspy+ cpypy=0.7% (1:18)

In Case | this has no real solution for (—gx/py) as ac—b? > 0. Solving for
(- px/p5), we get two complex conjugate values

—%=p(x, Y-+ (x, p). ' (1.19)

If we were to choose £(x, y) and 7(x, ¥) such that

———“ii%j =p4id (1.20)
then we would have
A+ 2t + ¢E2 = ank -+ 2yt ey (1.21)
and _ 7
. ﬂfx’?x'*‘b("?xg_v‘*‘fx")y)'l‘cfyﬂy:o - (1.22)
which are precisely, from (1.5),
A=C, B=0, ' (1.23)

*This equation is referred to as the characteristic parfial differential equation of
equation (1.1).
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The transformation (1.3) which will reduce (1.1) to normal form (i.14) is
obtained from the relation (1.20). : v
To find the expressions for £ and #, set

{+in=o, é—in=1 S (1.24)
then o, 7 satisfy the equations '

Ox dy . Tx dy ’ . .
e T v =p+ 6: == =fp— 3. .
Ty dx a==const., pri 7_1_; dx1'=const, P (1 25)
. dy dy ‘ o
The notation —— or — - represents the slope of the curve o(x, y)=
dXx |s=const. dxls

constant at a pointon it. o and 7 can be determined by solving the first order
partial differential equations (1.25). We get o= r(x, ), 7=5(x, y), where
r(x, y)=constant and s(x, y)=constant are -obtained by integrating the
ordinary differential equations dy/dx=p-i8, respectively. £ and % are
obtained from the relation (1.24). In Case II, equation (1.18) has distinct
real solutions, p; and p; for—p./p,. ¥ we were to choose € and 7 such that

& dy o e dy R ' :
_fy ‘-_. dxgzconsl, Pl "?y-“dx #econst, P2 L (1.26)

then we would get from (1.5)
‘ A=C=0"

which would reduce (1.1) to the normal form-(1.16). The equivalent normal
Jorm (1.15) can then be easily obtained. Differential equations (1.26) help to
determine the transformation (1.3). ' ' -
In case III, equation (1.8) has coincident real roots for (=osfpp). If we
were to choose 7 such that '

T Ny dxlg

=p a (1.27)

then we would get
' B=C=0

which would reduce (1.1) to the normal form(1.17). ¢ can be chosen arbi- -
trarily, such that £ and 7 (given by equation (1.27)) are functionally
a(¢, )
_ d(x, y) #0. ‘
Since the coefficients a, b and ¢ are functions of (x,.y) it may so happen
that in some regions ac—5? > 0 while in others it is less than or equal to
zero, Such equations are called “mixed type” of equations and occur, for
example, in transonic flows. In the case of quasilinear equations where a, b
and ¢ are functions of (x, y, u, u, u,) one must substitute a- given solution
u=1u(x, y) for u before one can classify the equation. Therefore the same
equation may be hyperbolic for one solution in a certain domain, but ellip-
tic or parabolic for another solution in the same domain.

independent, i.e,
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Example 1.1 The Tricomi Equation. Reduce to normalform the equation

Uz Xty = 0 for all x, y. (1.28)
In this equation ‘
ac—bt=x

and therefore the equation is of mixed type, hyperbolic for x << 0 and
elliptic for x > 0. In the half plane x < 0, we can determine ¢ and v by
therelation '

dl _go b =

dx | =V=x, dx\a B
Therefore  &(x, y) = % p+/Z08, n(x, ) E%y—(v xR (1.29)
The normal form of the equation for x < 0is - :
In the half plane x > 0 (see equation (1.25)),

d = d -

é\o =ivx , %L =—iVx

oz, =3 y=iVFF, (% Y=y HVEP.

[
y

Fig. 1.} The characteristic curves for x < O-are-'cﬁbic parabolas. -
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From equation {1.24), we then have

3 j—
=5y wxy=-Wx)»P = (13D
The normal form of the equation for x >0 is -
1
Uee +uﬂq+‘§;?" y, =0 . (1.32)
EXERCISE 1.1

1. Find the type of the following differential equations, and reduce them
to normal form:

(1) Uxx —yzuyy-I-ux— u+x2=0
(ll) (1 - xz)uxx —Uyy=0
(iii) y%uex + 2ptiny + ttyy — 11 =0
(iv) JPuex+uyy=0

2. Traosform the following equation to normal form
. Haytyttyytsin (x+y)=0
and obtain its general solution in the form
u= e"L e™% cos (& + ye**} du - e* F(ye ) +G(x)
where F and G are arbitrary functions of their arguments.
3. Transform the equation
9y 02u
20U _ g O
i 52
to normal form.
“---Hence show that the general solution is

u=f(xy)-+xg (%)
where S and g are arbitrary functions.

4. Find the transformations ¢ = §(x, ), 7=n(x, ) which will reduce the
equation

492115+ 201 — Y2y — thy Tg-lJ-;_yZ (2t —1y)=0

to normal form and find the solution satisfying the initial condition
u(x, 0)=f(x), uy(x, 0)= F(x).

§1.2 Linear Equation in More than Two Independent Variables

In the case of more than two independent variables, it is usually not
possibl_e to reduce a linear partial differential equation of the second order



1.2 Linear Equation in More than Two Independent Variables 59

to a simple canonical form throughout a region. Only in the case of
equations with constant coeflicients ot in the neighbourhood of a given
point, can a suitable canonical form be achieved. Counsider the equation
(a repeated index denoting summation over the range 1 to m)

Gupthsyey +Dathyy Feu=dio, $=1,2, .om (1.33)

where aep, ba, ¢ and d are-functions of the independent variables xi, X2, -+,

Xm and tep = Ugo.
The associated real symmetric matrix in this case is M =(aup). As in
section 1.1, consider a one-to-one transformation

goc:go;(XI, X2y ey xm)s o= 1: 2: ey M. (134)
Equation (1.33) then transforms to
Avaug,. &5 +D(§l: 523 RAAE] gm; Uy Ug ooy ufm)=0 (135}

Y, 3_—"1; 2, .o m,

where Ays= ang(Ev)x, (€)xg -

As we have only m funciions £, at our disposal, we cannot, in general,
get rid of all m(m—1)/2 mixed derivatives by setting 42=0, y 5 9, as it
would lead to an over-determined system of equations for &u’s.

At a given point, we are able to reduce equation (1.33) to a canonical
form by treating the coefficients d@as o be constants. Without loss of genera-
lity, we can choose this point as the origin, and let

bu=Fogha @ B=1,2, eym (1.38)

where fug's are constants, then the transformed equation (1.35) has coefli-
cients

AW:au.afmfaﬁ; fy,8=l, 2’ ...’m ' (1.37)

as constants. The same would hold if equations (1.33) had constant coeffi-

cients and we restrict ourselves to linear trapsformations (1.34). The

characteristic quadratic form Q(}) associated with equation (1.33) is

Q(‘\) = aaﬂamhﬁ = Aaﬁl—"mﬂﬁ (138)
where X’s and u’s are related as follows:
AOG:I""ﬂ(E.E)xO’. =.u’ﬂf30ﬁ; a, B=1: 29 ey M2 (139)

Our aim is to transform Q(}) to principal axes (so that Axs=0 for o # B)
so as to obtain the normal form of the equation (1.33). According to the
Principal Axes Theorem of linear algebra, any real symmetric matrix M is
simultancously simifar to and congruenttoa diagonal matrix D [Finkbeiner,
1970]. That is, there exists an orthogonal matrix P, such that

D=PMP?
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is diagonal with special diagonal values. This means, by suitably choosing
the constants fus and scaling £°s, we have :

Awg=0fore #£ 8
+1 OC=1,2, e P

Awx=—1f 2=p+1,...,7 (no summation on ) (1.40)
0) a=r+1, .., m | '

depending on the fact that A4 has P positive eigen values, (r— ) negative
eigenvalues and (m —~r) zero cigenvalues. '
Case 1. 1f all the eigenvalues of A are non-zero and of the same sign, the
equation is of elliptic type with the normal form

Uge, Tt e Fooitue o +DE, & ..., Ep u; afp cony ugm)=0. (1.41)

The quadratic form @ is then either positive definite or negative definite.
Case I1. If all the eigen values are non-zero and have the same sign, except
precisely one of them, the equation is of normal hyperbolic type with the
normal form ' ‘

u§1§1_u§sfzmu§3§a'" —ufm§m+D(§1: ey fm, U, Ug s veny ugm):[)_ (1.42)

Case I11. If all the cigenvalues are non-zero and at least two eigenvalues
are present with positive sign and at least two with negative sign, then the
equation is of ultra hyperbolic type. This situation can only occur when
n = 4, the simplest case being the equation

ey, Tlpe, =tge Fuge, (1.43)

in four independent variables. o .
Case IV. If any of the eigenvalues is zero, the equation is of parabolic type.
The heat or diffusion equation :

U=lgyg FlpptotUy e (1.44)

in m=1 space variables and one time variable is the best known parabolic
equation ' - . o

Method of reduction to normal form . ‘
As in section 1.1, we assign to the quadratic form Q(A), the first order
partial differential equation o
= QI(P) = aqspxm sz =0. - ' ' (145)
This is the characteristic equation of equation {1.33). The importance of this
equation will be seen in the solution of initial value problems in section 1.3.
In general; given equation (1.33) it is not necessary to find the orthogonal
matrix P or the eigenvalues of M before classifying the equation. It is suffi-
cient to express the quadratic form (1.38) as a sum of squares, which is
merely the process of ‘completing the square’. This is equivalent to a non-
singular (not necessarily orthogonal} linear transformation of the variables.
By Sylvester’s law of inertia (Birkhoff and-MacLane, 1965), the number of
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positive and negative squares does not depend on the particular nonsingular
linear transformation used and is an invariant of the associated matrix.
Thus the classification can be done depending on the number of positive
and negative squares in the transformed quadratic form, as it will be the
same as the number of positive and negative eigenvalues of the associated
matrix. ) _

First we consider an example and then explain the procedure.

Example 1.2
Classify the equation
= uxx+3u_yy+ 841’22'}'28“3)2“{" 16u2x+2uxy= 0. (146)

The associated matrix is
1 i 8
M= 1 3 14

8 14 84

It is éxtremely complicated to find the eigenvalues of M. On the other hand
complete the squares for Q(A) in A1, Az and A3 in turn: .

O =27 + 332+ 840 + 22 Ao+ 16Asds + 28Azh3
= (A1 + A2+ 822 +2(A2 + 3A P + Y
= (M A+ 802 [V 2 (e 3R+ (V2 X2 (1.47)

The equation is elliptic as O(A) can be expressed as the sum of three squares.
By means of the transformation (see (1.54))

1 1
£1=x, §z=\-/?(y—x),‘i§3= \/_2_(z-5x—3y) (1.48)

the given equation transforms to
ufl‘fl+uf2fz+ufsfs=0' ; (149)

We can derive a working rule for using the “completing the square of the
quadratic form” to determine the normai form of the linear second order
equation (1.33) and the transformation (1.34) leading to it.

Consider the quadratic form associated with the matrix M, namely XTMX,
where superscript 7 stands for the transpose. Completing the square requires
finding a variable Z such that ‘ '

XTMXx=72TDZ (1.50)
where D is a diagonal matrix with elements +1, —1, 0. When equation
(1.33) is not parabolic, the m elements of the vector £ are determinable as

linear combinations of x,, X2, --+» Xm and we can find a nonsingular matrix
Q such that

Z=0X - (1.51)
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This is so because the linear combinations in each square constituting the
clements of Z form a linearly independent set. In the parabolic case not all
the m elements of Z are determinable, but still © can be completed suitably
so as to be nonsingular,

We have from (1.50)

M=07D0
or D=(Q0"HTMQ™. (1.52)

Consider the transformation ¥=PX of the independent variable. By this
transformation, equation (1.33) is transformed to equation (1.35) with asso-
ciated matrix N such that

N=PMPT, (1.53)

Choose P=(Q1)T; then N =D and we have our required normal form. The
transformation which reduces (1.33) to the normal form is

| Y=(0)7X. | (1.54)

In the previous exambﬂe

X;+x2+ 8x3
Z=| V20u+3x)
'\/5)&‘3
I 1 0 0 1
1 1 3 ) |
. —— =
o=t 0 V2 3V2 | (@Y= V2 V2
0 0 42 5 3 1
V2 V2 V2

EXERCISE 1.2° R

1. Reduce the following to normal form:
(i) 4uxy -+ zuyz + Zﬂzx = 0 .
(il) HUxx -+ 2u_yy+ 3uzz + 4”{: + Zu_xy -+ zuzx
+ 2Mxt + 4”)12, + 43{'_];: + 6uzt =0
2. What are the possible normal forms for a second order partial differ-
ential equation in three independent variables?
3. Classify the following equation by finding the eigenvalues of the asso-
ciated matrix:
331):,\: + 3“22‘1‘ 4ny+ Suzx + 4“_;:; =0,

Verify by completing the squares of the associated form.
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§1.3 The Cauchy Problem

We start with the general quasilinear second order equation for a function
u(x, ) of two independent variables: :

aitxx +2buxy+ Cuyy=d (1.55)

where a, b, ¢, d depend on x, y, #, ix, Uy The Cauchy problem consists in
finding a solution of (1.55) with given values of u and its normal derivative
on a curve C in the (x, y) plane.

Let the parametric representation of Cbe: x = xo(s), y=ya(s), s € I, where
[ is an interval on the real line. We are given two functions u#y(s) and z,(s),
s & I. The Cauchy problem consists in finding a solution u(x, y) of (1.55)
which satisfies the following conditions:

w(xe(8), vo(N)=u(s), s € 1

1.56
and g—g(xo(s), yols)=uls), s €1 (1.56)

d -
where v denotes a normal derivative to C.

For discussion of the Cauchy problem here, we assume that @, b, c and d
are analytic functions, regular in some domain D. Our aim is to examine
whether there cxists a unique analytic solution of (1.55), which takes given
values on C. To do so, we formally construct a solution using a Taylor’s
series expansion about any point of C. The first step in such a solution is to
show that the partial derivatives of u of allidrders are uniquely determined
at every point of C. Let suffix 0 denote the values of partial derivatives of
u at point of C. i.e. (xo(s), Po(8))=tx(s) and so on. Then xo(5) and uy(s)
satisfy the following linear equations:

xotixo(8) + Vartwols) = #o(s)
and (1.57}
— Yotixo(8) + xoitols) = v 36,')2 -+ yzz u,(s)

where a prime (' ) denotes differentiation with respect to s. Except at points
where xo and yo vanish simultancously #x and my can be determined
uniquely. :

Regarding second order derivatives, namely, #ol(s), tro(s) and tyo(s),
they can be determined as solutions of the linear equations:

Qttseo(8) + 2bttye(S) + ctyyals) = d
xo(ttexo() + yo(Ht(s) = {uxals)}’ S (1.58)
xo(SWa(8) + Pa(Stpols) = o8I},

These equations determine uxxo(s), txyo(s) and tyyo(s) uniquely provided the
determinant of the coeflicient matrix is nonzero. This requires that

apl —2bxoypotexc # 0,
or . ' O(-yox) #0, (1.59)
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where Q is the characteristic quadratic form described in (1.7). Further we
can show that the derivatives of u of all orders can be umquely determmed
at points of C, provided T

0( yﬂs x'o) # 0.

In this way we can formally develop a unique Taylors series expansion
solution in the neighbourhood of any point of C, satisfying the given condi-
tions on C. The difficulty is to show that such an expansion is convergent

- in some region around C. The Cauchy-Kowalewski method (see Garabedian,
1964) provides a majorant series ensuring convergence.

On the other hand if @(~— yo, x0)=0, then the partial derivatives of # on
the curve C cannot be determined uniquely. The exceptmnal curves C, on
which if # and its normal derivative are prescribed, no unique solution of
(1.55) can be found satisfying these conditions, are called characteristic
curves, These curves satisfy the homogencous equation

O(~»o, x0)=0.
If the curve C: x=x(s), y /f yo(s) in the (x,'y) plane, is given by the eqilation
_ o(x, y) =constant .
(by eliminating s), then p satisfies the pai'tial differential equation
QO(px, 2} =0 on ¢(x, y) ="constar_1t; S o “(1.60)
since :

yﬁr:_& ‘= —.Edl
xo Py dxc

From the results of section (1.1), it follows that there are two distinct
families of characteristic curves satisfying (1.60), if the cquation is hyper-
bolic. They are precisely £(x, y) = constant and 5(x, y)=constant. £ and »
are referred to as characteristic variables or coordinates.

“-No real characteristic curves are found, when the equation is elliptic, and
one family of characteristic curves exist when the equation 1s parabohc

For a hyperbolic equatlon in itsnormal form namely

et D, m, u, ug, u)=0 (i..61)

& =constant and 1= constant are the characteristic curves. If, for example
in the Caunchy problem u and #,; are prescribed on a characteristic curve C:
¢ =constant, then we cannot determine w;; uniquely on £=constant from
the given equation (since the coefficient of w;: is zero in the linear second
order equation (1.61)). Since « and w; are prescribed on £ = constant as wo(%)
and u,(), say, respectively, u¢» and u, can be.computed on £ = constant and
the equation (1.61} will reduce to the compatibility condmon

ui("])"l'D(f 7N, o, Uy, uﬂ) 0

on £ =constant. Compatibility conditions to be -satisfied on characteristic
curves are typical, as the equation gives no additional information in this case
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(like the value of uz¢ in (1.61)), but merely insists on a relation between already
known quantitjes. If the compatibility condition is satisfied there will be an
infinity of solutions.of the Cauchy problem (choosing we¢ arbitrarily in
(1.61)), or else there will be no solution. The above discussion holds for data
prescribed on 7 = constant as well: For a hyperbolic equation, we have two
compatibility conditions, one each on the characteristic curves £ =constant
and 7=constant. For a parabolic equation, we have one compatibility
condition on the single family of characteristic curves.-

In the canonical elliptic form, #g and uwm can always be determmed
whenever # and its normal derivative are prescribed on any cutve in the
(x, y)-plane, since Q(px, py) # 0 on any real curve p(x, y) = constant. We
can always find a unique solution for the Cauchy problem in this case.

In the case of m independent variables, those surfaces g(xy, x3, <+, Xm) =0
on which, when the function and its normal derivative are prescribed, no
unique solution exists satisfying the prescribed conditions, are calied
characteristic surfaces. Following a similar process, as in the case of two
independent variables, it follows that ¢ satisfics the equation (1.45), namely

QuP) = Gup Py, px, =00np=0. . (1.62)

The characteristic condition (@) =0 is required to be satisfied on p=0
but this does notrequire that p satisfies the equation Q,{p) =0 identicaily.
What then is the relation between a solution of the partial differential equa-
tion (1.62) and a characteristic surface of (1.33)? This has been discussed in
Chapter 3, §6.

EXERCISE 1.3

1. Let u(x, y) satisfy the equation _
Uex— 2yt thyy+ 3ue—u+1=0
in a region of the (x, y) plane. Classify the equation and find its
characteristics. Construct a‘solutlon if it exists, for each of the follow-
ing Cauchy data: ‘
(i) u=2, wuy=0 on the line y=0.
(1i) u=2, tx=0 on the line x+y=0,

§1.4 Propagation of Discontiniities

The characteristic curves are closely associated with the propagation of
singularities of certain types. Let # be a function of class ! in a certain
domain D of the (x, y}-plane. Let C, given in parametric form by x = xy(s),
y=u(5), be a curve which divides this domain D into two domains [ and I,
such that ! and u, the values of & in domains T and II, respectively, are of
class C? in these domains. In each of these domains, let ¥ (denoted by u!
and 'l respectively) satisfy the eguation:

alx, Yo - 2B(x, Y +e(x, Yup+dix, y, u, u, uy) 0. (1.63)



" 66 Linear Second Order Partial Differential Equations

The second derivatives of # have a' jump discontinuity across C. Such a

“solution can -be considered to be a generalised solution of equation (1.63).
Let '

Igl=g™s)-g'(s) en C (1.64)

denote the jump discontinuity in the quantity g(x, ») across the curve C.

Using (1.58) for the function «(x, y) along neighbouring curves to C on the
left and right, we obtain in the limit the following jump relations™:

a [Hxx] + 2b[uxy] -+ CIuyy] = 0

0 [tsa] 4 peltny] -0 S (1.65)

x0 [t1xy] "}'J;(;[”yy] . =0,
For a non-zero solution of [ux], [ux], [ty] from the above system, we
require: ' _ : '

“ay’ = 2bxapi+exi =0 o (1.66)
ie. O(— yo, x0)=0.
C, the curve of discontinuity of second order derivatives of u», must be a
characteristic curve of equation (1.63). For a C! function, the jumps in the
second derivatives are not’ independent as seen from equations (1.65).
Knowing the jump of txx, we uniquely get those of uxy, #yy. Characteristic
curves are the carriers of possible discontinuities in the solution.

Let C be a characteristic curve given by
. &(x, y)=constant.

Then across C, [ug] = o [e]=0, [eon]= Py [ta]=0 but [wgel#0, where 7

“is a function in_dependent of £
Changing from x, y to &, 7 coordinates, as in §1.1, the first of equation (1.65)
will take the form _ )
R Oz, Ep)lugel =
Smce Tuge] is assumed to be non-zero, from (1.5),
O(éx, &) = A(¢, 7)=0 along C.
If the transformed equation (1.4) is differentiated with respect to & and
jumps across C are considered, we have :
2Bluggn] + (Ag + Dug luge] = 0. ‘ ‘ (1.67)
Since [uge] is purely a function of 7, (1767) is equivalent to the ordinary
- differential equation

A d%[uff] +f()ugg] = 0 ' (1.68)
which has a solution of the form _
[osg €] = [ge o XP (—E F) dt ) o | (1.69)

*Any sufficiently smooth curve can be embedded in a one-parameter family of
“parallel” curves.
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We conclude that if at any point 7=79 of C a discontinuity -in the second
order - derivatives of u is present, it will persist (be non-zero) for all points
ot C. The variation of the jump in [ug:] across £ = constant is governed by
the equation (1.68), also called the transport equation.

EXERCISE 1.4

1. Consider any straight line ax+5y+¢=0in the (x, y) plane where 4,
b, ¢ are constants. For any point (x, y) in the plane define u(x, y)
=|ax+by+c|. Show that u satisfies the equation u.x+ 1y =0 on each
side of the line. Show that » is continuous across the line, but its
normal derivative is not. Comment on the statment that any straight
line can serve as a carrier of a discontinuity in the first derivative for
the above equation, which has no real characteristics.

2. Find the possible curves along which discontinuity in the second order
derivatives of u cou]d occur when 4 is a weak solution of the equation:

xy ux,, = Xty + 12 +-}-uy= 0.

Find the transport equatlon and solve it to ﬁnd out how the disconti-
nuity grows or decays

§2 POTENTIAL THEORY AND ELLIPTIC
DIFFERENTIAL EQUATIONS

Boundary data rather than initial data serve to fix properly the solution
of an elliptic difterential equation. It is usually necessary to find an answer
“in the large,” namely in the domain bounded by a closed boundary, and
this need for “global” constructions, rather than “local” treatment makes
it especially difficult to study nonlinear elliptic equations. We shall restrict
ourselves mainly to the linear potential equation or Laplace’s equation in
m-space variables. The boundary value problems of potential theory are
suggested by physical phenomena from such varied field as electrostatics,
steady heat conduction and incompressible ftuid flow [see Sneddon, 1957],

§2.1 Boundary Value Problems and Cauchy Problem

The general linear homogencous second order partial differential equation
in m-space variables xy, X2, «er, Xm 18

Lu:amgumxﬁeraux +eu=0, 2, 8=1,2, ..., m (2.1

where the coefficients guz, be and ¢ are continuous funcnons of the indepen-
dent variables x|, x2, ..., Xm and @us = ag.. Equation (2.1) is said to be ellip-
tic in a domain D of m~d1men31011al space, when the quadratlc form

OV =aaphads ' : T Q2)
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can be cxpreSsed as the sum of squares with coefficients of the same sign,'
or equivalently, O(}) is either positive or negative definite in D. The simplest
case is that of the Laplace equation or potenfial equation: '

° Amu.: uxuxmﬂo. L (2.3)

We shall first state three boundary value problems associated with Laplace
equation and then consider the Cauchy problem. Let D be a domain in
(x1, X2, +++, Xm)-space bounded by a piecewise smooth boundary éD. Tet
continuous boundary values be prescribed on @D, by means of a function f.

The first boundary value problem, also called the Dirichlet problem,
requires a solution u of the Laplace equation (2.3) in the domain D, which
is continuous in D--8D and coincides with fon 2D, i.e.

u=f on &D. . - : (2.4)

The second boundary value problem, also catled ‘the Neumann problem,
requires the determination of the solution u in the domain D, which is
continuous with continuous first order partial derivatives in D+éD, such
that the normal derivative @u/dv of u on 8D takes prescribed values f, i.e.

g—’j= f on 0D. : O (25)

Here 2D must have a continuously varying normal.

The third boundary value problem is a modification of the first two boun-
dary value problems, where the solution v is such thata linear combination
of 1 and &u/dv, rather than either of them separately, takes prescribed
values on 2D i.e, S

< _
-gi—l +au=f on 4D (2.6)
" —where o is a constant. _ :

Before we discuss the Cauchy problem, we shall examine, in general, the
requirements to be satisfied by'a reasonable mathematical problem. There
are two requirements:

1. “Existence requirement—There is at least one u satisfying the equation
. and the given boundary/Cauchy data. S
2. Uniqueness requirement—There is utmost one such u.
Tf the mathematical problem is to be also physically realistic an
extra requirement has to be satisfied: _
3. Stability requirement—Small changes in the boundary or Cauchy data
result in small changes in the solution .

The first two requirements ensure the existence and uniqueness of the

" solution of a mathematical problem, while all three requirements ensure,

further, stability or continuous dependence on given data for a physical

. problem, If the three requirements are satisfied by a problem, it is said to
- be well posed. ‘ ‘ ‘
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The Cauchy-Kowalewski theorem shows that the solution of an analytic
‘Cauchy problem for an elliptic equation exists and is unique. However, a
Cauchy problem for Laplace’s equation is not always well posed.

Hadamard gave an example of a Cauchy probiem which violates the sta-
bility requirement. Consider the Laplace equation in two independent vari-
ables x, y with the following initial conditions: =~

(@ u(x, ©=0, u(x,0)=0

(b) ulx, 0)=0, uy{x,0)= S%’fi‘ | 2.7

A solution satisfying condition (a) is. _ _
u(x, y)=0. . (2.8)

A solution satisfying condition (b) is
ulx, y)?z}a‘ sin fox sinh ky. L 2.9

For sufficiently large &, the Cauchy or initial vaiues {a) and (b) are arbitra- -
rily close, but the solutions are not, since sinh ky behaves like & for large k.

Having noted that a Cauchy problem could be illposed for an elliptic
equation, we shall concentrate our atiention hereafter only on the three
.boundary value problems mentioned earlier and show that they are really
wellposed. ' )

Definition: A function u(x) is called harmmonicin D, if u(x) & C®in D+2D,
e C?in Dand du=0in D,

In the case of two or three variables, the ‘general solution” of the poten-
tial equation can be easily obtained. For m =2 (x;=x, x2 =), this is the real
~ or imaginary part of any analytic function of the complex variable x+ iy.
For m=13 (x;=x, x2=, x3=2z)}, consider an arbitrary function p(w, #) analy-
tic in the complex variable w for fixed real ¢. Then, for arbitrary values of z,
both the real and imaginary parts of the functlon

_u—p(z+zx cos ¢y sin f, t) _, B A1)

of the real variables x, », z are solutions of the equation du=10. Further
solutions may now be obtained by superposition.

uﬂ_I' plztixcost+iysing, t) dt. - 2.11)

If u(x, y) is a solution of the Laplace’s equation in a domam D of the
(x, ¥} plane, the function _ '

Wx, y)= u(;xy %) r?=x%1y? : (2.12)

also satisfies the potential equation and is regular in the domain D' obtained
from D Dby inversion with respect to the unit circle.
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In general in m-dimensions, if u(x, x2, -+, Xm) ‘satisfies the potential equa-
tion in a bounded domain D, then .
1 X Xz . Xm' o

y=ﬁ72u(;3-, ,T""’_;% N .“2=Xa)&x . (2.13)
also satisfies the potential equation and is regular in the region D’ obtéi_ned

from D by inversion with respect to the m-dimensional unit sphere. There-

fore, except for the factor r2-, the harmonic character of a function is

invariant under inversions with respect to spheres. Besides, the harmonic

property is retained completely under rotations, magnifications, translations

and simple reflections across planes.

Example 2.1 Dirichlet problem for a circle in the x, y plane.
Let the circle C be given by | { | =R, where {=x+iy. The problem is to
- find u(x, y) such that

_ e 'deuﬁux:5+uyy=0 _
where ~ ‘ (2.14)
u=f(onC

where 8 is the angular coordinate on C, i.e. {=Re" on C

_ Fig. 2.1 ww and R*w are inverse points with respect to C: } z | =R.

We shall present here a constructional proof for the existence of the
solution, i.¢., we shall derive an expression for the solution. Let F({) be an
‘analytic function in the region enclosed by C, such that the real part of F({)
on| § | =Ris f(#). Let w be a complex number in the region. The inverse
point of w with respect to C is R/W, which lies outside C. Here % denotes
the complex conjugate of w. According to the Cauchy integral formula

1 [ F&)
F( w)= 2mile L—w dt
Rie

- 2m ci~ szw
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Subtracting

I FQ(R?—w )
F0 = s | Tt = e %

As { lies on C and w inside C, set
{=Re", w=rel%, r < R.
Then,

. R?—r?
F(rei?) = f F(Re’ ) RET 752 20R cos (0— P)

Taking the real part on both sides, we get

RE—p2 27 £(6) do
Jw L "R+ r2-2rRcos (0 —p) (2.15)

w(x, y)=

where r2=x2 432, tan p =y/x.
" Equation (2.15) is called Poisson’s integral formula in two dimensions.
This completes the proof of the existence of the solution.

EXERCISE 2.1

1. If u(x, y) satisfies Laplace’s equation in the unit circle and is equal to

m A cosﬁ on the boundary, show that u(x, ) is a rational fu_nction of x
and y.

2. Given that f(w, £)= w"e"" where n and 4 are integers, use formula @11y

to find a solution of the Laplace equation in three dimensions. - .

3. Prove that dnu(x)=0 1mp11es that Am(]xP "y (1 X ‘2))”—0 for —3

in the domain of definition of #.

§2.2 Singularity Functi_ons and the Fundamental Solution:
Green’s Function

In R™ the solutions #(r) of the potential equﬁtion Ay ==0, which depend
only on the distance r(#0) of a point x from a fixed point a, say, are given .
by the equation

d m—1 dv

@ w0
; (2.16)
r= | x=a| =V G o) do).
This equation has solutions
oWry=ciFear?™ m>2
) 2.17):

=c+eclogr, m=2



o

72 Linear Second Order Partial Differential Equations

where ¢, and ¢, are arbitrary constants. These solutions exhibit the -so- .
called characteristic singularity at r={. We call

s(a, x)= la—xP,  m>2

m_2 'z
( 1 o (2.18)
=—2—ﬂlog|§~x|, o om=2

the singularity function for Apu=0, where wy, is the surface area of the unit
sphere in m-dimensions given by

wm=2(\/w)"’/11(—]§-). | S (219).

s(a, x) has the property that s € C* and dms =0 for xa, with a singularity
at x=a. For m=3, s(a, x) corresponds physically to the gravitational poten-
tial at the point x of a unit mass concentrated at the point a. Every solu-
tion of the potential cquation Amuj-() in D of the form '

va, x)=s(a, x)+p(x)aED ' (2.20)

where p(x) € C?in D and p(x) & C" in the closed region D+dD and dpp =0
in D, is called a fundamental solution telative to D with a singularity at a

Two important relations required for the study of the potential equation
are the well known Green’s formulae. These formuiae help in obtaining the
properties of the fundamental solution. Let # and » be two functions defi-
ned in a domain D bounded by a piecewise smooth surface ¢-D. Then

du

1, _[ i dx+[ 0d dx=I B_dS ) (2.21)
b R D v )

Hs
2D
and

8D

,|.D (udmﬂ - Udmu) dx =J ( u % — U‘gg) ds . (222)
where d/0v represents differentiation in the direction of the outward drawn
normal to S. In (2.11) we assume continuity of # and » in D+ 8D, continuity
~ of the first derivative of v in I, continuity of the first derivatives of # in
D+8D and continuity of the second derivatives of » in D. In (2.22), we
assume continuity of the first derivatives of uand » in D+8D and confi-
rfuity of the second derivatives in' D [for proof, see Courant and Hilbert
(1962)]. .

If dpu=0 and v=1, we obtain from (2.21)

f 4o dS=0 . (2.23)
8D

where the suffix v denotes normal derivative to the surface éD. That means,
if a function satisfies 4,4 =0 in a bounded region D and ‘is continuously
differentiable in D+ 46D, then the surface integral of its normal derivative is
zero. This lays a restriction on the Neumann boundary value probleim
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(sec (2.5)), where f cannot be prescribed arbitrarily. We require the condi-
tion that

Iabde=0.

Green’s formulae undergo an important modification if for » we substi-
"tute a function having the characteristic singularity of potential function at
" an interior point. Let us choose » to be a fundamental solution:

. v=7y(a, x)=s(a, ) +o(x). 7 (2.24)
This leads to the following theorem:

Theorem 2.1 If u(x) & Clin D+éD and & C?*in D and u(x) is a solution
of the potential equation then for an arbitrary point a € D

u(a)= J.ap {'y(a, X)uv(x)— u(x)yv(a, x)}dS. {2.25)

Proof Since D is open, the ball ¥ : | a—x | < p about any point a in D is

~ contained in D for sufficiently small p. Since ¥(a, x) becomes singular at '
x =a, we remove ¥ from D and apply Green’s formula (2.22) for ¥ and # on
D— V. We gbtain

I (vt — udpy) dx = _[ (yuv—upy) dS
D=V B2

+I (’)’Mv;u)/v) ds.
Jlx—a| =p

Since 4,y =0, dmi=0in D~ V, the left hand side is zero. N
_For the last integral on the right hand side, using the fact that ¥(a, x)=
s(a, x)+p(x), we get the sum of two integrals 7; and In:

11.=.J. [ X—-a | = (qouv—upv) dS.

The integrand is contmuous in| x—a| =< p, so that the integral tends to
zero as p —> O,

Iz=J |x~a] =0 {suy— us\;) ds.
At any peint on the surface of ¥, x=a+pv and dS=p""1 du. Therefore

= pin—1 :
J | x—a ] =p Su? a3 =p jlvl o s(a, a+ pViula-+pv) dw

e P T s

| = = 2ym J‘l”ﬂluu(a+pv) dw,
This tends to zero as p — 0. :
Further,

- = — pm—1 .
_[ {x—a] =p st dS P LH ufa -+ vp)au(a, a-t pv) dw

Pm—l

¢
=t L om g,
(m—Z)me[u|=z u(a+v,a)av pr des.
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‘ a 2 '
Here | B viake e Therefore
—I st d, =——LJ cu{a+vp) d.
|x—a|=p _ Wy J (vl =1

As p = 0, this tends to — u(a). This provés the result (2.25), namely

u(a)= J. M{ ¥(a, X)u(x)— ﬁ(x)yu(a, x)}dS.

This formula holds for anya € D. _
If instead a lies on ID, then it is easy to show using the same procedure
that :

=2 [, 00, 9t~ 0 }as (226)

whereas if a lies outside D, then ) .
Joo e = utsmta, s =o.

In particular in 3-dimensions m=3, if p(x}=0, then we have for a &' D:

L u(a)=4~»l—wLD{—,1,- %’ jv( )}ds @

u can be considered as the potential of a distribution consisting of a single
layer surface distribution of density (1/4w)du/dv and a double layer dipole :
distribution of density — u/4x on the boundary surface 0.0,

We have defined a fundamental solution as an ordinary function having
a characteristic singularity. We shall briefly indicate how a fundamental
solution can be "treated as a distribution [see Smith (1967)] satisfying 2
partial differential equation. If instead of taking u as a solution of Laplace’s
equation, we had taken it to be an arbitrary function, then fora & b the

~formula (2.25) is modified as:

d o i
w(a) = —JD yd e dx+f ( -% —u a};)dS. : f
Formally, using Green’s formula (2.22) for the right-hand side, we have
u(ay= — jo udpmy dx =— 4y(u(x).

In a distribution sense, the integral can be interpreted as the action of 4.,y
on u.
Therefore, we formally identify ¥ as satisfying the equation
4 my = — ,Ba
where 8 is the “Dirac Delta function™. 8, is a linear functional defined on
the space of all continuously differentiable functions on D, such that

Ba(u(x)) = ufa).
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Therefore, we can define 2 fundamental solution v(x, a) of the equation
A,u=0 as a solution of the nonhomogeneous equation

Apu= —8(x, a) (2.28)

where the cquality is understood in the sense of distributions.

Now we return to the use of formula (2.25). From this it appears that to
determine the solution at an interior point, both ¥ and wy must be prescribed
on @D. This is not true as will be seen from the following procedure. Using
the formula (2.25), we will show how to represent the solution of the Dirich--
let boundary value problem by means of a Green’s function, which is inde-
pendent of the particular boundary values specified, say f(x) on aD. We
define a Green’s function G(a, x) of the differential expression dmu for the
region D as a specific fundamental solution of Ay =0, depending on the
parameter a, of the form

Ga, X)=G{ay, Gz, +s Gn} X1, X2, ++-y Xn)
=s{a, X)+¢ (2.29)
which vanishes at all points x on éD and for which the component ¢ is
continuous in D-+&D and harmonic in D. Assuming the existence ofa
Green’s function G, we replace y in (2.25) by G and get the solution of a
Dirichlet- boundary value problem at a point a € D as

()= ~ jw 0% @, xds. (2.30)

A Green’s function is associated with the boundary D, and depends only
on its shape and not on the data prescribed on it. For plane boundarigs,
- ¢{x) is obtained by taking reflections a, of a in the boundary and replacing

a by a, in s(a, x). For circular or spherical boundaries, we take the inverse
a; of a in the boundary and again suitably substitute for a in s(a, x) to get
" o(x). This ensures that G(a, x)=0 on-dD.

Example 2.2 Green’s function for a sphere of radius R, with centre at origin
in m-dimensions,

- Here : .
6ta, =9 —o( &L ) @A
where ' 7 '
()= m [ x—af*™, - m>2
=20 %8 Tx=ay’ m=2
RZ P

X—'Ta—ii"a
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fy denotes the distance of the point x from the reflected image of the point
a in the sphere. This function satisfies all the requirements of the Green’s
function since (i) it is of the form s(a, x), +p(x), where p(x) is regular in D
and continuous in D+ dD and (i} it vanishes on dD, since
fa]
. v R -
Example 2.3 Green’s function for a positive half plane bounded by x,=0
m> 2, _
Here for “a™in the positive half plane

1

r= ry on éb,

3

G(a, x)= -m [ x—a > "—p(x), m > 2 | (2.32)

where _
()= —L [(x +aP+ Y, (vaag)? ]‘2‘”‘”2 (233)
4 (m_z)wm Ly 1 =, L3 o . . . .

p(x) is obtained by taking the image of ‘a’ in the boundary x;=0. We can -
find the solution at - a by ;

-, )

-

ds. (2.34)

X1 =0

Example 2.4 Gieen’s function for a circle and Poisson’s formula, m=2,
This is a special case of example 2.2 ‘
1 1

1 ,
G(a, x)=—2; log Tx=al " 7=

i R 2.35)
og | x=~ I_a—lza |. . (2.
Of special interest is the case of the Green’s function in two dimensions,
for a domain D which can be mapped. conformally onto the unit circle. We
present here a method of obtaining this.

*Fheorem 2.2 Let F(x+iy)=u-t iv represent a mapping of D+8D onto the
unit circle in the u, » plane, where F(x + iy} is a simple analytic function of
the complex variable x +7y. Then the Green’s function for D is given by

Flagtia) - Flx+ i_Jfl_] (2.36)
Flag tia)F(x+ip) - 1 '

where Re denotes the real part of a complex quantity.

: P
Glay, az; x, y)= — 5 Re log [

Proof To show that G=0 on the boundary 8D, we note that 9D is mapped

by £ onto the boundary of the unit circle in the z plane. Therefore
Flx+iy)=¢€"

when (x,'y) lies on ¢D. Set z=x+iy, a=a; +iq,.

1 X F . pik
On édb, G(a;, ax; x, y) = ~ 5x Re log [F%lia.e_ 1]
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__1 F#)—e'*
2k log [(F() ew)ew]

=~ 5 log 1=0.

To show that' ¢ is a fundamental solution of the Laplace equation, we
have to show that it satisfies dow=0 except at (x, ¥)=(a{, ;) and in the
nelghbourhood of this point

2nG=—log | (x, ¥)—{a,, az) | + a harmonic function.

Since Fis a one-to-one mapping
F(z)— F(x)=0 oﬁly for z=a, -
For any two points (x, y), (a;, a2) belonging to D
| F(@) | <1, | F(z) | < 1. Therefore, F@F(z) -1 #0.
Except for (x, y)=(ay, a2), the function
op [ L0027
Fla)F(z)—1

is analytic in z and ils real part satisfies Laplace’s eqﬁation. In the neigh-
bourhood of

P&~ F) == F )~ P
- m)[F'(m) - (2—2_-!3‘-#”(0:)'{r ] | :
=(z= @) H() a

where H(z) is analytic. Due to the conformal nature of the mapping, H(z)
is non-zero in a suitable neighbourhood of «. Therefore

27G(2, z)= — Re log (z— )~ Re log (E(m)FI(JZ()Z) 1 )

=—log | z~a | -+harmonic function.
Therefore, G is the desired Green’s function. '

EXERCISE 2.2 .

[

. Prove theorem 2.1 in the case m=2.

Find the Green’s function for the first quadrant of the (x; y)-plane.
3. Introduce the Green’s function in any region D as a fundamental -
solution G3 = Gafa, x) satisfying the mixed boundary condition

’
—gi-l- Gz=0

o
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for x on the boundary éD. Show that a solution of the Churchill
problem has the representation

u(a)= —L Gi(a, x)[ u(x) cxu(x)] das

in terms of this Green’s function.
. Show that for a on 9D in (2.26)

w(a) =2 f @, - uldy(a, X0} dS.

. Justify the integral formula (2.34) for the Dirichlet problem of
Laplace’s ‘equation in a half space by performing the intermediate in-
tegration over a large hemisphere and passing to the limit as its radius
becomes infinite.

. Use the method of images to find the Green’s function for Laplace’s
equation of the infinite strip @ < x <C b in the (x, y)-plane.

. Establish the formula

wla,, az)= 51;—[_ (x) log [(x — a,)? —!— a%] dx + constant,

" for the solution of the Neumann problem for Laplace’s equation in

~the upper half plane, where g(x)=u)(x, 0). Generalise this result to
the case of m > 2 independent variables. !

. The function f(£) is bounded and continuous. Prove that

s, 0= 16 g

is harmonic in y > 0. Show that as (x,y) — (g, 0) on any path in

y >0, u(x, y} = f(a). Show also that u(x, y) is harmonic in y < 0 but
is discontinuous across the x-axis. Deduce that

o, 3) =55 ] 1(€) log [(x— 2+ 7]

is the solution of the Neumann problem for the haif plane.

. w=¢%, z=x+iy, maps theinfinite strip 0 <X y <C = conformally on the :

half plane Im w > 0, Hence show that the Green’s function for the

strip is ‘
—2e*tcos (y+an) +e2n

©—2e¥Tcos (y—ax)+ et

; . _ 1 K
G(al’ (75N xs.y) 2 log 62
"Deduce that if # is harmonic in the strip, then

sin a, r" { u(x, 0)

war, @)= 2w cosh (x—a;)=cos as

wx, 7) } dx

- cosh (x—a)+cos az

10, Prove the symmetric property of the Green’s function:

G(a, x)=G(x, a).
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§2.3 Poisson’s Theorem

This theorem gives the solution of Dirichlet’s problem in a sphere of
radius R about the origin.

Iff(x)&C%on | x | =R, then form = 2

T E A |
2(x) = Reup, J.H'|=R IXf'.YI"’dS for | x| <R (2‘37?)

J(x) S for| x| =R  (2.37b)

belongs to C0in | x | < R, t0 C?in | x | < R and u(x) is a solution of the
problem : _
dpu=0for | x| < R, u=f(x)for | x | =R, (2.38)

We can furiher show that in ! x | < R, ne C=. .

Proof

Step I We shall first show that » given by (2.37) satisfies d,u=0. If
| X[ < R, then | x—y | #0 in the integrand and (2. 37a) can be different-
iated under the integral sign arbitrarily often.

L1 R-lx| } -
Amti{x) R, I Iyl = f(y) m{ =y " dS =0for | x| < R,
since Am{-f—’;%}fo for|¥{ =R .

In particular #{x)=1 is a solution of dwz=0 in D and v = Cz_in D+éb.
Applying (2.30) in this case, we get.
‘ R— |x |2 J‘ . _dS
= oxr — —_—, 2.39
" Rop lyl=R [x=-y]|" (2.39)
Step 2 To show that on approaching the boundary 2D, u(x) as given by
(2.37a) tends to the prescribed boundary value £(x).

Let 0 << p < g, x® is an arbitrary point on D and x is such that _
| x~x%| < p/2. Then from (2 37a) and (2.39), we get

wo—feey =Bl [ A0

| x—y”

About x® construct a sphere with radios p and the part of 6D which lies m
this sphere we denote by Sy, ie. Sp: Jy | =R, | y—x0 | <p, S2: |y | =
{y—=x0| > p, dD =51+ 82 :

s ([ ] Yt

*This form of the soluticn is éuggested by the Green’s function in Example 2,2.
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;

5

Fig. 2.2 Dividing the boundary into two parts S; and S,
for an arbitrary point x°® on the boundary

Consider each of these integrals in turn.

[SEESJ ROy
: 51

Ry, sz —ly sz .
R=— | x _ das
<t mx 00| [ 35
i x? das
< max_| f9)- f(x°)| ——m f|y|=x—"'"”| T
= max If(y)—f(x") | from (2.39). '
y = 5
- I>i12 _ (R= | x| XR+x|) _2R(R—|x]
Next ;nax -——*-—l o )rrréa;gﬂ I x—y ™ = (sz)m
since
| x=y | = | y=x0+x0—x| = | y=x"| - [ x0—x|
= p—pf2=p/2.

If we set max l f(y) | =M, we obtain the estimate for the second term
y €D

R— | xB [ fn—fx) 2AR- | x|) :
Reopy '[Sa { x—Yy Ilm dS '"(P/Z)m ZMJ- !y] :RdS
_ MR R | x )
(p/2)" )

Adding we h.ave
m-1{ o _ :
=100 | < max | f9=rta) | + HEEE LD

Since f is continuous, given € > 0 we can choose p such that

max | f(y)—f(x% | < /2.
yES
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For such a p, we can find 8 = 0 so that
AMR" (R~ | x|)

< ¢/2 for all x with | x~x0 | < &, since

Pmﬂz
—Ixt=Ix] - Ix]<|x=x0].
Therefore | 2(x) f(x") [ < € for | x—x0 [ <8 which shows u €C° in
| x| £ R and has the correct boundary values.

That the solution is unique will be shown in §2.4. To show the stab1]1ty of
the solution, assuming uniqueness, consider a solution #(x) which can also be
represented by (2.37a) with f replaced by f. Then

o)) | < R | xP s
- | < max (T~ | B DE]

= max | f(y)-fy) |

|¥] =R

which implies stability.

EXERCISE 2.3

1. Derive the three-dimensional analogue of Poisson’s integral formula.

2. The gravitational force of attraction exerted on a unit mass located
at the point x=(x;, X2, x3) by a solid D with density p(x), according to
Newton’s law, is given by the vector

[ 3

where v is universal gravitational constant. Prove that if the three
components Fy, Fs, Fs of the force F(x) have the form

A=, i=1,2,3

where #(x) is the gravitational potential then #(x) is a solution of
Au=pix).

Calculate the potential and the force Of attraction of a solid sphere D of
radius ¢ with centre at the origin and of constant density p.

§2.4 The Mean Value and the Maximum—Minimuin Properties

Definition u(x) has the first mean value property in D if #(x) & C*in D+2D
and if for every sphere | y—x | < r with centre at x in D+dD

1 .
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Geometrically, we can interpret this as “the value of # at the centre of a
sphere is equal to the mean value of # over the surface of the sphere™.
H instead u(x) satisfies

w(x) = ,-u(y) dy (241

wn™ J | y=x| €
we say that #(x) has the second mean valae property. Here the value of u
at the centre of the sphere is equal to the mean value of » averaged over the
volume of the sphere.
The two mean value properties are equivalent.
From(2.40)

S u(x)prl= —f[x u(y) ds.

Therefore ‘
u(x)'[ pmt dp = —Lj'dpj u(y) dS
ly—x|=s

Wy Jo

1
- wmIfY—X| < ru(y)dy

) _ 1
m Oy

1 't
“Kjodpjfy—x | =, ) dS

which is the second mean value property. If we differentiate this with respect
to r, we get the first mean value property,

We will now derive properties associated with solutions of Laplace’s
equation.

J.Iy—x!<ru(y)dy

“Theorem 2.3 Maximum-Minimum Principle.
1f u(x) has the mean value property in D, then the maximum and mlnlmum
“of u(x) occur on dD,

Proof Since u(x) €& C9'in the closed region D --dD there is at least one point
x0 € D+ 8D at which »(x) attains its maximum. Let u(x%) =M.

1. If u(x) = M in D+ 8D, every point is a maximum and a minimum
point and the theorem is proved.

2. If u(x) & M consider the set N of all these points belongmg to D at
which # attains a maximum. Therefore

_ M x € D with u(x)= M
Now MCD. We shall show that .5/ is both open and closed in D.

(a) HisopeninD.If x& Fand §: | x~x | < ris any sphere with

centre X contained in D, then » == M in 5. If not thereisan x € 5 at which
ul{x) << M.
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From the continuity of u, we have

"t J’ Mm

M=ux)= Ix—%| < r u(x) dx<wrm,[1x ;! dx=M

which is a contradlctron Therefore x & SC . ¥, which implies that . is
open in D,
(b) ¥ is closed in D, If {x'}is a convergent sequence of maximum points
u(x')= M such that }lm xi=x in D, then from continuity of u, we obtdin
00

u(x)= lim u(x’) = M which implies xC H.
i~>o0

<M is therefore both open and closed relative to D. But since D is con-
nected the only subsets which are both open and closed in D is the null set
or D itself. If I is non-empty, then H = D or u{x) = M in D.

By continuity #(x) = M in D-+3D which contradicts u(x) & M. Hence
M is empty. Therefore u(x) will attain its maximum only on the boundary
aD.

For the minimum, similar arguments hold.

Theorem 2.4 u(x) is harmonic in D if and only if it possesses the mean value
property.

Proof We first prove the ‘necessary’ part.

(a) Let us assume that w(x) is harmonic in D,
Let S be a sphere of radius p and centre x in D, such that S+&S  D. In
Green’s identity (2.22) for the sphere S, choosing ¢ = 1, we have '

jlx y]—pEdS 0

ni—1
L - 3.0 (x+pv)p ds=0

i

=l V) dj=0. "
? dp 1v|=1u(x+p) /{

W
(oMEga)

This implies that ‘
Wom
j “u(x+pv) d ‘( is independent of p.
Jvl =1
Therefore

' {Ww
J. u(x + pv)az 2'lim u(x +pvid e (X )eop,
ful =1 p—=>0 I

Iwi=
it follows that

'.iﬂ
=i u(x+pV)d’(—Pm_11me-ly_x'=P u(y) ds

Wy

i.e., u(x) has the mean value property in D.
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(b) We now prove the “sufficient™ part. Let us assume that u(x) is conti-
nuous in D 6D and satisfies the mean value property in D.

By differentiating under the integral sign, we can show that all order deri-,
vatives of u exist and have the mean value property in D, Therefore u € C?
in D, :

It remains to show that # is harmonic in D. Let H contained in D be an
arbitrary sphere with surface dH. Suppose #(x) is a solution of the boundary
value problem dyv=0 in H with 2=w on JH, By Poisson’s Theorem, v can
be determined. (x) is harmonic in & and thus by the first part of the proof,
has‘the mean value property. Let w(x) =2(x)— u{x). w(x) has the mean value
property in i and w=0 on 2H. Since the maxima and minima of w'lic on
dH,w = 0in H+JH or u=y in H-+JH. u(x) is harmonic on any arbitrary
sphere in D and hence harmonic in all of D. This completes the proof.
~ So far we have assumed that the mean value property is satisfied for
every sphere entirely contained in I, where D can be an arbitrary finite or
infinite domain. However, it turns out that if D is a finite domain, it is not
necessary to assume the mean value property for every sphere, but only for
a sphere about every point x.

Theorem 2.5 Let D be a bounded domain for which the Dirichlet problem
for the equation d,u=0 is solvable for arbitrary continuous boundary
values, I a function w is continuous in D+dD and has the mean value
property at every point 7 of D for at least one single sphere with centre at
P and radins greater than zero, such that the sphere is containedin D-+é6D,
then w is a harmonic function in D. For proof see Courant and Hilbert
(1962), Chap. IV, §3.

As an immediate consequence of the above theorems we obtain a uni-
queness theorem for the Dirichlet problem. We prove the theorem for
Poisson’s equation dnu = d(x), of which the Laplace equation is a particular
~..caseford = 0.

Theorem 2.6 The boundary value problem
dpu=d(x) in D } .
u=f(x}) on D

d(x) € C0in D +2D, f(x) € C® on 3D has at most one solutlon ux)E C'0 in
D+43dD, and € (?in D.

(2.42)

Progf Suppose u'{x), 4*(x) are two solutions. Then for #z=u! —u2, 4,v=0in
D, v=0 on S. Hence v is harmonic. Therefore it has the mean value pro-
perty and so its maxima and minima lic on @D. It follows that v =0 in
D+@D. This completes the proof.

Theorem 2.7 If w/(x) are solutions of dnwi=d(x) in D, #/=f1(x) on 2D,
i=1, 2, where néa}fglf‘(x)—fz(x) | =¢, then | #'(x)—u%(x)} | <e¢in D+8D.
x&=2 L
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Proof v=u"—u? satisfies the problem 4,7=0, v=FfYx)—f*x) on 2D. As
before v must have its maxima and minima on 2D; hence the result. This
theorem implies the stability of the solution of a Dirichlet problem. It is
also of practical importance in that, if we change the boundary value
slightly so that the problem is easily solvable, then we shall get an appro-
priate solution, which is sufficiently close to the .original solution.

The following properties of harmonic functions can be derived naturally
using Poisson’s theorem and the mean value property.

Weiersirass convergence theorem. Consider a sequence {u«(x)} of harmonic
functions in a bounded domain D, which are continsous in D+2D and
which have boundary values {fx} converging uniformly to f on dD. Then
this sequence {u#{x)} converges uniformly in D to a harmonic function u(x)
with boundary values f= lim fa.

Hroo

Proof (a) To show that u(x)} exists and ua{x) tends uniformly to u(x) in D.
Consider Wam = tn— thn for arbitrary n and m. wnm 1s harmonic in D, conti-
nuous in D+¢P and on the boundary

Iwnml = Iun.—l;tn;l = %fn—'fmi < €

for n, m > N(e) due to the uniform convergence of the sequence {fs}. By
the maximurm principle | wamn | << ¢ in D, which implies that {u} is a
Cauchy sequence, which converges uniformly to some limit function .

(b) To show that u is harmonic in D.

That u is continuous in D + 8D follows from the fact that a uniformly
convergent sequence of continuouns functions converges to a continuous *
function. #, has the mean value property in D, s0

u(x)= lim uAx)

Jim #—I——J ' wly) dS
|y—x| =r

—
oo Wyl !

1 )
_ﬁ——J‘ly?x| _, lim u(y) ds.

“’mrm_l. nevoa
This is possible since the sequence {us} is uniformly convergent and we can
pass to the limit under the integral sign - ‘
. 1 _
u(x)= ———— ds.
M(X) ‘-’-’mr"’k] J‘ | ¥—x | =¢ u(Y) s

u is continuous in D+8D and has the mean value property in D, and
therefore it is harmonic in D,

(c) To show that  takes on proper boundary values.

On the boundary

fmu] < [ f~fo | + | famtin |+ |

< e+ 0-+ex=¢
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Since € can be chosen arbitrarily small by choosing # large, it follow that
u=fon dD.
Next we discuss a property of positive harmonic functions.

*Theorem 2.8 (Harnack’s inequality): Let u(x) be harmonic in (x| <R
- Suppose that #{x) > 0, then for I x | < R, the following inequality holds

R R
[x | y=1 w0) < u(x) < __'T'"W #(0), (2.43)
R R
(R
Proof By Poisson’s theorem for | x | < R
- lyPP— [ xJ? '

u(X) me [ y I =R i X—y lm u(Y) ds.
For|y| =R, [x|<R |

R |xP _ |yP- |xP _ E- | xp

(R+ | xym [ x—y™ (R~ | x [y~

Since u(x) > 0, we can multiply this inequality by u(y)/Ren. Integrating,
we get | ) ‘
R— | x]2 1 :
(R+ | x |)"‘ Rw,,,j lv|=R wy) dS < u(x)
N

—IxP 1 7.
(R—' f X I)m me J‘ | 3’] u(,Y) dS.
“Since from (2.40) o 1w -[I u(y) ds= u(g) we have

R Ca L3 1+ xfR
-+ TxpyRym1 #0) < ulx) < WW“(O)

Thxs inequality lays bounds on the values of positive harmonic function in
a sphere of radius R,

" *Theorem 2.9 Let u(x) be harmomc in the whole of R.. Suppose u(x) is
bounded from above ie. w(x) << C, then u(x) is a constant.

Proof The function U(x)=C—u(x) is harmonic in every sphere | x | < R
and U(x) 2 0. By Harnack’s inequality

(I—J,—'ﬁ,%% ) < UK < A= x|yt VO

Ifwekeep x fixed and let R —> o0, we get U(x)=U(0). ThIS implies
u(x)=u(0), a constant. This can be compared to Liouville’s Theorem in
complex variables.

1+ [ x|/R
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EXERCISE 2.4

1. Find the fundamental solutions of the reduced wave equation,
du-+MNu=0(A > 0) in three dimensions. Use these to prove that
. not all solutions of the above equation obey the maximum-minimum
principle. '
2. Prove the Harnack convergence theorem:.
Any monotonically increasing sequence of harmonic functions in a °
~ bounded domain must either approach infinity everywhere or else
converge to a limit function that is again harmonic,

#§2.5 Dirichle(’s Priaciple

Dirichlet’s problem for a general domain can be studied using Dirichlet’s
principle. '

The Principle concerns a certain minimum property of an integral "asso-
ciated with the function u Suppose we are given a bounded domain D
whose boundary dD is piecewise continuous. Let 2 be a member of a class
of functions which belong to C! in D+@D and which takes on the same
boundary values as the harmonic function #, namely v = =f on dD. For each
» in this class we define the Dirichlet integral for » as

' dv \2 v \? f dv \? -
| .DI(U)—J.D[(*éx—I') +(-5x—2-) + ... -F(m) ]dx : (244)
and consider those v for which ‘the integral exists. Denote this class of
functions by D. ¢

Dirichlet’s Principle states t %t the solution u of Laplace’s equation has the

property that forall & (;i) PR
DI(y) < DI(v). (2.45)

That is, u is the function that minimizes the Dirichlet integral DI.

Proof of the Dirichlet principle in the case when #=Clin D+2D,
Let g=v—u, then

9g ou +8g 3u]dx

DI(v)=DI(g)+ DI(u)+ 2J.D[a—;1 PR Bx, Bm

= DI(g) -+ D) - _ZJ‘DgAu dx -+ QJ' ga ds, from {2 21)

= DI(g)-+ DK1)
since Au=01in D and g=0 on 9D,
Since DIg) = 0, we have
. Ditd) < DI
This can be viéwed as an example of the direct method of the calculus

of variations for extremum problems involving multiple integrals. Physically
the Dirichlet integral represents the energy of the system and the Dirichlet
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principle asserts that stable equilibriura corresponds to the configuration
in which energy is 2 minimum,.

It is difficult to establish that there exists a function in D for which DI(v)
attains its minimum; however, assuming D to be non empty and since DI(z)
is bounded from below by zero, we can always find a sequence of functlous
o, =1, 2, :.. such that

lim DI(en)=glb DI(E_J)EL. o (246)

It is from this minimizing sequence of functions that we will construct the
solution u.

Consider a sphere B in D with centre § and radius p and form the
functions

kn(E, P)=mmlpm J-By"(x) dx, n=1,2, ... - (2.47)

That is, we consider the mean value of the minimizing sequence v1, vz, ... .
The following statements hold for &, [For Proof see F. John (1975):

1. For fixed p, the k4’s are continuous functions of £ in every closed sub-
set of &3 and converge uniformly to a continuous functlon k(E, p) as n—>w
uniformly in §,

2. The limit function k(E p) is independent of p.

The #(%) so defined is the solution of the Dirichlet problem. It can be
shown that & satisfies the mean value property in D and hence is harmonic
in D, also & takes on the boundary value on ¢D.

EXERCISE 2.5

I. Expand the Poisson iniegral formula in two dimensions into a Fourier
Series -

ulr, p)=ao+ kfjl (a,7% cos kp +b r* sin kp)
for the solution # of the Laplace’s equation
1 1
'Hrr+7‘ Ur+ _r'i Usplp=0 :
inside the circle # << R, Derive the expression

27 R ‘ 80 '
j L [ Wt %ufp ]r drdp=m k):x kRZk(a.r% +53)

0
for the Dirichlet integral of u.
sin k40

2. Show that the series f(8) = ”E 7
1.

tion of boundary values on the circle of radius R such that the cor-
responding formal Fourier series solution of Dirichlet’s problem has
an infinite Dirichlet integral.

defines a continuous distribu-
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3. Let D be plane region bounded by the simple closed curves C; and C;

- and let w be a smooth function possessing a finite Dirichlet integral

over D. Show that among all furictions reducing to w on C the one

that satisfies Laplace’s equation in D andthe ~ "~ boundary condi-
tion du/dv =0 along C2 minimises the Dirichlet mtegral

*§ 2.6 General Second Order Linear Elliptic Equation

Consider the linear partial differential equation
Lu = du+cu=d, where du=aspity, vz +baity, (2.48)

in a domain D of R™ Let gus(x), bu(x), c(x), d(x) & C? in D+0D. The
characteristic quadratic form associated with equation (2.48) is

a:xﬁ(X)Aou)‘ﬁ, o, ﬁ=’ 1: 2: ree PN

We assume that equation (2.48) is elliptic. This implies that for any point
X € D, the characteristic form is a positive (or negative) definite in Ay, Az,..v, Am.

Theorem 2.10 1f ¢ < 0,d = 0(d < 0) in D+ dD, then every nonconstant solu-
tion #(x) for which a positive maximum (negative minimum) exists, attains
this value on 6D and not in D.

Before proving the theorem, we will prove Hopf’s first lemma: If Au == 0
in D and if x0 is a point in D such that 2(x) < 2(x0) for allx € D+4D, then
u(x)=u(x%) in D+ID. Here we will consider those functions = for which
e C'inD+éDandus C2in D. ' ' N
Proof of lerima Put u(x%) = M. Denote by i the set of all x & D for which
u(x)=M. We assume u(x)5EM in D+JD and since u & C%in D+6D,
u(x)5EM in D. i is a proper subset of D. This implies that there is an x*
in D with u(x*) < M, and which has a smaller distance from points of #
than those from dD. This is because of the connectedness of D. Because of
the continuity of u(x), there is a sphere Sx+ about x* which lies entirely in
- D and which contains points of . on its boundary and only there. Let one
of the points be x0.

Step { u(x) < M within Sx«. Let $1C 5%+ be a'smaller ball w1th radius rs, )
. that x0 also lies on the boundary of Sy. u<tM in 35, except at the one point
x° where u= M. Finally, let S2C D be another closed ball with centre x0 and
radius r; < r;. The boundaty of S; denoted by €5, can be decomposed as
08 =0T 0T, with 0T, =285,(15.. T is closed. # < M on T, and 87 is
closed, 50 we can find an € such that u < M—eondT, u < M on 075,
Step 2 Transfer the origin to x*, A translation does not change the form of
Au, Consider the auxiliary function

Mx)=exp (—k | x[P—exp (— kr#), k= 0. (2.49)
Then .
exp (k | x 12 Ah=4k2aupxoxs— 2k{aue Hooxn), @ B=1,2, e, m
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Fig. 2.3 x%i¢ a point in D at which #(x) attains a possible maximum

Since r, << r;, the origin is not contained in Sz 82 1s closed and (2. 48) is
elliptic; hence we have

a,0X, Xy = =1>0,xE 85

If we choose & sufficiently large, 42 > 0 in Sa.
Step 3 Set o(x)=u{x)+8h(x), 8 > 0. According to Step 1, & can be chosen’
so that ¢ <- M oné7i. The form of A(x) implies 2 << 0 on 0Ty, s0 v << M
on 875. Therefore »{x) << M on 45,. But z(x0)=u(x®) =M. So v(x) has.
a maximum in Sz. Suppose it is attained at x' € S,. Then for each vector
(V1s ¥25 -+ ¥m), We have ' :

. Yxa (x1)=0,=1,2, ..., 1 0y, xg (xDyaye < 0. (2.50)
Because of elliptic nature of the equation, we have '

ang(x1) yuye = 0, for all vectors (y, ¥z, -+, Yin)-
The elementary theorem on traces from the theory of matrices gives
ao(x)2x,(x1) < 0 -

i.e. at x! we get '

. _ 0 = Av=Au+084h. 7 :
But 4k > 0 from second step. So Au < Q at x!, This is a contradiction ‘to
our assumption. Hopf’s lemma is proved.

Proof of the Theorem Let u(x) have a positive maximum at x for which
u(x)y=M. Let u(x)=EMin D, i.c. u IS not a constant M in D. Consider the set
M of points x & D for which u(x) =M. 9 is non-empty. We will now prove
that K is open relative to D. To prove it, choose an x? € ; then u(x) <
#(x%) in a suitable ball § with centre x0. Also u(x) > 0 in § which is possi-
ble because M > 0 and u is continuous in D. In 8, du= —cu+d = 0.
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From Hopf’s Lemma, #{x)=M in § and so .9 is open. From the continuity
of u for a set of points {x'} & D, when x! = x, u(x)) = u(x). If {x’} is a
convergent sequence of points with u(x’) = M, then u(x) = M. Therefore .% is
closed. Because of the connectedness of D, H=D. By reasons of continuity,
w(x)=M in D+0D. This is a contradiction. Therefore u(x) has-a posmve
maximum only on &D.

We now prove the unlqueness and stability of a solution of a boundary
value problem,

~Theorem 2.11 If in (2.48), d= C°in D +éD, and ¢ \<,. 0 in D-+¢D, then the
boundary value problem, '

"Lu=din D, u=fon éD
with f < C%on 8D, has at mosi one solution u(x) = C%in D+0D, € C2in D.

Proof If u!, u? are two solutions, then » = u' — 42 satisfies Ly=01in D, v=0
on ¢D. By the previous theorem z= 0 in D-+ @D, This proves the uniqueness
of the solution, :

Theorem 2.12 If ui{x) are solutions of Lif=din D, u/ = f"(x)- on D, i=1,2
where m%x.;‘l Six)—f¥x) | =cthen | ul(x)—u¥(x) [ < ¢in D+éD.
X

Proof v=u'—u? satisfies the equation Lo=0,v=f1=f20on dD. If v > € in
D, then » > ¢ on @D, which is not true. Hence the proof. This shows the
stability of the solution. :

EXERCISE 2.6

1. If equation (2.48) in two independent variables is quasilinear (i.e.
a1, @, by, by depend on x, y, u, ux and u,) and ¢, d are zero, show
that the maximum principle is still valid for any solution fulfilling the
ellipticity requirement

62122—(111022 < O. ‘

2. Let D be a plane region bounded by a smooth curve C and suppose
that » is a non-negative harmonic function in D possessing continuous
first partial derivatives on C. If u vanishes at a point of C, show that

oufdv = 0 there. Prove that the equality sign can hold only when u
vanishes identically.

$3. THE DIFFUSION EQUATION AND PARABOLIC
DIFFERENTIAL EQUATIONS

. The diffusion equatlon is of the form
w=kdu (3.1)
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in the s+ 1 variables x, X, ---, Xm, ¢, Where k is a constant greater than
zero. By a suitable change of scale of ¢ or x we can always make k=1.
This equation is also called the heat equation.- For m=3 the equation is
satisfied by the temperature -distribution in a heat conducting medium,
provided the density and specific heat of the material are -constant. It also
governs diffusion processes.

For the equation ‘
wr="2u ' (3.2)
we - can determine the characteristic surfaces {(x;, x2, -, Xu, £) =constant .
from the relation

oH=Y, 34, =o. , (3.3)

Therefore, { is indepéndent of x;, x,, ..., X and the family of characteristic
" hypersurfaces are given by _ :

o - ¢ =constant. (3.4)
Equation (3.2) changeé when we replace ¢t by —7, which is not the case
in a conservative system without dissipation of energy, This indicates that
it describes irreversible processes and makes a distinction between the past
and the future.

§3 1 Existence and Unigueness Theorems for the Initial Value
Problem in an Infinite Domain

We first look for a solution of the type
| u=exp {{Qt+x-B)), x-E=ade, #=1,2, - (3.5)
mvolvmg the exponential function.
This satlsﬁes equation (3.2) prov1ded

_ iN= —yfy=— | E 12 (3.6)
(3.5) ‘caq_be.used to obtain a formal solution of the initial value problem
= g, u(x, 0)=f(%), — 00 << x4 < 0,7 > 0. EN)

u defined by (3.5) has the initial value exp (ixE). This suggests the use of a
Fourier integral method. Representation of f(x) as a Fourler integral

169 =) 30 (x-B)] &) o | 3.8)
dE=d¢, dydlm ‘

where the integration is over Ri. 1t leads formaily to the solution

ux, 0= | o (xE= 18P0 F® & 6
Using the expression _ '
F®= ] exe (=@ fw)dy fore>0 (.10

for () -
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and interchanging integrations, we have
s, 0= [Kex—y, DA ds e
where the Kernel X is given by - o , -- ‘
K(x=y, 0= 50 )mj op (- E-1ER) dB Gl2)

Equation (3.11) is a formal solution of the initial Valuc problem (3.7). The
integral (3.12) can be evaluated by completing the squares in the exponent

K(X y, )= (2= )mJ‘EXp(nflg (x Y) 2— l(X4Y)}2)dg

exp(—%_r_lﬂf : exp(_ [X;le)‘
3y it IBXP( l‘fllz) dn= BT R

since Iexp (— | N2 dn= H Jexp (—n2) dnpe = nmi2,
The function

Kx, z)-%‘zﬁ) | (3.13)

is called a singnlarity function. It has the following properties:
(i) It satisfies the heat equation for ¢ > 0.

K=Ky = "(Z?rlt)_mﬂ( 14};2] T )exp {(-]x 12/(41‘)) K.
By defining K{(x, 0) as :Lim K(x, 1) for x s 0, we see that it has a singula-
“rity only at =0,x=0.
(i) K(x, ) € C= for ¢ :-’ 0. -
(i) K> 0forz > 0

() [KGx—y, Ddy=1fort >0 | N E R )
& i . - = .
(v) for any 8 > 0 Ilrnf ly—x| > 8K(_x Y, Ddy=0. (3.15)

-0

To prove (iv) and (v), consider

. _ 1 _lx—yi?
LY"XI >3 KFx Ty 1)dy= (47Tl‘)’"f2_.|‘1y—x [=3 exp( 4z )dy
| ewClEma

]
Igf>m
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The above integral is convergent, when the integration is' performed over
the entire space. As 1 — 0, the integral tends to zero, giving (v). For 8 =0,
we get (iv), :

As in the case of the potential equation and in contrast to the wave equa-
tion, there is no decisive dependence of the properties of the solution on the
number m of the spatial variables for the diffusion equation. There is,
therefore, no loss of generality in restricting ourselves to one space variable.
In the rest of this section, we shall consider the diffusion equation in the
two independent variables ¢ and x only.

We wiil now justify that (3.11) is a solution of the initial value problem
3.7

A

Theorem 3. ] Let u{x) = Cin R! and | ug(x) | < Me?* with constants M,
A 2 0. Then

o N K(ix—y, thuly) d for0 <t < T :
u(x, )= J‘—w Y, BT Ay (3.16)

Tlfi_’ is the solution of the problem

Au=ur and u(x, 0)= (%)

withu &€ C®in —© < x < @, 0 < < T. Further, u(x, 1) satisfies an
estimate of the form

! u(x, t) | = MI CXp (A.xz) with M, A1 == 0.

where 7' <<

Note: The smaller we choose 4, the better, for then 7 becomes larger.
Consider a function f(x) continuous in — @ << x < o0 which satisfies

_ if(x)]<M’ A oD < x <L O,
Consider the set 7 of all constants 4’ (not necessarily positive), for which
“‘there exist corresponding constants M’ such that the above inequality

holds. In particular if Ae i, then AS . whenever 4 = A, The greatest
lower bound of 7 is denoted by ¥{(f(x)). We will first prove a lemma, for
those functions f(x) for which ¥(f{x)) exists.
Lemma 3.1 Let f(x), g(x) be continuous functions on — o0 << X < o3,
where f(x), g(x) satisfy the estimates | f(x) | < Me“’“ I glx) | < Me??, It
W f(x)) > 0 and

W () +r{glx)) <0 (3.17)

then K=" gle-f0) dy G.18)
is continuous in — o << x << oo and satisfies the estimate

Tk(0)] £ ﬂ}e‘;"” with

Y IR0 ‘
kD) < S0 (3.19)
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* Proof

Lh(x) | < fl/ﬂl?‘J‘D_o exp [Ay?* + A(x ~ y) dy

=MM z=,}ip(/£{4_s[/I xz)I exp (A +.Z)( AfA) dy.

Because of (3.17), we can assume A+ 4 << (; so we have

T k) Afi.
= — ST x2
| E{x) | MMJ exp(A_I_A x)
ﬂ} d,
Simple calculations show that

< ()
Hk(x)) < P(f(x)+v(g(x))

Since the integral (3.18) for k(x) converges uniformly on any finite mterval
k(x) is continuous.

Proof of the theorem 3.1. Accdrding to the Lemma, integral (3.16) is conver-
gent whenever
wWK(x, 1)) +pluo(x)) < 0.

Here - wK(x, 1))=— —41—; ' {3.20)

So we require

- 4% +y(ulx)) < 0.

This implies the restriction

m if (o)) > 0

-0 <<t < T, where T < { (3.21)

w0 if ylue(x)) < 0
The integrals '

J‘, IKr(x », Dugly) | dy

and j:,l Kss(x =y, ) | dy

are uniformly convergent in (x, 7} in any finite region, 0 << 7, < 7 < T,
Xo = x £ X, Therefore, differentiation with respect to x and ¢ can be
carried out under the mtegral sign and since Kqx— K, =0, we have u(x, 1) as
the desired solution. It remains to prove that u(x, ¢)is continuous at ¢ =0, 1.e,

lim  u(x, 1) =ug(x%) for —oo < x0 < w0, {3.22)
{x, 1)(x9,0)
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Given €, we choose 8 so small that
D ug(p)— ug(x%) | << e for | y—x° | << 28,
Let M =sup | wo(x)|; then for | x—x® | < 8,7 > 0,

| ux, £) —up(x0) | = | I(K(x— ) —ux®) dy | from (3.14)
gJ.ly-;q <5 K(x—yp, 1) | uo(y)—uox) | dy

+I K(x—yp, ) | wp(y)—ug(x°) | dy.
[y—x1>8 .

For| x—x%| < Sand | y—x | < 8, [y.—-xo [ < 23, therefore

| 1(x, 1) —ug(x®) | << € J K(x—y, t)dy
. 1y—x1<8§ )
+2MJ K(x—y, t)dy
fy—x| =6
< e-1+2Me

from (3.14) and (3.15) for sufﬁcieﬂtly small 7 > 0, This leads to (3.22).
Also

Y(K(x, D)y(u(x))
y(K(x, 1))+ v(uolx))

Hulx, 1)) <

1
. a7 }’(!IQ(X)) _ Y1 X)) (3.23)
1 1-4 : '
_ _2;__ +'))(u0(x)) I'}’(ﬂ(}(x))
T
e If0 < ¢ < T, then | ulx, 1) | << My for suitable M, 4. (3.24)

Since X = C* and the integrals obtained by differentiating (3.16) with
respect to x and ¢ are uniformly convergent in (x, ¢) in any finite domain
uesC™,
This completes the proof of the theorem.

By the same type of argument, we can prove more generally that if g is
measurable and satisfies an inequality

| uo(x) | << Mt ¥ P

for all x with constant A, then u given by (3.16) is a solution of —du of
class C= for 0 << ¢ < 1/44 and( lim N u(x, £)=1(x%) at every point x°

x, £)-»(x0,

. of continuity of u. In particular #, can have “‘jump discontinuities’, Since
for 1 > 0 the value of u(x, #} for any x depends on the value of u,(y) for:
all y through an integral, these initial discontinuities smooth out instan-
taneonsly. Any finite “local point disturbance™ uy at the time ¢ =0 is not
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noticeable anywhere a moment later. Confined initial disturbances are-felt
everywhere a moment later. Here effects travel with infinite speed, indicating,
that the applicability of the diffusion or heat equation to a physical situation
may be limited. Also for the solution (3.16) with initial values p(x)

fu(x, ) | < (J‘l K(x—y, 1) a’y) sup | u(y) |

< Sgp‘l up) | . 329

At no time can the value of # exceed the maximnm value -of the initial
distribution. This represents a maximum principle for the solutions of the
heat equation. ~ - | _ o ' .
A.N. Tikhonov proved the uniqueness theorem ‘for the initial value
problem of the equation of heat, which we shall discuss hére. . L

Theorem 3.2 1f u(x, ) and w(x, 1) satisfy the heat eguation in 0 < ¢ <e

(e, @ constant) and have continuous first and second derivatives in a given

region and if both tend to uy(x0) as (x, 1) > (x%,0) for all values of x°

and if _ .

_ | ulx, 1) | < Me** and [ uax, £) | < Me™®

for some positive 4, M, then ,{x, 1) and w(x, ¢) are identical in the strip.
The proof of this is based on two auxiliaiy theorems. Let D be the set of

points in the (x, #)-plane satisfying the relations — R < x < R, 0 < t's ¢

We define the boundary 8D *to consist of x=4+R, 0 <7 < ¢ and =0,

—R<x <R . L

Theorem 3.3 If u(x, t) satisfies the diffusion equation in D and if

lim inf u(x,2) = 0 .
(x, 0)={x0, 19

for every point (x9, (%) of 4D then ulx, t) = Cin D _
Since 6D is a bounded closed set, givén € 2> _,0, we can find a 8 such that
i(x, 1) > —<¢ whenever (x, 7} of D lies in an'open disc with centre (xg, 7o)
and radius 8, where & is independent of (x°, 9). Suppose the theorem is not
true: then there exists a’point (xy, #;) of ‘D at which u is negative, i.e.
| | u(y, )= 1< 0 for some [ >0.
Let o
o o(x, fy=ulx, )+« —1)
vhere « is a constant. Then v satisfies the equation
- : ' Uy = Up— K. :
Choose » so that 0 < x <C I/t; and let
s Q< e < I—xpp.
For all (x, 1) at a distance less than 8 from D
o, £) > —eti(t—t) >—1+xt >=1.
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Since #(x;, #;) = — I, the minimum of »(x, ¢} cannot exceed —/! and so is
attained at a point (x, 72} of D. This is impossible, for at a minimum point
dv/dt =0 (or the one-sided derivative 51;/31‘ < 0 if rr=e) and P/0x2 2 0, .
yet :

o
X ot

where « > 0. Hence the assumption that u(x, 7) is negative at a point of D
is false. Therefore

u(x, r) 0 in D. o (3.26)

Theorem 3.4 If u(x, t) satisfies the diffasion equali.on in the strip 0
(c,a coustant) and if lim u(x )=0 for all x® and if | u(x,.r) |,

{x, 1)=(x?, O
for some positive values of A4, M then u(x, 1) is 1dent|cally Zero in the strip.
Proof

<<t C
§ 42

B Let . F(x)= 03<l:2c fru(x, 7) } .
Then Fx) < Meds®
for all x. Consider the function _
U(x, )= F(= RIK(x+ R, )+ F(RK(x— R, 7). (3.27)

U(x, t) satisfies the heat equation in the region — R < x<RO<t<c
and - ‘ .

, - F(R)
U(R, 1) =2 F(R)K(0, 1) = A
( ). (R)K(0, 1)) YV
fo<:t<g, | . o
R/ | #(R, 1) | < F(R) <f1{%< 20(R, Wme .
" “which implies ) . i
2VwcUR, DEu(R, ) 20 - (3.28)
A similar result holds for R replaced by — R, L -
Let wilx, 1) =2V 7cU(x, O+ulx, 1) (3.29)
wilx, t) satisfies the heat equation in — R << x < R, 0<t<e¢e and is non-.

negative whenx=-+R, 0 < ¢t < ¢ If (x, )->(xo, 0) where —R < xq < R,
then w(x, 1} = 0 Hence

lim inf wi(x,7) = 0
{x.1)->{x0,%0)

for every point of the boundary 2D and by Theorem 3.3 w,fx, 1} = 0in D

The same holds for _

wilx, t)= 2\/ﬂcU(x 1)—ulx, 1) | - (3.30)

“and we can show that ' _—
walx, t) Z 0in D.
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Therefore
| ulx, ) | < 2\/ch@¢ 7
in D,
Also,

F(RYK(x— R, )< B_:x_)z}

2.
5 \/_ exp{AR T

and a similar result holds for F(— R)K(x-+R, t). Hence U(x, t) - O as
R— 0 in0 <t < 1/44. Since u(x, ¢) is independent of R, and since Ulx, t)
=0, R > 0,0 <1< 1/(44) if 0 < ¢ £ 1/(44), u(x, 1) is equal to zero
for0 <t < ¢,

The argument can be repeated for the function U(x c+r) where ¢ << 1/(44).
" The conclusion will be. u(x, r) =0 for 0 <t < 1/(24). Repeating the
argument sufficient number of times we prove that u(x, 1) =0 in any
strip 0 < ¢ < ¢, where u satisfies the conditions of the theorem.

Proof .of Theorem 3.2 We now prove the uniqueness of the initial value
problem of the heat equation in the strip 0 <{7 < 7. Appiymg theerem 3.4
to ), —uz, we get

w=m forallx, 0<t<T - (3.30)
Hence the theorem.

The condition | u(x, ¢) { < Me4** limiting the rate of growth of u{x, 1)
as | x | = oo is of great importance in proving uniqueness of the solutiop
of the initial value problem in the case where — o < x < 0. Tikhonov
gave the following example of a non-zero functlon satisfying the diffusion

. equation with zero initial conditions and continuous for 7 = 0:

Consider

- 00 2k
u(x, 1) =3 f1] (;C_k)! N, t (3.32)

s

where the ,convefgence is sufficiently good, so that term by term differentia-
tion is valid.

= 3o f(p) O 3R o X
= (2k-2) 2 )'

i=0
-~ et 1) X2 |
= 2 S0 G
T‘lerefore e — e = 0% x, 1.

“This series certainly converges if f(t) is analytlc for all t. T1khonov,
however, set

et 1 #£0 '
f(t)‘={ o ' (3.33)
0 ,  #=0. . .
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As a function of the real variable 7, f(¢) is infinitely differentiable but not
analytic at #=0. Consider the contour | z—f {=4%¢in the complex z-plane.
On this contour ' '

14+ —e -9
J.4 E . 21-r
z t 5+4 cos ¢’ <P
1 _16 I+cos p+{(cos 2p)/4 _‘L
Re 22 2 (544 cos p)? 912 (3.34)
By Cauchy"s‘formu]a and (3.34) ' N
v k. g H 0 2k 1
I N = L E
z—1|={1}2)¢ o ) h
It follows that : e
& 26k X e XK it
| H(X, t) l E() (z’fc)| Ik e <,,‘Z_:' (T ik Ee l ‘
=exp {x /t—4/(912)} o o (3. 35)

Thereforc 11111 u(x, 1}=0 umform]y in x, #(x, {) satlsﬁes the heat equation

" with zero 1n1t1a1 conditions and is continuocus for all 7, including 7=0.
However this solution is not unique as u{x, /) = 0is a solution with the
same initial values. The hypothesis | u(x, t)l < Me*”‘2 is obv10usly v101ated
where ¢ is such that 0 < 7 < ¢

The initial value problem for the dlffusmn equation in an infinitely ex-
‘tendmg domain for x is well posed, as shown earlier. However, the Cauchy
and Dirichlet problems {for parabolic -equations are not necessarily well

posed. We consider an example of each. Consider a solution of “the d]ffu~. -

--gion equation _
. w=y """ exp {ilxm+ iy} T (336)
where, y1 > 0; N is a positive integer and 7o is given by the equation: +-
7?(2} +iy;=0.
The solution # corresponding to the root
2= (1=)V 3/2 (3.37)
tends to infinity as y, = «0 forx = 0. At x=0, u and its derivatives of

order << N tends to zero as y,—> 0. Consider now the corresponding
Cauchy problem, where the data i I3 prescnbed on lhe curve x=10 as

—N— . ' 1+7) - \
w=yy " exp (o), ux= (\/—') N2 exp (rtya), ¥t

[

The solution (3.36) with 7, given by (3.37) is the required solution of the
Cauchy problem. As y, — o, the Cauchy data approaches zero, but the

[y
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solution for x > 0 tends to infinity and diverges from. the zero solution.
The stability requirement is not satisfied and the problem is not well posed.
Consider the Dirichlet problem for the following parabolic equation:

yzuxx——2xyuxy+x uyywxux yuy—u—O ‘ - (3.38)
with boundary condmons . | '
u(x, 1=, u(-L1, y) - 2.
on the square bounded by the lmgs X= j:_l and y_=j;l;1.
Y

S (1)

¥

[ =]
»

JETY T

Fig. 3.1 Dirichlet problem for a parabolic equation
in a region bounded by x=41, y=+11.

This equation is parabolic. and:its characteristics consist of a single para-
meter family of concentric circles with centre at the origin.” Transforming
this equation to Polar coordinates p, f we get the normal form

uee—u=_0 . _ R (3.39)

an equation free of derivatives with respect to p. On any complete circular
path in the square, for single valuedness, the solutions must return to the
samé value as 0 changes by 2w, Both the solutions of equation (3.39) are real
exponential functions and these will be periodic -only if # = 0 on this
circular path. Thus # == 0 inside the largest circle interior to the square. For
the circular paths in the corners we ‘must solve simple-linear two-point
bou‘ndary value problems The solution in this case is

g SIS | 3 S |
exp arc sm \TIEJELZ +exp arc cos Vl—i—)—l——
p (41— 1) — AR 7
WX, ¥)= A , exp arc smmj{-exp arc msmz—
_,ifx2+y2_>1_,-—i<x<1, .—-17‘~<.y<1. .
L N O Y (340)
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The solution is identically equal to zero in the largest “circle interior to
the square and it differs from zero in the corners only. .

In the case of this particular example the boundary data and the solution
at the corners merge smoothly into the solution u = 0, at the core, x2+4 2 <C |,
This is because the prescribed data tend to zero as we approach the points
{1,0),(0, 1), (—1, 0), (0, —1) which ate the points of contact of the squate
boundary and the largest circle inscribed in it. If, however, the data were
prescribed arbitrarily on the, square boundary (as is the case in a Dirichlet
problem), so that the boundary data do not tend to zero as we approach
the.four points (+1, 0), (0, ---1), then the solution would breakdown in
the neighbourhood of these points, that is, it would no longer be a genuine
solution. The Dirichiet problem is then not well posed.

EXERCISE 3.1

1. Show that the solution u(x, ¢) of the equation &
Py u
T2 E +xu
for — o0 < x < 0, ¢.> 0 satisfying the initial condition

u(x, 0) =f(x)

is ‘ : : _ .
L | P (oot

u(x, t) 2\/;}"_6@( T _'mf(g) exp| ~ 5 - s dt. |

2. Prove that the solution of the diffusion equation in ¢ > 0 satisfying

" the conditions . .
' u(x,O)tI,x>0;u(x,0')%-1,x<0

. with disc_ontinuity at7=0, is :
o u(x, 1)=erf (x/4f) : .
where the error function, 7 (£), is defined by - " ‘ o

rf =) exp(~) di.
§3.2 Initial-bom_ldai'y Value Problems for a Semi-infinite Domain

" These problems would arise in the flow of heat in a semi-infinite rod.
This requires the specification of an ‘initial condition, a boundary condition
at the finite end x=0 and an order condition at infinity. The initial condi-

tion on the temperature distribution u(x, t) can be taken to be
Cux, O =u(x), 0 < x < o0

where | w(x) | < Me4*® with M and A as constants. There are various
boundary conditions that can be preseribed at the end x=0:
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(i) The temperature is prescribed at x =0 for all time, i.e.

. A u(0, ¢)=f (#). ) (341
{ii} The Aux of heat across x =0 is prescnbed for all time, i.e.
ux{0, 1) =g(0). (3.42)

(i) The Aux of heat across x =0 is proportional to the difference between
the temperature at x =0 and the surrounding medlum ie.

: uxt0, t)+ocu(0 t) constant, . & {3.43) .
The ordel condition at infinity is eimilar to that in the theorem 3.2
We define a function # (x, 1}, called the derived singularity function:

h(x, 1) = —i;"K{x, )= —2K«x, ), ¢>0,x30. (3.44)

The function A(x, ) has the following properties: -
1. It satisfies the heat equation for t > 0 since

h;~—-2*(Kxx—K,) 0 I (3.45)

2. lz>0f0rt>0
3. Ax, t)EC""forf > 0and h(x, 0+)=h(x,- )= Oforx >0

4. J. h(x, ©) dt—I ; _ (3.46)
5. lim W, 0 di=1,¢ >0, o (3.47)
x>0+ J0O . . .

Properties {4) and (5) follow from the relation .

JO h(x, £} dt = erfe(x\/ 4c) 4c) = I AI.‘/“

where the complememary crror function, erfc (£), is defined by

erfe (§)=1—erf (£).

._);2 dy

‘Theorem 3.5 ‘_ K
© I f(E Cfor0 < ¢ < w and £(0) =0, then
. ulx, t)=f0h(x, t—=y)f(y)dy - (3.48)
‘satisfies thé‘h%at'equétiéhi in 0 << x' << oo, 0 < ¢ <. o
cand () lim u(x, =), 0 <1 < ¢
x>0+ uniformly
(i) lign ux,)=0, 0 x<ool
C tenl ' .
where ¢ is a constant.

Proof Because A(x, t) satisfies the heat equation for ¢ > 0, so does u(x, 1),
. since differentiation under the integral sign is permissible. We shall first
- proye (11) Given € we can determine a d such that

O <e,0<t <8,
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Hence, for 0 << £ << §;
e, 0 = | [ e 1=y ay | < [ o1 -0 1ae

< er’ Wx, £ dé=c.  (3.49)
0 v .

Fora spéciﬁc valué of 8, (3.49) holds for all x, Thus (ii) is proifed
. To prove (i) we have to determme n 1ndependent of fon 0 < t < such
that whenO < x < :

| a(x, 1) —f(t) | < e
For'a given ¢, let 81 be such that - '
LAE | < <2 2 (3.50)

whenever | £ | < 8. Due to the uniform continuity of f(1)in 0 < ¢ < ¢,
we can choose 8}, so that we also have

| Fle— &)= f{t) | << ej2 whenever | € | << 8,0 ~<\.t e, (3.5D

Subdivide 0 < ¢ < ¢ into two subintervals:

0<t<81an63[ < r < e In0<r<81usmg(349) and (350) we
have

Lulx, )—f() | < e forallx >0. . (3.52)
Inéy <t <e ‘ -

010 [ 1, £ )/9) '_ca}_— [7 s, 2100
[l -6 dé - s oy
= [[ 1, st -n-srenav-ro| s ay
[ =) 00y ¥

+[ b, D=9 =71 dy =170 s, 9

Therefore - L : ; L
| alx, ) —f(t} | < 6/2J k(x y) dy+3Mf h(x, y) dy '(3;53)
where M= sup [f)]. ' )

0<r=e

Smce from (3.47)

hm jh(x y dy=1, we have j M(x, ¥) dyl < e _ (.3-1%4).
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for sufficiently small x, i.e. 0 << x < 7, which is independent of 7. Combin-
ing (3.52)-(3.54), we have the required result

lu!(xf)-f(t)|<€ for0 < x < and0 < ¢ <e. (3.55)

In the case when f(0) # 0, the initial and boundary conditions are stiil
satisfied by the solution (3.48). We still have

w0+, )=f1), 0 <t <c
u(x, 0+)=0, 0< x <

but these limits are not attained umformly in x and £
The solution (3.48), namely

s, 0= [ BCs, 1= 0) ay

can be interpreted as the solution of problem (i) namely the problem of
finding the temperature of a semi-infinite bar, whose initial temperature at
t=0 is everywhere zero and whose temperature at the finite end x =0 is
prescribed for all time £ as f(z). .
The second problem (ii) regarding the temperature of a semi-infinite bar
arises when the initial temperature at £ =0 is' everywhere zero and the heat

flux at the finite end x =0 is prescrlbed for ali time ¢ as g(7), g(0)=0.
In this scase

ulx, )= —-2 f ;fo, t—y)g(y) dy ' (3.56)

is the solution for 0. << x < @0, 0 < 7 < ¢, where ¢ is a constant. :
As in the preceding theorem, because K satisfies the heat equation, so
does 2. As in (3.49) we have

11_1:31 w(x, 04+)=0 forO x < o0, (3.57)
Also
/ ;tx(x, 1= —Zj Kx(x t-—y)g(y) dy
f h(x, t— y)g(y) dy.
"From (3.55), o
uslx, ) > g asx = 0+,0 < ¢ << c. (3.58)

For solution of problem (iii), see Exercise 3.2, Problem 1. :
In problems (i), (i} and (iii), so far the initial temperature distribution is
- taken to be zero. We now consider the case of non-zero initial distribution
and zero boundary conditions at x =0, namely,

w(x, W=u(x) 0 < x < m
with : | u(x) | < Med=?
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and one of the following boundary conditions:

(iv) u(0, 1) =0, 0 <t < m '

(v} ux0,2)=0, 0<t<w®

(vi) ux(0, 1) +ee(0, )=0, 0 <t << oo,

In problems (iv) to (vi), we attempt to-extend uy(x) forx < G in such a
way that the function u(x, 7} has the correct boundary values.

In problem (iv), we extend uy(x) as an odd function:

p{x) = —up( — x} for x < 0,

Then the solution of the initial value problem in — oo <X x < @ is given by
(3.16) ie.

u(x, )= Iw

—o

K(x—yp, Du(y) dy

- J‘:[K(xw'y, - Kty Ol dy. (3.59) |

Since K(0—y, )—K(0+y, {)=0, the boundary condition «(0+,t)=0 is
_automatically satisfied. We may take the limit as x -» 0, under the' integral
sign, since it is upiformly convergent. in x and ¢ for 0 < ¢ << ¢, with ¢.
arbitrary. '
In problem (v) we extend ro(x) as an even function of x for x < O
u(x) = 1p( — ), x < 0. Then the solution is given by

(i, £) = J " (3, 0+ Kl D) dy (3.60)

Heie K0 —y, 1)+ K0+, {)=0 so that
ud0+, )=0for 0 << ¢ << oo,

. In problem (vi) we extend (%) as follows:.
T gl — %) = ) + 20> J‘O e ug(€) dé for x = 0. (3.61} -

in order to satisfy the boundary condition
w0+, ) +au(0+, =0, 0 < < 0.
The solution in this case is given by

ulx, 1) = J.:uo(jz){K (x—y, D+ K(x+y, )} dy
+ 20{? K(x+p, t_ie“y Ee-“fi;o(e) dyde. (362

A linear combination or superposition of solutions of one of the problems
(), (i), (iii) with #(x)=0and one of (iv), (v), (vi) lead us to the general
mixed initial-boundary value problems for the heai equation for semi-infinite
bar. N .

Consider the two problems associated with the heat equation for the
semi-infinite bar:
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Uar—16:=0, 0 <x,t<

(vii) w(x, 0)=1ux), 0<x << o0 (3.63)
w0+, 1)=F(t), O0r<e

This is a combination of problems (i) and (iv)and due to the linear nature
of thé¢ equation and the initial-boundary -values, the solution of problem
(vii) is a linear combination of the solutions of problems (i) and (iv):

o5, 0= [ IKCe= 3 0= K3, 0lua) dy + [ 4 -9 109 a5,

D<x<w, 0<t<e (3.64)

Similarly, we consider the case where the initial distribution and the flux is
prescribed at x=0 . '

u(x, 0) = ue(x) 0<x<w
(viii} (3.65)
w0+, =gy -~ - 0<r ¢, + '

This'is a combination of problems (ii) and (v) and the solution is
ca 4
u(x, )= J'O [K(x~y, )+ Klx +p, Olu(y) dy—2 f o Kl 1=2)ely) dy,

0<x<Cow, 0 €t <e, (3.66)

' EXERCISE 3.2

1. u(x, ¢) is the solution of the diffusion equation satisfying the condi-
tions o C

ulr, 0)=0,x 2 0; a0, 1)— (0, ) =p(r), 1 > 0

where « s a positive constant and g(¢) is continuous. Prove that when
X>0,f>0

-g—; — iy = J.:} e(m)h(x, t—1) dr.

Hence show that

4

u(x, t)= —f: e % f; x’:g plt—T)K(x+ €, 7) de dr.

2. Prove that the solution of the diffusion equationin x 2 0, ¢ > 0 satis- ‘
fying the conditions S ~
ulx, 0)=0(x > 0), w0, HN=1 0<t<T), (0, )=0(t > T)
2 x
erfc ———
vV V'
2

_ X x
_\/?[e_'fczx/? 2”2\/(:—3")}”>1

s w(x, t)=

l
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- §3.3 Initial-boundary Value Problem for Heat
Conduction in a Finite Bar

The case of the heat conduciion in a finite bar can be studied using the
previously derived results by inducing in the problem a certain periodicity
in x over the whole space. Consider a finite bar of length =, with two ends
at x=0, x=m. An initial-boundary value problem assoc;ated with it is the
followmg '

(ix) txx— =0, O<x<w
’ s 0<<t<c
with - ; T . U
ulx, 0)=uy(x), O0<x<am
and
w(0+, ) =F(0) _
. 0<i<€e . (6D
w(n—, t)=f2(t) '

To study this we introduce two theta functions of Jacobi

or, )= 35 KGrr2mm, )|

&t >0 (3.68)
qb(x, t)= 2 h(x+2mr £). J!
These are sums of the values of the smgulanty functum and the derwed
singularity function, respectively. These series converge for all x and ¢.and
their sums satisy the dlﬁ"usmn equatlon BothG and go are periodicm x and
of perlod 2m,

Theorem 3.6 Fux)ECon 0<x <7, filt), o) €ECon0 < ¢ << 0
and £1(0) = ue(0}, f2(0) = uo(w),- then the solution: of problem (ix) is

ux, 0= [ 10—, =00+, ) d +f p(x; 1~y dy

[otm-simnpd G

The existence of the above solutlon and necessary convergence properties
are discussed in Widder (1975). To establish uniqueness is simple in this
case. Let, if possible, #, 12 be two solutions with the same initial and
boundary values. Set u=u;— .

Let W=t @)
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Then

™ k2 ‘
I'(t)y= I vt dx = f Hiter dx
0 0

[ T q
={nu,)§— J‘ ux dx.
0

Since 1he boundary 'values aré the same for both u; and u, the first term on
the right vanishes dand

I'n= —J: ul dx.
Fort =20, I’(r)

Now I(O)——f {u(x, 0)}? dx=0, since u(x, 0)=0in0 < x < =. Further

I'(#) < 0. this implies that for every t = 0, I(r) < 0. But f(t) has a positive
integrand and necessarily f(¢) = 0. Therefore :

15)=0 I (3.71)
~which requires . ‘ ‘ | ‘
-u=0, for. 0 < x < =, Oﬁté‘c.. : (3.72)

‘The uniqueness can be proved by using the‘maximum»min'i_mum principle
* as well, 1 ' '

_ EXERCISE 3.3

1. Find the solution of the diffusion equatlon for 0 <x<mit>0
such that

:u(x 0)= 0,0 << x < 7y (0, H=1-e" 1> 0, u(ﬂ' n=0, r>0.

What happens to this sofutlon as ¢ — w? :
2. u(x, ) satisfies the diffusion equation in 0 < x < a, 2> 0 under the
conditions

u(x, 0)=f(x), 0<x<a
#:0, ) ="us(a, )= O [ 0
Yind u(x, ¢) using the Fourier half range. cosine series for f(x).

*§3.4 Max:mum Mmlmum Principle for the Heat Equation and for
Some Parabohc Equations :

.. Letdby denofq an iﬁterval. on the Iine t=T-echuding the end points 4
and B (Fig. 3.2). 2D, is open. Let ¢D; be a curve joining 4 and B lying in
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the region, below 7= 7. 2D; includes the points 4 and & and is closed. Let
D be the region bounded by @D+ Ds.

Y*'

0 " -
Fig. 3.2 Dis a’ region bounded by 25, and 4D, with t=ToneDy

Tkeorem 3.7 Consider a solution u(x, t) of the diffusion equation txx = ur in
the domain D. Let u(x, £) © €0 in D+ID1+0D2 with sex, w &€ C0 in
D+éD,. Then u(x, ¢) assumes its maximum and minimum on &Dx.

Proof For arbitrary € > 0, consider
v(x, t)=u(x, 1)—et (3.73)

_ o is continuousin the closed region D+8D,+dD; and so must assume its
maximum and minimum in the region. Suppose the maximum of v is attain-

ed at (xq, Q & D+dD,. For sufficiently small 8 > 0, the points (x, #o) with
x9—8 < x < xo+8 liein D+8D,. At (xg, o), vxx{X0, 1) < 0 and

Uy — 0= tpx— Wb €€, 18, vlxyg, fo) & —e. (3.74)

Because of the continuity of » in D+8D;, a number &, > 0 can be chosen
so small that 'ﬂ.«(zu, B < —€f2 for fp—0) 1 =< rg

v{x, £o) — ¥{xq, 15— 8y) =,[r N vy, 1) df < ——;’31 << 0, ) (3.75)
.
Equations (3.75) contradicts our assumptlon that » attains its maximum at
(xo, f). The maximum of » must lie on 2D;. Since e is arbitrarily small, the
maximum of # mast also lie on éD, (from (3.73)). Similarly we can show
that the minimum of # lies on ¢D2. This proves the theorem.

We now consider the case when the boundary D, consists of the three
sides of a rectangle: /=0, a < x < b; x=gandx=5b, 0 <t < 7. For
points on x=a and x=5, the same argument as above can be applied and
we can show that the maximum and minimum of # must occur on!y on
t=20,a < x < b, i.e. in the initial data
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Consider a more general parabolic equation
' Uex — tr+e(x, Hu=fix, 1) ' (3.76)

in the two independent variables x and ¢ in. the dqmain D+éD;+ 8D,
as defined in Theorem 3.7, :

Theorem 3.8 1 e < 0, or £< 0 (orf' = 0)in D+2D, + 6D, domain, then ifq
nonconstant solution possesses g negative minimum (or positive maximum),
it must attain this valye on dD,, .

Proof Suppose a negative minimum of u is assumed at (xg, t)) € D. Then
u(xﬂs fﬂ) <0
wx(Xo, to) =ui(ixo, 15) =0, e Xo, 1) = 0.
According to the equation
thex(Xo, 10) =1(xq, to) — elxo, fo)ulxy, to) +f{xo, t0) < 0.
This is a contradiction. Hence it cannot be attained in D. N OW suppose
that a negative minimum js attained at (x,, 7) < dD,. Then u(xo, T) << 0,
- uxx0, T)=0, uxy, T) < 0, ue(xo, T 2 0. This also leads to a contradiction,

Hence the negative minimum must occur on 6D, Similarly the theorem can
be proved for a positive maximum if e < 0, £ 2= 0.

EXERCISE 3.4

L. Let u be a solution of the mixed initial-boundary value problem:
‘ Uex—h=0, 0<x<10<f¢<7p
u(x, 0)=f(x), 0 < x =/
w0, H=u(l, )=0,0 < LT
) describing the distribution of temperature in a rod of length /. Show that z

attains its maximom and minimum valnes ai t=0and use this result to
establish a uniqueness theorem for this problem,

§4 THE WAVE EQUATION

In the carlier discussion of elliptic and parabolic equations the following
properties were noted: ‘

1. All properties derived for the Laplace equation in two space variables
-or the diffusion equation jn one space variable and a time vatiable, also hold.
in the case of many space variables and can be easily extended to latter case.

There is no decisive dependence on dimension of the space,
2. Smoothness properties of the bouﬁdary and initial values are enhanced
in the region where the solution exists. For example, in a Dirichlet problem
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if the boundary data € C9on the boundary 0D, it belongs to % in D, Also
in the diffusion equation for an infinite bar, cven if the initial data has
certain finite jump discontinuities, the solution belongs to ¢ fort > 0.

3. Confined perturbations of initial and boundary values do not remain
confined. They are felt everywhere where the solution exists. o

All these propertics are violated in the case of hyperbolic equations of

- which the wave equation is an’ example. There is a distinct difference in the

behaviour of the solution of the wave gquation in one, two and three space
dimensions. Certain permitted singularities of {he boundary and initial data
will be carried into the solution, which can support discontinuities as well.
Besides, confined initial distarbances remain confined in space for all time.

These propertics merit a detailed study of the wave equation. In this sec-
tion, we shall restrict our attention to the wave equation in one, tWo and
three space dimensions.

§4.1 The One-dimensional Wave Equation

The wave equation in one space dimerision is of the form

1 - ; .
Ure = 3 Hu ™ 8, - ¢2=constant > 0. 4.1

This can be reduced to the characteristic form with the help of the
transformation : :

E=xtet,n=x—cl (4.2}

We then have R :
o ‘ ,uﬁ=,_0.

The general solution of (4.1) is |

B ) 1= f(x -+ et) + gl —ct) | (4.4)

' \;\fhere f and g are ‘arbitrary ¢? functions of their arguments. I x and ¢

denote a space coordinate and  time,. respectively, then the term f(x-ct)
represents a wave moving with constant specd ¢ in the negative X direction

and the term g{x—¢t), a wave moving with the same speed’ in the positive
x-direction. ' :

(a) Initial value problem for the wave equation

An. initigl value problem or a Cauchy problem for the wave equation

consists in finding a solution in the upper half of the {x, {)-plane satisfying
the conditions Sl =

M(x, O) = ul)(x)s _u:(.x, O)':ul.(x)s - CO" <L X W,

Theorem 4.1 I uo(x_)é C2, and uy(x) € Cl"in‘ —o < x < oo, then .ﬂ'}c
function : .

ox, D= M@ LRl @
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where
1 [x+e . .
M(Oui= —-J udny dr, i=0,1 - (4.6)
2 x—ct . ] . .
belongs to C% in ~ < x < 00,0 < t < coand is a . solution of the
Cauchy problem ' " .

u,,x—zlguu 0, u(x, 0} =1uy (x), u.(x 0) wi(x). (4.7)

" Proof Using the general solution (4.4), w_'e haye
ug(x) =)+ g(x)
- (x) = ¢f (x)}—cg'(x).
This gives L L

7= L[ 0) ar 8

=" uyanes,

2
~where 6, +82 =flx}+g(x)— uo(x) 0,
Hence - _
) ‘.. 7 ] I X : Lo 1 x4et y ; L ’ D .
o ulx, t)=E[uo(x+ct)+ug(x-,~¢t)+;_|.7_ tt_ll(ﬂ.__') df_]' ST C X}

(4.8) is precisely (4.5), which is written in terms of mean values M(2)u; and
M(Duo of u, and u,, réspectively, on the interval (x—ct, x-+ct). (4.8) is
called D’Alembert’s solution of the one-dimensional wave equation.

We next examine the uniqueness and the stability of the solution. It is
unique, because we have singled out this solution from the:general solution
using the initial conditions: Given € >0, 1f we change m(x) in the mterval
a < x < b to #(x), so that 3 ;

: - £C

IUo*wlﬁiz |1 uu!fm (49),

'then the solution u(x t) correspondmg to 1n1tlal values f (x) differs from
ulx, t) by : _ '
| a(x, 1)~ ulx, £) | < e, for all 7. (4.10)

‘So the solution .(4.5) exists, is unique and depends contmuously on the
initial data.

/ (,a’f Domains of dependence and influence IR
The solution at a pomt (%9, 2o} does not depend on the global behaviour
of - the mmal values' #(x) but only -on; those values.of x which lie in the
"interval [xo— cto, xo-+ecto]. The set Glxg, fo)={x:] x~ xgi Sel|fl} is
i called the domam of . dependence -of a given point (xo, to) If we fixan. °
- arbitrary interval ‘T : | x— xo i <rof the x-axis, then the set of points



]

1

114 Linear Second Order Partial Differential Equations

P(XO to)

roetg0) | T ngreto0) | (xg r;o) T (ko)

<

a0l ¥
N (c) . jz, =

Fig. 4.1 (a) Domain of dependence of P
, () Domain of determinscy. of I
f (¢} Dontdin of influence of £

(x, 7) in the upper half plane at wh;ch u(x t) depends only on the initial values
u{x) in [ is called the domain of defermmancy B (f), say and is gwen by
B :

={{x,8): [ x~x0| < r—et})
Corresponding to any point P on the intial line £ =0, there is a set of points
(x, ) at which u(x] ') is affected by the initial values u{P). This set
{D(JQ say) of pomts constitutes the domain of influence of the point P:.

Dlxo)={(x, ) : | x—x0.| <. ct}.

(@) A special initial-boundary value problem - - "U-:C ) - u Co =

. Suppose the initial values u{x) are given-in 0 < x =< [, together wi boun-
dary conditions, for example «(0, t)=u(l, )= O;thén we {ry to convert it'into
an initial value problem by continuing u{x) in the interval — 0 < x < o

- 50--that #(x} & C? and #,(x) € C? for all x. If this is possible so that the

boundary conditions are automaﬁcally satisfied, then {4.5) is the seclution ‘
of the 1n1ta11-boundary value problem. Now the functions u(x) & C? and
u(x) ECTin 0 < ¥ < Jare contmued as odd permdlc functions of period

2, sothat. o= Rgmed0 ok ’

u,(x)——uj(—x),{, u:(x+21) uz{x) VDC. _ (4-11).i.
Then RIETIEII ‘
/ - u(0, r)=~“ uo(Ct)-!-uo('—‘ct)-l-‘d‘ HL(T) d'rﬁd , ui(") df] : e,/\
- r\ ‘ S
= 1\-..;‘ u(l r) ug(l+cr)+u0(1 ct)+fJ. - ul(f)dfﬂj ul('f) d"] —l;L

1
©

M]H “]

Ao = [uo(!+ct) m( l+cr)+,d u[(f)dwj : m(—r)dr]..gL
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‘ +2
Setting u,(— 7)= —u,(7) and using the result f y wi{t} dr=0 for all p, we
. N . N ¥y -
gt AV Yakwyg § =-Lrct
1 i Iet : 1
ull, ;)=-2—[uu(z+c;)_—go(m1+c:+.2;)+1jo wrydr g/

1 ] ter42! ‘ : ) .
-4 wy(7) d} 0. . : o (4.13)

(4.5) is the required solution with u,:(x) ‘defined for all x by (4.11).

(& Generalised or weak solution: Even though uyx) and #,(x) may not
satisfy the required conditions specified in Theorem 4.1 [i.c. uo(x) & C?,

Cuy(x) € Clin — o0 < x < ], function (4.5) may still be meaningful as a
solution, We shall now explain what is meant by a generalrsed or weak
sofution of the initial value problem. .: : P

2

Example 4.1 - Lot el
‘ Cons1der an example of the 1n1t1a1 value problem (4 7) w1th

x'i forx>0‘_._ Lo
() =% -x2 forx < 0 i u;(x)_=0'-’ CeTE (4.14)
I O forx 0 ) ' &
Iti this case u(x) € C2in = b < ¥ < 0. #y(X) EC? everywhere, except at
x =0, where its second derivative is discontinuous. Heré it has a juip dis--’k

continuity from left to right* denoted by [1(0)] = wo( +0) — uo( —0) =4. The
expression (4.5) when evaluated, is givén by -

x2+c2, . xer Vo
ulx, )=4 2etx, = —ct <x <ot (4.15)
S Z 2+ ), —ct < X S L ‘

u(x, 1) € C? everywhere except anng the two characterlstlcs passmﬂ throuch

- the point of initial discontinuity, x=0: [ta(x—ct, 1)] =2 =Tuxlx +cz, 7.

The initial discontinuity in u. breaks into two discontinuities each of

magnitude equal to the half of the original'one'*anq these two paris propa-

gate in opposite directions with velocities +c¢ and - ¢, respectively. Intro-
ducing characteristic variables £ and =%, we get ,
(2442, >0 in Region I

) 1 ' ‘
== (&2—?), v << 0 < & in Region II o (4.16)

—(E19), £<0 in Region III.
*With respect t0 a reader for whom the positive direction of the x-axis peints from

left to right.[ Jona quantlty represents the jump in the quantity as one moves towards
right. : : : :
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e)

x+ct=0 e B Rt i

JI1

1 gl i

g

__ Fig 4.2 Regions, I, Il and £l
Then )
[l =2, Tugel =[uea] =0 on 5=0

[ugel =2, [umm] =lugn}=0 on =0 _

showing that only the ‘exterior’ second order derivatives are discontinuous
along the two characteristics. u(x, 1) given by (4.15)yis a weak’ solution of
the problem (4.7), where the solution &2 everywhere in the upper half of
the (x, f) plane except along the characteristics.

- The following theorem helps us to define ‘weak’- solutions of the wave
equatlon even when the derivatives may not exist in the ordinary sense.

Theorem 4.2 A function u with continuous second derlvatwes is.a solutlon
of the wave equatlon . : _

uxx"‘“éf-un:O‘:

if and only if u satisfies the difference equatiori
u(A) +u(CY=u(B)+u(D) . . o (4.17)

e where A, B, C, D are the veruces of any para]Ielogram whose sides are

characterlstics curves (see Flg 4. 3)
- (xtey-cny, t+7r7))

(x-c tz,t + 2'2)
e .fx+ c¥,t+ 7y

| e e o

Fig. 4.3 ABCD is a parallelogram whose sides are characteristic curves
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Proof Suppose u is a solution of the wave equation, then u can be written
as :' : '
u(x, 1) =F(x + )+l —ct).
‘Hence : B e el
fA+ fC)=flx+ e +fGxtet ¢ 2¢7)
‘“f (DY+F(B).~
Similarly for g. Therefore u sa.tisﬁes the d:ﬁ"elence equation {4.17).

Conversely, suppose (4. 17) 15 . satlsﬁed and second order derivatives are
continuous. Then :

ulx, t)+u(x+c71—c72,z+'rl+72)-—u(x+c1'[, t-i-Tl) u(x—-crz, t+'rz) 0

Using a finite Taylor expansion for small 7, Ty we get
' !
M_m{x t) = ?‘ uu(x t)

. Any function (not necessarily =C? samfymg the dlfference equation (4 17)
can be’ v1ewed as a weak solution of the wave equatlon o

Wé shall iise Theorém 4.2 to solve an 1111t1a1 boﬂndary value probIem for
the wave equation in the domain 0 < x < L,1 >0 of the ¥, 7 plane
satisfying:

initial conditions: u(x, 0} =uglx) .. ... .

' uf(x, 0)=u1(x), 0 < x << L (4.18)t

boundary conditions; - u(0, D=k(t) .. - .. we . (419)
w(L, )=hy), t =

We divide the strip into a number of regions by the characteristics through
the corners and through the points of ifitersections with the boundaries as
shown in Fig. 4.4, In region I, u is determined from the initial data by (4.5).
At a point A4 of region II.we form the characteristic parallelogram - ABCD,
with B on the boundary and C, D Iymg in the region I, where. the solution

u(d) =~ u(C)+ u(B) + u(D)

is already known from (4 17) w:th u(B) known from . 19) and u(C), u(D)
known from region 1. In this way, the solution can be found everywhere in
the strip. If the selution is to belong to C?, then the data have to fit together
in the corners, so that uand its first and second derivatives are the same
when computed from both (4. ]8) and (4.19). This lcads to the compatlblhty
conditions:

w0+ = 5i(0), 1(0+) = Ki(0), s (0+) = hi"(0)
o L—=) = 1(0), (L —) = b0, P L—)=hi(®) . (4.20)
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Y B
v vi
ly.
R B N | I
(" /\ X L
¢ B - C L %

Fig. 4.4 Initial-boundary value problem for-the wave equatlon in
0L xL 20

I

These condltlons are also suﬂiment whcn y, k[, thCz arld uIEC‘ to
make u€=C2 If for example uo(O) # hl(O) w will, have a _]Lllnp along the
characterlstlc through the corner x=0, I —Q

L

EXERCISE 4.1

In the theory of acoustics (1ineari§ed fheory of sound with small dis-

. turbances about an equilibrium state) the velocity components u and
', pressure p and density p satisfy the following equations:= "+ ¢

op, Ju, v
3: -+ POa + POa O ,
“Ou.. 8 3 6
PD a;u P __0 31‘. ay 0 _P PO—GD(P PO) -
whele the subscrlpt 0 denotes the equilibrivm State. Show that each of

the ‘quantities u, v, p,’p satisfy. the ‘wave equation’ with velocity of
propagation ao. Find the solution in the one-dimensional case (when

SR
fELET T

v=0 and all quantmes are mdependent of y) g1ven that 1mt1a11y

u(x, 0 = f(x), plx, 0) 0.

2 Using an energy mtegral I (t) I (ux -I-,u: ) dx, show that the solutmn to

the ]IllXEd mmaI and boundary vaIue problem of 1he one- dlmensmnal

' wave equation
I | .
—,;uz:—-uxx?(}, a < x < b, t<< 0

with
u(x, 0)= @(x) e(x; O) B, ula, ) = X(),ulb; 1) = J\(I)IS unique,
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“If u(x, ¢) satisfies the wave equation

Ltax"" T e = 0
show that | |
[ttt e st i)

a round any simple closed curve is- Zero.. Deduce that the solution
which satisfies the initial conditions u. —uo (x) = ze,(x) when #==0,

is given by (4.8)

Find the solution of the equation u; — %= 0, gi\_r_en that on ¢=0,
u=sin 7x/e when 0 < x < ¢, u=0 when x > ¢ and x < 0, ;=0
for all x. Examine the continuity of # and its derivatives."

A flexibie string of length /is fastened at the ends x=0 and x=/andis
in equilibrium under a uniform tension. It is d1splaced at x=3%/to
an elevation./2 and then released. Find subsequent displacement for
all times, assumlng that the motion is governed by the wave equatlon

Find the deflection u(x, £) of a taut string which was at Test ‘at time
t=0, if it is fastened at the end point x=/and subjected at the other
end point x = 0 to a motion represenited by (0, £) =£(7).

Determine the generalised or. weak:solution of the equation -

L ) .
uxxf»_ﬁ‘guu=0 S o d
given that .
x"\+5 ‘ X > 0 e
u(x O) i L
L= 3»2+5 x < 0
: u:(x 0) O

Verify that the dlscontlnmty in the second order denvatlves w1ll
propagate along characteristics.
Determine the weak solutlon of the equatlon

U Mg U U U0 Sl Vo
2 e

(SE

gwen that u;(x ) =0 and
' ' R x 0 s LT

u(x, 0) =<0, x=0

- x2 x<0

Examme how the dISCO]JtlIlUIty in the- second order derivatives w111
propagate.. IR, g -
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Fig'. 4.5 Sphere',‘écﬁfre. x,.fé&ius‘cr; in ‘three'dimensiona] space
§4 2 The Three-dtmensmnal Wave Equatlou
Cons;der the equatlon .

: oo R R |
:Z-'l Uxarta g -t _0_

We look f‘or a solution of‘the Cauchy problem for this equatlon '

Theorem 4.3 If uy(x) €C3 and () S C%in —w < x, < 0, x=1,2 3
then the function

u(x, t)= tM(t)ul+ [tM(t)zfo] (4.21)

where e = Qeryu) ek D
M(t)u,— ——J " u,(x+vct)dw i=0,1 -(4.22)
Iy 04 e

h belongs to 02 IN—00 <7 x, < Oo)fnd is a solution of the Cauchy problem
. AJM — I—I—zu" ={ .

u(x, 0)= ug()k) it:(x 0)= :ul(x). '

M()u; denotes the mean value: of - ‘U over.a sphere with centre at x and
radius ¢z in three~d1mens:onal space.¥ '

Proof Assummg (4.21) to hold, we venfy first whether the initial conditions
" are satisfied:

u(x, 0)= M (O)uo
411_ [ ’méi‘{) dw = uo(JC)

*y is a unit vector and de is an infinitesimal surface area on the unit sphere; - -
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u(x, 0) =lim [M{Ou + 2M ()]
= M(O)m (X)

a
where M;(t)ung{M(f)ur}
so that A0 = 4776‘“}:, JI ugx.,(x)v dow

= '—' C’ E qum(ﬁ)'fj Vo dw
: _ = 0 fiom Gauss Integral Theorem. ..
We will now show that an expression of the form ' . - L
a(x t)—z‘M(t)E o (4.23)
satisfies the wave equation, where § is any function of xu, we get
V= ZMt(t)f -+ l‘Mnr(f)f A

Now S o
M,(t)f—4w :Ele | B aﬁym(x Hvet): dw |
=i Cztz E Ily <= afyu (y) dS, yp=xp+vpct
= Wﬁyﬂd gcf'ﬁsf dy by Gauss ”l:heorem.
Therefore | 1
M= g aZJ dpf[ o dEds (4.24)_

M,,(t)f 271'6’1‘3 le x|<ctl 35 y+47rctzj f¥— x[ 3§ s (4.25)
S0 that
= il A .
Uy 417'1‘ y—xj=c 3é dS
Furtheér,

A= b L = 3E(x+vc,;) do

il -

Therefore, dsv— —lz—zm =)
[#

It follows that both EM(huy and- tM(Dug satisfy ‘the wave equation, hence
also B/é’t(tM(t)uo) (4: 21) is*therefore a solution of’ the three- d1men51ona1
wave equatlon sausfymg the given initial conditions.
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“EXERCISE 4.2

1. Find the solution of the wave equation
. .
Ez—u.rt T Uxx ™ Uyy— U, =0
given that
u=0 -
: when ¢=0.
w=x2+txp+z2 ) | o
2. Find the solution of the three-dimensiona] wave equation given that
att=0, u=0and S B
=1 forx?+ 2152 a?
=0 for X242 422 az.‘.‘_ ‘
Examine the nature of the discontinuities of the solution, S
. 3. Find the solution of the three-dimensional wave equation with the
following boundary and initja] values, IR
u=0forx=0,¢ > 0 v-.y,-z‘
‘u=0 for X>0,t=0% j,z ¢
1 for (xkr—-ﬂl)z—ﬁyz‘-[—rz? <-§, £=0,x >0
Uy = . ' 1 ’ .
0for (x—1)2 42 2 >~8—, £=0,x >0,
-4. Find the spherically symmetric solution u(x, #) of the ' three-dimen-
_sional wave equation with initial datau = ga(r_),” =0, '
- 3. u, a solution of the’gthree-dimgnsipual wave equation, is. of the form
' ' ulx, y, 7, £) = o(r, ) cos 8
o where  p2=324 32452 pango VG217 jz. Show that
. ! o0 i
d - +6)1. ‘
umcos 0 {BE=00 DL
ar s :
where g and 4 are arbitrary functions, o
6. The velocity potential p of sound waves of. small amplitude dye to a

~]

source at the origin éxpanding into the gas at rest, satisfies the wave
equation with spherical symmeiry. If Q(z) is the volume Aux of the
fluid across a sphere of radius 7 at tinie 7, show that
o e 1 O—rlay)
plr, )= — o A=l
where g, is the sound velocity at rest.. . R e
.In the ballon problem in acoustics, .ihe pressure ‘p inside a region of
radius R is P+ p while the pressure outside is po. The gas Is initiglly. -
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at rest and the ballon is burst at time 7= 0. If the velocity potential ¢
which satisfies the wave equatlon with spherical symmetry, be such that

8 1
the radlal velocity U= — a—pand the pressure P ——P— —ég—, determine
0 ' .

: .. the pressure dlstubution for subsequent t1n1es
8. Find the solution u of the wave equation’ in three-d1mensmns gwen
that for r=0 u=0 and
u =1 for x2+ 2422 < g2
€ —0for x4yt 322 > 2
§4.3 Methed of Spherical Means

The notion of spherical means can be used to find a formula for the
solution of the Ca,uchy problem in higher dimensions. Let u(x; ) denote
the function u(x,, x, -+, Xm, £) in m-space variables and time. We assomate

with u(x, £), a function Mu(x, r, #} which is its average on a sphere of rad1us :
r and w1th centre x:

Fu(x, 7, z)_gj . u(x-f-w, £) do, (4.26)
Then '
: i(fd’u)= 1 —Y < ovauy (¥, 1) dS
dr M, S y—x | = G

= . .
Felgy J. | y—x 1< Amu dy .

by Gauss’ Theorem. If satisfies the wave equation, then

—-_(Mu) Wf Jy=x] £ . u”.dy
N S o
B r'”“‘cz." a Ily x9S
' 'i'e_ rm-l _ﬁa_(ﬂ}u) = -—l—fr dp I v 2473 das - (4 27)
N : mC2 ] y— I = . . .
Differentiating (4.27) with respect to r, we get g
d 1 ‘
n— L_.__ =
r [I"f (Mu)] wm(.’z,[ [y—x | =r.'”“ ds
' Copmlog2re 1
N &t ?_fT[ wmrmi-l.rr [ .V_-X | =r ¥ dS]
rm | B
(Mu)rr =

Therefore, My satisfies the partial differential equation -

G pr B
a—r[” ‘a—r(M”)]=
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or . . y _ .
P =T 8 ] 82
o) T g it—y (=0, ey

This equation is known as the Darbdux equation'.‘When. m is an odd
integer, it can be reduced to the wave equation. For mi even, the problem is
much more diflicult. In the case 5= 3, (4.28) reduces to B
=2 8~ g T
oM MG g (M) =0
i.e. ‘ v : L

P LG e
Therfffqre, #(#Mu) satisfies the bne~d_imqns_ionai Wanﬁ_@a‘_q_uatidn..h The mmal
conditions'to be satisfied by #(Mu) cait be determined from those'to be satis-
fied by u. They are - o '

HTu)(x, v, 0) = rM (%) uu(x; r) = 4%_[ |

i

vl =

; tg(x + VY dew -]f :
i
>

and’ (4.30)

~ ' ry rf | |
_ [r(Mu)]t(x, r, ) =rM (T) wi(x, r) —4;I [v] =1 (X V) deI
in the notation (4.22). The D’Alembert solution of the Cauchy problem

(4.29) with (4.30) is given by (4.8) as
ﬂZ’u(x, ¥, 1) ='§IF [(r+ ct)M( rict

) tig+(r— ct)M'(-r —d ) Uy

€ c

- - frtct ’ S [
rf 7 em( £ ) ).
H C Jy—ct c

Since Mg and Mau, are even in + M/\QA:")’ ) o
Il}u(x, ¥ t);zir[(ct +rjM( Ct+r)¢_u9-(ct—r)M( Ct%r) tpy

H c P

C Ja=

i fotr fEN . i
" ng(fc-) " c_zg]. S CX
From (4.26) . o :
lim .@u(x, F,t)= u(x,,t). .
. Ry :
Going to the limit as r ~ 0 in (4.31) we have

u(X,,:t)l; 3—(?75 ct M (C?t) ﬁ0}+tM(t)u1

- -E?—z{tM(t-)u{,}ﬂ-fM(I)ul (4.32)

which is the same as (4.21) . - Y ST
Now by the method of spherical means, we have shown that any solution

of the initial value problem coincides with (4.32). The solution is thus

unique. coo ’ '



4.3 S Method of Spherical’ Means 125

To prove the stability of the'solution consider an “injtial value  problem
for the wave equation, where the initial values #{x) differ slightly from
ui(x). Denote the solution of this problem by (x, 1). Let € > 0 be given.
We can then find 8(¢) > 0, so t'ha‘g whenever _

x) = () [ < 8(e), and, | flps, (3) — 0, (%) | << 5(e)
o i=0,5;0=1,2,3
Hence from (4.32) we get T L

la(x, )—ulx, 2} | < ¢, forall x, 1,

SJo all t‘}ia.:tiii'éa fetﬁﬂrgm&té for Wél'lﬁosednzess of the. mltlal #aiu_;?' problem
of the three dimensional wave equation are satisfied. . .
. The solutjon of the three: dimensional wave equation given by (4.21) is of
class C2for 1 2 0. when ug & Ci(R¥)and u, & C*(R3). Therefore, the solution
can be;less smooth than the data. There is a-possible loss of one derivative.
This loss of smoothness is due to focussing which can happen only for
# > 1. For m=1 the solution is as smooth for ali # as the initial data
atz=0. : ' o .

At a point (xo, o), u(xy, 7,) depends only on the value of #1(x) on the
surface of the sphere with centre x, and radius cfy, and on the values of
ix)in a neighbourhood ofthis surface.  The ‘domain of dependence. of
{xo, 20), denoted by G(xo, fo), is given by :

Do t)={(x0, 1) | x5 | mets} (4.33)

If we fix a ball S" S x—xp | < r, then the set of points(x, ¢} at which the
solution u(x, 7} depends only on the initial values w(x) in .S is called the
domain of determinacy of §' and is denoted by B(S). A point (x, 1} = B(S)

if and only if for any unit vector v; x +ver = S, e, 1T

| x+Vei-x0 | < ror | x—xo| < r—et.

This represents a cone in  space-time. with vertex . at :(xd, rl¢). The lateral
surfaces of the cone is a characteristic manifold :

C ] x—x0| =r—e. i S (439

EXERCISE 4.3
1. Shqw_ tha_t the Darboux equation (4.:28) is reducible to thf; form

C o .4‘ L ) o :"&2”': X N é)v ‘(?v)._-
SR DEdn T §+.n:(ag o]0,

by suitably choosing &, 7, N and ». L :
© 2. Show that (1 — éw)N(1 -+ qw)=N satisfies the equation in the previous
problem where w is an arbitrary constant, By considering its expansion
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in ascending powers of w, prove that the equatlon has ‘homogenecous
polynomlal solutions L .

Em= % U%V AN

where (N)p.=N(N+ i) .. (N:+p— 1).

§4 4 The Two-dimensional Warve Equation: Hadamard’s
' Method of Descent

We shall derive a formu]a for the solution of the Cauehy problem for the
two dimensional wave equatlon by treating itasa special case of the three-
dimensional one. This is an example of a general method itrodiced by
Hadamard, called the method of descent, whereby one “steps”down”" from
solutions to equationsin n dimensions fo solutions for certain equations in

n—1 dimensions. In the foIlowmg dlscussmn = (x[, xz) is'a pomt m two'
dlmensmnal space ‘ :

Theorem 44 If uﬂ(x)EC3 ul(x)ECZ in —o0 < x;, Xy < 0, %= (xl,xg) then
the function : :

e :-)=H(r)u1+—§;ﬂ(z)u{. T w3

where

@)
M(z‘)u,‘ 27 le) ~xlget \/c2t2— | F—xi? ‘dy. o (436)

belongs to C2on —@ < x|, x; < 00, and is a squtlon of the problem

Azu—lu,,_o W(E, 0) = (), wE, 0) = (..

“Proof If in the solution (4.21) for the three dimensional wave equation, we
assume that the initial values (%) do not depend on x; then the solution
u=u(X, t) depends on x,, x, and ¢ only, and is 1ndependent of x3.
This gives for ¢ > 0

My = ZIG—J ls] =1 wl(x +vet) dow
1 .
~5l j e | e U9 S,

Here the integration is performed over the three dimensional sphere
! y—x | =cr with centre at x, Since the integrand is a function of only two
‘variables y, and y:, we can reduce the 1ntegratlon to one over a two-dimen-
stonal area in (yr, y2)-plane as shown below.
Solvmg ly—x| =etfor ya gives,

»3 =J€3:T:\/6‘21‘TT}’MTP y= (}’t)’z)
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Ontheupperhemwphel'ﬁ e L o o

ie. e :
- ; dS— . cr dy1 dyz

| \/ Cztz_ ] F—% |2 _
As we move on the surface of the upper hemlsphere of f y-x l =ct, 3

. and y, in (4. 37) -take all values for whlch l y- x[ < et Takmg mto
account the lower hemnsphere as well’ '

“. 37)

|

f uz(y) i d
Jy—x l ct \/czfz— 1y- _|

= M(t)u, )
Therefore the SOIlIthIl (4. 21) can be put in the form

rM(_r)u,- =2

1) = YO +3—3(M (o)

which is the required solution of the initial value problem of the two-dimen-
sional wave equation. : : S .

The domain of dependence of a pomt (%, £o) in this case is the set of all
points in the interior as well as -on.the boundary ofthecircle | x—x, | = cto,
that is :

)

‘QJ()_CO, fo) @ J J—C—‘J_Col = oy ¢ : o (4 38)

All (%, 1) at which u(x, t) depends solely on the initial values u,(x) in a cir-
cular disc C, : ) - %o | < rgives the domain of determinacy of C, i
B(C)) : | X— % Il <r—e. . o (4.39)

ThlS 1s a cone in (¥, 1).space with. vertex at (xo, ‘rfe).

Singularity function Jor the wave equation in the twa—dzmenswnal case,
In §2.2, we discussed the singularity function of the Laplace. equation
dpu=0. It is represented in the case m=3 for a point a = (ay, a,, as3) by the

relation

i

$a, X)¥4n [ x—a|

= &I;r[(xl“' af)2+ (JC;g - 02)2'."; (x3 - as)z]‘”z.

A transformation o A .
k _ xl—\/I—cmle xz—\/l—cczxz xg-—x3,0<m<l
reduces the aquatlon Ayy= O to the equatlon '

COy gy -
+ + I—a2) — = ~0
3.—2 3-—2 ( ) x3
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The corresponding singularity function of this equation for the point’ & is
s(4, X) obtained by applying the above transformatlon to s(a, x}, namely 6 t /

S(“ %)= *[(xs - 03)2 -i- (1 - Olz){(xl F P+ (Xy— ai);ig_/

This solution is said to-have “source like” singularity at ¥ =4, It is axisym-
metric abouti the line passing. through the point d and parallel to %; axis.

. The expression for s(@, %), the singularity function of the equation, has
been obtained under the assumption 0 <. < 1. In spite of this, we can
verify by substitution that it also holds in the case «. > 1. In this- case the
singularity is not confined to a single. .point X=4, but- to the entxre surface
of a cone glven by

e (B P (mz—l){(xl—a)2+(xz az)z} 0.

The expression for s(2, X) takes-real values only within this cone and we
set it equal to zero outsnde the cone, We conclude that for @ > 1,

n [CX3— a3)2 (Gc2 1){(x = a1)2 + (xz - az)z}ﬁi/
s(d, X)= inside the cone
© k0 coutside thecone o o
is the smgularlty functlon of the equatlon -
ﬂ Z0.
x3

This is analogous to the wave equation
Py Pu 10 P :
e @ e :

where the spatial coordinate % is replaced by ¢ and ( _Qtz-';- 1) by 1/¢2 Thus

~-.._the singularity function for the wave equat'i'on in the two-dimensional case is

—~[(r—r)2 - {(xl—a1)2+(xz—az)2}1-”2 o
g msnde the cone :

0 outs1de the cone.

Usmg the theory of distributions, s(4, =, X%, t) can be shown to satisfy the
nonhomogeneous wave equation o
L Pu | Pu ol Pu 5
dxr " dxz 2 o YT \

where 84, is the Dirac delta function associated with the pomt (a 1-)

In fluid mechanics, ‘the singularity function has a special significance,
"Ward (1955). Let o= M., the Mach number of the undistitrbed flow. When'
Moo << 1, i.e. for subsonic flow, (@, ¥) represents the velocity potential in a
uniform three-dimensional “subsonic flow" mduced by a source of unit
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strength at X=d. If the source is of strength @, the velocity potential ¢ is
given by

@=0s(d, X).

When Mo > 1 i.e. for supersonic flow, s(4, %) is sitgular not just at the
point =4, but on the entire surface of a cone, which is called the Mach
cone. The Mach cone represents the boundary of the domain in the fluid
influenced by a three-dimensional source at the vertex in a uniform super-
sonic flow. Besides, the velocity potential ¢ is real only within the Mach
cone. Disturbances from the source are not felt outside the cone and ¢ is
set equal to zero there. ‘

The results of three-dimensional steady supersonic flow can be carried
over to two dimensional unsteady flow governed by the wave equation For
the wave equation, the singularity function is :

1
A7/t~ 72— RE/c2’

This can be used to define a velocity potential, for two-dimensional unsteady
flow,

s@mxns= R=[(x;— a2+ (% — &G P]'2,

95:-—1- 1—Rjc Q(T) dr
—oa \/(t—'r)z—RZ/cz

where the source strength is time-dependent,

If an axisymmetric body is placed in a flow field with its axis along the
axis of z, it can be simuiated by introducing sourcesinto the flow Adld
along the z-axis, i.e. the axis of symmetry. It can be shown that the strength
O(z) of the source at a distance z from the origin on the z-axis is related to
the profile R=w=R%*z) in a cylindrical coordinate system (R, €, z) by the
relation

—dR
Q(Z) =4wR EZ_.

EXERCISE 4.4

1. Show that the velocity potential ¢ of a line source in a fluid along the
z-axis with uniform strength 4(r) per unit length is given by

—L {—R e g(n) dn
27R) -0V (t~n)2— R¥a}

where R= \/ x2+ 32, where a, is the sound velocity.
2. For a fixed value of R, determine how the solution in the previous
problem decays to zero asymptotically as ¢ - o0,
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3. Show that the solution in the case of supersonic flow past a body of
revolution is given by
N N S'(y) dn -
=—— —BR >
P 27 Jo v/ (z—n)?— B2R?’ z 0 .
where U is the velocity of the fluid at infinity, B=+/M2—~ 1, M=Uja,
is the Mach number and S(z) = 7R2(z)is the cross sectional area of the
body at a distance z from the nose.

§4.5 Propagation of Confined Tnitial Disturbances

The solution u(x, £} of the three-dimensional wave equation depends on
the values of u, and u; and the first derivatives of #o on the surface of the
sphere of centre x and radius ¢z. Conversely, the values of wy and i, at a .
point y in the plane =0 influence only the value of u(x, r) at time 7 at
points x near the sphere Sy,er: | x—y | =ct. If wo and #; have support in a
closed bounded region Q2 of RS i.e. if they are both zero outside 2, then at
t > 0 ulx, 7} # 0 atmost at those points x which lic on a sphere of radius
ct and centred at a point y € 2 i.e. X € Sy.« for some ¥ € £2. The union of
all such spheres S,, for y & £ contains the support of u(x, ) at time r,
This gives the Huygen’s construction of a wave front for a disturbance
confined originally to £2.

Consider the case where the supports of #, and #; are contained in a ball
of radius 8 about the origin. The spheres having their centres in this ball and
radius cf constitute a spherical shell with centre at origin and radii ¢t -8
and ¢z+ 38, whenever ¢f > 8.

Pig. 4.6 Propagation of an initially confined disturbance for the
three dimensional wave equation
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For a fixed value of x, | x | > 8, we have u(x, £} # 0 only for a time in-

-5 5.
terval of length 28/c, from t=ix—cl— to t=|—}-{~gli. This permits

the transmission of sharp signals in the form of waves with sharp leading
and trailing fronts. After the wave has passed, the medium returns to abso-
lute rest instantaneously. This contrasts with the behaviour of the solution
of the two-dimensional wave equation, which we discuss below.
- The solution of the two-dimensional wave equation at (%, ) depends on
the values of u , #; and the first derivatives of #, in the entire disc of
centre ¥ and radius ¢¢ (and not only on the circumference, as in the three
dimensional case). A disturbance initially created at some point @, reaches
an initially undisturbed point P after a finite time but continues to disturb
the point P with diminishing intensity for the rest of the time. There is no
trailing front to bring the medium to rest at P. If, for example, the supports
of wo and uy are contained in a disc of radius 8 about the origin, then the

. - . x| —6
disturbance reaches a point %, | £ | > 8, at time ¢, = ]—xi— and there-

“after for ¢ > ¢, the disturbance remains and decays to zero as 7 tends to
infinity. This is called reverberation.

A solution of the wave equation in one space variable exhibits a beha-
viour intermediate between those in two and three space variables, If the sup-
ports of #; and u;, are bounded in x, say | x | << 8, the effect of wu, vanishes

| x| +8

at a given point x after a time ¢ = {as in the three-dimensional

| x|

. —8 )
case), but the effect of u; is felt for all time ¢ > T (as in the twe-

dinrensional case} because of the presence of the integral term
1 x+ct

ui(7) dr.

2¢ Jx—er

When the. number of space variables is greater than three, the solution
of the wave equation in an n-dimensional space, with n even, shows the exis-
tence of the phenomenon of reverberation as for n=2. Inthe case when # is
odd, the solution shows that disturbances of finite extent are bounded by
sharply defined leading and trailing fronts as for »# =3,

EXERCISE 4.5

1. A disturbance represented by u(x, y, #) is governed by the two-dimen-
sional wave equation and is initially given by

1—x2—)% - forx2+)2 < 1
u(x, y, 0)——"{ '

o - elsewhere
udx, y,0)=0.

Note  —Wave uo;% o’
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Determine when the disturbance will reach a point (x, ¥} outside the
unit circle and find how u will decay as r — oo,

2. In the balloon problem (Exercise 4.2, Problem 7) determine at what
times a pressure discontinuity ocecurs at a fixed point when () R > R,
(i) R < Ro. '

§4.6 Continuable Initial Conditions

-We have shown that the solution of the three-dimensional wave equation
in terms of initial conditions is given by

wx, O\ INA) NN/l
= (4.40)
X, £) Nu(t) Ni2)/ \ury(x)
where N(7) is a linear operator given by.
N(E)=rM(z).
(4,40) can be written in matrix notation as

u(x, 1) = T(t)vo(x).

T(z) can be interpreted as a solution opetator, which transforms the state
v at a time 7= 0 into the state ¢ at time 7. If the initial conditions are given
at time ¢ =1y, then, since 7" depends only on the difference ¢ - #,, the opera-
tor T(z—1,) maps the state at ¢ = f;, to that at time ¢.

It must also be possible to obtain the state 2 at time 7 by intermediate steps.
Sta}‘ting from v at time :=0, we first determine the state at time 1 ie
T(t1)vo. At time # later we find the state (by taking the state at time #1 as
initial conditions) as T(¢2)7(#1)vo. This state must be the same had we pro-
gressed by time {1+t from £=0. Therefore, we require the operator equality

T(t1+12) = T(22) - T(t,). @.41)

(4.41) can be rewritten, by rcplacing‘ £2 bys—# and # by (¢,— t,), in the form

T@—te)=T@—t)T{t— 1), t = 1, > £y, : (4.42)

As this composition is associative the operators T form a semigroup.

The conditions of theorem 4.3 are too weak to satisfy the Hadamard
requirement (4.41). Starting with ¥ € C3, 4 & C? in the three dimensional
case, after the first step we have u & C2, u & €1, but these cannot be used
as initial values again, as we need u & €3, w & C? here also. These are
non-continuable initial values. .

Let us consider an example to show that smoothness properties of the
initial values are lost later on. Inthis we shall start with z & €=, u, < C?
at £=0. We shall show that the solution # for ¢ > 0 ceases to have its earlier
smoothness property at ¢=0,
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Example 4.2
Consider the three dimensional wave equation

1
?uﬂ = Uxyny = Uxgxg ™ Uxzxy = 0 (443)
with initial values _‘
u(O’ X1 Xz, x3) =u0(x1: X2, x3)= 0

(I-r3)2forr < 1
w0, x1, X2, x3)=u(x1, x2, x3) = (4.44)
0 forr =1

“;here r2=x7+x3+x3. These initial values are such that uy & C*= and
u € C3 '
The soiution of the initial value problem is given along the f-axis by
l—c22¥2 forer < 1

u(z, 0,0, 0)= { (4.45)
. 0 for ct > 1.

We then have
=0, u¢=0, hy =0 for et > 1,
while for ¢t << |
tr = (1 — 22)*12 — 5¢212(1 — 22
= — 15¢24(1 — ¢332 + 1 5c43(1 — )12
e = — 15¢2(1 — 2P+ 90c%2(1 — P12 — 15¢514(1 — c2)~112 (4.46)

uz fails to be continuous and tends to infinity as ¢ approaches 1/c. Since
(u)ie is related to second order spatial derivatives of u through (4.43), it
follows that # is not a C2 function of x,, x», x3 at the origin when ¢ =1/c.

We now look for a property, which when possessed by the initial values of
a hyperbolic equation, continues to be possessed by the solution for all
times ¢ > 0. For this we shall now define the space H.(¢) where r is a posi-
tive integer. Let R(#) denote a domain depending on a parameter ¢ Let us
denote “‘smooth functions™ in R(r) with continuouns derivatives of order up
to r with respect to the x variables, for which the r-norm is finite. The
r-norm of # is defined as

nu(f)n 2= J Y, | Drurdx (4.47)
Rt |pT%r
( S AL
b= Ph’Pz, vy Pm), _axflax-gz---axg"" Pl =P TP T Pm

where the summation on the right extends over all partial derivatives Dru,
of order | p | < r with respect to the x variables. The completion of the
space of such functions « in R(#) with the r-norm is a Hilbert space H,(¢).
In studying initial value problems of a hyperbolic equation we choose a
special form of R(¢). Let P be a point (x4, #,) in (x, £)-space with 7, > 0. Let
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R(h) denote the domain of dependence of P in the hyperplane ¢ =, If 1 are
functions belonging to C'(R(%)) such that F-norm is finite in R(4), we define
“energy integrals’” of order r as the rmorm of u, as in (4.47) with ¢
replaced by .

The general existence theorem {Courant and Hilbert, Chapt. 6 §10, 1975)
states: If L(U/}=0 is a symmetric system of linear equations with U(x, 0)
= Up(x), the initial value probiem has a smooth solution in R(z), ¢ > 0,
provided the operator I, is hyperbolic and its coeflicients, as well as the
Initial function U/, are sufficiently differentiable. If Us belongs to H, over R(0)
then U belongs to H, in every section R(¢) of the conoid of dependence,

In particular, if the coefficients possess continuous derivatives up to order
r+1, where r > m/2+1 (m being the number of spatial variables), and U,
belongs to H,, we can construct a solution ¥/, which belongs to H,. In case
U7 is not sufficiently smooth, the solution in the generalised sense is defined
with the help of the limit in the r-norm of sufficiently smooth functions, By
reducing the wave equation to a symmetric hyperbolic system of first order
equations, the existence theorem guarantees that if U(x, 0) belongs to H,
over the hyperplane =0, then the solution of the wave equation is wniquely
determined for all later times ? > 0 and it belongs to H,(7).

A property P is said to be persistent, if whenever an injtial function

/ofx) has the property Z, the corresponding solution U(x, 1) at any other
time also has the property £. Here, we have seen that the property of hav-
ing finite r-norm is persistent. Uy(x)=H.(0) gives a set of continuable initial
conditions, whereas the conditions of existence and continuity of derivatives
of U(x) are not persistent and may be lost under the transformation ().
This shows that physically relevant persistency conditions are the existence
of energy integrals, rather than differentiability properties.

§4.7 Duhamel’s Principle, Solution of the Irhomogenecus Wave
Equation, Retarded Potential

The method of Duhamel is similar to the method of variation of para-
meters for ordinary differential equations, which cnables one to find a
solution of the inhomogeneous equation with the help of the general soli-
tion of the homogeneous equation. Consider the equation

e~ L(u)=g(x, #), with u(x, 0)=0, Ux, 0)=0 (4.48)

where L is a linear diﬂ"erential'operator in m spatial variables with constant
coeflicients and derivatives, with respect to £, of order not more than one.
We attempt to write the solution in the form

u(x, r)=j; o(x, ¢, 7) dr | (4.49)

where u(x, ¢, 7) is a one parameter family of solutions of

U — L(U) =0 ) (4.50)
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for all values of the parameter 7.
At t=7, we assume that

o(x, 7, 7)=0, for each r. : (4.51)
Then
, o
w=uo(x,t, )+ ,[0 u(x, t, T) dr
3 .
= jo v(x, £, 7) dr using (4.51)
i
e =X, £, I)+Jo vy dr
and

e
Lu= J Ly dr.
0

Since u satisfies (4.48) and » satisfies (4.50),-we have

o(x, 7, 7) =g(x, 7). (4.52)
Therefore if # satisfies the equation '
m—L{p)=0
with initial conditions at t=7
ux, 7, }=0, wlx, 7, 7)=g(x,7) (4.53)

u defined by (4.49) then satisfies the given equation and initial conditio‘ns,
and the problem for the solution of » can be reduced to one in which the
initial conditions are prescribed at =0 instead of at 7 = . For this wefind a
solution o*(x, #, ) which satisfies the equation (4.50} together with initial
conditions at =0 '

v#(x, 0, 7)=0, 7 (x, 0, ) =g(x, 7)
then
wx, t, Ty =0%(x, £—7, 7). (4.54)

Example 4.3

We use Duhamel’s Principle to solve the nonhomogeneous three-dimen-
sional wave equation

U™ Cz(uxlxl T Uxgxp + uxnxs) = g(X, t),- x=(x|, %2, x3) (4-55)
with zero initial conditions
u(x, 0)=0, u(x, 0)=0.

We first determine #*(x, 7), where v*{x, 7) satisfies the homogeneous
three-dimensional wave equation with initial conditions at ¢ =0,

v¥(x, 0, 7) =0, vi(x, 0, ) = g(x, 7). ' (4.56)
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From (4.21)
v*(x, t, T)=4'—i'rj vl =1 g(x+vet, 7) dw
1
=4‘n’zc2-fsx ot 2, ) as, E=(§1, £, &)

whete Sy, is the sphere (€1—x)2 4 (&, - X2P (€3~ x3)? =22,
Now '

I . \ . "
ux, ¢, 7) =TG- f Sx,etr—p) 8% 7) dS

and
. g€ )
wx, 1) _4rr6‘2,"o dr ij, e(r—t) t—71 dS' (4.57)

‘ The values of g in the integral tn-(4.57) are taken on
i~ X P+ (&~ x,)2 FE—wP=c2(—R, 0 <7 <t
that is, on the characteristic cone with vertex at (x, #).
Let r= \/(51 —X1)2+(§2—XZ)2+(§3"X3)2-
Hence we have

1 [ dr N
ulxy, X3, x3, 1) “dnd), 7l rg(E, t=rlc) ds.
L

on the cone r= ¢z —7), .
One can write the integral as a triple integral over the projection of the
cone
1 , I—F :
(g, X3, X3, £) = inc2 gié—-—/(i) dt,  d¥=dtdédt. (4.58)
TCY <ot F
_ We can give a physical interpretation to this solution. In clectrodyna-
* “mics, there exists a scalar function o(x1, X2, X3, 2) which, in Gaussian units,
satisfies the equation : ~ ;

1 82¢> A

= : =_ %o
AP_'EE "a_tz— = "? P(xh Xz, X3, f), c=

V' Kp

where ¢ is the velocity of light in the medium of the dielectric constant X
and magnetic permeability ., and p is the electric charge density. In parti-
cular, il we consider a time-independent concentrated electric. charge p, at
the origin, the corresponding electrostatic potential gy in free space satisfies
the Poisson’s equation obtained by dropping the term 9%4/0¢* and is given by

_Po
[ x|

?’D(X):_;(‘* s x| =v/xT+x3 +22

For a time-dependent charge distribution in - space with density’
P(x1, Xz, X3, ), the electrodynamic field ® is a solution of the above men-

»
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tioned equation. Assuming that mmitially =0, ¢, =0, everyﬁfhere, we get
from (4.58) .

P(xls X2y, X3, t) = EI P(&I: 52, f:’ t—r/(:) dg] d§2 d§3 (4.59)

r=cet
ri=(§ - x1)2+(§;—x2)2+(§3~ x3)%.

This shows that the contribution to the electrodynamic potential ¢ at a
point (x) at time ¢ comes from the potentials of all charges inside the sphere
of radius ¢f about (x). However the charge at a point & inside this sphere is
not to be taken at time ¢, but at an earlier time f — r/c, where the difference
r/c is the time interval which a signal moving with speed ¢ would need to
traverse the distance beiween the points § and x. For this reason the
expression (4.59) is called a retarded potential.

EXERCISE 4.7

1. Explain how to solve by Duhamel’s principle the Cauchy problem for
a linear hyperbolic equation L(u}=0 with the conditions u=/{(x, y, z),
ur=glx, y, z) given at t="h(x, y, 2).

2. u{x, t) is the solution of wy—uxx=~5h(x, t) which satisfies the initial
conditions #=0, =0 when {=0. By considering the integral of

U — txx OVEr a suitable triangle prove that .

Sl AT
(i, :)=~f ar [ He, 1-7) .
2 0 x—7
Obtain this result by Duhamel’s principle.

§4.8 Boundary Value Problem for the One-dimensional
Wave Equation

The initial value problem is by far the more discussed problem for equa-
tions of the hyperbolic type when compared to the boundary value problem.
However, we will find that in one of the important general classical theories
the characteristic boundary value problem plays a leading role. In the
‘Riemann method’ it provides aresolvent function, which is used in represent-
ing solutions of other boundary value probiems. '

(i) Characteristic boundary value problem
A characteristic boundary value problem for the one-dimensional wave

equation

1
Uy ——5 Usx =0
4
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is to find a solution which takes up prescribed values on the two characteris-
tic curves through a point, in the (x, #)-plane, say the origin, i.e. to find a
solution wu(x, £ such that :

u(x, )=F (¢} on X=a, t=—:—, & >0

“, D=5 onx=p =L g

where fand g are knowp functions. {4.60)

Fig. 4.7 Characteristic boundary value problem with data given on
x—ci=0and x4 cr=0

The general solution of the wave equation is

u(x, )= F(x+ et)+G(x—cf).

The functions # and G for which u(x, 1) takes up prescribed values (4.60)
satisfy

FQ2a)+G(0) =f(=)
el FO)+G(28)=g(B).
Therefore, o
F(x)=1(x/2)~- G(0), G(x) = g(x/2) - F(0). : (4.61)

The arbitrary functions ¥ and ¢ are determined, except for an additive
constant. Thus o
u(x, £)= f(i‘—;—c—’) g (%“) ~ (F(O)+G(0)).

But

u(0, 0)=/(0) = £(0)= F(0) + G(0).
Therefore the solution u(x, 1) is given by
wx, )= f(x “Zc’ ) +g (x;“ ) ~£(0) (462
provided f and g satisfy the relation
S0 =g(0).
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At any point (xg, fo) in the region (—cf << x <C cf) bounded by the two
characteristics x+cf=0, x—ct=0, the solution picks up the value of f at
o= (xo+cty)/2, where («, a/c) is the point where x—cf=0 intersects the
characteristic x4 ¢f = xp-+cto through (x, #5). The solution takes the value
of g at B=(xy—c1)/2 where (8, = B/c) is the point where x+¢f =0 intersects
the characieristic x — ¢t = xg— cty. '

The solution is unique, as the equation is linear and u{x, ¢) =0 if f(x)=
g(x)=0. Region of determinacy, if f(«) and g(8) are specified for 0 <« < g,
~b < B < 0, respectively, is the parallelogram bounded by x—cr=0, x+¢f
=0, x+ct=2a, x—ct=—25.

We have seen earlier that specification of Cauchy data (satisfying the
compatibility condition) on a characteristic does not uniquely determine a .
solution. From the above problem we verify that the unique determination
requires the specification of another piece of data on an intersecting line,
in this case a characteristic of the other family.

(i) Mixed boundary value problem
Suppose the data is given on one characteristic curve, say x — cz =0, and one

non-characteristic curve, say x=0. This can be called a mixed boundary
value problem-—the combination of a characteristic boundary value problem,
where the data on one of the characteristics is ignored and a Cauchy prob-
lem where the data on the derivative has been ignored. Given data is

#(x, 0)=f(x)

we, #je) =g(x). (4.63)

The general solution of the wave equation is

u(x, £)=F(x+c)+G(x—ct).

tg
gt
T
o1 ~
S -
-~
9] (a,0) "

Fig. 4.8 Mixed boundary value problem with data given
on x—ct=0, x=0
Substituting the general solution in (4.63) we get

S =F(x)+G(x)
gle) = F(2«) + G(0).
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This leads to

F(x) = g(x/2)~ G(0), Gx) = Sx)—g(x/2)+ G(0). (4.64)
Therefore
u(x, 1) =g(x ’;“ ) ~g (x——z—c—{) +f(x—ct) (4.65)
where the continuity of u at the origin requires
F(0)=g(0).

The solution is unique as u=0 if f=0, g=0. The region of determinacy,
if f(x) and g(«) are specified for 0 < x < 4,0 < « < b, is the region
bounded by the characteristic segments through (a, 0) and (b, b/c) and the
© given segments on /=0 and x = cz, as shown in Fig. 4/,9’ _

{iii} The Goursar problem

Here the data is specified on two intersecting non-characteristic curves
strictly contained in an angle between two characteristics passing through
the point of intersection of the curves. Without loss of generality, we can

take the point of their intersection to be the origin, The intersecting curves
are, in this case, taken to be straight lines:

x=0and fx=ct, 0 < B < 1.
Given data consists of

u(x, 0} =f(x)

u (oc, —Bj—) —g(@), 0 < B < 1 (4.66)
and f(0)=g(0) for continuity of » at the origin.
th
/(’R‘
+7 %f_gxl‘ﬁ
-7 pley -
-~ e -
- (o2
-~
//
//
//
//
0 {a;0) K

.Fig. 4.9 Goursat problem in the region hounded by x=ct/{g, r=0
<<l
The general solution is
u(x, 1) = F(x +ct)+G(x — ct).
Now we require that
JX)=F(x)+G(x) (4.67)
gle)=F(x(1+8)) + G(a(1 — B)). (4.68)
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It is not possible to determine the functions # and G easily from these rela-
tions, as could be done in cases (i) and (ii). From (4.67) and (4.68)
G{(1-+B)x}— G {(1~- B)x} = F{(1 + B)x} — g(x).
Let '

X 1-8 X
P 0 < 3= 1pp< Lot0)= g(TB)—f@c)

Then
pX)=—-G(X)+GEX).
It follows that
p(8X)= - GEX)+G(8X)

and so on. Therefore
2 p(X)= —G(X)+ G ),
i=0
Since G is continuous and 0 <C 8 < 1, letting » tend to infinity we get

G(N)=60- ¥ o)

provided _20 p(8°X) exists. Using (4.67) we can get F(x). Hence the solution
of the probiem is given by

ue D=fA P Y, pGren- Ep—a). (469)

The functions f and g must be such that Y, p(5X) converges in order that
i=o

‘the solution (4.69) is valid. Here also the solution is unique. The region
of determinacy when f(x) and g(«x) are specified for 0 < x < a and
0 <<« < b, respectively, is the region bounded by the characteristics through
(a, 0) and (b, bB/c) and the given segments on z=0 and Bx =ct.

[n all the three cases (i)-(iii) the problems are wellposed. The solution u
18 given in terms of f and g, which when equal to zero, imply that « is
also zero. I f and g are arbitrarily small, then u is also arbitrarily small,
Hence the solutions are unique and stable and, therefore, the problem is
wellposed.,

(iv} The Dirichlet problem for the wave 'equmton
While the Dirichlet problem is basic for the Laplace equation and other

equations of elliptic type, we examine here its wellposedness for an equation

of hyperbolic type.
Suppose in a rectangle bounded by x=0,x=1,¢=0, =T, we look for a
solution of the one dimensional wave equation

Yxx =~ vy =}
c

x (o

’
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satisfying the boundary condition
1 =0 on the sides of the rectangle.

Let the solution be given by

uw=p(x) $(1).
- Then we require '
' +k¥p=0 B+ k2B =0,
Therefore p=A sin kx+ B cos kx (4.70)

J=C sin ket + D cos ket.
Since (Y =p(I)=0 we have B=0,kl=nw, n=1, 2.,
Also W(0y=4(T)=0 implies D=0, ckT=mm, m=1, 2,...

. . i Frray .
This requires —— = pa for specific 2 and »

!
. ¢l m
1e. T=n (4.71)

If the ratio of ¢ times height to length of base of the rectangle is rational,
the solution of the Dirichlet problem is nonunique. This is because, if'my, 7y,
e are possible values of m and », respectively, so are 2/, and 2, also. Besides,
&y i no nontrivial separable solution is possible if the ratio «T to [ is irrational.

) The solution to the Dirichlet problem for the wave equation on a rectan-
4 9 gle is_unique if the ratio of lengths of its sides is irrational; otherwise the
o v“’“” solution is nonunique. If the boundary is slightly perturbed so that c7T7/

A A changes from an irrational to a neighbouring rational number arbitrarily

7 close to it, the zero solution is changed to a nonunique non-zero solution.

Therefore the solution ceases to be stable. Thus the Dirichlet problem is not
wellposed Tor the wave equation.

EXERCISE 4.8

1. Find the solution u{x, 1) of the characteristic boundary value problem
U =0
with u(x, 0)=3x2+5, u(0, )= ~#+5,
2..Find tﬁe solution u(x, #) of the following Goursat problem

-—u;:=0

u(x, 0)=sin x, u(x,%x) =X,
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~ $4.9 Riemann’s Method for Linear Hyperholic Equation in x, ¢

Consider a Cauchy problem associated with a linear hyperbolic equation,
in iwo independent variables in the canonical form,
e Fdlxt e Ffu=g _ 4.72)

where d, e, f, g are functions of x and 7 in a domain and have continuous
second derivatives there in. » and éu/dv are prescribed on a noncharacteristic
curve C, where @/6v denotes differentiation in the direction of the normal

to C.
To solve this problem we consider a function » € €? and use the identity

o P 3 1
eLy—ule= W E* —F _ (4.73)

where
' ' Ly = th + dux + et +ju
Ly = vy —do—ev+{f—dr—er)o

= é— (vt~ wty) + duv

i
F = — (v — woe) +euw.

L is the adjoint operator of L. Applying (reen’s theorem fo a surface
intergal of (4.73), we get

J.JD(uLu— ule) dx dt = L —~Fdx+F dt (4.721).
P2l

where £ is the closed curve, which is the boundary of domain D.

ta

0 ' X

Fig. 4,10 Riemann method to deiermine solution of
(4.72) at P for datum curve C

We now apply the identity (4.74) to a domain D bounded by the datum
curve C and two characteristics x == and =8 passing through a point

Ple, ).
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Here
f —Fdx+E di= f —Fdx+Edt
an AB

i X4 '
+L Edt_fa ¥ dx

B

where x4 is the x coordinate of 4 and 7z is the 7.coordinate of £,

o (4 1
f Fdx=f [— (otex — uvs) -+ ey ] dx
X4 Xy 2
. o 1
= J. [# (un)x—uvx+ euv] dx

xy L2

=y @r=4wu= [ uo—en) dx
X4
and

B B
f E dl‘:-l. [——I—(vur—uv:)+duv] dr
13 tg L2

= %(uv)p— %‘_(Mﬂ)ﬁ"‘ LBB u(o: — dv) dt.
We chose v to satisfy the equation
Ly=0in D
together with characteristic boundary conditions

=er on t=§

=dvr on x=a,
The characteristic boundary conditions are satisfied if
o, B) =exp | e, ) dt )
- o
and

. !
o, 1) =exp | G, ) dn

where we choose 2 so that

oz, B)=1.

4.75)

{4.76)

(4.76a)

The solution to this characteristic boundary value problem (4.75), (4.76a) is
called the Riemann-Green function (or sunply Riemann function) with res-
pect to («, B) and is denoted by u(x, t; o, B). Using thxs function, (4.74)

reduces to

” o, 2, xo, Yolg(x, 1) dx dt = (uv)p— zi(uv)A
D

- Hl-'(uv)a—i-.[ —Fdx+E dr'.
2 ; AB

4.77)
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"Here
L L )
| J —Fdx+Edt*—-J- [( —--»—vux—!-—uzrx—euv) dx
4 Jan - Jan 2. 2
+ Lvuf— —L-ziv,+cfiw) dt
12 2 :

'_ 19 du 1 dv - odx Cdt ]
TJAB[E‘UE BH G T ey Hdup ds]ds

¥ 'where d/ds denotes differentiation along ‘the'curve € and

d . dx a't.

dx T v ds 3x ds ot

"Since u and du/dv ate prescribed 'on 4B, “the' integrand in (4.77) is com-
“pletely known, as all derivatives’ of « on 4B can be calculated from the
+ given data. Using #(x, B)=1 in (4.77) we'have

1 J1 1 du
(”)PHT(MU)A+—2_(Z{P)BTJ.,§3[2 o
_ ; c;r;\ ewc; N dwe’i] ds J vg dkdt.  (4.78)

This is the required form of the solution of the Cauchy problem. It gives
the: value of  at P in terms of the.Riemann function and the Cauchy data
« for:u along C.

Thus we:have:reduced the problem of solving of a Cauchy or initial value
problem: to that. of solving a corresponding characteristic boundary valua
problem. Unlike the Green’s function introduced.in §2.2, the Riemann
function does not depend in any way on the arc carrying the Cauchy data
and it is regular in D, i.. it is not required to.have a singularity in. ihe
domain D,

Symmetry of Riemann’s Function ,

Let D be the region enclosed by a rectangle PORS whose sides are char-
acteristic curves and let the initial.data be given on.a curve passing, through
¢ and S.:Also let g=10.

Then if v is the Riemann function of iLu =0 with respect to B, we have

¢ from (4.78)

up=—3 (u)o+ —2*(141’)3:— fx::( = Pl + ket ‘-’}1") dx

] _ .
+ J‘:Z (sélu,vuz—- %uw"i-d%w) .

—-(uﬂ)o+ (uv}s—( é w )S-l- ( ‘,12 ) + J o1y +eu) dx

= (._1._ i{l}) —{———I*(MU)Rﬁ‘J‘[Q v, +du) dt
v A2 o 2 Jig - ‘
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tf.

S

] e

Fig. 4.11 PORS isa rectarggle whose sides are
characteristic cutves

where the integral over a curve joining Q and S has been replaced by
integrals over OR and RS, since in view of (4.74) the integral over the
closed curve QRSQ vanishes. Therefore,

: 1
Up= (uU)R + J.zs f)(ux + eu) dx + ,[fi E(u! +du) dt. (4.79)

R
Choose w to be the Riemann function of the adjoint equation
Lo=rp.,~ dvx_—ev;—{—(f— di—edr=0
-with respect to the point R. Then w must be determined by the equation
Iw=Lw=0 ' (4..80)
and boundary data
wx+éw=0 © on RS, .
wetdw=0  on RO, (4.81)
w(R)=1, .

Since w satisfies Lw = 0, its solution must be given by (4.79). Using boundary-
data (4.81) in (4.79) for w, we get

Wp=1uR
ie. w(xp, 1p; XR, 18) =0(XR, tR; XP, IP). (4.82)

In other words, the Riemann’s functions » of an operator L becomes the
Riemann’s function w of its adjoint operator L when one interchanges the
two sets of variables in its argument, i.e.

w(xa, £ X1, t) = ¥(X1, tr5 X2, t2).

This is called the symmetric property of the Riemann function.
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To give a physical meaning to the Riemann function, consider a sequence
{gx} of functions with the properties:

(i) g= = 0 1is different from zero only in aneighbourhood Nx of a fixed
point Q0 = (%, 8)

(i) j fgk dx dt =1 for each k, and
N _

(iii) The neighbourhoods Ny, shrink to the point Q as & - 0,

If we denote by yx, the solution of Ly=gx which vanishes along with its
first derivatives along the initial curve C, then its Riemann’s representation
(4.78) shows that since

lim ”D ver dx dt=u(Q, P),

>0

lim yr=y exists and
k—co .

WP)=u(Q, P) (4.83)
where 2(Q, P) is the Riemann function of the operator L and y satisfies the
limiting equation

L(y)=8(x—a, 1—f) (4.349)
with zero initial conditions.

The result e, ty=vlw, B; x, £)
can be interpreted physically as the intensity at point x at time ¢ of radia-
tion emitted from a source of unit strength at the point Q(«, 8) in space-
time. '
Example 4.4 The Riemann function for the wave equation

Uxr = 0

is given by '

' ux, 8 0, B)=1
and hence the solution, in this case, is given by

u(p)= S B+l + + [ G de—nea) (4.85)

Example 4.5 The telegraph equation, with ¢ constant, is
U +cu=g(x, £}, {4.86)

This equation is self-adjoint. The Riemann function for the point O{x, £)
remains constant along the straight lines parallel to the coordinate axes
‘through @ and so can be taken to be a function of (x—a)(t - B). Therefore,
for the point Q(«, ), the Riemann’s function is of the form

ofx, £; «, By =f(z) -
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* where - z=(x—a)(t—P).
" ‘Ffom the equation satisfied by 5,-we get
Zf"+f Fef=0
v owherein if wé "set:?\l—-— \/ dcz, it be'cdr'nes
Ly
ot Zs=0.
' The solition which is regular at (m, B) is
_ Colk, 1 0, BY=Jo(V/ Felx—3)7=B) ) ' (4.87)
+wherd Jo is the Bessel function of drder zéro.

. Exdmple 4.6' Cohsider the equafion

Hug b ur)=0 | - (4.88)

|W.
o x+z

w iwhete # 154 ‘constant.

" IThen's satisfies the adjbint equation

" 2n )
wer""‘ (Ux“|"Ui) ( -i"'t)zﬂ 0 ) ! (489)
v with
s olx; By o) B)=— +}Gv(X, B; ) B)
“(4.90)
Cole, 15 %, B)= — e, 1; %, B)
and oz, B @, B=1.
'+ Integrating (4.90) along the characteristics, we get
X+ i+
B = (EE) " nn = (555) @D
As a solution of (4.89) we try the polynomial i(w) in the expression for v, i.e.
: _ (e+py .
olx, £ %, B= (x+12)" P(w) (4.92)
~1where
= (x—=x)(B—1) :
(xS
and

, wPwy=1+aw+ ee g™,

R AT
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Then 4 satisfies the equation .
wlw— 1" + (2w — i — s+ 1 =0. (4.94) ;.
This has as golution the hypergeometric function: |

= #(ipn 1 -0 95 |

-

(x+y)+p)/ |
Therefore,

ox, t; 4, B)= (“:f) I,,F(lf“”’ S %‘M) )i

EXERCISE 4.9

H

1. Verify that the Riemann-Green function for .

2.
‘u.xr,_— m-u;‘—fo
is
(x + B)(t o)t (x—o)(t—B) |
Ax+t)z+p) - - -

Use Riemann’s method to show that the solutjon which satisfics

o(x, 1 %, ,3)—

. 1
u=0,u=1"on x=tis u=!T(t—x)(t+x_)2. ;
2. Show that the Riemann-Green function for "
gy~ Unp— —"Ux = 0
: x
is .
a x2+a—(t—B2
U(x L B = '_—_ﬂz_—
Flnd the soluuon wh1ch satlsﬁes the condmons

mf(x) oy = g(x) on 1=0."
3. Prove that the Rlemann-Green functlon for

' : [

: b
Uxt + + —1=0
x Lx

where a and b are constants is

v(x t,oc,B) ( : ) igp {a(t B)}IF(I =B 1; az) .

where Z (x «)(t ""IB)
and

I(C2) .;E I(Ci+n) y"
T(CO=5 T(Carm) 0V

I" denotes the Gamma function.

1F1(Cy; Co; p) =



CHAPTER 3

Hyperbolic Partial Differential Equations

1. INTRODUCTION

In the previous chapter, we took up a study of the general second order
linear partial differential equation and noted that the equations could be
classified systematically. Problems associated with the different classes of
equations become well posed provided different types of initial and boundary
values are prescribed properly. Also, the properties of the solutions of the
equations of different classes are basically different, The'scope of Chapt. 2
restricted us from pointing out and showing that the solutions of hyperbolic
equations show a variety of properties not observed in the solutions of
equations of other ¢lasses.

A physical phenomenon, which is governed by hyperbolic equation{s) can
always be described in the language of wave theory with finite speed of
propagation. In this case, if the solution initially vanishes outside a closed
bounded domain, then at any future time there exists another closed
bounded domain outside which it continues to vanish. This property of the
solutions of a hyperbolic equation is one of the most striking of its proper-
ties. In fact, starting with the assumption of the finiteness of the signal
propagation velocity in a physical system it is possible to provea Very gene-
ral theorem which asserts that the motion of the physical system is governed
~--by a hyperbolic equation of order n, where » is the number of state vari-

ables of the system. Apart from the finiteness of the signal propagation
- velocity, the other principal assumption in the theorem js that the motion
of the system is uniquely determined by » arbitrarily prescribed initial
conditions (Lax, 1963). :
Unlike in the case of elliptic equations, the hyperbolic equations in two
mdependent variables differ very significantly in their properties and in thejr
- methods of solution from those in more than two independent variables,
For example, the smoothness properties of the initial data for linear hyper-
bolic equations in two independent variables is preserved by the solutions
but this is, in gencral, not the case for equations in three or more indepen-
dent variables. Amongst the other striking properties of hyperbolic équa-
tions, which we have discussed for the wave equation are (i). the propaga-
tion of. discontinuities in initial data along the characteristic curves in the
one-dimensional case and (ii) well posedness of a non-characteristic Cauchy
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problem. We have also noted that the concepts of the domains of depen-
dence, influence and determinacy are of relevance only for the wave equa-
. tion and not for the Laplace and diffusion equations.

In this chapter, we shall systematically discuss those basic properties and '
raethods of solution which are peculiar to hyperbolic equations. For hyper-
bolic equations, there is one time-like independent variable which plays a
role very different from other independent variables specially when the total
number of such variables is greater than or equal to three. Therefore, in
the present chapter it will be more cenvenient to denote one independent
variable by the symbol 7 and others by x,, x3, -+, ¥m or simply by x when
the total number of independent variables is two.

Part A: EQUATIONS IN TWO INDEPENDENT
VARIABLES -

§2. FIRST ORDER HYPERBOLIC SYSTEM

In Chapt. 1 we discussed in great detail the simplest examples of hyper-
bolic equations, namely the equations of the first order. We started with a
discussion of the first order semilinear equation in two independent
variables:

alx, O+ b(x, e =clx, 1, 1) )
The theory of this equation was based on the fact that we could find a one-
parameter family of characteristic curves in the (x, )-plane such that along
each one of these curves the above equation reduced to an ordinary diffe-
rential equation in « which, therefore, became a compatibility condition. In
the following, the treatment of a general hyperbolic system of first order
equations is based exactly on the same principle. We can {ind families of
curves such that along each one of these a linear combination of the equa-
tions of the system reduces to an ordinary differential equation leading to
a compatibility condition.

§2.1 Definition of a First Order Hyperbolic System

A first order system of » partial differential equatlons can be written in
the form

Oy duy ' 1
Arja_t"l"Bu a +C; 0 i= 2 vany 1 ll
or |> _ 2.1

oU | 0u
Aﬁt +B -I-C 0
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where the n components. U1, 42, «ory a OF the column vector U/ are, the
dependent variables, 4 and. B are # X pmatrices and.C is a column vector, A -
repeated suffix 7, j or k in a term will represent sum,over therange 1, 2, .0,
In general, we consider a quasilinear system where the elements of 4, B and..

C are real C! functions over a domain D2 of (x, 1, U)-space, We emphasise, .

that the results, of this section are valid for both linear . and. quasilivear
systems; however, in the- latter case it is assumed that 2 known solution
udx, 1) (o1 U(x, 1)) has been substituted for the dependent variables in the
coefficients, Therefore, for a guasilinear system, our, results.are, valid only..
for.the partjcular solution under; consideration. | :

In the ith equation in (2.1), the jth dependent variable has been differen-
tiated in a. direction gjven by dx/dt = By/Ay which ig generally different for .
different j. We attempt ,to form a linear combination of n equations (2.1)
such, that in the resulting equation all dependent yariablesare differentiated
in the same direction,  This direction, if it exiss, is called a characteristic,
direction of the systen. . ' .

Let / be.a row vector of # components; then a linear combination of (2.1)
15 i .

liz{:j?;i 4 l;'Bﬁaa—uj FCi=0
L,oox Y

or (2_2) :

L..__..Y_____i

U au ..
17 +18%- +iC=0.

If all _depen_denf vafiablcs Jin (2.2) are diﬁerentiated in the same dirgction .
- dx/dt =2, we have o B N I
- 4\=(fi5;ij)/(liAﬁ) or L(By—Ad;) =0, J=1,2, ... n
or o o o
1 : [(B;._,\A)Izo : (2.3)
which shows that 1 is the left eigenvector of A with .:res:pectéfto fﬂ;e,matrb{& y: |

and A s the correspondinig eigenvalue satiéfyiﬁg -
ST gk (B de, A
Let A=¢ be a real root with ‘multiplicity p of the equation (2.4); then
there exists a positive’ integer’s < psuch that the tank of the' matrix 8- ¢4
is #~5 < n—I and there 'exist s linearly independent left eigenvectors [,
8=1,2, ..., s‘corresponding to ¢. The cofresponding characteristic direction |

in the'(x; z)-plane is giveri by~ « - sl L. g
e ;dx : o E.dx
gt-_‘c(x: t)s (Of ar_; = c(x, f, U(x5 t))) \ (25) )

where ¢ is' a function of x and 7 even for a quasilinear system since we have
substituted a known solution for the dependent variables. The number ¢ is
called a characteristic root or characteristic velocity of the system {2.1). The
solution of the equation (2.5) gives a one-parameter family of curves in the
(x, t)-plane, each member of which js called a characteristic curve corres-
ponding to the root ¢. S R

v
~
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Using (2.3) with A=¢ in (2.2) we get
d

; _
@ 4{ = o J(8) - .
! A(at+ca )U HIOC=0, 8=1,2, . 2.6)

We pote, that 9/dt +¢9/dx represents an interior derivatiye with respect to

. the gharacterisfic curve. Hence (2.6} gives 5 compatlbzhty conditions, along
a characteristic ¢gurve. The cﬂmpanblhty conditjons, show that the values of |
the # variables, uy, 12, -+, s i @ solution of (. 1) are, constramed to satlsfy -
s relatjons along a characterlstm curve.

Before proceedmg to the definition . of a hyperbolic system, we asspme |
wrghout loss of any. generahty that at least one of the two _matrices 4 and B
is nopsmgular or a linear combmatlon of A and B is nonsmgular at gvery. ..
point of a domain Dy in the. (x - plane In the second case, we_can rotate
the. axes in the (x t) -plane such that when the equatlons are wrltten m
tergns of the new 1ndependent vanables (', 1, we have

det, 4" # 0 @n

at every point of the domain D where A’ is the coefficient matrix of aUdy.
The, characteustxc equatlon (after droppmg dashes) (2 4) is now an nth .
degree polynomlal equation in A, Let the dlstmct roots (not necessarllv real)
of this equahgn be ¢y, €2, -, cr(r = #) and the multlphcxty of the root g | be .

pq(lﬁ < pg S n) so that ‘; Pq=1. Let the rank of B—ce4 be n—sq <n-l;

M

then 5 < pg.. There will then be Y 4 linearly - independent | elgenvectors_
A . =
&

[ehe=1,2,.. ., Sa), not necessarily real. In general, L Sq .

When all the, charactenstlc roots ¢y, €z, +++, Cr &I real and the manber of
lingarly mdependenr e:genvectors carrespondmg to every character:snc velo-
city cq is equal to multtphcuy of cq (e sy=pg for g=1,2," . #), the system
(2.1} is* called kype:bohc In thxs case we get n mdependent compat1b1hty
conditions

ok wl

a8 |
(g8) = — M/ [ =
Jla :4(5{+cq3x)U.§+ta c=0

5=1,2, . s i 4= 1,2, - (2.8)

along the r distinct familics of charactenstlc cuwes In particular, when

all charactenstm roots are real’ and simple (r= n), pa=5q=1for g= 1,i2,.

n, then to ‘each root there‘corresponds a unique (except for a scalar multl-

plying factor) eigerivector and the system is hyperbolic. o e
If, in the'extreme contrast to the hyperbolic case, theé characteristic equa-

tion (2.4) does not have any real root, the system (2. 1) is called elliptic.

*Throunghout this book we shall assume that the multiplicity of each of the character~
istic roots remains constant in the entire domain under consideration. This implies that
if ¢, < ¢; (for some i and j) at one point of the domain, ¢, <.c, everywhere in the
domain. . e T . . oo
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Example 2.1 As an example of a hyperbolic system with one multiple
characteristic, we shall consider a quasilinear system and show that this
system is always hyperbolic irrespective of a particular solution U considered.

Consider the one-dimensional magnetohydrodynamic flow of a perfect
gas through a channel of slowly varying cross section. Assuming that the
conductivity is infinite and that the direction of the magnetic field is perpen-
dicular to the axis of the channel, we can write the equations representing
the conservation of mass, momentum and energy and the equation
representing the interaction of the magnetic field with fluid flow as

op, . Op du pu dd B
at+uax+p§5c+74?‘;;—0,AwA(x) (2.9)

du, du, 13 B B

PALE el 319

ap dp _ fdp dpY _ _

Zrul a(gg-f—ug)—c)—o (2.11)
and

dB - IB du

'EE'-I-,M'EX"-I-BB_J;—O (2.12)

where p is the mass density, p gas pressure, u particle velocity, B intensity
of magnetic field, © magnetic permeability, a the isentropic velocity of sound
=4/vp/p and A the cross-sectional area of the channel. 4 is a known
function of x. The systera can be written in the matrix form with

[ e 7 100 07

u 1 010 0
U= , A=
P ~a2 0 1 ¢
L B | L- 000 1]
o« p 0 0 7 [ pudd 7]
- - ' A dx
0 u —'1? B; 0
B=| 7L e=l (2.13)
—aty 0 u 0 0
L o 2 o  u | L 0 4

Consider any solution of the system. All the characteristic velocities are real
and given by ' ‘
' Cr=utda, 3=, c3=U—~day (2.14)
of which ¢2=wu is of multiplicity two. . represents the Alfven velocity and
is given by :
a1=+/ B(pw) + 2. -
The rank of the matrix B—ud is two showing that the system is hyper-
bolic. For ¢ =u— a4, we can choose . ‘ -
I =(a pagy, 1, Bju) (2.15)
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so that the compatibility condition becomes

Sp +(u+a.4) +paA{a (u+cu)a}

. —I—M{BB-.—(u-[-aA)a }

For ¢z =u, we can choose

(2.16)

@D =(0, 0, 1, 0) . ' 2.17)
which gives the compatibility condition .
ap dp  dp
3 +u (3: +u 3x) 0 (2.18)
and _ _ .
[@D=(~B,0,0,p) (2.19)
leading to the compatibility condition
dp  Op &R BB) pBu dA _
B(?t +u a—x)—P (51‘ +u 3)6 + 1 dx =0 (2.20)
For c3=u— a4, we get the following left eigenvector
&= (az, —pa4, 1, g) {2.21)

and the compatibility condition

g dp i, J
5? +(u—aaq) 52 — paa{a—-u + (u-— aA)g%}

B JoB
+_{ 5 T ang,

Comment on definition of hyperbolicity for a single higher order equation.
Let us consider here an nth order linear partial differential equation

Lu=L®y+ LeDy+ ... +LOyu=f(x, t) (2.23)
where :
Jd @ i i
NW=7] — )= 8 (n)
LO=L (Bt’ 3x) g,a} (x, 1) ST _,—J;() (2.24)

is a linear homogeneous partial differential operator of order #.

The nth order equation (2.23) is defined to be hyperbolic if it can be
reduced to a hyperbolic system of » first order equations.

With the help of the highest order derivative terms we define a character-
istic equation for (2.23)

L=) D=0 (2.25)
which has been obtained by replacing 8/d¢ by —A, and J/0x by 1 in the

operator L™, The characteristic equation is a polynomial in A of degree n
since a” = 0 in the domain of the (x, £)-planc under consideration, If the
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charagteristic, equation (2.25) has » real and distinct roots for A ina domain_
D1 in (x, f)-plane, it is simple to show, that (2.23) is hyperbollc in Dy, In
the case of a multiple root, the fact that all the roots are real does not |
ensure the hyperbohmty of the equatlon as in this case it may not be possi-
ble {o reduce [the equation to a first order hyperbohc system (see example 2.3 -
below) Con81der nowy at equatlon

d d\fd & g 8 _
(r a5+ )y (G aaemo (2.26) .

for which the charagteristic equation has a double root. It can be;reduced
toa pa1rAequat10na‘

PR |
(E? -{-—a )u E- v (2.27)_-
. anc‘lE p :
a 3 ' '

which form a hyperbohc Ssystem in the canonical form (2 8). Therefore the :
equatlon (2 26) is hyperbohc

Examp!e 2.2 Consxder the one d1mens1ona1 wave equatmn )
62 32u
Tald S e
where ¢ is a constant not equal to zero.

The characterlsuc equatlou is A2—c2= 0 which has two dIStmct reaI 1oots
€. —c¢ and hence the equatlon s hyperbohc ! '

Example 2.3 C0n51der the one d:mensxonal dlﬁ‘usmn equation .

:. -,aur d " 3 £ !

o Ig—agf ‘ =0 (2.530);
where K is non-zéro constant. This is an equation of second order and q(zz’
=0. Therefore we consider" the characteristic'equation L& (~1, ©)=0in
terms of a variable p=1/A It has a double root. Reducing the -partial’

differential ‘equation to a first order system we'get ' Pooas v

[l L R

h L au[ 4 FJ
whners u; =i an ="
1 =i A dup_ Iy .-

i

0 (231)

—

We note here that the matrix A is singular and B is nonsmgular In this
case the degree of the characteristic equation, det (B~AA4)=0, is less than
the number of equations in the system. So we write the characterlstw equa-

tion in terms of g =1/A. This gives

det (A ;LB) 0 or p "-0 (2.32)
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‘Theiefore p=0 is a dolible root. ‘However, the tank of the matrix 4—pB,
* for p=0, is one showing that thete exists'only'one eigenvector. The system

(2.31) and consequently the equation (2.30) is not hyperbolic, The diffusion
" euation belongs'to a class of equations which are pardbolic.

1822 Liﬁeai"anﬁ's'él'n_ilineéir Eqirations: Canonical Form, Numetical
* Sbiution, Domains of Dependence, Tniflsience and Determinacy

Consider a semilinear hyberbélic"sy'stenf (2.1) wheré “wé assume that (i)

the ‘inattices M and B are Turictions of x arid ¢ bnly and (iiy the miatrix 4 is

* non-singular in'a domain D1 of (%, £)-plane. The column vector € need 'not

" be a linear function of U, i.e. C=C(¥, #, U). The second asstimption implies

* that a characteristic vélocity is fiflité evetywhere, and therefore a tangent to

+ g characferistic curve of (2.1) is’ nowhere" parallel to'the x-axis. -Let then
" ¢harscteristic velocities of the systeni be denoted by

A Az,egda L(2133)

- ‘where' all M%s are not necessarily distinct. ‘Note that the distinct:characteris-

tic velocities in this set are denoted by ¢4, €2, -+5 Cr (r < n). Since the sys-

-tem is hyperbolic, there exist # lineatly independent left eigenvectors [%-and
. n.independent right cigenvectors' rU satisfying

HM(B=ApA)=0, (B—AaA)rN =0 - (2.24)

» no sum over’ M, M=1,2, ..., n.

-

We note hereithat [ is a row:vector and FM) g a column vector apd
they correspond to the Mth characteristic velocity Aaz. Using the theory of
linear algebra, we' can show that it is possible to choose the left and right
eigenvectors such that

=0fori # j,
19479 ' (2.35)
#0fori = Jj,

at all points (x, #) of the domain Dj (see problems 1,2 and 3 Exercise 2.1),

Since the set of right eigenvectors is linearly independent, we change the
dependent variables from the set {uty, tha, «o-y Ua} to & new set {wi, wa, -, Wn}
by the transformation :

‘WI -1 i

L]
: U: E .'r(.i') Wi

=1 il
. ror:more explicitly .t - 36),
I I .

n
G s
= Yy T Wy = W S2Y-
L=

¢ If R is the #X n matrix whose ith.golumn is the ith right eigenvector r®, i.e.

B R= [r(l),:r(z-): Ty r(ﬂ)] E.‘r[rif = rl‘(j)} ’ . (2}'37)
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and W is the column vector whose components are wy, Wa, ..., Wa, W€ can
write (2.36) in the form

U=RW ' o (236)
where R is nonsingular. '

Substituting (2.3 in (2.1), premultiplying the resultant equation by [®0
and using (2. ?ﬁﬂ and {2.3%) we get

. . dwnm owar ord) ar
(M) 4 (M) 1), - OO =
D4y I:a +/\Max:| +1 A{at r\Max}w;-f-l C=0,

no sum over M, M=1,2, ..., n

Dividing by I*04r ™) we get

/ d
;’IMM 3‘”"M+GM,w;+FM 0, M=1,2, (2.38)
where
;Mo )
Gan= 1A {’a—t Mg 5x } /(:(M)AAM)). (2.39a)
and
Tyg= [ODCHIMD 45 (M), ©(2.39h)

Let A bethe diagonal matrix with diagonal elements Ay, Az, ..., Ay and F
be the column vector with elements Gagwi+ (M =1, 2, ..., n). The semi-
linear hyperbolic system (2.1} now reduces to the canonical form

oW, O ,
7[4_43 +F=0. (2.38%)

In the derivation of (2.38), we have also proved the following theorem: .

Theorem 2,1 Any semilinear hyperbolic system in two independent variables
is equivalent to a system I dw/dt+Adw/dx + F=0 in which the matrices [
and. 4 are diagonal and the matrix 7 is positive definite,

We note that the equation (2.38") is a particular case of a symmetm
hyperbolic system.

Definition:  We call the variable w; as the characterisiic variable of the jth
characteristic field. _ _ ‘

The effectiveness of the canonical form (2.38) lies in the fact that the Mth
equation gives the rate of change of the Mth characteristic variable along the
Mth characteristic curve. Any solution of the semilinear hyperbolic system
consists of n parts wy, wa, ..., wa. The part war ‘propagates’ along the x-axis
with the characteristic welomty Aa. The mutual ‘interaction’ between these
parts takes place only through the last term in (2.38), namely Gaawi+ s,

Corresponding to a multiple characteristic velocity A, (which is repeated pg -

_ times in Ay, Az, ..., A;) the solution vector W has p, components all of which
move with the same velocity A;. Again, the mutual interaction between these
Pq parts and interaction between all parts take place only through the third
term in (2.38).

e e S
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Numerical computation with the help of the canonical form

Let us briefly discuss here numerical solution .of a Cauchy problem, a de-
tailed formulation, existence, uniqueness and stability of which will be taken
up only in §2.4. Here we briefly mention that the Cauchy problem for a
system of first order equations consists of finding a solution U{x, 1) which
takes up prescribed initial values Up(7) on a curve

y 1 x=xo(n), £=1tol7).

We assume here that the curve y is not a characteristic curve {see Fig. 2.1).
On any one side of the curve y, we draw a set of non-intersecting curves vi,
y3, ¥3,-++ sich that the normal distances between ¥ and y,, v; and ¥2, ¥, and
w3 ete. are sufficiently small. Take a point P(x, t) on the curve y,. From P
draw characteristics corresponding to Ay, A2, ..., Ax (not necessarily distinct),
to meet the curve y at points Py, P2, -+, Pnt; Pn respectively. Let the co-
ordinates of Par be (xaz, 1ar). Replacing the derivative in the characteristic
direction on the left hand side of (2.38) by a first order forward difference
scheme, we get

WM(P)f:-‘—wM(PM)— FM(PM) (t—tm), M=1,2, ..., 1 (2.40)

Fig. 2.1 Numerical solution of hyperbolic equations

Therefore, wa(M =1, 2, ..., n) and hence the solution U(x, t) is approxima-
tely determined at an arbitrary point 2 of the curve y, from the knowledge
of the Cauchy data on . Since the solution is now known on ¥, we can adopt
the same approximate scheme to calculate the solution on ¥2 and the proce-
dure can be continued as long as the curves ¥, vy, Y2, --- are nowhere paral-
lel to the characteristic curves. Thus we have described a numerical scheme
for the solution of a non-characteristic Cauchy problem. A scheme of this
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" type has been extensively used for'the sofution of hypeibolic equations; espe-

‘cially quasilinear’ equiations and ‘has”even béen extended’ to hypetbolic
" eyuations in inore than'two independent vdriables (see Réddy, Tikekar and
Prasad (1982) forfurthér literature). This approximate method is also suffi-
' cient to conclude that a “solution, of anoncharacterlstlcCauchy problem,

".’ obtained in this ‘way is'stable for Hyperbolic equations, 1.¢. a spiall change in

i

- the Cauchy'data 'on yleads onIy to sinall ¢hange in' the sblution at P'on y;.

’iDomams of dependence, zﬂﬂuence and déterminacy
The proof of the existence, uhiqueness and ‘stability ' theorem of the §2 4
> is very inuch similar t6 what we'have described here. “Let us consider nowa
“particular ‘Cauchy problem whefe the data'has been prescribed on' the'line
t =0. Through every point P in' the upperhalf of the (x, )-plane; theré'pass
n characteristic curves (some of these turves may be multiple). For simiplicity

- we -assumé ‘that distinct characterlstlc velocities -¢y,-capne-, ¢ satisly the

relation
. C'1<C£< e < Cpy <2 Cr

- everywhere in D. Through the point P(x, r) we draw the characteristics in

t-decreasing directioni tilt: they meet the initial linte £ =0 at poinis Pr (x = x),
Proy (x=xy-1), ++-y Py (x=2x,) such that

Xr < Xr=1 < e <D X1
Then the outermost characteristics from P are C, and ¢, as shown in the
Fig. 2.2. From the above method of approximate sclution or from the proof

-of the existence, uniquenecss and stability theorem in §2.4, we conclude
that the solution at P is determined only by the data in the closed interval

_(Pr, P1) on the initial line #=10. The initial value can be arbitrarily changed

outside the interval (P, P1) without affecting the value of U at P.

. Domain of dependence of a point P is the closed interval, Jp of the:.initial
curve between the points Prand P;. As remarked earlier, a change. in:the
Cauchy data outside .4 r does not affect the solution at P.

Domain of influence. Let J be a set of points on the iinitial:curve 7= 0.
Then the domain of influence of the set J consists of those points of the upper
half plane whose domains of dependence contain points of J, If Jis an
interval between the points R and S (R < S), then its domain of influence
is bounded by the C1 characteristic through the point R and C. characteristic
through the point S, These are the outermost characteristics starting from
the points of J.

Domain of determinacy. The domain of determinacy of an interval J on
the x-axis is the set of those paints P with ¢+ = 0 whose domains of depen-

. dence 4 are entirely in J. This is bounded by the innermost charagtgristics

“pointing from the end points, i.e. the ¢haracteristic Cr from the left end R.and

. .the characteristic C; from thg right end S.
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°of -~ R

xf'

-w-u_w—J'——__-.s

Fig. 2.3 Domain of influence when J is an interval

t}

‘o
- X

Fig, 2.4 Domain of determinacy of an interval J

Isr
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EXERCISE 2.1

1. Let R=[rW, r®, ..., ] be a matrix whose columns form a setof n
linearly independent right eigenvectors corresponding to the eigen-
values A1, Az, o, An. of a matrix T. Let IV, 1@, ..., 1@ be the nrows of
the matrix L= R, Show that I, /@, ..., [ are linearly independent
left eigenvectors of T'and '

JOpD =5y,

5 Let A be the nonsingular matrix so that there exist two nonsingular
matrices P and O which reduce A to an identity matrix / ie PAQ=1.
Let B be any other matrix, and / and 7 be the left and right eigenvec-
tors respectively of the matrix PBOQ in the usual sense, i.e. I1(PBQ—AD)
=0 and (PBQ— M)F =0. Show that the corresponding generalised eigen
vectors | and r of the matrix B relative to A (satisfying (B—AA4)=0
and (B —Ad)r =0} are given by

J=7P and r=OF.

3. When the matrices A and B are such that there exist a set of » linearly
independent left (and right) eigenvectors satisfying (2.34), prove the
result (2.35). (Hint: Use the results of problems 1 and 2).

4. Find the region of the (x, 7)-plane where cach of the following system
of equations is hyperbolic. Find the equations of the characteristic
curves and obtain the compatibility conditions

(1) ux—xv;=0, vx—uf=0
) E- Dty + x2(e +02) + (02— Doe+ dxu-+ 4o =0, vz — = 0
(iii) ty b x10:=0, vz~ =0.

_ Show that the characteristic curves of (i) are straight lines all tangent
"““{o the unit circle, which is their envelope.
5. Let u and v satisfy a system of quasilinear equations

U+t + 200 =0
28+ 2ty + Pux =0,
If 4 and v are prescribed on a curve Ct x = xo(t) in the (x, 1)-plane, show
that the partial derivatives of u and v at the points of Ccan be found
uniquely if xo(f)Fu=xo. .
6. The one-dimensional equations of nonlinear dynamic elasticity, when
the medium is assumed to be isotropic, are

Pu_ a0 8 fa (Nl af Y
32 vd Predal v I + oz %
R TN PR :
32 VA T ax\ 7 Bx Ox
where vz and 7, are the linear longitudinal and shear bulk wave veloci-
iies, 4 and vz are constants and and » are longitudinal and shear
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displacement components, Reduce the two equations to a system of
first order equations. Show that the system is hyperbolic and find the
characteristic equations and the compatibility conditions.

*§2.3 Propagation of Discontinuities Along,a Characteristic Curve

-The hyperbolic character of a system of first order equations exhibits it-
self in the fact that it is possible to have solutions whose derivatives are
discontinuous and these discontinuities propagate along the characteristic
curves. Let D be a domain in the (x, #)-plane and let D; and D, be the two
portions of D separated by a curve C (see Fig. 2.5), D, being on the left*
and D; on the right* of C. Let U defined in the domain D, and U, in the
domain D, be genuine solutions of (2.1). We assume that the limiting value
Ur.of Uy asweapproach a point P on € from the domain D, and the limiting
value Ur as we approach P from the domain D exist and are such that
Ur=U, at every point of the curve C. Now, consider a function ¥/ defined
in the domain D by

U1 in Dl
U= (2.41)
Ug in Dz.
4
A
U'_‘U‘ (X,t) )
il
-] H]

Fig. 2.5 D=D, UD,

The function U is a genuine solution of {2.1) in D1 and D2 separately and
is continuous in D but its derivatives may be discontinuous across C. We
assume that the limiting values of the derivatives of U/ as we approach P
from two domains D; and D; exist. Then these derivatives, if dlscontmuous
across C, have only a finite jump across C. -

*With respect to the reader (see footnote on page 115).
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Let the equation of the curve C be g(x, 1)=0 and let 7(x, 1) be any other
function independent of p such thatp and 7 are sufficiently smooth and
the Jacobian &(p, 1)/8(x, 1) # 0 in the domain D. If we can introduce a new
set of independent variables (g, n) instead of (x, 1), U, respresents an
exterior derivative and Un is a tangential derivative along the curve C.

Let us now assume that the first order derivatives U, [7; are discontinu-
ous across C. Since the function U itself is continuous across C, its tangen-
tial derivative Us must be continuous across C. Therefore, from Ux=Ugpx+
Uiz and Up=Ugps+Usmy, it follows that across the curve C, the exterior
derivative U, must be discontinuous®. In terms of the limiting values (Us),
and (U,) of the exerior derivative at the point P on C, the jump [Us] in
U, across C is given by :

[Us]= (Ulp)r - (Uw)f- ' (2-42)

The jumps in the first order derivatives Usx and U, are related to [U,] by the
relation '

[0 =Ulps and [Ud=[Tslpe (2.43)

The quasilinear equation (2.1} is valid everywhere in D except at the
points of C and all quantities appearing in it other than the first order
derivatives are continuous across C. Taking the limit of (2.1) as we move
from the region D, to P and again as we move from D, to P and subiracting
the resuli we get

(Ap:+ Bpz),y ¢ [Usl=0. (2.44)
- Since [Uy] is not a zero vector, the matrix (Ap: + Bpx) is singalar on C ie.
det (4p:-+ Bpx)=0
or (2.45)
det (= A4+ B)=0, where A= —9:/px

at every point of the curve C. This implies that C is a characteristic curve.
Thus-we have proved the following important result.

Theorem 2.1 If the first order partial derivatives of a continuous function
Ulx, 1), satisfying the quasilinear system (2.1) on both sides of a curve C in
the (x, £)-plane, are discontinuous across C, the curve ¢ must be a charac-
teristic curve of the system of equations.

Starting with a system- obtained by differentiating (2.1), we can show
exactly in the same manner that if the derivatives of a solution U up to
order r(r = 1) are continuous across € and (r+1)th derivatives are discon-
tinuous across C, then C is necessarily a characteristic curve.

Generalised oF weak solution
It is now natural to ask what happens in the situation when we have a
solution I/ which satisfies the differential equation in D1 and D2 separatély

*When at least one component of the vector is Ug is discontinuous we say that Usp
is discontinuous,
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but U itself is discontinuouns across C. For a general quasilinear system (2.1)
we shall show in § 5.3 of this chapter that the curve of discontinuity is, in
general, not a characteristic. However, for a linear hyperbolic system

Alx, YU+ B(x, OUx+H(x, DU+ (x,1)=0 (2.46)

where the elements of the matrices 4, B and H, and the vector J are func-
tions of x and ¢ only, we shall show that Cis a characteristic curve. Using
the canonical form of the last section we shall further derive a system of
linear homogeneous ordinary differential equations, called transport equa-
tions, governing the growth and decay of the discontinuity [U]. Disconti-
nuities in the solution cannot be studied for every function U7 satisfying
(2.46) in D; and D,. It can be studied only for a “generalised” or “weak”
solution. Here we shall define a weak solution in a manner similar to that
in §4.1 of Chapt. 2. A more elegant definition of the weak solution will
be given in §5 of "this chapter. We first reduce the system (2.46) to the
characieristic canonical form (2.38) and note that 8/dz +Ans{x, £)/0x repre-
sents the directional derivative along the characteristics of the AMth field.
Integrating it from a point Pasto P(£, 7), both lying on a characteristic of
the Mth field, we get (for details, see the derivation of (2.63) in §2.4)

walé, 7)= —jP Hudxnlt; €, 7) t) wilean(t; €, 7), 1) dt +(Waar vy,

P

P
—J' Taond(ts €. 7)., 1) dt, M=1, 2,00, 1 (2.47)

P
where 1

Gr® ar® o

HM;=[(I(M)A){ 3+ T }+(I(M)Hr(’))] /(I(M)Ar(M’) (2.48)
Jag= (13D ) [(J4D 4 (33 : (2.49)

* with no sum over M in the expressions (2.47)-(2.49), and x =xnm(s; £, 7) is
- the characteristic of Mth field through the point P. We can give a very
compact form to the expression for Ay in terms of the operator

_ P & -

L =4 a_t + Ba—x +H
appearing on the right hand side of (2.46). Using (2.34) we can write (2.48)
as Hag = (IOD_LrO) (] 405, (2.48")

We now define a generalised or weak solution of {2.46) to be a function
U(x, t) obtained from (2.36) wherein wy, wa, ..., wa satisfy the system of
integral equations (2.47). :

Transport eguation for a linear hyperbolic system

Now we consider a weak solution U{x, ¢) of (2.46) which is continuous
in a domain D except on the curve C and which is a genuine solution of
(2.46) in domains 7 and D,. We further assume that the function U/ has
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a jumyp discontinuity across C. In this case, the integrands on the right hand
side of (2.47) are continuous functions of # except for a finite jump across
C. Therefore, on performing the integration in (2.47) along a characteristic
curve of the Mth family, we find that the characteristic variable was is
given by a continuous function on this curve. If a curve C is not tangential
to'a characteristic of the Afth family (see Fig. 2.6), war must be continuous
across C. However, according to our assumption, U is discontinuous across
C and hence at least one of wy, wa, ..., W, must be discontinuous across C.
Therefore it follows that C, the curve of discontinuity, must be a charac-
teristic curve of Jth family, say, and the jump in all the characteristic vari-
ables wi, i7=J must be zero across C. ‘

)

° ' %

F1g 2.6 was cannot be discontinnous across a curve C which is not a
member of the characteristics of the Mth family

Let us assume now that the curve of discontinuity C is a characteustlc
curve of the Jth family. Then the jump [wi] in w; satisfies

fwi =10, i#=J : (2.50)
and '
_ [ #0. ' (2.51)
Therefore, from (2.36) we have '
[U1=rPwys], on sum over J. {2.52)

Writing the equation (2.38) for the system (2.46) at two points Py and Pr
on the two sides of C (see Fig. 2.5), taking the limit as both these points tend
to a point P on C and subtracting, we get

% [ws= — Hulwsl, no sym over J ‘ (2.53)

where
d 0 é
7 = o ey
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This equation is called the transport equation. Along a given characteristic
curve x=x,{() of the Jth family, the function H(x, t) = Hr{xs(), ) isa
function of ¢ only. Therefore, the transport equation (2.53) isa linear
homogeneous ordinary differential equation of first order and determines
the variation of [ws] along a characteristic curve of the Jth family.
From the properties of solutions of linear homogeneous ordinary differential
equations, it follows that if there is a discontinuity in U at some point
of a characteristic curve C, the discontinuity in U remains nonzerc at
every point on the ecurve. It also follows that for linear equations in two
independent variables only discontinuous Cauchy data can lead to disconti-
nuous solutions.

It is a simple matter to derive the transport equatlon for the discontinui-
ties in the first (or higher order) derivatives of I/, We just have to differen-
tiate (2.38) once (or # times, n > 1) and proceed in exactly the same manner
as we have done above for the jump in U (see also Sections 7.7 and 8.4).

EXERCISE 2.2

1. Consider the hyperbolic system
wH(xE =0, (x+ Do+ ue=0.
Show that the variation in jump [¢] along the characteristic curve
x—t=c (c=constant) is given by -

A
[¢]= W’ A =constant. e

Derive also the transpori equation for the propagation of discontinui-
ties in the first order partial derivatives of u and o.
9. Comsider a continuous solution of the equations
AT 1 .
PI+Q'Px+PQx+(-7-')pq":0

) 2
q:+qqx+—Pm20
where a%=/%%p""1 and k y, v are constants. The initial condition is
prescribed for all values of x with the restriction that
p(x, 0Y=constant = gy, g(x, 0)=0 for x = x.= constant.

Derive the equation governing the propagation of the discontinnity
[4] in ¢ starting from x = x. and separating the region of the constant
solution from that of nonconstant selution in the form

d[qtl ( 1) [ r.H' [Qr]z

T de

Find the time 7 when the solution ceases to be continuous in each
of the cases v=1,v=2,v=3 and v=4.
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3. When all the characteristic velocities }; are different from zero, show
that the first order quasilinear hyperbolic system

| 2 2 -
Alx, 1, U) 79-[[5 +B(x, £, U) —3-% +Clx, 1, U)=0

can be réduced. to a diagonal canonical system of 2z equations

au ou )
Tt—_RW-O and -Et—-f-/l“-a-}-—'{-F—-O
where the coefficients A, A and Fare functions of x, ¢, U and W

(Courant and Lax (1949)).

*§2.4 Existence, Uniqueness and Stability of the Cauchy
Problem for a Linear Hyperbolic System

In the previous chapter we have shown that for the wave equation the
appropriate problem, ie. the problem which is well posed in the sense of
Hadamard is the Cauchy problem. We shall prove here the same result for
a hyperbolic system of first order equations, i.e. we shall prove that a solu-
tion of a Cauchy problem for such a system exists, is unique and depends
continuously on the Cauchy data. ' -

- Consider a pair of scalar functions xo(n), fof#) and a vector function
Ud(7} defined on an interval 4 of the real n-axis such that the functions
x(n), to(n) are sufficiently smooth and (xp)? + (#0)20 for n= 4. We assume
that when 7.9, the point (xo(%), t(n), Uo(n))= D2, where Dz is a domain
“in the n+2 dimensional (x, ¢, uy, #z, ..., tn)-space on which the coeflicients
A, B and C in the equation (2.1) are defined.
Cauchy problem for the first order system (2.1) is to find a domain D in the
{x, t)-plane and a solution U(x, t) of the system in the domain D such that

(xo(n), to(MIED. when < &
(x, t, Ulx, D))= D2 when (x, )ED - (2.54)
and ' : ‘
U(xe(m), to(m)} = Uo(n) for y< 4.
Therefore, the Cauchy problem for a system of first order equations

consists of finding -a solution which takes up prescribed values Uq(7) on the
curve

v ix=xon), i=tn), " =4 (2.55)

One of the oldest proofs for the existence and uniqueness of the solution
of the Cauchy problem is due to Kowaleswskii (1875). Her proof assumes
that the coefficients 4(x, ¢, U}, B(x, ¢, U), and C(x, ¢, U) as well as the
Cauchy data Uy(x) are analytic functions of their arguments and she proves
that in the class of analytic functions, a Cauchy problem has a unigue
solution provided the curve y is not a characteristic curve. However, Kowa-
leswskii’s theorem gives only an analytic solution for which the concept of

-
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the domains of dependence and influence, so important for hyperbolic
equations, is meaningless. This is because the knowledge of an analytic
function in any sub-domain determines it at all points in the (x, t) -plane
where it can be analytically continued.

A very general proof of well posedness of the Cauchy problem, which
brings out distinctly all important properties of the solutions of hyperbolic
equations, is due to Courant and Lax (1949). Their proof uses the method
of successive approximatiornis after converting the problem to an equivalent
system of “integral equations’ and assumes only that the coefficients 4, B,
C, graduC; and the Cauchy data Uy(w).are C! functions of their argumehts.
In order to simplify the proof we shall present it only for a linear hyperbo-
lic system with more restrictive conditions on the coeflicients, i.c. for

AGe, ) 18, ) L A U D=0 (2.560)
where
det' 4(x, )0, )
4, BeC? | :
o e (2.57)
H Jject :
and
UesCt,

As in §2.2, we reduce the system (2.56) to its canonical form (2.38):

BwM 8W

P +Aps i -i—HMzwi-i-JM 0, M=1, 2 (2.582
where .
= (I00_LrON(IO04r00), [ = d 2+ B H (2.59)
and } ‘
Jag= 1OD] (10D 470D), (2.60)

with no summation when the repeated index is M.

The Cauchy data is prescribed on a non-characteristic curve v @ ¢(x, 1)=0.
We can choose a new coordinate system (x', ¢') where 1 =p(x, ¢) so that y
coincides with ¥ =0 (i.e. the x'-axis). Under such a transformation, the
equation (2.56) transforms to an equation of the same form wherein the
. new coelflicients also satisfy the conditions (2.57) provided ¢ has the required
smoothness properties. Once this has been done, we can drop the dashes
from x" and #'. Therefore, the Cauchy problem for (2.58) is now an initial
value problem in which the data is prescribed on the line 1 =0 as

W, 0)=(RI)eg=(RDgUslx) = Wo(x), x4~ (261)
where the components of the colurn vector W are wy, wa, .5 wyand J is

an interval on the x-axis. The ceefficients in the equations (2.58) and the
initial data W satisfy

Al DECH D), Harlx, DECUDY), Julx, HECHD,), Wo(x)ECKI) (2.62)
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where D1 isa domain in the (x, £)-plane.

As shown in the Fig. 2.7, let us consider a closed domain DEDy in the
(x, t)-plane such that all the n characteristics passing through an arbitrary
point in D, when followed in decreasing z-direction, remain in D and meet
the initial line =0 at points in 4. The strip 0 < 7 < /, where 4 is a suit-
ably chosen positive number, within the closed domain 2 is denoted by Ds
as shown in the Fig, 2.7. The characteristic Cx of the kth family through a
point P with coordinates (€, 7) is obtained by solving the ordinary differen-
tial equation

%_ MCx, ), k=1, 2, . | (2.63)

_ Fig. 2.7 The boundary of the domain D, wherein the solution is determined, -
has been shown by a thick line

with the condition x=£ when ¢ =r, and is represented by

x=xi(t; €, 7). (2.64)
Then xi(7; £, 7)=£. The point Pr where it intersects the initial line =0 is
given by x=xz(0; £, 7). Let Jp be the closed interval on 7= 0 between the
two extreme points amongst the points Py, Py, «-., Pa. NOW we prove.

Theorem 2.2 Under the conditions (2.62), the Cauchy problem (2.58) and
(2.61) possesses a unique solution in D. Further, the solution depends
continuously on the Cauchy data W(x).

Proof We prove this theorem in five steps:
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Step 1 Construction of an iterative scheme for the solution.

Assuming W(x, ) to be any solution of the system of equations (2.58),
integrating the Mth equation along the characteristic Cau from Pa to P
we get

walé, T)=TuW +%, M=1,2, ..., 1 (2.65)

where Taris a linear operator defined by
Tactt = = || Hoaloras & ), oxna(s &7, ) di(26)
and Xar is a known function given by o
Xpa(€, 7) =woar(x2:(0; £, 7))— J; Jae(xas(t; 5,1'),.t) dt. (2.67)

“The n equations (2.65) constitute a system of # “integral equations” for
the n components of the vector function W; however, it is important to
note that in general, curve of integration is different for different commpo-
nents of W. :

We write (2.65) in the form

W=TW+X (2.68)

T is a mapping of the vector function W into a vector function whose
components are T\W, T2W, ..., TuW. Since Ty, T3, ..., Thare linear integral
operators, T is a linear operator. Though 7' is defined for muore general
functions, we consider it to act on the space S of functions ¥ which are cUD)
and have common initial values Wo(x). Under the condition (2.62), from
the theorem concerning the existence of the derivatives of the solution of ho
initial value problem of an ordinary -differential equation with respect
to parameters (Coddington and Levinson, 1955, Chapt. 1 Section 7)
we can show that the derivatives

Oxplt; €, 7) dxml(t; €, 7)
o¢ and or

are continuous functions. Therefore, ¥ is CYD) and hence if V&S, then ¥
defined by ‘

V=TV +x=LV, say (2.69)

also ©8. The solution of the “integral equations” (2.65) is that element of
S which is a fixed point of the transformation L taking ¥ to TV +X.

We note that #,(x) belongs to S. Now we set up an iterative scheme for
constructing a sequence of functions W} by '

WO = Wix) : }
Weth = W@ +y, r=0,1,2, ..

(2.70)

Step 2 Proof of the convergence of the sequence.
In order to prove the convergence of the sequence {#("}, it is sufficient to
work in a less restricted space viz. the space C(D#) of continuous and bounded
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vector functions on the closed bounded domain D;. Due to the assumption
(2.62) on Hag, it follows that there exists an upper bound p such that in
the closed domain D, and all the more in Dy

| Hu | < p 2.71)

Then for any two elements V) and VA of C(Dy) and for (¢, 7)< Dp, we get
Mih component of (2.69) as

PR - J"’O Hanlrea(t; €, 7), oV (xadlt: £, 7)

— o Oen(t; €, 7), 1)) dn.

Therefore .

I VR—F@ < gt V- A2 (2.72)
where 7 is the number of components Hay of the vector Har and we choose
for the norm I - i, the maximum norm, i.e. :

LV = max { max | # | } : (2.73)
i=1,2,..,n Dy

Choosing # sufficiently small, we can make rhp < 1 which shows that the
transformation (2.69) represents a contraction mapping. Since the norm
used here is the maximum norm, the space C(Dy) of continuous vector
functions on the closed set Dy is complete. The sequence {W¢} of functions
defined by (2.70) converges uniformly to a continuous function W(x,1?)
which satisfies the “integral equations™ (2.65).

Step 3 Proof for the existence of the partial derivatives of W.

The Mih component wa(é, ) of the limit function W obtained in
step 2 satisfies the “integral equations™ (2.65). Differentiating the Afth inte-
gral equation in the direction of the Mth characteristic through P, we find
that the derivative, (djdr)as, of was in the Mth characteristic direction exists
and is continuous. But we note that when we move in the Mth characteristic
direction through the point (£, 7)

(dxM/dr)M— Oxag + (€, )35?4 =0

showing that along this characteristic of the Mth field, xar(z; €, 7) is a function
of ¢ alone. Hence to get the derivative of Wz in the characteristic direction,
i.e. to get (—~———dw‘?§§’ 7 )M,‘ we differentiate (2.65) considering xar(t;€, 7) to be
a function of ¢ alone, Using xa(r; &, 7)=¢, we get (2.58) (with x and ¢
réplaced by £ and 7), showing that the solution W of the “integral equations”
is also a solution of the differential equations (2.58) in the. characteristic
canonical form.

However, the existence of the directional derivative of wa(x, r) in one
direction (which is Mth characteristic direction) does not imply the existence
of the partial derivatives, with respect to x and z. Therefore, we shall now
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prove the existence of the x-derivative dwas/0x. This will imply the existence
of the derivative dwag/0r also, since we have the relation

Owar_ (dwm ' Bwnr
Grm ) _ 5 WM 2
3= () e
Differentiating (2.69) with respect to £, we get

9% _ dH Ooi \ Oxmlt; €, 7) 3XM '
th—_ - JO{ ox 1+HM;5 }Td f (2.75)
From the assumptions (2.62), it follows that the derivatives (ai;iﬁ ,
_Bi@%%éﬂ nd -é—ém are continuous functions so that the integrals on the

right hand side of (2.75) exist if all 8y;/8¢ are contmuous on Dypand give
875/0¢ as continuous function of ¢ and .

Since the characteristic derivative (dwas/di)ar is continuous in Dp and
dwag/Ot is given by (2.74), we need not work in the space S, but in the com-
plete space B of vectors ¥(x, t) for which V and V. are continuous and
bounded in a closed domain Dy and in which we choose

iV =max(t Ve, o Fell) (2.76)

as its norm from the above it follows that the transformation (2.69) maps
B into B. Further for any two vectors ¥ and 7@, we get from (2.75)

a -1 a (2)
“ - <nh[hpa+ b2l (Il PO — V@Y (1) 2.77)
OHw Ox (t;§ 7) Sxadt; €, 7)
1 1 |0H M ) CAMAL, 5, 1)
where $p1 and Ju2 arezs‘&% o pY: and sup ‘HM, Ex

respectively. Denoting the largest of w in (2. 72) and w1 and pa in (2, 77) by
p, we get from (2,72, (2.76) and (2.77)

PO -FD| < by || VO - V|| (2.78)

This equation shows that for sufficiently small #, the transformation (2.69)
represents a contraction mapping also on the complete mefric space B and
hence the Ximit function } obtained from the sequence (2.70) belongs to 3,
i.e. Wilx, ) exists on Dy (we note that convergence im £ is uniform
convergence). ' 7
Thus we have proved that the solution of the “integral equationss™ (2.65)
or equivalently of the initial value problem for the equations {2.58) is CY{(Da)
for sufficiently small /.
Since the matrix R in (2.36) is nonsingular, the initial Value problem for
the equation (2.56) has a unique solution in Dp.

Step 4 Solution extended onto the whole domain D.

We note that the value of the solotion Uix, #) at t=/ has the same pro-
perties as the function Ue(x) in (2.57), i.e. Ulx, &L, Therefore we can
use the line # =/ as the new initial line and the value of the solution U(x, )
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as the new Cauchy data and solve the new Cauchy problem for the eq. (2.56)
in the strip 2 < ¢ <0 2A. Since 4 is determined from the condition nip < 1
and ¢ depends on the whole domain D, it follows that the width of the
strip parallel to the x-axis, wherein the solution is determined, is at least z in
the new problem also. In this way we can continue the solution step by step
starting from the initial data on 7=2#, 34, .... We finally get the squtlon of
the original Cauchy problem in the whole domam D,

Step 5 The solution depends continuously on the Cauchy data.

Let W(”(x )] and W(zl(x 1) be two solutions corresponding to the initial
data W¢' (x) and W§ (x) Then the procedure of step 2 shows that for
(x, DED

IO — O < (|76 — Wl + il - )]
or i
1w — | < || Wi W‘z’u ‘ (2.79)

Puttmg t=1in the above result, we get

i
—_— ) — 2 I
l*nhﬂ' I . . (x> 0) (x: O)h-

Proceeding in the same way, we find that in the time interval (r— 1)} < ¢
< rlt we have the following inequality

WO, B)— O, BY| <

IO, - W, D] < 15" = W, (2.80)

(1= h )"
Since the whole of D is covered by the union of a finite number of strips
of the type (r— 1)k << ¢ < rh, it follows from (2.80) that

as WS = WP = o, WO, 1) — W, 1) - 0.

This- proves that in the domam D, the solution of the Cauchy problem not
only exists and is unique but also depends continuously on the initial data,
The Cauchy problem is therefore well posed for hyperbolic equations.

*82.5 Comin’ents on Mixed Initial and Boundary Value Problems

Most physical phenomena governed by partial differential equations take
place in a portion of the space bounded by stationary or moving boundaries.
A simple example of this problem is the transverse vibration of a taut flexi-
ble string between two points, say x=0 and x= a. In this case one or both
ends of the strings may be fixed or forced to slide in the transverse direction.
The transverse displacement of the string satisfies one dimensional wave
equatmn in the strip 0 << x < @, ¢ > 0 of the (x, 7)-plane. To determme its
motion we need to know not only the initial state of the string between
0 < x < a but also the boundary conditions at the two ends of the string,
Thus we have a physical problem which is not a Cauchy problem for a
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hyperbolic equation. Such problems are called initial and boundary value
problems. In this section we shall discuss bricfly the nature of initial and
boundary conditions which together with hyperbolic partial differential
equations, form a well posed problem. Its detailed discussion is given by
Courant and Hilbert (1962), pp. 471-475.

Consider a first order hyperbolic system of r equations with the »
characteristic velocities A; arranged in the form

< o Ky < A (2.81)

Note that equality has been provided here in order to take into account
the multiplicity of the characteristics. For simplicity we take the case when
we need to solve the equations in the first quadrant of the (x, #)-plane, iec.
for x > 0, ¢ > 0. Our aim here is to discuss the nature of the initial con-
ditions imposed on the x-axis and the boundary conditions prescribed on the
#-axis so that we get a well posed problem for determining the solution
adjacent to the positive x-axis and the positive 7-axis in the first quadrant.
Let us assume that the conditions

and 0 << Aoyt < Apsz oo S 4y (2.82} .
M<h<...€35<0 (2.83)

th

=Y

Fig. 2.8 Mixed initial-boundary value problem

are satisfied at every point of the #-axis. Then from an arbitrary point
Py on x=0, n—p characteristics enter into the first quadrant, where a char-
acteristic is counted as many times as its multiplicity. The z-axis itself may
or may not be a characteristic curve. If P is a point on the initial line, the
number of characteristics entering into the first quadrant from P; is obvi-
ously equal to n. If Pz is a point on the #-axis, the number of characteristics
entering into the first quadrant from Pz is n-— p. Let us note that when we say
that a characteristic curve enters into a region from its boundary, we are
associating definite forward and backward directions with the characteristic
curve, Intuitively, we have assumed the forward direction (shown by arrows)
as the f-increasing dircction, This is meaningful in physical problems.
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The following rule tells us about the nature of initial and boundary values:
~The number of functions which are to be prescribed on any curve as
appropriate data on that curvé is equal to the number of characteristics
entering into the region (where the solution is required) from a point on the
curve. According to this rule, we need to prescribe a Cauchy data on the
initial line, i.e.

Ulx, 0)=F(x). ' (2.84)
Or the boundary, we can prescribe n~ p components of U(0, 1), i.e.
w(0,)=pt),i=1, 2, ..., n~p, say : (2.85)

or more generally we can prescribe #— p linear combinations of ;(0, #), i.c.
] : ’
'ZI ayui(0, H=alt), i=1, 2, ..., n—p (2.86)
f=

in such a manner that the rank of the matrix a; is n— 2. The n components of
¥(x)in (2.84) and the z— p functions ei(t), i=1,2, ..., n—pin (2.85) can be
arbitrarily chosen. If we wish to get a continuous solution in the neigh-

bourhood of the origin of the (x, #)-plane, the initial and boundary values
" must satisly the consistency condition

33 afi(0) = pi0). e

Similar consistency conditions can be obtained for the continuity of the
partial derivatives of the solution. o

If the initial and boundary conditions are prescribed as mentioned above,
the problem becomes well posed. More precisely we state: Under the
conditions prescribed above, the linear hyperbolic system has a solution
which is unique and is stable in the region x > 0, z > 0 provided the data
¥ and ¢; and the coefficients 4, B and C are sufficiently smooth.

Even in more complicated initial and beundary value problems, where
the.system may be confined between two fixed boundaries, say x =0 and
X =q or between two boundaries, one or both of which are moving, the

same rule of enumeration of number of characteristics entering into the .

region, determine the number of boundary conditions to be prescribed.

§3 HYPERBOLIC SYSTEM OF TWO FIRST ORDER
QUASILINEAR EQUATIONS

A system of two first order equations .
Allu!'l"AIzUt'i‘Bllux+B120x+C1:O ’ (3,1)
and
Aaitte+ Azpve + Bogpty + Bagwe + C2=0 ’ ‘ (3.2)
deserves a separate discussion, In this paragraph we briefly review the results
of §2.I'fo;‘ this system. This pair of equations is said to be hyperbolic if we
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can obtain two independent linear combinations of these equations such
that in both the combinations the variables u and » are differentiated in the
same direction in the (x, 7)-plane. This requirement leads to a discussion of
the roots of the characteristic equations (2.4), i.e. the roots of

‘Byy—Ady Bp—2Mp,
det (B—A4) = det T =0 (3.3)
By—As  Byp—Ady
where it is assumed that
det 40, (3.4)

When the two roots A=¢,, ¢; are real and distinct, the pair (3.1), (3.2) is
hyperbolic and the independent linear combinations can be taken to be
1 % (3.1)+ 5" % (3.2), where I® =[I{°, 1) is the left null vector of the matrix
B cid, i=1, 2. When the equation (3.3) has equal real roots A=c, the
above pair is hyperbolic if there are two linearly independent left eigen
vectors, which implies that the matrix B is a multiple of 4, i.¢. B=c4.

In this section, we shall discuss the properties of solutions of a pair of
hyperbolic equations (3.1), (3.2). The system may be linear, semilinear or
quasilinear, However, in the case of a quasilinear system, we shall assume
that a known solution w=u(x, ), v=u(x, #} has been substituted tn the .
coefficients, so that the coefficient matrices A(x, ¢, u(x, 1), o(x, £)) and B(x,
t, ulx, 1), v(x, 1)) can be regarded as functions of x and ¢ only. In this case
our results are true only for the given solution under consideration.

§3.1 Introduction of Characteristic Coordinates

We first assume that the characteristic roots ¢, and ¢y are real and distinct
in a domain D1 of the (x, f)-plane. The characteristic equations and their
general solutions can be represented as

‘f; =cy = plx, t) g _ (3.5)
and
...‘:f%:a-1 == ¢(x’ t):of_ (3.6)

where 8 and o are constants g.ving the two families of characteristic curves.
(3.5) gives us a one-parameter family of characteristic curves with parameter
B and (3.6) gives another family -of characteristics with parameter «. We
call these families of characteristics as C1 and Cn families respectively.
Algng a member of Ci family the parameter § is constant and « varies.
Similarly, along a member of Cy family the parameter « is constant and B
varies:: We remind the reader here that if the system (3.1)-(3.2) is linear or

- semi-liriear, the characteristics are determined once for all in the (x, #)-plane,

whereas; -in the case of a quasilinear system they depend on a solution
t=u(x, ) v=u(x, f) of the system. :
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/o x
Fig. 3.1 The two fanﬁlies of characteristics
Using ¢; = ~ p1/px, ¢3= — /by, we get the relation
7 .
g((f% =pallei—c2) . (3.7)

For distinct and finite characteristic velocities, the Jacobian &(p, 4)/(x, ©)
does ‘not vanish in the domain under consideration in the (x, #)-plane.
Therefore we can solve {3.5) and (3.6) for x and ¢ in terms of « and 8:

x=x(, B), t=1(c, B) v (3.8)
and then introduce o and £ as independent variables.

The dependent variables can also be expressed as functions of «, 8.
Multiplying the hyperbolic system (3.1) and'(3.2) by the components of the
ith lefi eigenvectors I? and adding, we get
(1 Ak B Ao+ enn) + (7 Ao+ B d20) (v:+c,ux) +1PCi+ 8¢, =0, (3.9)
i=1, 2, no sum over i. ,

The partial derivative x. is evaloated by keeping B fixed, and therefore,

for this we move along a member of Cr family, along which x, and 7, are
related by the relation xq = ¢fw. Hence,f we have

3 2.8
Similarly, ,’
] 2 R
-a—ﬁ=tﬁ (3_l‘+623;) 7 ) (3.11)
Therefore we write the compatibility conditions (3.9) together with the

characteristic equations, in terms of the independent variables = and B, as
follows:

' N 8 — | '
kll(x: t: U, U) B—Z+]712(x’ t; i, U)'gzé ='}’I(x: z, i, z’)toc (3.12)
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. 0
h21(x: t,u, U) '5]%+h22(x, f, i, v)g%=),2(xs i, u, v)tﬂ (3-13)
Xo=cilX, 1, ¥, DM ' (3.14)
and Xp= Cz(x, i, U, Z?)tﬁ (3.15)

The functions A; and ¥: can be easily expressed in terms of the components
of 4, B, C and I¥), We note here that the independent variables = and 8 do
not appear explicitly in the coefficients of the equations (3.12)-(3.15).

Therefore, when the characteristics of the hyperbolic system of two equa-
tions ate distinct, we have been able to reduce the system to an equivalent
system of four {but simpler to deal with) equations (3.12) to (3.15). Though
the number of equations increase, the new system is simpler, for numerical
computation, compared to (3.1} and (3.2} due to the fact that the equations
(3.12) and (3.14) involve differentiation with respect to only one variable «
and hence can be treated as a coupled system of ordinary differential equa-
tions. Similarly, equations (3.13) and (3.15) can be treated as a coupled
system of ordinary differential equations along a Cn characteristic. The
characteristic canonical form (3.12)-(3.15) has been extensively used in the
numerical solution of quasilinear partial differential equatmns especially in
gas dynamics (Shapiro, 1854).

We pointed out in the beginning of this section that a hyperbolic system
of two equations deserves a separate discussion. This is due to the fact that
in this case the number of characteristics through a point is equal to the
number of independent variables and hence we can use the variables «, 3 as
independent variables instead of the variables x, 7. Such a transformationto
characteristic coordinates is not suitable for a hyperbolic system of more
than two equations. .

Now, let us assume that the hyperbolic system (3.1)-(3.2) has a multiple
characteristic velocity A=c (of course, of muliiplicity two). Then the rank
of the matrix B- ¢4 must be zero, i.e. we must have

B=cA. (3.16)

Usmg (3.16) in (3.1) and (3.2) and premultlplymg the resultant equations
by the inverse of 4 we get an equivalent system of two equations:

du du_

3 —+C 5 o (3.17)
and

do v

5;4"0 Tx:}’z . (3.18)_

where ¥, and y; are the components of 471C. The compatibility conditions
and the characteristic equation for these equations forra a coupled system
of three ordinary differential equations:

du
CTI‘ _"VI(us v, X, t) (3-19)
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d ‘
T =y {u, v x, 1)) (3.20)
and
dx
7 =clu, v, x, ) (3.21)

where d/dt represents temporal rate of change along a characterlstlc curve
ie.

d_d d
—=?t- +c —_—

In this case, tosolve a noncharacteristic Cauchy problem where the Cauchy
data is prescribed in the form

u(xo(m), to() = t1o(), v(xo(n) to(m) = vo(m)

x=uxp(n), t=1ton) (3.22)
we solve (3. 19) to (3. 21) with the conditions (3.22) to get

u=u(7, 1), 2=0(y, 1) ' (3.23) .
and x=x(, 1). : (3.24)

Solving (3.24) for 7 in terms of x and 7 and substituting it in (3.23) we get the
solution u and » of the Cauchy problem in terms of x and 2.

We note that the method discussed above is applicable not only to a
system of two equations but o a system of any number of equations when
all characteristic velocities of the hyperbolic system are equal.

Example 3.1 The steady axi-symmetric irrotational motion of & gas is
given by

_ ty—x=0. ]
and If
| (=1t = iyt ) + (@~ %oy + 20 b (3.25)
where I|
a=alg), g= VP +o? J

Replacing the role of ¢ by y in the previous analysis, we get the characteristic '
roots of (3.25) as

€2~ 2 [ MU:}:ﬂ\/(‘] - aZJI

The pair (3.25) of equations form a hyperbolic system in the supersonic
region g2 > &2 In this region, the characteristic canonical form is

2
a
(a2 — 1Yo+ (a2 — 1)y = = y”' Ya
. azv
(@®— v up+ (2 —PJog = — 5 e

~C1Ya = 0
and _ xg—e2yp=0.
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EXERCISES 3.1

1. Find the solution of the Cauchy problem
e+ 1ty = 202 4 2up, U+ Uy =0t — 02
ulx, 0)=0, o(x, 0)=sin x

and show that the solution is valid only in the strip — < x < ©,
—1 <<,

§3.2 Linearization of a Reducible .System of Quasilinear Equations by
Hodograph Transformation

We discuss here an important subclass of quasilinear equations in two
independent variables. The system of equations (3.1) and (3.2) with ;=0
reduces to .

At + Ao+ Bygstn + Brovx =0 (3.26)
Azt + Azats - Bayttx + Bavx=0. (3.27)

The homogeneous system (3.26) and (3.27) is said to be reducible if the
coefficients A4y, By are fuctions of u and » only. We consider here only those
solutions of the equations for which the Jacobian

jcﬂxvf—b[rvx# 0. (3.28)

In this case we can interchange the role of dependent and independent
variables, i.e. we can consider x and ¢ as functions of # and #.* Then the
resultant equations for x and ¢ as dependent variables and #, v as indepen*
dent variables will be linear as shown below.

Solving for dx and df from

du=u, dx+udt, dy= v, dx -+ dt _ (3.29)
we get '
= 71.@, = dv), dt=31.—(ux do v di), (3.30)
Therefore
Up=j by, U= —jxwg Ux = _jfu, U= jXu (3.31)
Substituting (3.31) in (3.26) and (3.27) we get
"'Au-’F_v‘i‘Alzxu-f' Bt,— Biaty=0 (3.32)
and
— As1xp+ AzpXat Byto— Boptu= 0. (333)

If j#zero or infinity, then every solution of (3.26) and (3.27) gives a
solution of (3.32) and (3.33) and vice-versa. We note that the latter system
is linear. . o

*Vanishing of a Jacobian of a tranformation leads to interesting results regarding the
mapping from (x, ¢}-plane to (x, )-plane (Lighthill, 1953).
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This transformation was first used in fluid dynamics, where » and v
denote velocity componentsin a steady two dimensional flow, 7 being replaced
by y. It is called “hodograph transformation”. Though the  transformed
¢quations are linear and it is much easier to- find their solutions, the boun-
.dary curves in the (x, ¥)-plane are transformed into complicated bounda-
ries in (u, v)-plane, Therefore the hodograph transformation has been of
very limited use. This transformation has been extended to unsteady flows
as the example below indicates.

Example 3.2 Consider the equations of unsteady motion of 2 polytropic gas

Pr+ qpsx+pgy=0
and (3.34)
‘ &2
q:-!—qqx—l-—';—px:O
with
a*= k%Y1, o= constant, y=constant.
-Here p is the mass density and g, the velocity of the gas. Assuming that

Pxe— 0270 (3.35)

we make use of the hodograph transformation. Equation (3.34) then become

—Xgt qly—pty =0

Cand (3.36)
a2 _
_.xP+ _f;'tq— qtp=0

which are linear.

- A more elegant form of the equations in the hoﬁograph plane Would be
obtained, if we had started with equations :

a y+1  y—3 )_3_) _
(-»—at + (—2—r+ 58 ) r=0 (3.37)
F; y—3 y41 LAY

with dependent variables r and s instead of ¢ and p, where r and s are called
the Riemann invariants'_(see §3.3) and are defined by

- 1 fade_L . a

regt 5 | S =5a+55 (3.39)
and —

oLl dfad 1 o

5= .29' ZJ-P —b2”q+y_1, i (3.40)

The hodograph equations now are

Xs—{¢+aMs=0 or xs—'\!y-zi-l r+ r=3 S}Is=0 (3.41)
t .

and

X=(g—a)tr=0 " or xr+{%3r—i— y;:] S}I.—=0. (3.42)
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The equations (3.41) and (3.42) can also be derived from (3.37) and (3.38)
without going through the hodograph transformation. Equation (3.37)
implies

r=constant on 6—3 =g+a (3.43)

"and equation (3.38) implies |
s =constant on % =q-d. : (3.44)

On 7= constant, x and ¢ are functions of s only so that (3.43) can be
written as

Xs— (q + a)fs =0 ' (345)
which is precisely the equation (3.41). Similatly, (3.44} leads to (3.42).
Eliminating x from (3.41) and (3.42) we get

o v+1 _ ;
. (F' +S)frs 4 2(_]/——'*_ 1) ([r+ fs) =(. (346)

 Method bf solution: We present here an interesting method of solution of
the equation (3.46), which we write in the form

M
u:'cy""‘ ;-l"_y (et uy)=0 _ (3.47)
where M is a constant. If u satisfies-(3.47), then _
v= (et My _ (3.48a)
satisfies ' '
o 1-M
Usyt+ Ty (zx+2)=0 - (3.48b)
and : ‘
W= x-:y (vt + 1) | | (3.49a)
satisfies o ! |
' M1 '
7 Wiyt ;C:}_ (wx+wy) =0. . (3.490)

The formulae (3.48) and (3.49) can be used to determine the solution of
(3.47) for all positive integral values of M. We note that for M =0, the
equation reduces to the wave equation

Uxy =0
‘whose. general solution is ‘
u=p(x)+H(y) _
where p and ¢ are arbitrary functions of x and y respectively. From (3.48)
it follows that R

=, BHION
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is a solution of (3.47) with M = 1. Consjder only one part

oy = PO
xX+y

of the solution. From (3.49) it follows that

Up= Jﬁi (%+ %)(xp_g ) =58;?(07p4(rx7))2)

is a solution of (3.47) for M=2.

. . . M- L oy .
Using (3.49) syccesswely, we find that for any integer M, Faw (W ) is

a solution of (3.47) Similarly oht (—l’b(y—)) is also a solution. Therefore
e T OYMIN(x + )M
= O () ) M1 [ (y) ) . |
u—~axM_1(W W(W » M—-posmve. integer  (3.50)

containing two arbitrary functions, gives the general solution of the equation
(3.47) for any positive integrai value of Af, ‘

Using (3.48) and (3.50), we find that the general solution of (3.47) for
negative integral values M is

_ gl-M) g(=2) ¥(y)
M o R = I R

Using the theory of complex variables, we can represent the first term of
the solution (3.50) in the form of a contour integral

_(M——I)I gg(g) dé ‘
u(x, ”“Tz‘“ . Wmﬁ ) (3.52)

where I' js a simple closed contour in the complex ¢-plane with the point
* €=x in its interior and point £ = —y outside T, The arbitrary function p(£)
1s necessarily an analytic function of ¢, regular inside and on I,

We note that the factor (¢ ~x)-M(¢ o+ )M satisfies. the equation (3.47)
not only for integral values of M but for all real values of A, However, it is no
longer a (single valued) function of £. There are two branch point singulari~
ties one at é=x and another at §=—y. Therefore if I'is a path in the
complex ¢-plane such that ¢ # x or —y for all real X, y belonging to D, then
(3.52) represents a solution of the equation (3.47) for an arbitrary value of A7,

§3.3 Simple Wave Solution for a Sjstc.m of Two Equations

general solutions. In fact, simple waves are the fundamental or basic
solutions and any other genuine solution is formed by the “interaction” of
two simple waves.
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First we notice that for a reducible system of equations, the compatibiiity
conditions (3.12) and (3.13) not only become homogeneous but also get
decoupled from the characteristic equations. The equations (3.12) to (3.15)
reduce to '

hii(u, 2)ue+ oy, v)2a=0 ' (3.53)
By, Dhup+holu, vloa=0 (3.54)
xu— crlt, o}a=0 = : - {3.35)
and
xa—calt, ©)ig=0. (3.56)

Since x and f do not appear in the compatibility conditions (3.53) and
(3.54), these conditions can be integrated independently and we get

r{u, v}=constant = B’ (say) along g:ﬁ =¢(u, v) (3.57)
and

s(u, v) = constant = «’ (say) along % =eu, v). (3.58)

We call the functions » and s Riemann invariants of the second and first
characteristic family respectively. '

A nonconstant solution, of a reducible system of two equations, in a
domain S of the (x, t)-plane is called a simple wave if one of the two Riemann
invariants is constant in S. This domain S is called a simple wave region.

The constancy of one of the Riemann invariants in .S implies a functional
relation, between u and », of the form f{u, v) = constant, so that the Jacobian
8w, 1)/0(x, 1) =0 everywhere in S. Therefore, a hodograph transfornfation
cannot be used to find a simple wave solution.

Theorem 3.1 In a simple wave region if Riemann invariant® r(s) is a cons-
tant, then u and » are constant along the second (first) family of characteris-
tics which are straight lines,

Proof: Let us assume that the Rieman invariant r is constant in the simple
wave region S, then 8’ is the same constant everywhere in S. Along a mem-
ber, say Cc, of the second family of characteristics (3.56), there is another .
relation between u, » given by s(u,0) =2, where ‘¢’ is a constant. Solving #
and ¢ in terms of o and B’ from #(, #)=p" and s(u, v)=o" we get

u=u(@, ), v=u,{) (3.59)

#Tn literature the variables » and g are simply called Riemann invariants. Consistent
with the general theory of Riemann invariants (see the problem in exercise 4.1)
we call 7 as a Riemann invariant of the second characteristic. family and s as that of the
first characteristic family. The theory of simple waves for a hyperbolic system of more
than two equations can also be presented in terms of the Riemann invariants. However,
for more than two equations, we have given an equivalent but simpler account of simple
waves in §4. The théory of simple waves in terms Riemann invariants simplifies consider- ’
ably for two equations, and therefore, we present it here.
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Fig. 3.2 Simple wave region 5, where r (z, v}=constant

where B’ is constant everywhere in S and ' is constant along C., Therefore
u, v are both constants along C.. The function ex(ut, 2), the second charac-

teristic velocity is also constant along C., so itg slope %= _(_?I_ is constant,
2

Consequently the characteristic €, and similarly all characteristics of the
second family are straight lines in the simple wave region §.

- Now we state here a fundamental theorem which identifies simple waves
as basic building material for more general solutions, -

Theorem 3.2: If a section of a characteristic carries constant values of i and
v, then in regions adjacent to this section, the solution is either a constant
State or a simple wave,

Proof: Consider a region D, of the (x, t)-plane, in which x and o are conti-
nuous functions and which contains a section 8 of g characteristic of the Ct

family is constant in 8. Therefore, the region § is either a simple wave
region or a constant state region, -

An immediate corollary of the above theorem is:
. Corollary: The solution in a region adjacent to a region of constant state
is a simple wave solution, '

To prove the corollary, we note that if C js a curve, in the (x, t)-plane,
across which the solution changes continuously from a constant state (o 3
nonconstant state, at least one derivative of the solution must be discontj-

After this elemantary theory of the simple waves, we take an example
from gasdynamics, '
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Fig. 3.3 The region adjacent to the section § is simple wave or
constant state region

§3.4 Application of the Theory: Simple Waves in Gasdynamics

Let us consider the motion produced by a moving piston in an initially
undisturbed compressible medium at uniform state and contained in a
semi-infinite tube bounded on the left by the piston. We assume the medium
to be a polytropic gas, equations of one-dimensional motion for which can
be written in the matrix form

1 0 a P q P a P
0 1 q P q

F
where p is the mass density, ¢ the particle velocity and a the sound velocity
satisfying

(3..6 1)

P=ap) = k2p¥1, k2 = constant, y = constant.
1 A ti
*, o
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{a) Accelerating piston

produces d compression

wave

(b) Deceterating piston produces

an expansion wave

Fig. 3.4 Waves produced by a piston starting with zero velocity
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The system (3.60) is reducible with distinct characteristic velocities

cr=g¢+a, Ci=g—a, (3.62)

Let the equation of the piston be given by -
x=X(@, X0)=0 (3.63)
where we assume that initially the piston starts with zero velocity, i.e, ‘
' X' @=o0, (3.64)

For an accelerating piston motion we have
' X >0 (3.65)

and for a decelerating motion 7
X)) < 0. : (3.66)

The problem is to find the solution of the system of equations (3.60) in
the region on the right of the piston, i.e. in the domain D of the (x, #)-plane:

D:x = X)), t=0 - (3.67)

Initially the gas in the tube i at rest with constant density, so the solution
must satisfy the initia] conditions

p(x, 0) = constant = ro(say), g{x, 0)=0, x =0 (3.68)

At the piston the fluid velocity.is equal to the particle velocity, so the solu-
tion must satisfy the boundary condition

9XO), D=X'(n), t=9, y>o0 (3.69)

P

On the initial line i=0, the two characteristics velocities are + ap, so
from each point of it two characteristics enter into the region D. On the
boundary x=X(2), the piston velocity is equal to the velocity of the £as, so
the characteristics Ct lie to the right of the boundary and Cyy to the lef,
So from each point of the boundary one characteristic of Ci family enters
into D. Thus the initial conditions (3.68) and one boundary condition
(3.69).are sufficient to give a unique solution.

The characteristic equations and the compatibility conditions are:

along j—fz qg+a, dg+di=0 (3.70)
and _
dx :
. along =9~ dg-di=0 , (3.71)
where '
dp 2a -
I= f oL 3.72
e y—1 3.72)

Therefore we can choose the Riemann invariants to be

q a q a
=4 L _@ =-4 4, _ 4, 73
=3 y=1 § 2 y-i (3.73)

&
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Since the initial motion is continuous, the effect of piston motion will be
felt in a region behind a wavefront running into the undisturbed state with
the velocity of the forward facing wave. Therefore the region in (x, t)-plane,
disturbed due to the motion of the piston, will be separated from the un- .
disturbed region by a Ci characteristic starting from the origin, i.e. by
x= agt. Since this characteristic adjoins a constant state, the values of ¢ and
p are constant on it and hence, using theorem 3.2, the flow produced by the
piston is a simple wave in which the Riemann invariant s is constant.
Therefore we have
g . _a _ a

2T yo1 =1 (3-74)'

The Cr family of characteristics are straight lines and are given by

x =(g+a)t+ constant

sy

v+l
2

Evaluating the constant with the help of the boundary condition (3.69) and

x=(ao+ )i+ constant. (3.75)

noting that ¢ at any point (x, ¢) is same as that at the point of intersection

of the piston path and the Ci characteristic through (x, £), we get the follow-
ing equation of the Cr family of characteristics;

x=X(0)+ {0+ T2 &), (3.76)
1
Different values of 5 give different members of the Ci characteristics start-"
ing at time ¢ =17 from the piston. On a ¢ characteristic curve, the constant
value of g is equal to the piston velocity at that point of the piston where the
characteristic curve, intersects the piston path. The constant value of ¢ on a
C1 characteristic can be easily obtained from (3.74). Thus

4G, )= X0, alx, O)=ao+ ”;1 X1, (3.77)

Solving » from (3.76) in terms of x and ¢ and substituting it in (3.77) we get
g and a as functions of x and 7. Thus, the simple wave problem is completely
solved. .

Though the above process is usually followed to solve a simple wave
problem, it is important to note that a simple wave is governed by a single
first order quasilinear partial differential equation of a very simple type and
hence it can be obtained as its solution. The compatibility condition along
the Cr charagteristics give

{3%““@ %}(’% * yfl )=0- | (3.78)

Eliminating & from (3.74) and (3.78) we have

dq v+1 g _
g'l'(ao-l- 2 V5T

(3.79)
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which can be completely solved for any type of initial and boundary .value
problem. Note that the equation (3.79) is valid not only for arbitrary small
g but for all finite values of g.

EXERCISE 3.2

1. Obtain the hodograph transformation of the equations
. vx—ty=0
(% — u)ux— u(ty + vy} + (a2 —12)5, = 0
where @2 is a given function of ¢%=424-v2 and satisfies
122+ (1 — pDa? = a%; a*, p=constant.

Show ‘that the characteristic curves in the hodograph plane are epi-
cycloids generated by the movement of a point fixed on the circum-

ference of a circle which is of diameter q- (%%1 ) and which rolls

on the sonic circle 2+ =4

2. In the example of the simple waves in gasdynamics (§3.4), show that
when the piston is accelerating the characteristics of the first family,
carrying different constant values of # and p, converge in the compres-
sion wave and the solution ceases to be single-valued after some finite
time. )

3. Consider the general reducible hyperbolic system and a simple wave
solution in which the second Riemann invariant #{z, ») has a constant
value f'. Then the characteristic velocity ¢, (#, v) can be expressed as
a functionofu only: ¢ (v, v)=C: (u, 8'). Show that the simple wave
is described by the quasilinear equation

& O, )0,

4. The characteristic field Cu is defined to be genuinely nonlinear if the :
function C, (u, B’} defined in the preceding problem satisfies 8C,/du+
0. Now if the simple wave is weakly nonlinear, i.e. if » and o differ
from some constant values u, and oy trespectively by small quantities,
show that the simple wave in the genuinely nonlinear characteristic
field is governed approximately by - '

dw dw
"3}" + (C{; + CWW)EC =0
where w=u—up, and ¢y, cw = constant.

5. Given two families of characteristic curves

¢(x, y)=P and d(x, y) =«
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and another noncharacteristic curve C: f(x, y)= 0, show that it is possi-
ble to choose another set of characteristic parameters o, 87 such that

@' =ao'(a), B=F(B)
and the curve C becomes the straight line &’ + 8 =0 1in the (', 8')-plane.
6. For a hyperbolic pair of two quasiliaear equations with a double charac-
teristic velocity ¢, show that the genuine solution of a moncharac-
teristic Cauchy problem (3.22) can be obtained uniquely with the help
of an iterative scheme '

—ta{m)
W (g, 1) = )+ j s, ), 7, 3705, ), 5+ 1o ds

—to(
0

21, 1) = 3y(r) + j " yturts, m), (s, ), 37, ), 5+t dis

and o
t—ty(m)

x"(n, )= xo() -+ J.O c(u™(s, M), (s, 1), x"(s, 1), 5+ to(n)) ds
where y1, y2 are functions appearing in equations (3.17) and (3.18).
While proving the result, state the conditions that are required to be
imposed on the functions v, ¥, and ¢, determine a value of 7 such
that the genuine solution is valid in 7o{n) < £ < tofn} + T, and show
that the solution is stable. '

*$4. GENERAL THEORY OF A SIMPLE WAVE

*

As we have mentioned in the footnote on page 185 and we shall indicate
in the problem at the end of this section, we can extend the theory of simple
waves, in terms of Riemann invariants {presented in $3.3 for a reducible
system of two equations) to a hyperbolic system of » homogeneous equations
in the form

A %%H B(U)gwg 0 (@1

where the coefficient matrices 4 and B do not depend on x and ¢ explicitly.
Let the set of all U, for which A(U) and B(U) are defined, be denoted by Dy.
In this section we shall present briefly a simplified theory which would make
use of an extension of the concept of characteristic variables wr deflned in
§ 2.2 for linear equations. _

Our interest is to find a genuine solution of the system in a domain D of
the (x, )}-plane such that all components u; of U can be expressed in terms
of a single function w(x, r) = C1 (D):

Ulx, t)=@(w(x, 1)) (4.2)
Substituting it in (4.1) and assuming wx # 0, we get

[B(®)~ (=i 4@ =0 43

-
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do
For a nontrival solution of gy Ve require that —wifwy=c, i.€.

wet e(Dywx= (4.4)
where ¢ is a characteristic velocity of (4.1 ).
Since @ is a function of w alone and does not explicitly contain x and ¢,
¢(®) is a function of w alone. Therefore the equation (4.4) implies that

w=constant, & = constant along each of lines x— (D) =constant. (4.5)

The straight lines x — ¢(®)¢ = constant, are characteristic curves of the system
(4.1). The derivative d®/dw is parallel to the corresponding right eigen-
vector,

¢ is one of the n characteristic velocities ¢y, ¢, ---, ¢a Which, for simplicity,
we assume to be distinct in Dy. For each ¢x we can finda solution which
remains constant along a family of straight lines which are, in fact, the &th
family of characteristics in D. In this case we shall put a subscript &£ on the
variable w appearing above, i.e. w(x, 7)=wx(x, £). The solution U(x, #)is said
to be a simple wave of the kih family. As given in Problem 1, Exercise 4.1,
corresponding to each characteristic velocity ¢ = cx, there exist #— 1 Riemann
invariants which remain constant in the kth simple wave region. This
conforms with our earlier definition of a simple wave for a system of two -
equations given in Section 3.3.

Consider a constant value wig of wi alonga partlcular characteristic curve
of the kth family in a kth mmp}e wave. Inthe neighbourhood of this charac-
teristic curve, we have

5 .
cx(P) = cro +{ (graduce)- -2,%;}0 (W — wio) +0_{(w:= — Wig)?}, no sum over k.

Therefore using the fact that d®/dws is parallel to r'®), we find that to the

first order in {wx— wko) the characteristic velocity cx in (4.4) depends linearly

on wk 1f ((graduce) )y # 0. If, ;
(graduck)-r®, # 0, no sum over k (4.6)

for all U in the domain Dy of the dependent variables, we say that the kth
characteristic field of (4.1) is genuinely nonlinear. We note that if the kth
characteristic field is not genuinely nonlinear, i.e. (graducx)-r'® =0 for some
U, one can get a kth simple wave governed by alincar equation and hence
a nonlinear deformation in the shape of a pulse in such a simple wave will
not take place in the wave moving with the kth characteristic velocity.

The variable wy, which remains constant along a kth characteristic in a
kth simple wave, is defined to be the kth characteristic variable for a reduci-
ble system {4.1). In §2.2, where the system of equations considered is linear,
the characteristic variable wx satisfies equation (2.38) which governs its rate
of change along the kth characteristic. The equation governing the evolu-
tion of the kth characteristic variable in the kth simple wave is a single first
order quasilinear equation (4. 4), which we write now in the form

6w.rc

TS +Cxl k) 3 %=0, no sum overk ‘ | 4.7
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where ’
Cr(wz) = ci(P(wa). (4.8)
Results corresponding to the theorem 3.2 and its corollary in section
3.3 can be proved for a kth simple wave of a reducible hyperbolic system
(4.1) of n equations.

We now discuss the types of constant states which can be connected by
a simple wave, Consider all the states U/, which can be joined to a given
. state U; on the left by a simple wave of the kth family. Then the states U,
form a one parameter family of states (a choice of the continuously varying
parameter being &= (wi)r ~ (we)):

U, (through a simple wave of the kth family) = ®((we)r) = Uslm(s) (4.9a)
where 8 is a parameter such that

Usi0) = U1, ' {(4.9b)
Treating the state U; to be fixed, we note that 8 is a function of (wx) only.
Hence, differentiating (4.9a) with respect to 8 and using the fact that d®/dwg
is parallel to r'®, we get

Usun(o) =y (k)(Ul') (4. 1 O)

where a dot denotes differentiation with respect to 6 and « is a scalar. Thus
we have proved that the derivative Usm{0) in a kth simple wave is parallel to
the kth right eigenvector r'®, '

Now we proceed to discuss a special class of simple wave solutions, namely
centered simple waves, with the help of which we shall solve the fundamental
Riemann’s problem in §5.6. A centered simple wave, more appropriately call-
ed centered rarefaction wave, is a genuine solution of (4.1) for 1 > fo, in
which I/ depends only on the ratio (x — xo)/( — to); (%o, Zo) being centre of the
wave. Choosing (x — xo)/(z — 7p) to be the variable w in (4.2), it follows that
such a solution is a simple wave with one of the » families of charac-
teristics, say kth, being straight lines represented by (x — xo)/(t — o) = constant,
all of which pass-through the point (xq, fo). Now we state a theorem with-
out proof, :

Theorem 4.1 Let a constant state U7 on left* be connected to another constant
state Uy on right by a centered simple wave of the kth family, then
ex{UD << ex(Uy). : (4.11)
Flgure4 1 shows that the inequality (4.11) is a necessary condition for
the existence of a centered simple wave for t; > C.
The inequality (4.11) is of great importance to us, Let us explain it with
a particular choice of the parameter &: .
8=cu(Ue)—cx(U). (4.12)
In general, for an arbitrarily simple wave (not necessarily centered)the .
parameter 8 could have both positive and negative values: (see section 3.4),
Hi‘)wever the inequality (4.11) permits only positive values of 8, i.e.,
“rarefaction simple waves” in a centered wave. We_ shall come to this
remark again in §5.3,

*With respect to the reader (see footnote on page 115).
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o
x

© : (xgy0}

Fig. 4. Centered simple wave of the £th family joining states U, and U,
(with £,=0)

 *EXERCISE 4.1

1. Consider a first order hyperbolic system of n equations
AU+ BINU=0

for which the kth characteristic velocity ¢z is assumed to be simple. The
set of #—1 nonconstant independent Tunctions w}k)(U), i=1,2, ..,
k=1, k+1, ..., n satisfying the first order quasi-linear equation
(gradu w-r®) =0 :

are defined to be n—1 Riemann invarignts of the kth characteristic field.
A function w®(U} such that 8(w{®, i, ooy WaNNB(aty, 11, e Un)E 0
iscalled kth characteristic variable. A solution of the hyperbolic system
in a domain of the (x, #)-plane, for which all Riemann invariants of
the kth field are constants, is called a ks simple wave. Prove the theo-
rems 3.1 and 3.2 with this definition of the simple wave (Lax, 1957).

§35. WEAK SOLUTION OF QUASILINEAR EQUATIONS

A classical or genuine solution of a first order system of equations (2.1)
is -defined in a domain D of (x, t)-plane if the functions ; possess continu-
ous first order partial derivatives at every point of D and satisfy the differen-
tial equations in D. However the class of genuine solutions is too restricted
to represent all physical phenomena. In fact, discontinuitiesl in the variables
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specifying the state of a physical system and their derivatives are very com-
mon. For such solutions, the differential equations lose -their significance.
In this section we shall discuss a generalisation of the meaning of the
solution, with. special emphasis on the nonlinear equations.

§5.1 Conservation Laws

Before we proceed to discuss this, let us consider an initial value problem
for a specific quasilinear partial differential equation:

é;”ﬂz(u)a =0, >0, —w < x < (5.1

u(x, 0)=p(x), ~o0 < x << 0 o (5.2)

where we assume for simplicity that &'(x), the derivative of the coefficient
of dujdx, satisfies

a{uw) =0 | : (5.3)

for all u for which a(u) is defined. Assuming that the coefficient a(u) and the
Cauchy data are C! functions of their arguments, we conclude from the
existence and uniqueness theorem for a single quasilinear equation of first
order (see Theorem 2.1, Chapter 1) that ihe genuine solution exists for all
values of ¢+ < T, where T depends on the functions (i) and ¢(x). The
solution is given by

Fl=u—p{x—altdr)=0 {5.4)
_ which defines # as a continuously d1fferentlable functlon of x and ¢ as long
as F'(u) # 0L e.

1+t (we'(€) # 0, E=x—a(u)t. _ (5.5)

The region of the (x, 7)-plane of interest to us is that which is covered by
the characteristics emanating from the points on the initial iine. Consider-
- ing a point x=¢ on the initial line =0, the condition (5. 5) is violated on
the characteristic through (x = £, t=0) at a time’

1 i
b o P 5.6
TEOREH (58)
which is greater than zero provided ¢'(£) < 0, Therefore, the solution given
by (5.4) ceases to exist for all time if the initial data be such that
g€ <0 _ (5.7)
for some value of £. Let T be the time when the solution first develops a
singularity for some value of &, Then

1

==t We®py®e % o 68
—oa [ Loo

The fact that a singularity develops in the solution for = T, can also be
seen by the following consideration: 1f ¢’(£) < 0, we can ﬁnd two points £
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and £2(61 << £2) on the initial Iine such that the characteristics through them
have different slopes 1/a(uy) and 1 fa(us;), where uy = p(£)) and w=¢(&;) and
a(u;) > a(u). These characteristics will intersect at a point in (x, ¢)-plane
with ¢ > (). Since the characteristics carry constant values of «, the solution
‘ceases 1o be single valued at thejr point of intersection. If we examine the
(u, x)-curve at various times, we find that after time T, the profile folds
itself and at any -instant there exists an interval on the x-axis where there

-

Fig. 5.1 The solution of an initial value problem for the equation y, +ati.=0is shown
by continuous line at #=0, f==Tand t=2T. Dotted lines Tepresent characie-
ristic curves. The characteristics from two points £, and £, intersect at =7

are three values of « for every value of x. Consideration of similar situations
~-in physical problems (such as waves in gas dynamics) tells us that 2 possi—
ble way to make the solution single-valued is to introduce a shock rwave
type of discontinuity in the solution at an appropriate place where the
value of » jumps from u; on one branch of the solution to a point # on
another branch of the solution. If the condition (5.7} is not satisfied, the
solution remains a genuine solution for all times. We note that in contrast
to the linear equations (see section 2.3), a continuous Cauchy data can lead
to a discontinuous solution for a quasilinear equation.

The above example shows that we must generalise the concept of solution
in such a manner that even discontinuous solutions are admissible. We
shall consider this generalisation for a restricted class of quasilinear equations
which can be put in the form - '

o é; +K=0, : (59)
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We assume for our discustion in this chapter that the vector functions H, /7
and K are twice continuously differentiable functions of x, # and U in'some
domain D, of (x,t, uy, ---,us)-space. Every system of linear first order
equations can be put in the form (5.9) but this is not true for a quasilinear
system. If Hy, Fy and K; are the ith components of the column vectors H, F
and K respectively, the vector equation (5.9) is the same as

aH’, BF, - .
e a—+K, 0,i=1,2, .., nr | : (S.IQ)
where
Hi=Hx, t, U), Fi=Fix, t, U), Ki=K{x, ¢, U)__ (5.11)

are gencrally nonlincar functions of #1, -, tn. (5.9) is equivalent to the

system
U a7

A3_+B3

where the matrices 4 and B and the column vector C are defined by

+C=0 (5.12)

d
A=graduH, B=graduF, C= K+(6H) +(£) . (5.13)
at Usconst 3x U/=const

Let x,(2) and xa(¢) be two continuously differentiable fanctions of ¢
satisfying

x1(8) << x1(e), for all . (5.14)

Integrating (5.9) with respect to x from x1(t} to x;(f) and using

IH x5y H () = 3 (O Hx,) (5.15)

d [xal® s2(t) JEF
—g;r[n(r) H dx= .[xl(t 3
we get
g t1¢3] : . . )
7 ) oy H = (- FG) B HG)} = (= Flxg) + HOH >0}
xolt) Lo
+I o (K dx (5.16)
L2143
where
FCu)=F(xi, t, Ulxi, 1)), Hx)=H{xi, t, Ulxs, 1)), i=1, 2, (5.17)

‘When the end points are fixed, this equation. with X3#)=0, expresses the
fact that the. time rate of change of the total quantities represented by the
vector function H contained in the fixed interval (x;, x2) is equal to the
difference of the flux F(x,) and the flux F(x;) through the end points of the
interval and the increase due to the source — X distributed in the interior of
the interval.

Many physical laws governing the evolution of the state of a system are
initially expressed in the integral form (5.16). In general, in physical prob-
lems, the quantitiesZ and F depend on the variables U(describing the state

- of the system) and also on their derivatives. However, we have assumed



198  Hyperbolic Partial Differential LEquations

-~

here that dissipitive mechanisms such as viscosity, heat conduction,
radiation etc. are neglegted. In this case H and F are functions of state
variables only. When it is assumed that the state variables [/ are continu-
ously differentiable, the integral form (5.16) can be differentiated with res-
pect 1o 7 and we get the system of equations (5.9). A special sub-class of
equations (5.9) or (5.16) has played an extremely important role in the theory
of generalised or weak solutions. This special class, called conservation law,
i3 obtained when the source function K is zero and the quantities & and F
do not depend on x and ¢ explicitly. Therefore, a vector conservation law
is a system of equations of the form :

oH  8F B '
i+ 3y =0 H=HW), F=FU), | (5.18)

According to the definition given earlier, the system of conservation laws
(5.18) is hyperbolic if the first order system : ‘

au atr _ ,
A'E +B§;_0 _ (5.19)

where A4 and B are given by (5.13), is hyperbolic,
§5.2 An Example

Let us now consider a specific single first order equation of the form

du it ‘

& Fu T 0 - (3.20)
for a scalar function « in order to introduce the various concepts involved
m the theory of weak solution. Equation (5.20) immediately gives a con-
servation law

ou & ~ '
) E + 5;(-%34! J—- 0. (5-21)

Multiplying (5.20) by mu" 1, where we take, for simplicity, # to be a posfitive
integer, we derive an infinite sequence of conservation laws :

" i R ntl§ o
e =0 622

We note that n=1 gives (5.21) and different value of n give distinct conser-
vation laws. The integral equation corresponding to the conservation law
(5.22) is ' '

a [ n
a_f JC]_u dx_ H+1

where we have taken x1 and x; to be fixed points. We refer to this as integ-
ral form of the conservation law. -

Though the equation (5.20) ceases to have any meaning for functions
which are not differentiable (much less.if they are discontinuous), the terms

wH&d—ﬂflmﬂwg 2  (5.23)
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appearing in the integral form (5.23) of the conservation law are defined
for a function which is integrable and which need not be continuous in the
interval (x(, x,). Therefore, we admit as solutions of (5.23) even disconfinu-
ous functions with finite jumps of u, u and ux at the points of the interval
(x1, x2). Such a function is called generalised solution of the corresponding
conservation law (5.22). Let us try to derive the jump condition across a
point of discontinuity x = X(¢) which moves with the ve1001ty S =dXx(2)dt

" and which is the only point of discontinuity in the open interval (xy, x;) at

a given time £, Now

3 [ g 2 ]‘and Ji .y
Bt—nu x—~a—t[ x1u p Xmu.(x]

X0 X

= é& @l —u )+ I nu Ly dx+-[ ‘ Yy dx

) X1 X(l‘v)
dX(t) (! —u)+ J * oYy, d . (5.24)
X1,
where ‘
w= Um u(x, ), ur= Tlim u(x, 1) : {5.25)
2+ X()—0 2+ X{) 0

are the limits of the function u as we approach the point of dlscontmmty
from the left and right respectively. Therefore, at any given time, from
(5.23) we have the equality

SO — ) +f nu "y, dx = n_f: i [t (x ) — a1 (x2)]. (5.26)
Taking x, = X(¢#)—0 and x; — X()+0 and noting that the intr—:galr‘ appear-
ing in (5.26) tends to zero (since its integrand remains bounded) we get in
the limit

SO frl= 2w (5.27)
where [ f] represents the jump of the quantity f from 1eft to right across the
point of discontinuity i.e. [f1=fr—fi. - -
The equation (5.27) is a single relation between three quantities u, u- and
S(¢). Therefore, it determines only one of the three quantities in terms of
the other two. If the states w« and u, on the two sides of the shock are
known, the velocity S(¢) of the discontinuity is uniquely determined from

n[un+I]

S0 =0

(5.28)

2 2
U -+ 2t -ty
tr+ Uy

i + tr forn=2

ie. $(0) =4 for n=1, 5= >
The velocity S(#) of the discontinuity depends on' the value of m, ie.
on the conservation law whose generalised solution is considered. We note

that from a single differential equation (5.20) we obtained an infinite number
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of conservation laws (5.22) with n=1,2,3, .. . A geauine solution of 7

the equation (5.20) satisfies cach of the conservation laws and also the

corresponding integral forms so that for a genuine solution all copservation -

laws and their integral forms are equivalent to the given equation. How-
cver, a discontinuous generalised solution of a conservation law is not
necessarily a generalised solution of another conservation law derived from
the. same equation. Therefore, for the class of generalised solutions, these
conservation laws are not equivalent. The importance of this remark will
be noted when we solve a particular Cauchy problem. .

In the domain of generalised solutions we can consider not only a Cauchy
problem with C* initial data, but with an initial data which could be discon-
tinwous Let us consider a discontinuous initizl data of the form ‘

0 forx <0
u(x, 0)= § (5.29)
[ 1 for 0 < x.
Two generalised solutions of the conservations law (5.21) are

0 for2x < ¢
u(x, t)= {5.30)
1 for << 2x '

and
0 forx <0

ulx, )=4 x/t for0 < x <z (5.31)

i for: < x
which satisfy the initial condition (5.29). The solation {5.30) is discontinuous;
it satisfies (5.20) everywhere except at the points of the curve of disconti-
nuity : 2x=¢ where the jump condition (5.28) with n=1 is satisfied. The
same holds for (5.31), which however has additional property that the
solution is continuous but its first derivatives do not exist along the straight
" lines x=0 and x =t This solution shows that, unlike in the case of linear
equations (see section 2.3}, a discontinuous Cauchy data could lead to a
contingous solution for a quasilinear equation. These are not the only gene-
ralised solutions, there exist an infinity of generalised solutions of which
(5.30) and (5.31) are particular cases:
f0 for x<0

xft  for 0<x < .
o for ar << x < 3(1+e) (5.32)
[ 1 for 4(1-ke)r <<
where « is a constant and satisfies _

. 0 a<] ' (5.33)
and the jump condition (5.28) with =1 is satisfied along x = 3(1+a)t. For
«=0 we get the solution (5.30} and for « =1 we get (5.31). The characteris-

tics and the lines of discontinuity for these solutions have been drawn in
the Fig. 5.2.

wx, t)=

—A
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Solution (5.30) Solution {5.31)

Selution (5.32)

Fig. 5.2 The characteristic curves have been shown by dotted lines

Instead of the Cauchy data (5:29) if we take

1 for *x =0
u(x, 0)= (5.34)
0 for 0_ < X
we shall show later that with this initial c!ondition, the conservation law
(5.21) has a unique generalised solution

C 1 for 2x < ¢
w(x, )= ‘ (5.35)
0 for b 2x.

The solution (5.35) has been shown in Fig. 5.3.

The above example shows that, in general, the generalised solution of a
Cauchy problem for a conservation law is not unique. What is needed now
is a mathematical principle characterising a class of permissible solutions in
which every Cauchy problem has a unique solution. This will be taken up
later. However, we can deduce such a principle fiom the following consi-
deration. We have noted that a discontinuity appears whenever characteris-
tics of the equation {5.20) start intersecting. Therefore, a discontinuity is
permissible only if it prevents the intersection of the characteristics coming
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from the points of the initial line on the two sides of it. If we accept this
principie, Figs. 5.2 and 5.3 show that among the solutions given here (5.31)
is the only permissible sofution with Cauchy data (5.29) and that the unigue
weal solution (5.35) with the Cauchy data (5.34) is also permissible.

X

Fig. 5.3 Characteristic curves of the solution (5.33) have been
shown by dotted lines.

Let us now examine the remark made earlier that different conservation
laws derived from (5.20) are not equivalent so far as the generalised solu-
tions are concerned, The solution of the Cauchy problem for the conserva-
tion law (5.22) for n=2 and with the initial data (5.34) is

1 for 3Ix £ 2t _
u(x, t)= { - (5.36)
L0 for 2t < 3x

where the point of discontinuity moves with the velocity 2/3 as given by
(5.28). The solution (5.36) is evidently different from the solution (5.35) of
the conservation law (5.21) with the same Cauchy data. ' '

§5.3 Definition of Weak Solution

The moving discontinuities in the solntions of quasilinear equations were
first introduced as shock waves in the theory of waves of finite amplitude
in gasdynamics. This was done by exactly the same procedure as discussed
in the last section while generalising the meaning of a solution. The
use of the integral form :(5.16) of the equations in the derivation of the
jump condition is related to the basic fact that a physical law is generally
stated in the form (5.16) which, therefore, is fundamental and (5.9) can be
deduced from it. Our aim in this section is to give a more clegant definition
_ of the generalised solution.
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As mentioned earlier, we consider only those quasilinear equations, which
can be put in the divergence fiym (5.10), i.e.

8H | OF : ' '
7 -!——E&—i—K-O. _. (5.37)

Let the Cauchy data on £=0 be given by _
Ulx, 0)=o(x). (5.38)

Let V belong to a class of vector functions of x and ¢, called test func-
tions, such that VEC™ and it vanishes outside a closed bounded domain in
tbe (x, f) plane. Consider now a genuine solution U(x, £) of the differential
equations (5.37). Pre-multiplying the left hand side of (5.37) by the test
function ¥ and then integrating it over the region ,@-(t 20, — o0 < x < D©),
which is the upper half of the {(x, f)-plane including the x-axis, we get

” V(%?-i_— g—kK) dx dt=”. ( —%%/H—%L;F+ VK) dx dt
R% R, :
+” {i v+ (VF)}dx dt. (5.39)
) dt dx - T
R ‘ .
Using the Gauss divergence theorem for the second integral on the right
hand side and noting that ¥ is zero on the boundary of R} (actually it is of

compact support) except possibly on the portion where the boundary is the
x-axis, we get :

oH OF (v, eV .
” V(?;+5}—C+K) dx dt—jj(—atHHaF+VK)dxdt

2 2
R R

| —rj V(x, OH(, 0, Ulx, 0) dx. (5.40)

When U is a genuine solution of (5.37) and (5.38), the identity (5.40.) giifes
oy, v » |

J‘J. { ——C.TI*H“'-E)—C F+ VK} dx dt

RE :

'""'jim Vix, O)H(x, 0, p(x)) dx (5.41)

for every admissible test function V. However, since in (5.41) only integrals
of functions of U (and not its derivatives) appear, it can be satisfied by a
larger class of functions U than the class of genuine solutions of (5.37) and
(5.38). |

Definition: We deﬁgg! a-wedlc solution of the Cauchy problem (5.37) and

=R

(5.38)to bea mieasurable vector function U{x, t} on /@ which satisfies R 1R s

(4.41) for evéry admissible test function V.
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Let 7 be an adinissib]e test function such that the intersection of the
support of ¥ with the x-axis is null. Then P(x, 0)=0 for all x and (5.41)
reduces to

f J ( F+ VK) dx dr=0 (5.42)

for all 7.

Theorem 5.1 A weak solution U(x, t) of (5.37) and (5.38), which has conti-
nuous partial derivatives, is a genuine solution of the problem.
Proof: To prove this theorem we proceed in two steps. The first step
consists of showing that U(x, 7} satisfies the differential equations (5.37) and
for this we shall consider only the test functions of the type ¥ so that we
use the result (5.42) which is independent of the Cauchy data ¢(x). The
second step is to show that U(x, ¢) satisfies the initial condition (5.38), and
for this we shall consider the general class of test functions and use the
relation (5.41) involving the initial condition.

For a weak solution which is continuously differentiable in Ri the
identity (5.40) with ¥ replaced by ¥ and the equation (5.42) give '

—{0H &F
=+ = =0. .43
jf V(é‘t +é‘x+,K) dx de=0 (5.43)
| R |
Since ¥ is arbitrary with compact support in ¢ > 0, —o0 <C x << %0, from
the fundamental Lemma of the calculus of variations we find that U satis-
fies the differential equations (5.37).
Next we consider general test functions for which ¥{x, 0) need not be
identically zero. U as a generahsed solution satisfies (5.41). Further, we
have just shown that if T&CYR%) it also satisfies (5 37). Substracting (5.41)

">~ from (5.40) and using (5.37) we get

[~ v o, 0, v, 09— . 0,660y as=0

where ¥(x, 0) can be arbitrarily chosen. This shows that H(x, 0, U(x, 0))
= H(x, 0, p(x)) which under the condition that A =graduH is nonsingu-
lar (see equation (2.8)), implies that U(x, 0)=p(x). Thus a continuously
differentiable weak solution also satisfies the initial condition. The theorem
is now proved.

In this and the subsequent sections, we shall discuss only those weak
solutions U(x, #), which along with their first derivatives are piecewise con-
tinuous, i.e. for which U, Uy, Ux possess jump discontinuities along piece-
wise smooth curves. Let U(x, ¢) be such a discontinuous solution which is
regular in all sub-domains of R: not containing a curve C': x= X(¢). We
shall derive the jump-conditions across the curve of discontinuity C. Let C
divide the domain D in the upper half of the (x, #)-plane into two subdomains
D: and D; and, as before, let ¥ be a test function with compact support
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entirely within D, Since in Ds (2 =1, 2}, the function U(x, r) is a genuine
solution, it satisfies {5.37). Therefore, from the identity

” V(dH 3F+K) dxdf"” (_—H—a_VF-l-VK)dxdr

it o
o
+JJ {'37075)+'5—x_(7f?)} de di,e=1,2 (5.48)
we get _ '
_” (- SLH-GeF+7) s ar- ”{3 PH)+5 (VF)}dxdr =12,
Di
- (5.45)

Converting the integral on the right hand side by the Gauss divergence
theorem into a curvilinear integral on the boundary ¢D. and noting that
V=0 o0n dD, except at most on a part of it formed by C, we obtain

f J (- ﬁKH PK) dvdr = [_PitHy+ndmy a5 (546)

and

- ”(—%}71{ jﬁrwx) dvdi = — j V{m(mr}m(m}ds (5.47)

2
where (rx, ) is the unit normal drawn from side 1 to 2 and the suffixes /-
and r represent the limiting values of the quantities as we approach the

=Y

o

Fig. 5.4 Domain D=D;|JD,-C is the curve across which the
weak solution suffers jump
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curve C from regions D1 and Dz respectively. Adding (5.46) and (5.47),
we get ‘
—j ( ?a—KH—a—KF+ VK) dx dt = -—I Pin[H]+ns[F} ds  (5.48)
3 dx ox - Je
where [£] is the jump of a quantity f from left to right® (see, for example, the
definition (2.42)). The left hand side is zero, since U is a weak solution _and
the -support of ¥ is contained in D. Therefore, the line integral on right

hand side of (5.48) identically vanishes for all such test functions V. From
the fundamental theorem of the calculus of variations, we deduce that

miH1+ nx[F]=0. ' (5.49)

For a physical interpretation of (5.49), we note that —m/n. represents
the rate of change of x with respect to ¢ along the curve of discontinuity
and hence represents the velocity of propagation of the discontinuity in x-
direction so that-

: ~4X0
- 2o s)= | ) (5.50)

Then (5.49) gives the jump condition in the form

| [HIS@-IF]=0. (55D
Definition: The condition (5.49) or (5.51) which joins the state u on the
left of a discontinvity to the state - on its right is called a Rankine-
. Hugoniot condition. ' :

We note that the Rankine-Hugoniot condition (5.51) represents # relations
between 2n+ 1 quantities:

n components s, a1, ceny ty of

n components g, o, e, thar OF Ur

and
S the velocity of the discontinuity.

Therefore, if Ur is kept fixed, the states U, form a one-parameter family of
states given by ' : '
U, = Usi(e), Ua(0)=Ur (5.52)
where {7 is a vector function of a single variable and « is a measure of the

amplitude of the discontinuity. The velocity of the point of discontinuity is
also a function of the parameter ¢, i.c. '

S=8(e). , (5.53)

An immediate consequence of (5.49) is the following theorem.

*With respect to the reader {see footnote on page 115).
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. Theorem 5.2: For a linear system of differential equations the curve of
discontinuity C is a characteristic curve.
Proof: In this case, 4 and B given by (5.13) are functions of x and ¢ only.
Consequently H and F are of the form

H=AU, F=BU. (5.54)
From (5,51) and (5.54) we have
(B—SA)U]=0. (5.55)

For a nontrivial solution for [U/], S satisfies the characteristic equation
det (B~ S5A4)=0, showing that S equals a characteristic velocity c. The
discontinuity curve, is therefore, a characteristic curve.

Tor a system of quasilinear equations, the jump velocity S(¢) is, in gene-
ral, different from a characteristic velocity. However, for sufficiently weak
discontinuities, i.e. for discontinuous functions for which the parameter €
(introduced in (5.52)) tends to zero, we shall show that the shock velocity
S(e) tends to a characteristic velocity.

Using the notation introduced in (5.52) we write the jump condition (5.51)
in the form

S(G)(Hsh(e) - H(O)) = Evk(s) - F(O) (5.56)
where
HS.TJ(E) = H(Ush(e)), Fsh(e) = F(USIJ(EJ)-
Differentiating (5.56) with respect to e, using graduH =4 and graduF= 5,
and letting ¢ — 0 we get
S(0)As(O)U(0) = Bsif0) Ui 0)
where a dot denotes differentiation with respect to . We note that Au(0)="
A(U71), Ba{0)= B(U;) and write the last resuit as
{B(U) — S(O)A(UD} Ua(0)=0. (5.57)
 We can always choose the parameter ¢ to be such that U.(0) is not a null
~ vector. Therefore, it follows from (5.57) that S5(0) must be equal to a charac-
teristic velocity, i.e.
S(0)=c(U) : , (5.57(a))
which proves the assertion that as ¢ — 0, S(¢) tends to a characteristic velo-
city. We also note that the derivative U;4(0) must be a scalar multiple of

the corsésponding right eigenvector, i.e,
USIJ(O) = w‘(U:) (5.57(]3))

where « is a scalar constant.

*§5.4 The Entropy Condition and a Shock

From the example in section 5.2 it is clear that a weak solution of a Cauchy
problem with admissible Cauchy data is generally not unique. Instead
of goinginto the question of uniqueness of a general Cauchy problem, we
note that the reason for the nonuniqueness of the solution in the example
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discussed in section 5.2 is the existence of discontinuous solutions along
with a continuous solution with the same Cauchy data. Therefore, it appears
that criterion for selecting a physically relevant weak solution is closely
associated with the search for a criterion for an admissible discontinuous
solution, A mathematical criterion for admissible discontinuities can be
derived from the following stability consideration. .

A discontinuity is permissible if when small amplitude waves are incident
upon the discontinuity, the resulting perturbations in the velocity of the dis-
continuity and. in the resulting waves moving away from the discontinuity are
uniquely detérmined and remain small.

An admissible discontinuity satisfying the stability condition is called a
shock. From the stability criterion, we can deduce the following simple and
easily verifiable condition for a discontinuity to be a shock (Gelfand, 1962).

Let us consider a piccewise smooth weak solution U(x, ¢} of hyperbolic
conservation law (5.18) with distinct eigenvalues ¢y, €2, ---; £n satisfying the
condition '

el) < exU) << oo < enlU) (5.58)

for all values U for which the characteristic velocitics are defined. Let P be
a point on a line of discountinuity and let as before, Ur and Ur be the limit-
ing values of U as we approach P from left and right. Let us first assume
that the discontinuity curve itself is not a characteristic curve. Let us draw
those characteristic curves which start from the point P and go to the left
side of the discontinuity curve as ¢ decreases. Similarly, we draw those
. characteristic curves which start from the point P and go to the right side
of the discontinuity curve as ¢ decreases. The. characteristics of this type
" that are on the left are those for which

edUD) > 5(1) : ' (5.59) -
and that are on the right are those for which
iU < S(). (5.60)

Thie-stability criterion for the shock leads to the following result which we
state without proof (see Gelfand ( 1962)).

Theorem: A d'isc'én'tinuity is a shock if the total number of characteristic!
curves converging at P from both sides is n+1. ;

We briefly mention here that the n+1 characteristics which reach # from
both sides carry n+ 1 pieces of information from the state of the system at
a smaller value of z and these pieces of information together with the n
Rankine-Hugoniot relations (5.51) uniquely determine the 21 quantities:
the # components of U, the # components of U, and S(s).

Analytically, we can express the requirement of the above theorem for a
discontinuity to be a shock, as follows:

There exists an index k, 1 < k < n, for which the inequalities _

ex-1{U) < § < el ‘ (5.61a)
Ck(Ur) < S < C'k+1(Ur) I (Sﬁlb)
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—1

Fig. 5.5 The characteristics which converge at P from both sides

should be satisfied. We note that for k=1 :the ineguality (_5.6]a) and fol
k=n, (5.61b) become meaningless. In these cases (5.61) are replaced by

S < (U, e(Un) < S < exUy) for k=1 (5.62) -
and : - _
en-Un) < § < D), eUr) << S for k=n. - (5.63)

Definition: A criterion which ensures that a discontinuity is a shock is cali-
ed an entropy condition. B ‘
The term entropy condition comes from the fact that” this condition, in
the form of the second law of thermodynamics, was first encountered in
gasdynamics where an ambiguity arose. The Rankine-Huggniot conditions
allow both compression and expansion discontinnities. 23 g fﬁ'st pointed. ;
out in 1910 that the physical principle which says that the entropy per unit
mass of the gas must increase as the fluid particles cross the disconfinuity
surface, allow only a compression discontinuity called shock. _
~ For each value of k, the entropy condition mentioned above gives a shock
called a shock of the kth characteristic family or simply kth shock. Thus we
see that there are n different kinds of shocks corresponding to the different
values of k from 1 to n. For the kth shock the inequalities in {(5.61)-(5.63)
imply that cx(Uy) << S < ex(Uy). Therefore the kth shock, when it appears;
prevents the intersection of the characteristics of the kth family coming from
_an initial data. On the contrary, if for any k, the characteristic curves on
the right and those on the left diverge from the curve of discontinuity, then
the discontinuity is not admissible. :
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It may happen that the curve of discontinuity may coincide with a charac-
teristic curve on one or both sides (but belonging to the same family, say kth)
of the discontinuity curve. Such discontinuities are also admissible and are )
called contact discontinuities. We mention here that a contact discontinuity
appears in a characteristic field which is not genuinely nonlinear (Lax,
1957), _ -

*35.5 Application of the Theory to Gasdynamics

Consider the one dimensional inviscid, nonconducting motion of a poly-
tropic gas (see §3.4 but here the motion is not assumed to be isentropic).
The differential equations of motion are the three equations, namely equa-
tions of continuity, momentum and energy and they are derived from the
integral form of the three conservation laws representing the conservation
of mass, momentum and energy. However, from the above three partial
differential equations, we can determine another partial differential equation
which can be put in conservation form '

-3% (pcr)w*-a—f; (pgo)=0 (5.64)

~ where p is the mass density, o the specific entropy and g the velocity of the
gas. Equation (5.64) represénts the conservation of entropy. However, we
have seen in section 5.2 that different conservation laws are not equivalent
for weak solutions. From contintum mechanics we know that the conser-
vation of mass, momentum and energy are fundamental laws and the
“entropy may be permitted to increase according to the second law of
thermodynamics. The law of conservation of entropy holds for continuous
flows without dissipation but does not apply to discontinuous flows.
Therefore we start with the following form of the equations of gas
dynamics ‘ ‘ o
7 %I-#g—f =0 . ~ (5.65)

where _
r oo rg
= P e PP+p. LG5S

1 ‘ p 1
)] et
.L”(‘* 27 ] LT 727 )
Here p is the pressure and e is the internal energy per unit mass, i.c. the
specific internal energy given by ' -
: e=p/{lv—1Dp}.
For a polytropic gas p, p and ¢ are related by

' p=A(0)p" (5.67)
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where A is a function of @ only and y is a consiant. Further the local velo-
city of sound, a, is given by

@=2 (5.68)
P .
The characteristic velocities are

_ c=g-a,c=q,c3=q+a. _ (5.69)

The Rankine-Hugoniot conditions (5.51) give
pi{qi— S)=pg:—5) : (5.70)
gi(gi= S} +pr= prg(gr— S) -+ pr (5.71)

and

piler+ 34 (g = )+ qupr = prler+ 442 (gr = S) +qopr. - (572

A possible solution of the Rankine-Hugoniot conditions is the degene-
rate solution

q: =S=4g, p1=pr, pr= arbitrary, p, = arbitrary. ' (5.73)

In this case we find that the relations
a(Un) << S=c(U), e Uy =8 < 3 (Us) ‘ (5.74)

are satisfied. Therefore, we have a contact discontinuity for -which the
characteristic curves of the second family on both the sides of the shock
merge with the ciurve of discontinuity. The contact surface moves with the
gas particles and separates two zones of different density. The pressure and’
the fluid velocity are continuous across the contact discontinuity. We note
that the second family of characteristics is not genuinely nonlinear. -

Assuming that S 5£ ¢; which is equivalent to S 5 g, sincep # 0, we can
show that (for details, see Courant and Friedrichs (1948))

(gi—S)(g:— S)y=a** (5.75)
where ‘
2 = y—1, 2
%2 — — Y= . .
@ (q: y-H ] EYE ] ( -y+1a”' (5,'76)

a¥ represents the common critical (or sonic) velocity on both sides of the
shock. We can further prove that

| ¢i—S | > a* implies a; < a* }

and (5.77)

[ gi— S| < a* implies a; > a*

where the suffix / stands for both / and r. Now we get the following types
of discontinuities:

@) S-@< -a* - (5.78)
From (5.75) we get —a* < §—gr < 0. Inequality (5.77) implies
S—q < ~ajand —a, < S—¢, < 0. - (5.79)



212 Hyperbolic Partial Differential Equariéns

The entropy condition is satisfied in the form

S'< efUn), e(Un) < 8 < eo(Ur) (5.80)
“Since S < q1, 8 << gr, 1. the dlscontmulty is a backward facing shock which
is crossed by the fluid particles from left to right. The relative position of
the first family of characteristics and the shock path are shown in Fig. 5.6. We
can show that in this case specific entropy (entropy per unit mass) ¢ and
. pressure p increase when the fluid particles cross the shock (see Courant and
Friedrichs, 1948)). :

(i) —a* < S—qr < 0. S (5.81)

th

Fig. 5.6 Relative position of ‘the characteristics of the first family wif;h back-
ward facing shock. The characteristic curves and shock have been
shown by dotted lines and continuous line respectively

In this case, we have the following results
S—gr << —a*, — @ << S—q <0, 5—qr < —a (5.82)

Since ¢(Uy) < § << ¢,(Uy), the entropy condition necessary for the stability
of the discontinuity is no longer satisfied and consequently: it is not an
admissible discontinuity, Here the pressure and entropy decrease as the fluid
particles cross it from left to right.

(iii) &* << S—aq (5.83)
which implies V - .
O<S—-qr<a ar << 8- q1,0<S gr << ar. (5.84)

. Again the entropy condition (5.61)~(5.63) is not satisfied for any value of

k. The discontinuity surface, which is now a forward facing wave and is
crossed by the fluid particles from right to left, is not an admissible discon-
tinuity. We can show that both the pressure and specific entropy of a flnid
clement decrease after passing through the discontinuity. As in the case of
Fig. 5.7, the two characteristics (of the third family) starting from an
arbitrary point of the discontinuity curve diverge away on the two sides
showing that discontinuity is not admissible.
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t* Cdxfdt=5(t)

Z

"X

o ' ' ' *

Fig. 5.7 Relative position of the characteristigslof the first family with

. respect to the curve of discontinuity in case (i)

(iv) 0 < S—qt << a* : ' ‘ S (5.85)
In this case we get R _ B
0t < S—gr,0 < S—qi < an 0 < S—qr. (5.86)
The entropy condition ' g
cUn < 8§ < aUp, as(Un < § _ (5.87)

is satisfied so that the discontinuity surface is a shock of the third charac-
teristic family., This is a forward facing. shock which.is crossed by the fluid
particles from right to left. We can show that the pressure and the specific
entropy increase in the medium affer the shock transition. If we draw the
characteristics of the third family on two sides, we note that the shock
prévents intersection of the curves (of this family) coming from the two sides
as in the Fig. 5.6. _

Thus out of the four cases, only two cases, namely (i) and (iv) represent
shocks. In both these cases, we note that the flow in front of the shock is
supersonic relative to the shock and the flow behind it is subsonic relative
to -it. Finally, we surmise that the only admissible discontinuities in one
dimensional gas dynamics are ) :

Backward facing shock: S < ¢(U), c(Ur) < S < o U)

Contact discontinuity @ cdUn) << ex(UD=8=c(Ur) < c3(Ur)
and. ' _

" Forward facing shock . o(Un < § < es(Ud), es(Ur) < S,

EXERCISE 5.1

*]1, Find the solution of the following initial-boundary value problém
for the equations (5. )

- g(x, =0, p(x, 0)=po, p(x, 0)=po, x > O
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and -« q(Ut, )=constant=U, ¢t > 0
at the points in the domain x > Ut, ¢ > 0 of the (x, £)-plane.

*2. Prove the following statement for a forward facing shock discussed

in the section 5.5:
- The jumps [p]=pr— ps and [p] = p,— p; in pressure and density respec-
tively are greater than zero.

*3. Show that the shock velocity S(e), as a function of the parameter e,

satisfies S(0)= cs,f,(O), where the dot denotes d1fi’erent1at10n, and Csh(é)
= c{Usq(e)). Using (5.57a), show that’ _
8(e) = (U} + (U} +0(<?)

i.e. for a weak shock of the kth family, the shock speed S(e) is the
arithmetic mean of the kth charactenstlc velomtles in the regmns on
. the two sides of the shock.

/ *4, Verify the assertion of PYQP:—anumber 3 5.5 for the ,.

gasdynamics shocks,
‘5. Find the solution of the following initial value probIems

A e 0,1 > 0, —0 < x < @

0for x< —1
(i) u(x, 0)= {1 for —l<x<1l
: O0for x>1

2for x< ~1
0 for x> 1

6. In the case of a linear system of equations

' (ii) u(x, 0)= {l-for —1 < x < ]

LU=A(x, r) 2 +B(x t) + Dix, HU = 0
show that the weak solution satisfies the equation
vy e ar= |7 v 00x, 00 ax
R _ ' |
where L* is the the adjoint operator and other quantitics have the same
meaning as those in section 5,3,

*7. For a hyperbolic conservation law, define Riemann invariants of the

kth characteristic field as in the problem of exercise 4.1. Show that
for a weak shock, the change in a Riemann invariant of the kth field
across a kth shock is at most of the third order in € [Lax (1957)].

*8. Consider a system of conservation laws and two one-parameter family

of states Usin{8) and Usu(e) which can be joined to a state” U on the
left respectively by simple waves and shock waves of the kth charac-
teristic family (see (4.9) and (5.52)). Prove thart for small values of &
and «, the transition through the shock agrees with those through the
simple wave up to the sccond power in the shock strength,
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#¢5.6 Riemana Initial Value Problem: Solution with the Help of
- Shocks and Simple Waves

We shall discuss this problem very briefly assuming that all the characteri-
stic fields are genuinely nonlinear. ] )

Any constant state Uz on the left can be joined to a one-parameter family
of states Usim(8) (see (4.9)) on the right by a kth centered simple wave, where
5, when defined by (4.12), can take only positive values due to the inequality
(4.11). The states Usim(3) depend not only on the amplitude 6 of the simple
wave but also on the state Uz In fact, in this section we shall denote these
states by the symbol Usim(Us 8). Similarly, the constant state Ur can be
joined by & kth shock to another one-parameter family of states Usi(e) (see
(5.52)) on the right, where the parameter.e, also defined by e= cnlU7) = elUD,
can take only negative values due to the.entropy condition. (5.57)-(5.58).
Thesc states also depend on U; and in this section we shall denote them by
the symbol Uu{Ui, €). The two familics Usim(Uy, 8) and Ua(Uy, €) are non-
overlapping, i.e. the states Usin( Uz, 8) cannot be joined to the state {/; on the
left by a shock and the states UsUy, €) cannot be joined to Ut by a centered
simple wave. Since there is a lot of freedom in the choice of the parameters
5 and e (i.e. we can replace 8 by any monotomically increasing function of
itself), we can suitably choose these parameters so that the following
theorem is true.

Theorem 2.3 Given a constant state U; on the left, it can be connected fo a

_one-parameter family of states U,=0(U €), —ea <<€ < € (€0 = 0) eitber

through a shock or a centered simple wave of the kth characteristic field.
We can choose the parameter € such that a value of « in the interval (— <o, 0)
corresponds to a transition through a shock and that in {0, =) to a transition
through a centered simple wave. The function T(Uy, €) is twice continuously
able with respect o e '

For the proof of the theorem, refer to Lax (1957).

Now, we are in a position to solve one of the very basic problems of

| nonlinear hyperbolic equations, namely the Riemann problem. This consists

of finding a solution of the system of conservation laws (5.18) satisfying the
'nitial condition '

Upforx < 0
U(x, 0)=

(5.88)
Unpforx > 0 .

“where Up and U, are constant vectors.

If U(x, 7,) is a weak solution with initial value (5.88), theU(ax, «t),
where o.is any constant > 0, is also a weak solution of the same probiem.
Assuming that the solution is unigue, we find Uex, af) = U(x, t) for alt
« = 0. This is possible if and only if U(x, f) is a function of x/t. '

This solution consists of #-+1 constant states Uo, Uty «ery Un-1, Und the
state Ux-1 on the left is joined to the state Uk on the right by a kth shock.
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or a kth centered simple wave. The two end states Up and U, are given and
the n—1 intermediate constant states are found as follows.

Accordmg to the therem 5.3, Ut is to be selected from one-parameter family
of states U(Us, e1) = UW(Us, €1) say, Ua from two-parameters family of
states U(U(D(Uo, €1), €2) = U@ (U, ¢, €2), ..., and U, from the p-parameter
family of states :

- ﬁ(U("_D(Ug, €1, €2, «ve; €4-1), €p) == U(")(Uo, €1, 62, .iv, €) SAY.
" Therefore for some values of €, €z, ..., €, we have

: w=UMNy, €1, .0, €n). {5.89)
Further ] . |
Uo=U"(Uy, 0, ..., 0). (5.90)

: () '
The derivative (aa—('ik«) at (€1, €2, vvv, €)=(0, 0, .... 0) is parallel to

the kth right eigenvector (for shock it follows from (5.57b) and for simple
wave it follows from (4.10)). Therefore, the Jacobian of the transformation
(5.89) from (e1, 2, ... ex) to U, is not zero at origin in (e1, €2,, -.-, €n)-space.
By the implicit funciion theorem, a sufficiently small cube in e-space about-
origin is mapped in one to one way onto. a neighbourhood of Uo in
(ss; 43, +.., um)-space. Therefore, given a state U, sufficiently close to Up in
(1, 3, --., un)-space, we\cau'uniquely find a set of values of €, €z,..., €z SUCh
that the relation (5.89) is satisfied. This can be summarised in

Theorem 5.4 Every state Us, has a neighbourhood in (uy, s, -..,us)-space such
that if U» belongs to this neighbourhood, the Riemann initial value problem-
defined by (5.18) and (5.88) has a solution, There is exactly one solution
consisting of centered waves (shocks and simple waves) provided the
intermediate states are restricted to lie in that neighbourhood of Us.

Interpreted in the language of wave propagation, the solation of the
Riemansiproblem shows that the initial discontinuity in U breaks into »
waves belongm_g to'# characteristic fields of ¢;, ¢2 .+, cn. These waves are
separated by n—1 intermediate constant states U, Uz, very Un-i.

The existence of a weak solution of an afbitrary initial value problem for
a system of nonlinear conservation laws can be proved with the help of the
solution of the Riemann problem.

Part B: EQUATIONS IN MORE THAN TWO
INDEPENDENT VARIABLES

Let us recollect our summation convgntioh. A repeated suffix from the_
set {7, 7, k, «, B, y} will represent summation over the range of the suffix. The
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range of 7, j, k is 1,2, .., 1 and that of &, B, v is 1, 2, «.-, m. Let us also
note that we shall treat linear and quasilinear equations together. However, -
in the second case our results are true for a given solution. -

*$6 THE CAUCHY PROBLEM AND A CHARACTERISTIC
‘ ‘ MANIFOLD

Consider a single nth order equation for a single unknown function # of
m+ 1 independent variables x1, X2, «Xm, 1

S " TR
Xls orey Xty 1 U, axla ety axm ) ataw"'J ax,;)'“s
"y anu)_ .
dxmotnt? Of" =0 - 1)

and an m dimensional manifold (or surface)

(s, 1)=0 or Xo=Xa0(m), L= to(na). 6.2)
In §5.1 of Chapter 1 we have shown that it is possible to write the para-
metric representation X« =Xuo{7g), 1= to(na) of an m dimensional manifold
when its equation is given in the form p(x, £)=0. Let us suppose that the
values of u and the r—1 exterior derivatives ddpt, i=1,2,, ..., n—1,
arc prescribed by

()= u(xa0(7p), tolnp) =tol7g) (6.3)
and . ' ‘
i . .
(52), =fam, i=1,2, o m1 (64
where g, uc(}l’, e us" " are known functions of 7, 12, ey T .

The Cauchy problem for the nth order equation (6.1)is to find a solution
which satisfies the n conditions (6.3} and (6.4) on the manifold y. -

In our attempt to solve a Cauchy problem for a single first order equation
in more than two independent variables (§5, Chapt. I) we notice that a
unique solution can be found only if the mainfold y is not tangential to cettain
“exceptional” manifolds called characteristic manifolds (or characteristic
surfaces). We also notice that if the surface v is coincident with a character-
istic surface and if the solution of the Cauchy problem exists, the Cauchy
data cannot be arbitrarily prescribed but must satisfy a compatibility
condition. Tn this section we shall discuss these results in connection with
a higher order equation (6.1) (or a first order system) in more than two
independent variables.

. Consider first a single linear or quansilinear equation of nth order:

. anu
. ) Aiy Bt T T T.
z,+...+zm+1=n . axl ...ax " aﬂmﬁl
m

+B=0 (69

where the coefficients Af...iwins and B depend on X, 7, # and the partial
_ derivatives of u up to order n— 1. The values of the coefficients are known
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on the datum manifold y. The condition that ¥.1 9{xx, £)=0"is a charac-
teristic manifold C is : : .

Olxe, 1; px,, p= X Az‘l...:',,,i,,,hg:;; ...gai";gé';ﬂ'i 219’ ony. (6.6)

hteodini=n
Similarly, let us consider a-single nonlinear equation of the second order
Fxe, t; Usy, Urs u,,a,',ﬂ, Unyey ) =0, 6.7)

‘It can bé shown that the condition that the surface ¥v: o(Xa, £)=01is a
characteristic surface is

O(xa, t; Pxe , p)=02Fy,, + oy Fu,xa +pxx pxp Flip =0 on v, (6.8)

Next we pass on to a system of n first order quasilinear equations in n
dependent variables u), us, ..., u,, Considér n equations of the form '
Ai;%’ -+ B;(Jq) %
where u, ..., u, are the » dependent variables, x,, ..., Xm, t are the m+-1
independent variables and the coefficients Ay, By, Ci, (i, j=1,2, ..., n) are
functions of x, #, u; over a domain Ds in (X, 2, w;)-space. Let 4 and B®
be nXn matrices whose elements in the ith row and Jth column are A; and
B,-(,‘-“) respectively and let U and C be the column vectors with components
Uy, g, «+v tinand C1, €, -.., Cy respectively. The syster of # equations (6.9)
can be written in a more compact form as :

ou ou
—_— (o) "> =
Aat + B« z +C=10. - {6.10)

+Ci=0;i=1,2, ..., n - (6.9

X
Consider an m-dimensional manifold

V1 0(xa, 1) =0 01 xu = x(13), 1= to(7) : (6.11)

in (xz,.2)-space and 1 functions u(7g), such that {(Xa0, to, ti}E Dafor ()1,
where I is @ domain in an m-dimensional space of variables 7, 72, ..., 7.
The Cauchy problem for the system (6.9) or (6.10) is to find a solution,
U(xq, t) in some domain D in (x,, t)-space, of the equations and satisfying

Ulxao(ma), to(np))=Ug(ne), (m)ET ' (6.12)

where wi(np) are the components of the column matrix Uy, As in § 5.1 of
. Chapt. 1 we introduce m -1 independent functions M.{xp, £), p(xp, 1) 2s new
independent variables and transform the system of equations (6.10) and the
initial conditions (6.12) respectively to '

: : au e dng\ oU
(o) — A =E 4 g 7B ) VY =
(AP:+.B & qu)ap ( at B . a"?ﬁ +C=0 (6.13)

and

Ulns, p =0)=Us(ns). 6.19)
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From the Cauchy data (6.14), all interior derivativeés 0U/d7p can be
determined at ¥ : ¢ =0. The equation (6.13), in which all quantities except
8Udp are known on -y, shows that the exterior derivative ¢U/dp can be.
uniquely determined if

O(xa, 13 Px, P=det (Ap: -+ B®py ) #0onp=0 © {6.15)

where det /7 means determinant of the square matrix H. We can multiply
the equation (6.13) by the inverse of the matrix (4p:+ B®p,,) which is
non-singular in a neighbourhood of the initial manifold (g, fo, u)ie) in Dy,
and get

WU_ _po o
‘ dp B e
where the righi hand side is known on y. When (6.15) is satisfied, we say
that the datum manifold is free or noncharacteristic.
.~ When @ =0 on y, the datum manifold is said to be a characteristic mani-
fold, the matrix (Ag: + B®px,)p—0 is singular and has at least one left null
vector Jo (a row vector with components los, Joz, ++-, lon) satisfying

—c © (6.16)

lo(Ape+ Bpx, )p-0=0. (6.17)
Premultiplying (6.13) by lo, we get a restriction on the Cauchy data:
o, 3’?&) o ]
AR g IR = )
Io[( r + B " O ) g +C oo 1] (6.18)

corresponding to a choice of the null véctor fo. The number of restrictions
is equal to the number of linearly independent left null vectors of the matrix
AP’ + B(m)gaxg;. . . . .
As usual, for the quasilinear system (6.10), we can determine whether an
initial manifold is a characteristic manifold or not only when the dependent
* variable U is known on . For a linear equation, the characteristic mani-
folds are determined without any reference to the values of U on the
~ manifold. _
* We make here two important remarks. The first is about the characteris-
tic equation 9=0 in all cases when Q is given either by (6.6) or (6.8) or
(6.15). The remark applies equally to linear, quasilincar and nonlinear
equations with an assumption that for quasilinear and nonlinear equations,
it applies only when a known solution of the partial differential equation
has been substituted in Q. The characteristic condition Q=0 is required to
be satisfied on the manifold v: ¢ =0, i.e. the function ¢ need not satisfy the
equation Q=0 identically in m-1 variables x,, 7 but only after using the
condition ¢ =0. However, if Q =0 is satisfied identically, we get a one-para-
meter family of characteristic manifolds @(x., #)=c in which the manifold
¢ =0 is embedded. A simple example will make the point clear.

Example 6.1
For the wave equation

Hir=Uxx -+ Uyy Uz . (6. 1 9)
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in the four dimensional space of variables x, y, z, f, the characteristic
equation is _ .
) - pr—pr—pi=0. : C(6.20)
Let us choose a special characteristic surface C3 (a ‘sphere of expanding
radius ¢ in (x, y, z)-space, for which ¢ > 0) given by

7 p=x2R+2— 2=, (6.21)
Itis a“characteristic sueface, since
pi—pr— Py —pr= M= 32— 32~ 2P)

vanishes on C3 due to the relation (6.21). However, it is simple to see that
the function ¢ defined by (6.21) is not a solution of the partial dlﬁ"erentlal
equation (6.20). The manifold Cs can also be represented by

=t~/ PR+ 2=0 T (6.22)
where the function ¥ satisfies the characteristic equation Q=0 identically.
 Therefore we get a family of characteristic surfaces:

\/x2+y2+22—t— (6.23)
where ¢ is the parameter The surface Cs is a member of the family (6. 23)
when ¢=0.

Similarly, it is simple to see that the famlly of surfaces A=+ \/ xI+yr+z22
=dis also a family of characteristic manifolds, A particular member of
~ this family is Ds obtained by taking d=0. We note that the equation (6.21)

is a combined equation for the two surfaces Cs and Ds.

" In this example we have shown that it is possible to embed the charac-
tens‘uc surface Cs in- a one-parameter fannly of characteristic surfaces. This
is possxble for every characteristic surface of any partial differential equation
(see problem 2 in exercise 6.1). Thus all characteristic surfaces of an equa-

_tion can be obtained by solving the characteristic partial differential equation

" Qe 1, ps, =0 , (6.24)

The second remark is regarding the invariance of characteristic mam~
folds, We state thlS result in the form of a theorem,

Theorem 6.1 A characteristic surface of a partial differential equation is
invariant under a transformation of dependent and independent variables.
Proof We prove this theorem for a system of  first order equations (6.9).
We first change only the dependent variables from U to V. Let us suppose
that the components of U and V are related by a nonsingular transfor-
mation

= 3i(kas £, E). | 6.25)

The determinant of the matrix

~

T=[7%= [gzk] D
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is neither zero nor infinity in a domain of (xe, f, #)-space. Equation \_(6.9)
now becomes :

_ AT%—I: + BT % + (C+A§;—;T +BM%%) =0 (1)
A characteristic manifold ®(xa, 7)=0 of (6.27) satisfies
det (AT, + BOT D, ) =0 - (6.28)
or '
det (A, + BOD, )-det (1) =0, (6.29)
Since det (T) = 0, it follows that ® satisfies the equation h
det (4B, +BOD, )=0 ' (6.30)

which is the characteristic equation of the original system (6.9). This proves
the invariance of the characteristic manifolds under an arbitrary transfor-
mation of dependent variables. ' g

To prove the invariance under a change of independent variables we
consider a new set of independent variables &g, 7 defined by

§s=§a(xa, ), 'r=7($ca, 1. ) {6.31)
Then , . .
oo b g8 8 0 0 0 0
= T E U T O B xe O (6.32)
and the equation (6.9) transforms to ’ '

or or \ou; d€; 225\ duy _ .
e+ B Ot [ 4,958 5 poy SSB )21
(A‘)a; B axm)a \(‘_i! 5 T Bxu) S (6.33)

The characteristic equation of (6.33) is

' ar dr . i o€y '
.t B —=f 4 B =
det[(A i B¢ )qaf +(A o Bt )me)“f’) 0. (6.34)

0%y

Collecting the coefficients of A and B® and using (6.32) we find that this
equation reduces to ‘

det (Ape+ B@p. )=0. {6.35)

‘This is the same equation which is satisfied by a characteristic manifold of
(6.9), ie. the original system. This compleies the proof of the invariance of
characteristic surfaces..

These invariant properties give a special significance to the characteristic
surfaces. Let C:op(xs, t)=0 be a characteristic surface where ¢ satisfies
the equation Ofgx,, 1 Xu £)=0. Let us denote by S(t) the surface in
(1, X2, +0s xm)-space represented by plx,, 1)=0 for a given value of 7.
Then- the moving surface S(r) is a surface across which discontinuities or .
singularities of the solution Uflx,, t) propagate and, therefore, S(z) can be
interpreted as a wave front. If (1) be the unit normal to S(f) and ¢ the wave
{ront velocity, then by considering two successive positions of the wavefront
at time ¢ and 7+ 8¢ we can show that o
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Pxe

. R
o (le_[_sz‘i_ _sz )1/2 _ {6.36)

and

Pt

c= - '2 —.
(Px,+?’:2c2+---+?’§c,,,)”2

(6.37)

 *EXERCISE 6.1

*1. Show that a solution of the partial differential equation
Uspe+ =0
with Cauchy data '

ulx, 3, 0 =fx, ),  wlx,y,0=g(x,3),  wudx,y, O=h(x,
exists if the data satisfies the condition
gar(%, Py +hyfx, y) = 0.
Show also that when this condition is satisfied, the solution is non-
unique and we can add any functmn x(t) to a solution provided x(O)
» =% (0)=x"(0)=0.

*2. Prove that any characteristic surface ¢ =0 can be embedded in a one-
parameter family of characteristic manifolds ®(x. , ¢} = c satisfying the
partial differential equation

O(Pxa, Pe; x4, 1) =0

*7 THE WAVE EQUATION

In §4 of Chapter 2 we discussed well-posedness of the various boundary
value problems for the wave equation and derived explicit expressions for
the solution of the initial value problem (a Cauchy problem) in the case of
one, two-and three space variables. In this section, we shall view the wave
equation as a particular case of general hyperbolic equation and gradually
bring out those properties of this equation which can be generalised to

other hyperbolic equations. The wave equation in m-space dlmenswns for
the function u(xs , 7) is

Uy —C (ux1 bty g Foo by o y=0. (7.1)
The characteristic partlalgﬁiferentaal equation of the wave equation is
Py, > D=pi— 2y, P =0 - (7.2)*

If we interpi‘et o(xa J—O as the locus of a moving surface S(¢) in
(x1, X2, -+, Xm)-space, it follows from (6.36) and (6.37) that it represents a
wave front with wavefront velocity equal to =+ ¢, which is constant and
independent of the direction of the wavefront normal (g ).

*Since xu, # do not appear explicitly in the chatacteristic Dolyﬂomlal Qxe, 1, Peyr P2
we denote it by O(p.q, p.h '

-
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A closed form explicit solution of the initial value problem of the wave
equation for s > 4 has also been obtained (see Courant and Hilbert (1962),
§11, Chapter VI). The solution of the wave equation shows that the distur-
bances which are initially of finite extent are always bounded by a sharply
defined leading front and in addition if the number m of spatial variables is
odd and > 1, they are bounded also by a sharply defined trailing front.
These solutlons help us also in determining the domains of dependence and
influence as shown below.

The most important solution of the characteristic equatlon (7.2) repre-

sents a characteristic conoid in {x«, t)- space with its vertex at an arbitrary
point Po(x, #(0):

P = (1= 1)k — {0ra =50t =22 =0. (7.3)
(7.3) with plus (+) and minus (—) signs represent respectively the lower

‘and upper branches of the right circular conoid in space-tine with its vertex
at Po: i

(s ) = (1 @)2— g-(xm ) =) =0, (7.4)

Intersection of the conmd (7.4) by the hyperplane t=0is a sphere (a circle
when m =2, a pair of points when m=1) '

So: (it = x4 Goam 224 o+ (m— xR = 2602 (7.5)

“er T~

Xm-t
(X K(o)) - ()(m._ K(o)}z czt(o)2

X1 XZ

Fig. 7.1 The lower sand upper portions of the characteristic
conoid through P, in space-time.

in (xs )-space. The explicit solutions of the wave equation show that if the
initial data is changed only outside the sphere So, the solution remains un-
changed in the closed domain bounded by the lower part of the conoid (7.4).
and the sphere So. More accurately, the domain of dependence on the
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plane t=0 of the point Po is the set of points on the sphere So (when m is
odd except m=1) or the set of all points on and inside the sphere So when
m is even. We have now met a phenomenon in which the domain of depen-
- dence of a point Po need not consist of all interior points of a surface So.
Consider now the. role of a disturbance at a point Po in space-time. The
values of u at Po influences the solution for ¢ > 1® at all points on the
‘upper part of the characteristic conoid (7.4) when m is odd (except m=1)
and for all other value of m (including m2 =1} it also influences the solution
everywhere on the conoid and itsinterior. These point sets constitute the
domain of influence of Po. : ‘

Fig. 7.2 Risa space-like plane.

§7.1 Space-like Manifold and Time-like Direction

Consider a hyperbolic partial differential equation in and an m-dimensio-
nal manifold R in (xa, £)-space such that the value of u at any point Pon R.
does not influence the solution u at any other point of R. Then the mani-
fold R is said to be a space-like manifold for the given equation.

.An example of a space like manifold for the wave equation (7Z.1) is a
hyperplane ¢ = constant. Any other plane :

ot = 1) — na(xg — =0, (v, n.= consfant) _ (7.6)

through the point Pofs, 1) such that it intersects the characteristic co-
- noid (7.4) through Po only at Py, is also an example of a space-like manifold.
We now derive a condition on the coefficients  and #, in (7.6) for it to be
spacelike. 7
At the points of intersection of the conoid (7.4)and the plane (7.6), we
have :

> : o
-EE{(JC B N S ) LR Y oM x5)%)

={mlx 1"— x(f))) + 12002 = XY ve B X — e - an
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Using Schwartz’s inequality for the expression on the right hand side, we
get ‘ o : - :

) L ' ' . ‘
%
{7 G e O X P}

e (R A = P G A2 4 (e — X

which gives

2 .. S .
—C_?? g nznd- R . L . N ;‘ (7.8) '_
_ _Thereforej, if the inequality ‘
. 2 R 2 _
3 = n:ana . Qr Torie = ¢ _ (7.9

is satisfied, (7.7) can be satisfied only at the point Po, i.e. the only point of
intersection of (7.4) and (7.6) is Po. Thus the condition that the plane (7.6)
is a space-like manifold, is (7.9)..We note th 1;‘5]7].6) represents the locus in
(x,, 7)-space of a moviag planeLm hRno ‘—1318}1 the direction (1) and-moving
b
V atta
that (7.6) is space-like for the wave equation.
Consider now a space-like manifold R

f(xa:, t) =0

of the wave equation. Then its tangent planes should also be. space-like.

with the velocity which must be greater than the speed ¢ in order

‘ Therefore, the inequality (7.9) immediately gives the condition,

AR ey, O for all points of R S0 {7.10)

Spuce-like direction; A direction which lies in a space-like plane, is calleda
space-like direction. - : L ) 7

Time-like direction and curve: Consider a straight line in space-time passing
through a point Po(ng), 1), If the straight line lies in the interior of the '
characteristic conoid through the point Po, then the direction of the siraight
line is said to be a time-like direction for the wave equation. A curve

xa=Xal0)s “f=t(o) . (7.1
in the space time is said to be a time-like curve if its tangent direction is
always a time-like direction. This implies :

| s\t 1 (dx me) o
_ (3;) _'?2( do  do | > 0. o a1
A generator of the characteristic cbno_id is neither s_pa,éé—like nor time-
like. | o

«§7.2 Algebraic Criterion for Hyperbolicity

4 .
The term “hyperbolic equations’ includes all those equations or systems
for which the Cauchy problem is well-posed with respect to suitably chosen
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initial manifolds. However, from the point of view of applications, it is
necessary to have an algebraic criterion for hyperbolicity, which can be
easily verified. In the case of two independent variables the algebraic criterion
for hyperbolicity could be given (see section 2) in’ terms of the real roots for
A= .—f— in the characteristic equaiion (2.4), As problem 1 in Exercise 7.1
- .

shows, such a criterion is not appropriate when the number of independent
variables is more than two. In this section, we shall discuss a eriterion, for
the wave equation, which can be easily generalised to include a very large
class of hyperbolic equations,

The criterion for hyperbolicity is best expressed in terms of- the ‘normal
cone’. Denote pxx by ko and pr by kmi1; then the vector (ku, k2, -, km, k1)
is in the direction of the normal to the characteristic manifold P(xa, t)=0,
Writing the characteristic equation (7. 2) in the form

kmu—cz(h-ﬁ-kz-i- A - (7.13)

we note that the normals to the characterlstlc manifolds through a point
P generate a conoid called normal conoid in (ky, k2, -+, km+1)-space. If we
superimpose this space on (x, £)-space, the normal conoid is orthogonal to
the characteristic conoid at the origin. Note that the semi-vertical angle of
the normal conoid is 72 — 8, where '

c=tan2? B. : ] (7.14)

Take any vector C=({1, L2, :--, {m+1) which points in the interior of the
normal conoid. For any fixed nonzero vector 9 not parrallel to & and for

any arbitrary scalar A, the vector A§+0 represents a straight line 7. parallel )

to the vector § through the point 8. This straight line intersects the normal
conoid at two points, say 4 and B (in this case the normal cone consists of
two separate sheets, the lower sheet being the mirror image of the upper one
in the kmw1 =0 plane) This- 1mphes that the equation '

Q0L +0) =0 gy

where
| O) = k1=t + oo Fhem) (7.16)

has two distinct roots for X (i.e. equal to the order of the partial differential
equation). The hyperbolicity of the wave equation is related to the existence
of vectors of the type § such that the equation (7.15) has two distinct roots A
and M for an arbitrary nonzero vector 8 not parallel to §. This would ensure
that if 7 =0 is space-like, then the characteristic equation gives two real and
distinct characteristic velocities (see section 8.1, the second definition of
~ hyperbolicity). We also note that any plane perpendicular to the vector §

*[n (7.16) the arguments &y, ka» .., &y Of the characteristic polynominal have been
denoted by a vector k = (ky, kg, -ves ,,.+1) .
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.Fig. 7.3 A straight line L parallel to ¥ intersects
normal conoid in two points

(when ¥ points into the. normal conoid) and passing through the vertex
intersects the characteristic conoid only at the vertex and hence is space-like.

The use of the equation (7.15} in the definition of hyperbolicity has a great
advantage in that the definition does not depend on the choice of a particular
set of independent variables. This- definition of hyperbolicity will be used -
in §8.1. . -

EXERCISE 7.1

. When a new coordinate system (§;, &, #) is obtained by rotating the
(%, X2, 1)-system about x,-axis by an angle @, i.e. when
£, =x,, £2=1 sin & -+ X3 COS &, T=1 €OS foc—xz sin o, a1n
show that the characteristic equation of the wave equation:
T2 : o
pi—pi—pr—pi=0 (7.18)
becomes o
(cos? o — ¢? sin? ®)p? 42 cos « sin o {1+ c2p.pe,
+ (sin? & — ¢? cos? @) pr,—c%pr, =0. (7.19)
Show also that the characteristic equation (7.19) gives two real and
distinct values of g for arbitrary real values of pg, and pg, if and
only if the plane 7 =0 is space-like (note that the 7= axis need not be’
 time-like). : '
2. The two axioms of the special theory of relarivity can be stated toge-
- ther as “the propagation of light in-an inertial frame is governed by.
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the wave equation s — c?ty, 5, =0, where ¢ is the same constant for
all inertial frames”. Every mon-singular linear transformation (trans-
formation from one inertial frame to another inertial frame) of the
variables #, X1, X2, ---, Xm, with real coefficients, under which the wave
equation remains invariant, is a’ comhination of a Lorentz tranforma-
tion, a translation of the origin and a similarity transformation (see
Petrovsky, 1954). Show that Lorentz transformation maps the #-axis
into a time-like line and x;, X3, ---, Xm a%es into space-like lines.

#§ 7.3 Energy Density and the Law of Conservation of Energy

The wave equation can be put in the conservation form:
178 2 '
?[_87: (u% + czuxa uxm )_ 202 a?(itruxm )] = 0. (7.20)
o . . ]

Let D be a simply connected closed domain (in- space-time) bounded by a
surface S and let (m,, A) be the components of the exterior unit normal of
S. Integrating (7.20) over D and using the Gauss divergence theorem. to
converi a ‘volume’ integral to a ‘surface’ integral we get'

JS E(S) dS=0 | (7.21)
where - '
E(S) = ¥Mwd -}_-'czuxauxz)—'2c2i!zna’u_xa}.'._ . (7.22)

The quantity £(S) is defined to the ‘energy density” of the m-dimensional
manifold § with unit normal (#.. }). For a plane t=constant with unit
normal pointing in ‘future’, we have #,=0, A=1. Then

E(t =counst)= %u? +Ectug ux,, _ (7.23)

We know that for a system (such as a vibrating' membrane) governed by the
wave equation, 37 is the kinetic energy density and dc%uxx, is the
" potential energy density. Therefore the energy density defined by (7.22)
does coincide with its classical definition in mechanics.
The expression for E(S) can also be writien in the form

E(S)= 2—;— [(A2— e, 47 -+ 2, — Matte) (Mt — Hti)]. - (7.24)

The energy density in the manifold S is positive definite if (note that we can
always choose A = 0) ' ' ‘

A= P, = 0 . - (1.25)

i.e. only if the manifold S is space-like (compare with (7.10)). .
If we choose the surface S to be the characteristic conoid, A*— ¢*n.n. =0,

then E(S)= %Xcz(hux“ —~ nt)* Which is non-negative. .
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To deduce the-law of conservation of energy, we take two non-intersect-
ing infiite space-like manifolds 51 and S and assume that values of #(xq, 1)
and their derivatives on St and S2 and also in the infinite domain bounded
by them tend to zero at infinity sufficiently rapidly. Using (7.21) for the
surface S;-+ Sz, we get ' ‘

“ E(S) dS = ” ES)dS | \' (7.26)
S R : :

where we havew_:hosén the unit normal such that A= 0 on both surfaces
S1and S2. S ' ' ‘

Fig. 7.4

"Equation {7.26) represents the law of conservation of energy: encrgy
contained in all space-like manifolds is the same.

#37.4 The Cauchy Problem is Not Well-posed if the Data is
Prescribed on a Manifold Which is Not Space-like

Consider a pair of distinct planes
= Axa=Rol=0, 7 = puXe—gl=0 (1.27)

in (x,, t)-space. Let us examine the conditions under which the wave equa-
tion has a solution of the form

= 97 = exp{(Aexy — dot) -+ (paa = P01} (7.28)

When (7.28) is a sollgigél, for any constant r, et ¢+ gnd,  therefore,
1 f(2r2)(erEim g 7¢ ), "also a solution of the wave equation. This shows -
that the imaginary part,‘%f the last expression, namely

v%-;%— sinh ré sin ry _— _ _ (7.29)_
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is a solution of the wave equation. This solution satisfies the following
Cauchy data on the manifold £=0: .

w(f=0)y=0 : .
and : (7.30)

(€ =0)= % sin rm.

As r - o0, the Cauchy data #(¢ =0) and s¢(¢ = 0) both uniformly tend to
zero; however, the solution v itself tends to infinity as r — © for any vatue
of .£ # 0. Noting that the only solution of the Cauchy problem with
u(é=0) =0 and ug(¢ =0)=0 is the trivial solution u= 0, we conclude that the
solution of the Cauchy problem with # and ¢ prescribed on £=0 does not
depend continuously on the Cauchy data. Therefore if the wave equation
prossesses a solution of the form (7.28), the Cauchy problem with the data
on £ =0'is not well-posed. ‘

Substituting (7.28) in the wave equation we get

(Ro+ipo)P — 2P+ it} (Ae +ipa}=0. ' (7.31)
Equating the real and imaginary parts we obtain .
' 1= i =N — Ay ‘ (7.32)
and - ‘
Aopo= cPhapla. (7.33)

. Eliminating ro from the last two equations we get
¢t 22 2_ o
~ (Meltn)? — Cttatta = 2o — Chata.
0 .

Using the Schwartz inequality in the form

(’\aaa}(f-“ﬁf"ﬁ) = (Am!"a)z -
we get :

4 .
%2 (Ahs) (pets) = € ppatta 20— Do,
2 _

or

, r . ) !
(iT s £ 1 ) (A=) > 0. (7.34)
: |

This can be satisfied only if A5~ 24,4, << 0 which ensures that £ =0 is not a-
space-like plane. A2 — ¢2hade <0 is simultaneously a necessary condition for
the wave equation to have a solution of the form (7.28). Therefore, if the
data is prescribed on a plane which is not space-like, the Cauchy probleny
is not well-posed. ‘ '

*§7.5 Uniqueness Theorem for a Cauchy Problem

Consider the lower part of the characteristic conoid (7.4) througha point
P, 1), 4@ > O in space-time. Let Sy be the solid sphere of intersection
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of this characteristic conoid'withkthe plane t=h. Let D be the domain
bounded by So, Sk (0 < h < (®) and the portion Mz, of the conoid,
contained between the planes ¢ =0 and ¢=#h as shown in figure 7.5, ,

P( x(°), t(o))

o

Fig. 7.3

‘Using (7.21) for the surface of the domain [ and noting that the outward
normals on Si and So are in opposite directions, we get '

S j.S‘,.' E(-S)'dS-i—ij E(S) a’S=JSG ESyds. . . - - (735
Since E(S) is non-negative on My (see section 7.3), (7.35) gives
js E(S)dS = J'S E(S) dSs. ' (7.36)

Congider a Cauchy problem with values of # and prescribed on the
surface ¢=0. Assume that =0 and =0 at every point of the solid sphere
S, (i.¢. inside and on the boundary of So). Then ux, also vanishes on r=0.
Therefore, E(S)=0 on So. From (7.36) we get :

JSh E(S) ds EJS;. %{u%-% czumum} ds é, 0
Therefore E(Sy) =0 in S ' (7.37)

However, /1 was chosen arbitrarily which implies that E(S)=0 everywhere
in the characteristic conoid. Since S» is a part of plane ¢ =constant, E(Sr) 15
positive definite. Hence we rmust have u = 0 and ux, = 0-in the domain.
Since u is continuous.and u=0 on So, it now follows that u = 0 every-
where in the characteristic conoid.

This leads to the following uniqueness theorem for a genuine solufion of
a Cauchy problem: L - _

Theorem: If ux) and uy(x« ) are prescribed as sufficiently smooth func-
tions on So, the solution of the Cauchy problem for the wave equation with
the Cauchy data ' - :

(e, 0) = ol ), i3, 0)= (%)

is uniquely determined everywhere in the characteristic. conoid.
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*§7.6 Bicharacteristics and Rays

In the case of a hyperbolic equation in two independent varlables we
could derive compatibility conditions (see equation (2.6)) along the charac-
teristic curves. These conditions contain the entire information regarding -
propagation of prescribed initial values. Here we shali examine whether these
results can be extended to the wave cquatmn in more than two independent
variables. :

Consider a one-parameter family of characteristic manifolds: o(Xa, 1)
~tonstant. Then ¢ satisfies the first order non-linear partial differential
equation (7.2). The characteristic curves of (7.2) are defined to be the
bicharacteristic curves of the wave equation, These are curves in space-time
and are given by a coupled system of ordinary differential equations for
t, xa, pr and g,

dt dxe

_ R AP
Eg_ '_2— Q =P, E— = 0 QPXG(_ = CPxa : (7-38)
and ' _
. dox.
R ) Zﬁ ~- —;—Qx,, ~o. (7.39)
\*‘Rm &m oL av, ‘ i 2§ A A Po'sl}‘HR b—d!f@he

Note that these are nothmg but Charpft equa 1ons of (7.2). A characteristic
surface of the wave equation is an integral surface of the equation (7.2) and
hence is generaied by a family of bicharacteristic curves of the wave equation.

The equations (7.39) show that along the bicharacteristic curves p; and
px. are constants. Then equations (7.38) show that bicharacteristic curves
of the wave equation are straight lines in space-time. Spatial projections
- of these curves are called rays. These are curves in (x.)-space. The rays of
_ the wave equation are also straight lines. Their equations in terms of the
parameter ¢ are given by

dxo _  px. 5 Pxe /| grad ¢ |

dt o —pf | grad p |
where the unit normal (#.) of a wavefront (moving in (xg)-space) is also
constant along a ray. Therefore the rays of the wave equation starting from

an arbitrary point (x«p} at time £= 7o are given by :
Xa —me—'nuC(t f), e=1,2, ... (7.41) '
Compatzbz!zty conditions on a characteristic mamfold

Let us make a transf'ormatlon of independent variables from (xo;, £) to
(.?Cu; @), where

=Hgl - (7.40)

x. =Xy P= p(xm, ). (7.42)
Then thé wave equatlon transforms to

( —c Px; Py ) 3 ey +(Pﬂ Pyixa )dga

31,[) 2 - D
——— . 7.43
il 0. (7.43)

d
2 (2
: ‘Cpx"axa dp
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The operator djdo for the directional derivative along a bicharacteristic
curve becomes :

Hot? o d _dt c?_iabcot 8 8 _ o 0 _ o
: 48 L P s PR e B 2 3
- %%\zc do de 6t  do Bx; | di ) dx. cPA;Q—; b,‘\‘c"ﬂ :-;-t?
= (P% —¢2pxa PXa ) = 2px, — =~ ctox. - (7.44)
dp 0o : Xa-

since ¢ satisfies (7.2). Using the results of the Section 5.1 of Chapter 1, we
verify that the operator djdo gives an interior derivative on the characteristic
manifold. As we are interested in a condition involving only interior
derivatives on a charac-teristiq surface p = constant, we set

o= s . (745)

and noting that the coefficient of §2u/dp? in (7.43) is also zero, We get the
following form of the wave equation '

2 & a0, (P P, x. 0 =0 (7.46)
All the derivatives of # and v appearing in (7.46) are intetior derivatives
on a characteristic manifold ¢ = constant and thus (7.46) represents a com-
patibility condition along it. This compatibility condition involves two
quantities u and v, both of which are prescribed in a Cauchy problem for a
manifold p=constant. The first term: represents the rate of the change of
» along a bicharacteristic curve. We also note that the cocfficient of v in
(7.46Y is the wave operator itself operating on the function ¢.

Fig. 7.6 D=D1JDs..

#*§7.7 Propagation of Discontinuities Along Rays

Let us consider a solution u(xy, t) of the wave equation which is C?in a
domain D of the space-time except for jump discontinuities in the second
derivatives of u across an m dimensional manifold S: p{xa, #)=10 which
divides D into two, subdomain D1 and Da. In terms of a new set of inde-
pendent variables (%, @), introduced by (7.42), the wave equation reduces
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te the equation (7.43} which is valid separately in Py and D2, Since u and its
first derivatives are continuous across .S, the second order interior deriva-
o Py . . . L
tives - S and interior derivatives of the first order exterior derivatives,
XaOXpg. - . . - .

namely P (53) are continuous across S. So ¢%u/0p? must be discontinuous
X . . -

across S. Writing (7.43) at Pyin Dy, and at P, in D», taking the limit as
P1 and P; both tend to a point P on S, and subtracting the resultant
equations we get

H

2
(Pi=py,pyx.) [%%] =0 (7.47)
¥
where [0%u/0p?] represents the jump of the quantity d%u/3p? across S.

Since [6%u/0p?] # 0, it follows that o7 —cYpxpx. =0 on p=0 showing
that the surface of discontinuity S must be a characteristic manifold. We
take the equation of S to be such that S is embedded in a family of charac-
teristic surfaces p= constant, so that ¢ satisfies p; — ¢y 9., =0. The
equation (7.43) now becomes - )

2
du d (314)_ 2 _ﬂ“go. (7.48)

— 2 =2, ——|%
(P« Cch“xu)-ap- 2%, dx. \Op < dx,dx,

The quantities @, — c2px.x. and Pxa appegring in' the coefficients of (7.48)
.can be expressed as functions of ¢ and x.. We write -

it~ Pxoxs = A(xs, 9), Pra = B"fxﬂ', ?) (7.49)
where, since p is given, 4 and B are known functions of x’ and g. Differ-
entiating (7.48) with.respect to p and denoting ¢%u/op? by w, we get

a2y . O
— C " =
dx.6p Ox.dx.00
(7.50}

. P . ,
(Pu—c?p, v -!-A?a-—u —2c%p,  —(w)—2¢2B, 0.
R op  ax,

We note that the first order derivative dujdp, and hence also its intetior
A & '

derivatives | —i_«
Ix.0p  dx.Ox)dp
efficients in (7.50) are continunous across it. Writing equation (7.50) on two
sides of the manifold g =0 and taking the difference we get

(pe— oy W] = 2c%p . oo Iwl=o0. (7.51)

a

are continuous across ¢=0. Also, all the co-

Using d/ds for the bicharacteristic derivative as in (7.44) we finally write
(7.51) as : -

2 G- Gon =0, (1)
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Equation (7.52) is the law governing the propagation of discontinuities

in second order derivatives along bicharacteristics {or rays in (x«)-space) in

“the characteristic manifold p=0. Since P~ c*Pxaxa is @ known function

along a bicharacteristic, (7.52) is a first order linear homogeneous ordinary

differential equation along 2 bicharacteristic. Therefore the discontinuity

[w] cannot, vanish at any point of a bicharacteristic on which jt is somewhere
different from zero. ‘ o :

+§ § HYPERBOLIC SYSTEM OF FIRST ORDER .
- - EQUATIONS :

The results of the last section on the wave equation will be generalised
in these sections to a hyperbolic system. The aim is mainly to introduce the
concepts involved so that the reader will find it easy to go through a detail-
ed theory of hyperbolic equations in more advanced books such as Courant
and Hilbert (1962) Chapter VL.

*§ 8.1 Normal Conoid, Characteristic Conoid and Definition of a
' Hyperbolic System '

To start with we shall not distinguish between the variables x and¢. Our
aim is to suitably indentify a time-like variable for a hyperbolic system and
then use symbol ¢ for it. Consider a system of # first order partial differential
equations in the form

) nr-}—? { 3_q ‘ _ ' . .
| p=1BF) é)xp-i-C 0 | (8.1)4
for n dependent variables u: forming the components of the columm vector
.U. Note that the range of the suffix p is 1, 2, -, 2, m+ 1. The sysiem may
be linear, semilinear or quasilinear. In the last case, we shall first takea
known solution Uo(xp) and substitute it for the function U in the matrices
B, However, we shall have to remember that our results are true only for
the particular solution under consideration. The characteristic equation of
(8.1) is a nonlinear first order partial differential equation

"

Oinsy) =0t 5, BP, ]-o 6.

p. .
where @ = constant is a one-parameter family of characteristic manifolds.
We set _ . .
pxp'=kp,p=l,2, e, m1L {8.3)

“We shall discuss the algebraic property of the characteristic polynomial
as a function of px, at a fixed point of (xp)-space. Therefore we shall
denote the characteristic polynomial O(xp, Pxp) by Olpxp ). Using (8.3) we
see that the characteristic. equation ' :

. mi1 o . T
Olkp)= det [ 1 B{P)kp]-—'O (8.4)

p=
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is'a homogeneous algebraic equation of degree a in k, and represents the
equation of a conoid (in (k1s b2y -, Ko, km+ )-space) which is called a nor-
mal conoid at the point (ky) (see equation (7.17) for the wave equation).
The characteristic conoid is obtained as the envelope of the planes which
are perpendicular to the generators of the normal conoid, i.e. the planes

ROt kaxat s - KX + KXo = 0 ' (8.5)

where kp satisfy the relation O(k)=0. :

Before proceeding further, we first discuss an example (Courant and
. Hilbert, 1962). Since we are inferested only in the algebraic properties of the
normal and characteristic conoids, we consider a single equation of higher
order rather than the corresponding first order system. ‘

Example 8.1: Consider the partial differential equation

d 9 7 g3\ 52 g8 '
[(rm%)(a“m%) --*ax_g‘(zrm+%)]“f°- o 69
The normal conoid of (8.6) is given by
QU ko, ke3) = (ks kea)les+ ko) = e} (2des+hs) = 0, 8.7

To trace this surface, we first note that the equation (8.7) is homogeneous
in ky, ky, k3 and hence represents a surface generated by the movement of _
a straight line passing through the origin. It is. symmetric about the plane
k1=0 and the equation remains., unchanged under the transformation
ki, koo, k3)=> (=K, — ka, = k3). Therefore it is sufficient if we discuss the
nature of the surface for k3 << 0. We also note that the only generator of the
surface in the plane k3=0 is the ki-axis (i.e. k3=0, ky = 0).

To study the nature of the curve of intetsection of (8.7) by the plane:
k3= constant < 0, we write (8.7) as B ‘

oGkt
=7 -2k3)—~k2_

and study-it in a (k15 k2)-plane treating k3 as a parameter. For ky > — 2k
and k; < ks, the right hand side of (8.8) is negative and hence there is no-
real value of k. The curve of intersection lies only in ks << ky < =2k,
Let us trace the curve of intersection. As ko = = 2k3—0,k; - + »: so
the line k= — 23 is an asymptote which is approached -at each of its ends
by two branches of the curve from below. For k= ks, the two values of
ky coincide with zero. For all values of ky satisfying ks < &y < —2ks, we
- 8et a pair of finite values of ;. The point (0, —ks3) is a node and the curve
has no other singular point. The graph of the curve is shown in Fig. 8.1.
The normal conoid for k3 < 0 is generated by a straight line whose one
end is fixed at the. origin and which is constrained to move on the curve
shown in figure 8.1 in the plane k3 = constant << 0. To get the full normal 7
conoid, we have to take the generating straight line to be infinite on the
other side of the origin also. The normal conoid of (8.6) is not closed,

(k3 +k2)?, k3 =constant < 0 (8.8)
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(0,kg)

Fig. 8.1 The curve of intersection of the normal conoid (8.7y and the
plane k;=constant < 0

. We also note that any straight line (except the k, axis itself) paraliclto the
k;-axis intersects the conoid at most in two distinct points, a straight line
parallel to ky-axis intersects it either in one or two or three distinct points
depending on the position of the straight line but a straight line parallel to
the ks-axis always intersects it in three -distinct poiuté (except that the
straight lines lying in the plane k=0, they intersect at singular points).
The straight lines parallel to ky-axis and lying in the half space kz = 0
intersect the conoid at two points in the domain k3 << 0 and at one point
in the domain k3 > 0. Existence of ‘three distinct* points of intersection
with the conoid by lines parallel to ks-axis is equivalent to the statement .
that given arbitrary values of k, and k, the equation (8.7) always gives
three distinct values of k3. Thus we notice that the direction of ks-axis plays
some significant role for the equation (8:6).

We consider a particular section of the normal conoid by the plane
k3= — 1; this is a curve given by the equation

(= 1=k~ 1+ E)2 = (= 27+]e2) =0 8.9)

This curve is commonly known in literature as the normal curve. Similarly,
we may consider the curve of intersection of the characteristic conoid by the
plane x3=1; this curve is called ray curve. From (8.5) it follows that the
ray curve is obtained by taking the envelope of the straight lines '

kg Feaxs =1 ' _ (8.10)

in (xy, xy)-space with ki, ko related by the equation (8.9). Knowledge of the
ray curve is sufficient for constructing the characteristic conoid.

' * ®Except for those lying in the plane k;=0. The equation (8.6) is hyperbolic in a sense
more general than the definitions, given in the subsequent pages, which in strict -sense
refer to styongly hyperbolic equations. : : ’
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The relation between the normal curve and the ray curve is reciprocal.
. As the point (ki1, k) moves on the normal curve, the straight line (8.10)
envelopes the ray curve and conversely as the point (x;, x;) moves. on the
ray curve, the line (8.10) envelopes the normal curve. We further note that -
the equation (8.10), with k;,, k3 as variables and with fixed x;, x,, represents
the polar of the point (1, x2) with respect to the unit circle about origin,
Similarly, the same equation, with X1, X2 as variables and with fixed k,, %,
Tepresents the polar* of the point (k,, k2} with respect to the unit circle.
These results imply the following: the ray curve is the locus of the poles with
respect to the unit circle of the tangents of the normal curve (8.9). The nor-
mal curve is as shown in figure 8.1. The ray curve for this problem has been
shown in figure 8.2 as the curve 4BCDEFA--and has been traced with the

-
/ _ _ \/ \\+/ . 7\

"Fig. 8.2 Ray curve ABCDEFA of Eq. (8.6). The dotted lines are represented by (8.10)
for different values of &, and ks, :

help of the étraight lines (8.10) when k), k. satisfy (8.9). The ray curve
is not convex; the closed loop of the normal curve lying below the point
0, 1) (note ka=—1) is mapped onto the convex portion ABCDE between
A4 and B, and both the points 4 and E correspond to the node of the normal
" curve. The two branche_s of the normal curve above (0, 1) are mapped onto

*See G.T. Bell ‘Coordinate Geometry of Three Dimensions’.
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the concave portion EFA. The branches, extending towards points at infinity,
of the normal curve give rise to a cusp at F. Further, if the normal curve
has a double point (such as the node here), then the ray curve, or the
Qharacteristic conoid may not be convex and a lid such as EGA (a portion of
the straight line) must be added to the ray curve to form its convex hull,
where the convex hull is the envelope of the supporting lines (8.10). This gives
rise to the convex hull I" of the characteristic conoid. It is found that it is
the convex hull I' of the characteristic conoid which forms the boundary of
the domain of influence of its vertex. In this particular example the domain
of influence is larger than the domain bounded by the characteristic conoid.
The above example shows a few complicated geometrical features which
may arise in the normal conoid and the charaéteristic conoid. As in the case
of the above example, the role of the normal curve and ray curve can be
récognised in the study of the normal conoid and characteristic conoid for
an arbitrary system-of equations and the concepts can be generalised in
higher dimensions wherein they are called normal surface and ray surface.
In what follows, we shall not go into the intricate geometrical features of
these surfaces but concentrate only on other concepts which arise when the
existence of these surfaces is assumed. We. shall start with two definitions
of hyperbolicity, based on algebraic criteria, which are easily verifiable. The
motivation for these definitions has already been_ explained in § 7.2

* First definition of hyperbolicity: At a point P(xp), the first order system
(8.1) of n equations is said to be byperbolic if there exist directions C=({,,
€2, -eslms Imiy) such that all the straight lines (except the one passing
through the vertex) parallel to the vectors ¢ intersect the normal conoid in
exactly n distinct® points. ' _ .

Algebraically this statement is the equivalent to the following one ‘and if
0=(01, 02, -, Om, Oma1) 15 AN arbitrary nonzero vector not parallel to g,
then the equation ‘ '

O(E+8)=0 : (8.11)
in A must have n real‘ahd distinct roots. - :

Space-like Surface: 1f a vector § satisfying the dbove condition exists, the
plane clement at P orthogonal to { is called a space-like element. A surface
in {m+¥ 1)-dimensional space () is defined to be space-like if its surface
elements are space-like. ' ;

Second definition of hyperboli'city: An m-dimensional manifold (or an ele-
ment of it), which we may, by suitable coordinate transformation, write as

xms1 =0, is called space-like if at every point of the manifold the equation
' Q(kl, kl, ooy fomy 'kml-i‘l) =0 . (812)

*The equations (8.1) for which the normal conoid has » distinct sheets or equivalently
for which the equation (8.11) has n real and distinct roots are called strictly hiyperbolic
equafions. A discussion of general hyperbolic equations, where the roots of (8.11) are
not necessarily distinet, is beyond the scope of this book (see Garding condition in
- Hormander's book (1979). :
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in ket has # real distinct roots fof arbitrary real values of ki, &y, ---, km.
- The first order system is called hyperbolic at 4 point P if space-like surface
elements through P exist. v

Equivalence of the two definitions: First let Us assume that the system is
hyperbolic according to the second definition. Choose £=(0,0,...,0, )and
take an arbitrary vector, 6 =(61, 62, ..., O, 8m+1), not parallel to £, The equa-
tion (8.11) becomes Q(81, 62, ..., B, A+ 8,,..1) = 0 which according to (8.12) has
nreal and distinct roots A, Hence a vector € such that (8.11) has n. real and
distinct roots, exists.' Therefore the system of equations, (8.1) is hyperbolic
according to the first difinition and the plane xi =0 s a space-like surface.
Now we assume that a vector § satisfying the first definition exists. We
decompose an arbitrary non-zero vector 8 into the sum of two vectors one
parallel and another orthogonal to § and combine the former with € so that
AT +8=AL+6, where 9 is perpendicular to §. Next we choose the coordinate
.system such that § has the components (0, 0, ..., 0, 1); hence @ has its last
component 0. The equation (8.11) now becomes Q(f;, s, ..., Oy =0
which has ».real and distinct roots for A. Therefore the system is hyperbolic
according to the second definition. ‘ oo :

The vectors of the type §, which are orthogonal to space-like elements,
form the inner ‘core’ of the normal conoid bounded by the ‘inner sheet’ of
the conoid. It can bs proved that this inmer core of the normal conoid
is convex. Geometrically then, the normal conoid_'may be visualized as one
consisting of the closed inner sheet bounding the inner core into which the
normals to space-like surface elements point, and of further sheets which
form subsequent. shells around the core (see Duff, 1960). The outer sheets
may be ‘closed or may extend up to infinity. Wecan also prove that the

boundary of the cone supported by the planes orthogonal to the generators
" of the convex inner sheet of the normai conoid is the convex hull I’ of the
local characteristic conoid; more specifically, it is the hull of the ’outer shell’
of the characteristic conoid.

Time-like direction and curve: Every direction from.a point P into the
convex hull I' of the outer shell of the characteristic conoid at P is called.
time-like. A curve in the (m--1)-dimensional space is called time-like if its
direction is everywhere time-like. _

Now we notice that if a system (8.1) is hyperbolic at a point P, then there
exist an m-dimensional space-like surface element at P and time-like "direc-
tions through P. We can choose a local coordinate system at P such that
the direction of the xm+1__-'axis is time-like and the m-dimensional sub-gpace
spanned by the unit vecrors along x. coordinate axes (2=1,2, ..., m) is
space-like at P. We now move to a global discussion. We assume that we
have a first order system of equations which is hyperbolic in a domain D
of the m-1 dimensional (x1, x2,--+, Xs21)-space and it is possible to introduce
a coordinate system such that the xm., coordinate axis. is time-like and
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"the other axes lie in a space-like manifold at every point -of D1: We now
designate the time-like coordinate xm4 by ¢, the matrix B¢+ by 4 and
write the system (8.1) in the form ' ' '

T . )
Aa—q‘*"B(“)—a—L— +C=0, «=1,2,...m (8.13)

o ot 0%
The characteristic equation (8.12) with ku.i= —* and ki = begomes .
det [, B® = A4]=0 : (8.14)

which when sotved for A, according to our assumption, has # real and dis-
tinct roots (at every point of D, for arbitrary set of values of m constants ).
Since the equation (8.14) is homogeneous of degree in ng and A, it is
sufficient if we choose

Falte = 1. ‘ {8.15)
In this case, we denote the n values of A by
€1, €2, ++e, Cn . 7 (R.16)

which are characteristic roots or velocities. Our assumption of hyperbolicity
implies that the reéal roots c(i=1, 2, .-, n) are finite in D1. The necessary
and sufficient condition for finiteness is that the matrix 4 is nonsingular in
Dy, ie. ' o

detd #0 in D S (A7)

In all physical systems which evolve with time and which are governed by~
the hyperbolic equations, the time variable ¢ is always time-like and the
physical space containing the spatial coordinates xe is’ 'alw_a’ys a space-like
manifold in space-time. However, there are examples of time-independent
physical systems which are governed by byperbolic equations and ‘where the
time-like directions and space-like manifolds are not immediately clear.
Bxample of such a system is the three-dimensional steady supersonic flow
of a compressible gas where the Mach cone at a point plays the role of the
characteristic cone. In this case the direction of the axis of the Mach cone
is time-like. : ‘ '

Let us now go back to the hyperbolic system (8.13). For the simaple root
¢; of the characteristic equation (8.14), the matrix 7. B —cA has rank n—1
and there exist unique (except for a scalar multiplier) lefi and right nuit
vectors 19 and @, respectively satisfying

(Mg, B =¢, A, 1y B = ¢, Ay, (8.18)
Unlike in the case of two independent variables, the characteristic velocity
¢i, the left null vector I and the right null vector +@ not only depend on the
position (xa, #) in space-time but also on m arbitrary numbers iy, Ha, ---, Fm
satisfying (8.15). .
Definition of hyperbolicity can be exiended for characteristics of uniformly
constant multiplicity (see section 2.1). '
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The theory of the normal curve and the ray curve, presented in this sec-
tion, is extremely important for basic understanding of waves in all physi-
cal systems governed by hyperbolic equations. For application of the theory

‘to crystal optics and magnetohydrodynamics, reference may be made to

Courant and Hilbert (1962), pages 399-617. For application to elasticity,
reference may be made to Duff (1960). , ' :

*$8.2 Bicharacteristic Curves and Rays

Consider a system of first order equations (8.13). Its characteristic equa-
tion (6.15) is a first order nonlinear partial differential equation for the
function . The characteristic curves of (6.15) are called bicharacteristic
curves of (8.13). These are curves in space-time whose parametric represen-
tation is obtained after solving the ordinary differential equations

dt Axe

o 100, o = 10p . ' (8.19)
and
do =400 =10k (820)
where :
q=p Do=Pxy . (8.21)

The functions pa(a), g(o), xu(s), 7(c) along a bicharacteristic curve, must
satisfy the relation Q(pq, g, x4, £)=0. We note that a bicharacteristic curve
lic< in a characteristic manifold. Further a characteristic manifold p =0 is
generated by a Ap_arameter family of bicharacteristic curves.

Rays are the projections of the bicharacteristic curves on ‘the hyperplane
t=0.

If the coefficient matrices 4 and B are constant ntatrices, then Q=0 -
and Ox. =0. This implies that P« and g are constant along the bicharacter-
istic curvés or rays. The equations (8.19) imply that the bicharacteristics {or
rays) are straight lines in space-time (or in (x«)-space).

Lemma on bicharacteristic directions: Consider a characieristic manifold,
give by ¢(xz, ) = constant, of the first order system (8.13) corresponding to a
characteristic velocity e. We assume that c is simple. This implies that
1B — ¢4, where 1, =px, | grade ¢ |, has a unique left null vector / and a
unique right null vector r. Now we state the following important lemma:
With a suitable choice of the parameter v the variation of x« and t along a
bicharacteristic curve lying on a characteristic of the above family, is given by

dxo _ o dt : ;
<o = 1B, o=l - (8.2

Proof: Let us denote the characteristic matrix by B:
- B=pid+p, B® (8.23)
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so that the characteristic partial differential equation is Q=det B=0. To
obtain the derivatives of Q with respect to g and px. we use the result that
a derivative of a determinant Q is equal to the sum of n determinants @,
i=1,2, ..., n where Qyis obtained from Q by replacing its i-th row (or column)
by the derivative of its i-th row (or colunin). Then, from the equations (8.19),
expanding in terms of ith row (or column), we get

d. 2 ple at 3 '
Yx= Y B By and o= 3 Aufly gcrD)

do ij= ij=

" where By is the cofactor of the clement By in the matrix B. Since
@ =det B=0, it follows that

¥ Byfy=0  fori=1,2, on ' (8.25)
P .
and A

zl: Biyfy=0- forj=1,2,.. n (8.26)

~{(8.25) shows that for a fixed i, the vector By is a scalar multiple of the right
eigenvector r and (8.26) shows that for a fixed j, the vector B is a scalar
multiple of /. Therefore (8.25) and (8,26} together imply that

By=klr; - - (8.27)
where k is a nonzero scalar. _ S
With a suitable choice of the parameter o; the equations (8.24) give:
de df

do 7= o 17

which are the same as the equations (8.22).

*§8.3 Com'patibility'Cbndition Along a Characteristic Manifo]ﬂ 7

Multiplying the system (8.13) by the left eigenvector and using (8.18) with
1) and cas replaced by I and ¢ respectively, we get '
T,
[ B na—~+c~a—)U+ clC=10. (8.29)
0t Oxs
The unit normal (n) of the wave front and its speed ¢ are related to the

function p(xe, £) by {6.36) and (6.37) respectively. Therefore equation (8.29)
becomes

P .
IB("‘)(qax,, 5 p:%)U +¢ |-gradye | IC=0. (8.30)

o i - S é 0 .
For a given value of o, the expression @y, 3 P represents an inte-
. % . . .

rior differentiation in the characteristic surface g(x,, X2, -+, Xm, )= constant.
Hence in (8.30) (and therefore.in (8.29) also) only the interior derivatives

% 8%y and Lo Ve (8.28)

Y/
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with respect to a characteristic manifold appear, Therefore equation {8.29)
or (8.30) represents a compatibility condition on a charactetistic surface.

A canonical form of the compatibility condition: Through any point on a.
characteristic manifold, therc existsa bicharacteristic direction tangential
to the manifold. Therefore the interior derivatives appearing in the compa-
tibility condition can be written as linear combinations of a derivative along
a bicharacteristic curve and other m— | independent interior derivatives. We
shall derive such a form of the compatibility condition assuming that the
system is hyperbolic. ' -

Let /) and r® be the left and right eigenvectors corresponding to the ith
characteristic velocity ¢i(i=1, 2, ..., n), Let L and R be the » xn matrices
with [ as the ith row of L and r® as the /th column of R. Let §=[s;] be the

inverse of R. Since RS =1, the identity matrix, we can write the compatibility
condition

10 1ol a0, M=1,2, .00 (831)
Bt axm .
in the form _
104RS5Y 4 ron gogs 2. | anc -, (8.32)
at ax‘x

Using the summation convention, we rewrite (8.32) as

[0 4pDg; ai‘rj—l—1!‘(1“’}3(“)1”("’s,;; Oy HIMC=0, M=1,2,...,n (8.33)
Lot Oxn
Let us recollect now the result (2.36) regarding the biorthogonality of the
left and right eigenvectors with respect to the matrix A:
=0 ifi #j
194 { (8.34)
#0 ifi=j .
‘When we use this we note that the only nonzero term in the sum /™) 4r® g,
s I 4pMgy,; The equation (8.33) now becomes

Shj [([(M) ) %u,- + (JOD By an) _3”1;] + ¥ 100 g, Guy +IMC =,
t Ox, | 153 Oxy :
no sum over M, {8.35)

Let the equation of the bicharacteristic curve on a characteristic manifold

of the Mth family (i.e. corresponding t0 car) in (xa, #)-space be given by -

¥u= Xa{0n1),  =t(ons). Then from the lemma on bicharacteristic directions,
we can suitably choose oarsuch that

dxo,
dopy

= (JOD BEpdD) i J0) Ar@a0), dt =1, (8.36)
‘ doar
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Now, the equation (8.35) becomes

s2(IAD ArOD) d‘iﬁ; + 3, 1005 Os, %‘:’: +180C=0,

no sum over M. (8.37)

Since dt/doar= 1, the derivative operator djdays gives the time rate of change
of a quantity as we move along the bicharacteristic curves of the Mth charac-
teristic family. The form of the compatibility condition (8.37) 'is worth
noting. The derivative along the bicharacteristic direction has a very special
status in that it is the only one which contains the time- derivative 3/0¢; the
other interior derivatives [A)B®rWsy 6/0xs on the characteristic manifold
contain only spatial derivatives. Therefore from the knowledge of the data
at any time ¢, afl the quantities including du;/@x, can be found out and the
derivative operator d/dou can be used to find the values of the quantities at
the next higher time step ¢+4; on a particular bicharacteristic. More
precisely, we can integrate the equations (8.37) and construct an iterative
scheme for solving a Cauchy problem as in the case of two independent
variables. The canonical form (8.37) of the compatibility condition was
derived by Prasad and Ravindran in 1978.

#§8.4 Propagation of Discontinuities of First Order
Derivatives Along Rays

Consider a linear hyperbolic system

LU = A(xz, 0) %f—-mw(xﬁ, ) —%‘iwcxa, DU =fixe 1) (8.38)

where # is an 1 n matrix and £ is a column vector. As in the case of the
section 2.3, we could use the canonical form (8.37) to discuss the propaga-
tion of discontinuities in the function U. However, we shall concentrate
here on the discontinuities in the first order derivatives.

Let us take a solution U(xa, t), of the above system, which is Clin a
domain D of the (x«, f)-space except for the jump discontinuities in first
order derivatives of U across a surface S : p(xe, 1) =0 which divides D into
two sub-domains Dy and D2 (see Fig. 7.6). We need not repeat the argu-
ments of the sections 2.3 and 7.7 but briefly mention that if we use a new
coordinate system (xz, @) given by (7.42), then all the interior derivatives
dU|dx, are continuous across S, but the exterior derivative 8U//6p must be
discontinuous. )

© Writing the equation (8.38) in terms of the coordinates (xz, p) (see (7.42))
we get -

8 ) B
(dpe+ Bpy) %’T— +B® -;CE +FU=f. (8.39)
. o

As described in the section 7.7, we take the jump of this equation across §
and get

- (dpi+ B@p, )Us=0. E (8.40)
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This implies that .S : g(x«, £) =0 is a characteristic surface and the jumpin
the exterior derivative is given by

. j
[Usl=rw (8.41)
where r is a right eigen vector corresponding to a characteristic velocity
e(=-py| grad p}) and w is a scalar function defined on . Multiplying
(8.39) by the corresponding left eigen-vector /, using I(Ag.+ B®px )=0 and
differentiating the result with respect to ¢ we get
é (BU
Ox.

o U -
15), £2 o R+ S =), 842

In the equation (8.42) all quantities except OU/dp are continuous across
S. Hence taking the jump across S, we get

(IB (8.43)
Substltutmg U] from (8 41) we get
(IB@rYy + ( 1B 3;', -+ lFr)w = (. (8.44)
3 . ox,

Using the lemma on bicharacteristic directions, i.e. the result (8.22) and
changing from (x., ) coordinates to (x., p) we find that the operator giving
the rate of change along the bicharacteristic curve is

= (ldr) g +(BOP) - =15 g (8.45)
ot dx.
We also note that _
3 &\ é
45 (e} =g .
! (A e +A o ) iB i | (8.46)
Therefore the equation (8.44) can be written as

where L represents the linear differential operator appearing on the left
hand side (8.38). - ‘

Along a bicharacteristic curve the function .7 can be expressed as a
function of =, Therefore equation (8.47) is a linear homogencous ordinary
differential equation for an amplitude w of the discontinunity and gives the
rate of change of w along the bicharacteristic curves on the characteristic
surface. It follows immediately that if there exists a discontinuity in the
normal derivative of U at some point of a characteristic surface, it persists
(i.e. it remains nonzero) at ali points on the bicharacteristic curve through

that point. Interpreted in the Ianguage of wave propagation, discontinuities
propagate along rays. :
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We have seen in this chapter that the propagation of discontinuities is a
remarkable feature of hyperbolic equations. The analysis of propagation of
discontinuities gives rise to the concept of generalised solutions which are
the physically meaningful solutions. The structure of solutions of a hyper-
bolic equation is dominated by characteristic surfaces and rays. The main
features of the solution can be analysed by using the essential character of
the differential operator along the characteristic manifolds. '
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