
MA341 – Matrix Analysis and Positivity
2023 Autumn Semester

[You are expected to write proofs / arguments with reasoning provided, in solving
these questions.]

Homework Set 2 (due by Thursday, September 21 in class, or previously in office
hours)

Question 1 (Graph Laplacians). Suppose G is a weighted graph on nodes 1, . . . , n.
In other words, attach a non-negative real weight wij = wji to each pair of nodes
{i, j} with i 6= j (where wij = 0 denotes a lack of an edge). Now define the graph
Laplacian of G to be the n× n matrix LG with (i, j) entry −wij for i 6= j, and (i, i)
entry

∑
j 6=iwij.

Show that LG is always positive semi-definite. (Try the 2× 2 case first.)

Question 2 (Minimum matrices).

(1) Suppose x1, . . . , xn are nonnegative real numbers. Show that the matrix with
(j, k)-entry min(xj, xk) is positive semidefinite. (Work this out in either of two
ways: (a) write the matrix as a sum of rank-1 constant-entry-padded matrices;
or (b) take Schur complements and use the induction hypothesis.)

(2) Show that if 0 < x1 < x2 < · · · < xn, then the matrix in the preceding part is
positive definite, with determinant x1

∏
j≥1(xj+1 − xj).

(3) Show next that if m1, . . . ,mn are nonnegative integers, and p ≥ 2 is a prime
integer, then the matrix with entries pmin(mj ,mk) is positive semidefinite.

(4) Finally, if l1, . . . , ln ≥ 1 are positive integers, then prove that their gcd matrix
– i.e., the matrix with (j, k) entry gcd(lj, lk) – is positive semidefinite.

Question 3. Let d ≥ 0 and let

A =


p1 α2 · · · αd+1

α2 p2 0
...

. . .
αd+1 0 pd+1

 ∈ R(d+1)×(d+1)

be a real symmetric matrix.

(1) Show that detA =
d+1∏
j=1

pj−
∑
j>1

α2
j

d+1∏
k=2, k 6=j

pk. (Hint: First do this for all pj 6= 0,

then extend by continuity to all pj since the determinant is a polynomial
function in the pj, hence continuous.)

(2) Suppose p2, p3, · · · > 0. Show that A is positive semidefinite if and only if
det(A) ≥ 0.



Question 4 (Positive {0, 1}-matrices). Suppose G is a finite simple graph with node
set {1, . . . , n}, with n × n adjacency matrix AG having (j, k) entry 0 for j = k or
(j, k) 6∈ E(G), and 1 otherwise. Then the following are equivalent:

(1) Idn×n +AG is positive semidefinite.
(2) Idn×n +AG has all 2× 2 and 3× 3 principal minors non-negative.
(3) G is a disconnected union of complete graphs.

(Notice that for such G, by suitably relabeling the vertices, Id +AG is a block-
diagonal matrix with all diagonal blocks of the form 1m×m.)

Question 5. Every finite simple connected graph G = (V,E) can be thought of as
a metric space, by setting each edge to have unit length and assigning the distance
between two nodes to be the length of the shortest path joining them. This question
proves that the only graphs that isometrically embed into Hilbert space `2 are path
graphs and complete graphs.

(1) Show that if |V | ≤ 3, then G embeds isometrically into Hilbert space `2.
(2) Show that if |V | = 4, then G embeds isometrically into `2 if and only if G is

either the path graph or the complete graph.
(3) Show that the only cycle that embeds isometrically into `2 is C3 = K3.
(4) Now suppose G is neither a path nor a cycle. Then G has a node v0 of degree

at least 3. (Why?) Assuming G embeds isometrically into `2, show that (a) v0
is simplicial, i.e., its neighbors in G are all adjacent to each other. Now show
that (b) G is complete.

(5) Finally, show that path graphs and complete graphs do indeed embed isomet-
rically into Hilbert space.

Question 6. Suppose y1, . . . , yn are linearly independent vectors in Hilbert space `2,
and y is in their span. Find a closed-form expression for y purely in terms of the
inner products

〈yj, yk〉, 1 ≤ j, k ≤ n, 〈yj, y〉, 1 ≤ j ≤ n.

Question 7. Suppose (X, d) is a metric space, and z ∈ X is a fixed basepoint.

(1) Prove that the Kuratowski embedding Ψ : X → Fun(X,R) (the real-valued
functions on X), given by

Ψ(x)(y) := d(x, y)− d(z, y), y ∈ X
is an isometric embedding of X into Cb(X), the normed linear space of contin-
uous bounded real-valued functions on X equipped with the sup-norm ‖ · ‖∞.

(2) Let |X| = n+ 1. Then the recipe in the preceding part provides an isometric
embedding into Rn+1 with the sup-norm. Fréchet improved this to an embed-
ding into (Rn, ‖ · ‖∞). Indeed, show that this isometric embedding is achieved
by the map

xj 7→ (d(x1, xj), . . . , d(xn, xj)), 0 ≤ j ≤ n.


